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Abstract

Physical exercise (PE) has become an essential tool for different rehabilitation programs. Es-

pecially, high-intensity exercises (HIEs) have demonstrated to provide better results than low

and moderate-intensity exercises, in the improvement of general health conditions. Nonethe-

less, despite the benefits of PE, it is required to monitor patients’ condition, because lead-

ing them to extreme fatigue conditions may cause physical and physiological complications.

Thus, different methods, such as monitoring subject’s physiological parameters and subjec-

tive scales, have been proposed for fatigue estimation. However, there is still a need for

practical procedures that provide an objective estimation, especially for HIEs. Currently,

novel techniques based on exercise performance features and machine learning models, have

been explored, built on the idea that fatigue is reflected as a decrease in the performance.

Nevertheless, the performance in each exercise is normally assessed by employing different

characteristics. Therefore, considering that the sit-to-stand (STS) exercise is one of the most

implemented in physical rehabilitation, this work aims to propose a computational model

for estimating fatigue during this exercise. To obtain a data set that allows to develop and

evaluate the proposed model, a study with 60 healthy volunteers was carried out. The model

was designed for estimating three fatigue conditions: low, moderate, and high; by monitoring

32 STS kinematic features and the heart rate, with a Kinect and a Zephyr sensor. Results

show that a random forest model composed of 60 sub-classifiers presented an accuracy of

82.5% and a precision of 83.3% in the classification task. Moreover, results suggest that

the movement of the upper body part is the most relevant feature for fatigue estimation.

However, other characteristics like the movements of the lower body or the heart rate, also

contribute essential information that allows identifying the fatigue condition. Hence, this

work presents an initial approach to a promising tool for physical rehabilitation and in terms

of classification accuracy, this work presents remarkable results according to the literature.

Keywords: Fatigue estimation; sit-to-stand; physical exercise; physical rehabili-

tation; machine learning;.
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Chapter 1

Introduction

This master thesis presents the process carried out for the development and assessment of a

computational model to estimate 3 fatigue levels (low, medium and high) during the sit-to-

stand () exercise, which is a high-intensity exercise widely used in the physical rehabilitation.

Basically, this process consists of relating the users reported fatigue level to the heart rate

behavior and 32 kinematic/temporal performance features of the STS exercise, by applying

machine learning techniques. These features are collected from affordable and ambulatory

sensors, such as: a Kinect sensor and heart rate sensor. In order to obtain a data set, a

study with 60 healthy volunteers was carried out, providing 660 STS registers related to the

features previously mentioned and a fatigue level. Finally, this data set was used to develop

and evaluate the proposed fatigue estimation model.

This chapter contains the objectives of the work, the main motivations and its importance

in the clinical field. In addition, the work contributions and publications are presented.

1
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1.1 Motivation

According to the World Health Organization, non-communicable diseases (also known as

chronic diseases) are responsible for 71% of the global deaths (41 million approximately)

each year, being cardiovascular diseases, cancer, respiratory diseases, and diabetes the most

common ones [2]. There are many personal factors related to the chronic disease risks, such

as unhealthy diets and a lack of physical activity, thus; these illnesses can affect any person

of any group [3]. Moreover, it is predicted that the number of people with non-communicable

diseases is going to increase every year, bringing many socioeconomic issues regarding the

excessive cost of treatment for these patients and the amount of deaths [2].

Taking into account the socioeconomic impacts and patients well-being, different rehabilita-

tion programs are designed and held globally, to treat each specific chronic disease, and hence,

to reduce the number of deaths [4]. Although each program implements different methods for

the rehabilitation of patients (specifically, because each illness affects different body function-

alities), all of them are based on some basic World Health Organization recommendations [5].

Among these recommendations, one of the most important is to perform physical exercise (),

because it allows to treat different disease symptoms without medication [3]. Thus, physical

exercise has become a fundamental tool in several rehabilitation programs, such as cardiac,

oncology, neuromuscular pulmonary, and musculoskeletal [4, 5].

However, aiming to obtain an effective and safe rehabilitation process, a personalized training

program must be designed, based on the unique patient conditions (e.g. Diseases, age, injuries

and medication) and the rehabilitation goals [6]. Owing to the exercise variety, it is possible to

create a personalized training for each patient. Nevertheless, the exercise time and intensity,

are also essential features that require to be kept in mind [4, 7]. Specifically, this has to be

taken into account due to physical or physiological complications that may suffer patients at

taking them to prolonged and/or extreme fatigue conditions [8].



Initially, low-intensity and moderate-intensity exercises were used in the rehabilitation ther-

apies, essentially because they allow to manage easily the patient’s fatigue condition and

had shown to be sufficient for reducing chronic disease risk factors [9, 10]. Nonetheless, sev-

eral studies have demonstrated that high-intensity exercises with short duration are more

effective for reducing these risks [9,11,12]. Hence, it is highly recommended to implemented

high-intensity exercises in rehabilitation therapies [4, 12].

Considering the importance of preventing patients from extreme exercise conditions, several

methods to manage the fatigue have been explored, such as: monitoring physiological param-

eters, quantifying the exercise intensity, and asking the patient his fatigue level according to a

subjective numerical scales [13]. In general, it is preferred to use objective fatigue indicators

obtained directly from the patients, especially the ones related to the energy expended [4].

Therefore, it is always intended to monitor some patient’s physiological parameters [4], for

example, monitoring the patient’s breathing rate, blood lactate level, oxygen saturation, or

blood pressure [14–16].

One of the most implemented methods for low and moderate-intensity exercise consists of

monitoring the heart rate () because it can be easily estimated during exercise and has shown

a strong linear relationship with the exercise intensity. Nevertheless, studies have shown that

the HR changes its behavior in the high-intensity exercises, thus, it is not recommended to use

only this indicator [17]. In addition, many of the methods based on monitoring physiological

parameters are not effective for high-intensity exercise, and/or are difficult to implement in

clinical scenarios. Therefore, there is a need for new methods that allow monitoring the

patient’s fatigue, especially for the high-intensity exercises [18].

A novel method based on the idea that fatigue can be seen as a decrease in performance

activity has been recently explored [19]. The main idea consists of monitoring one or more

exercise performance features using any sensor that allows to measure directly or indirectly

the corresponding characteristic (e.g. accelerometers, gyroscopes, magnetometers, pressure
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sensors, and force sensors). So, it is possible to determine the relationship between the fatigue

condition and the performance features [20–22].

This novel technique presents a great potential for clinical scenarios, because it could provide

an objective indicator of the user’s fatigue condition. Moreover, in general these systems

implement sensors that are easy to adapt and use in rehabilitation environments, providing

a practical tool for the health staff [23,24]. Nevertheless, owing to each activity performance

is assessed with different features, this method is highly dependent on the exercise type [25],

and therefore, it is required to adapt the whole system to the corresponding activity.

Due to the novelty of this fatigue estimation method, few works have explored its application

in some common physical rehabilitation exercises, such as: walking [26], vertical jumps [27]

and lower limb endurance [22]. In general, these works employed machine learning models to

classify if the user is in fatigue or non-fatigued condition, by monitoring the exercise features

with wearable sensors. The authors have reported that it is possible to design computational

models with accuracies between 85% and 95%. However, they contemplate only two fatigue

conditions, which according to the exercise intensity classification, three levels of intensity

are normally managed in physical rehabilitation (low, moderate and high) [4]. Hence, it

is preferred to implement fatigue estimation techniques that allow to determine the three

states [4]. Furthermore, these models have been validated with a small healthy population.

Specifically, authors in [26] recruited 17 people, which is the highest number in the reviewed

articles.

These studies were carried out with healthy people and inside laboratory environments,

however, they present an initial approach for a helpful clinical tool. Moreover, due to the

global health emergency caused by the coronavirus disease 2019 (COVID19), the need of home

clinical tool has increased lately [28]. Therefore, this type of technologies are promising for

telemedicine rehabilitation applications.

Having in mind the importance of high-intensity exercises and the need of monitoring pa-



tient’s fatigue condition, this work aims to develop and evaluate a fatigue estimation model

for one of the most used high-intensity exercises in rehabilitation. The proposed model is

based on machine learning techniques, which integrates the user’s heart rate and 32 exercise

performance features. Thus, a study with 60 healthy subjects was carried out, in order to

obtain the corresponding data for the model development and assessment. In addition, a

systematic review was performed to determine the most implemented high-intensity exercise.

Hence, the motivation of this work is regarding an initial approach for a promising tool to

regulate fatigue during one high-intensity exercise, that in a future can provide a practical

and objective method for monitoring the user’s condition, and hence, a safer physical therapy

or training.

1.2 Project Background

This thesis is developed in the context of the research project ""Robots sociales para reha-

bilitación cardíaca"" () supported by the "Ministerio de Ciencia Tecnología e Innovación"

(grant 801-2017), as well as, internal funding from the Colombian School of Engineering

Julio Garavito. The project is primarily led by Prof. Dr. Carlos A. Cifuentes, Prof. Dr.

Marcela C. Múnera (professors at the Department of Biomedical Engineering and head of

the Center for Biomechatronics) and Dr. Mónica Rincon (Physiatrist leader of the cardiac

rehabilitation center at the "Fundación Cardioinfantil-Instituto de Cardiologia", located in

Bogotá, Colombia). Besides, the research is carried out by a cooperation network comprising

both national and international research groups and institutions.

The main goal of the project is to explore the use of Socially Assistive Robotics in the physical

therapies of cardiac rehabilitation, by providing assistance through social interaction. In order

to create an effective interaction with the user, it is required to develop a robust human-robot

interface able to determinate the patient’s condition. Therefore, the general interface model
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can be divided in two main modules: the social interaction module, which are the strategies

implemented to provide the right type of assistance (e.g. motivation and feedback) based on

the patient’s condition; and the monitoring and control module, that consists of measuring the

essential users’ parameters (e.g. physiological and exercise intensity parameters) to assess

their physical condition [29]. Figure 1.1 presents graphically the general diagram of the

human-robot interface project, where it is possible to appreciate how the robot behavior is

related to the patient’s condition, during physical training. Besides, Figure 1.1 displays the

specific patient’s parameters used in the monitoring and control module, which correspond

to cardiovascular parameters and exercise intensity parameters.

Figure 1.1: General diagram of the human-robot interface project

Taking into account the relationship between the exercise intensity and the fatigue condi-

tion, the monitoring control module contemplates a fatigue measurement tool, in order to

determine the user’s state. Thus, the presented thesis work is focused on proposing a tool to

solve this specific task.



1.3 Objectives

Considering the background of this project, its main motivations and the different exercises,

it is proposed the initial development and evaluation of a system to estimate the user’s fatigue

condition for one of the most implemented exercises in physical rehabilitation. Based on the

findings and methodologies of previous studies, this system integrates fatigue indicators and

machine learning techniques, to design a computational estimation model. Aiming to achieve

the project proposal the following objectives are defined.

1.3.1 General Objective

Develop and evaluate a fatigue estimation computational model for a high-intensity exer-

cise for physical rehabilitation, based on physiological and exercise performance parameters

obtained from healthy subjects.

1.3.2 Specific Objectives

• To perform a literature systematic review to understand the context of high-intensity

exercise in physical rehabilitation, regarding the type of exercises and the fatigue reg-

ulation methods implemented.

• To propose a system to estimate the user’s fatigue condition through monitoring ex-

ercise performance features and physiological parameters, for a high-intensity exercise

according to the systematic review.

• To develop and evaluate the proposed system, by carrying out an study with 60 healthy

subjects and implementing machine learning algorithms.
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1.4 Publications

The work presented in this thesis has been reported to the scientific community by means of

the following publications:

1. (Conference Proceedings) Andres A., Casas J., Céspedes N., Múnera M., Rincon-

Roncancio M., Cuesta-Vargas M. & Cifuentes, C. A. (2019). Feasibility study: To-

wards Estimation of Fatigue Level in Robot-Assisted Exercise for Cardiac Rehabilita-

tion. IEEE International Conference on Rehabilitation Robotics (ICORR) - Conference

Proceedings, https://ieeexplore.ieee.org/document/8779460

2. (Article – under review) Andres A., Cifuentes C., Oscar P., Monica R. & Múnera M.

(2020). Fatigue Estimation During the Sit-to-Stand Exercise by Monitoring the User’s

Performance and Heart Rate. Sensors.

3. (Article – under review) Christopher K., Andres A., Cifuentes C., Múnera M. &

Sebastian S. (2020). Predicting Perceived Exhaustion in Rehabilitation Exercises Using

Facial Action Units. IEEE Transactions on Affective Computing.

4. (Book Chapter – under review) Maria P., Andres A., Cifuentes C. & Múnera M.

(2020). Wearable Sensors for Monitoring Exercise and Fatigue Estimation in Rehabil-

itation. Internet of Medical Things: Paradigm of Wearable Devices, CRC Press.

5. (Article – under review) Andres A., Sergio S., Múnera M. & Cifuentes C. (2020). On-

line System for Gait Parameters Estimation Using a LRF Sensor for Assistive Devices,

IEEE SENSORS JOURNAL.

https://ieeexplore.ieee.org/document/8779460


Chapter 2

Fatigue and Physical Exercise in

Rehabilitation

Physical exercise () is understood as any activity that requires contracting muscles and more

energy expenditure than a resting state [30]. Performing physical activity provides numerous

benefits to people’s health, such as the improvement of the cardiorespiratory system and the

development of muscular groups, which are essential for daily life tasks [5]. Besides, the Word

Health Organization highly recommends to prevent and treat many chronic diseases, such

as cardiovascular diseases, cancer, stroke, and diabetes [3]. Therefore, several rehabilitation

programs have incorporated in their therapies, in order to achieve different goals. Five

examples can be seen in Table 2.1.

Table 2.1: Physical exercise objectives in rehabilitation programs

Rehabilitation program Physical exercise aim
Cardiac Improve the cardiac system capability [31–33]
Oncology Mitigate the effects of pathological fatigue [34,35]

Neuromuscular Retrain the affected movement neural paths [36–38]
Pulmonary Improve the respiratory system capability [39, 40]

Musculoskeletal Recover joint strength after a surgery [41,42]

9
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2.1 Health Related Physical Skills

In general, the main aim of PE in rehabilitation is to work the health-related physical fitness

() state of the patients [4], which refers to the components that are required to have a healthy

life. These components are focus on preventing illness or improving functional health, instead

of developing sport performance [43].

The HRPF capabilities can be divided into four individual groups, that are shown in Ta-

ble 2.2 [4, 43]. First, the body composition, that contemplates the distribution of different

tissues in the body (e.g. fats, water, muscle, and bone), and it is developed with diet and

general exercise [43]. Second, the musculoskeletal group, which refers to the power, flexibil-

ity, resistance and strength of the muscles and joints, trained by performing endurance and

stretching activities with external loads or bodyweight [12]. Third, the aerobic capability,

related to the ability of the cardiac and respiratory systems to provide oxygen for creating

energy, it is developed by mean of long-duration activities (between 20 to 60 minutes) with

low-intensity [44]. Finally, the anaerobic capability, that is the body’s capacity to create

energy without using oxygen for short-duration movements with high-intensity [12]. It is

worthy of mentioning that in the beginning, the anaerobic capability was not considered an

essential skill for a healthy life. Nevertheless, several studies have shown that it is essential

for sudden daily life movements, and now its development is included in the American Health

Association manual [4, 11,45].

2.2 Exercise Characteristics and Classification

Normally, in rehabilitation therapies, there are three exercise characteristics that are taken

into account: The type of exercise, which refers to the specific activity that the patient

is executing; the duration, which represents the total time the patient is going to spend



Table 2.2: Health related physical components groups

Group Meaning Training method
Body composition Tissue Diet and general

distribution exercise
Musculoskeletal Muscle strength Endurance and

and flexibility stretching exercise
Aerobic capability Create energy Soft activities

using oxygen with long-duration
Anaerobic capability Create energy Hard activities

without oxygen with short-duration

performing the exercise; and the intensity, that contemplates the amount of energy expended

during the activity [4].

Considering the use of PE as a clinical tool, it can be seen as a drug, where the exer-

cise characteristics are the prescription indications [4]. Despite the importance of all these

characteristics, studies have shown that the intensity is the most relevant [7, 46], because

it determines the energy expenditure and can be seen as the "dose" of the prescription [4].

Besides, the duration prescription is very dependent on the intensity, the more intensity, the

less duration [46].

Exercise intensity can be defined as the rate of energy implemented in the corresponding

activity [47]. Hence, the more energy requires an activity, the harder it is. However, due to

the different body’s metabolic ways to produce energy and the amount of jobs executed at

the same time, quantifying the rate and amount of energy expended is a complex task [45]

One approximation technique is the metabolic equivalent (), which is a unit that represents

the relation between the rate of energy expended in the physical activity and the rate of energy

expended in a resting state [13]. In other words, an activity with 2 s means that it uses twice

the energy than resting. Nevertheless, the energy consumption is strongly related to the

specific subject’s characteristics (e.g. metabolism and weight) and its measurement requires

complex instrumentation [48]. Therefore, several studies have been dedicated to generalize

the values of different activities, based on measurements from healthy subjects [48]. Although
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this technique does not provide a real-time patient’s condition estimation, it allows the clinical

staff to have a general idea about the activities for the training plan [49]. Moreover, the MET

unit is used to classify the exercises in three groups regarding their intensity [45,48]:

• Low-intensity exercise (): the group is composed of soft activities with a lower value

of 3s, such as walking slowly on a flat surface, sitting and being stood. These exercises

are commonly used for patients with extreme risk conditions.

• Moderate-intensity exercise (): the group contemplate activities between 2 and 6s.

Normally, they are non-stopped activities with a long duration (between 20 to 60 min-

utes) that require a low effort, such as: walking on a slope and bicycling slowly.

• High-intensity exercise (): the refers to activities with a value higher than 6. Usually,

they are short duration exercises (between 15 seconds to 5 minutes), that may be split

in recovering and training periods [50].

It is possible to see that in general, the s and s are focused on developing the aerobic capability.

In contrast, the anaerobic capability is worked through the s. Considering the importance

of this capability in real-life activities (section 2.1), the s have become essential for the

rehabilitation programs [51]. Moreover, studies have demonstrated that HIE is more effective

to increase the maximum oxygen volume () [11, 52], which is a relevant indicator about the

user’s quality of life.

2.3 Types of High-Intensity Exercises

Bearing in mind the variation among exercises, several studies have been carried out to

explore the use of different high-intensity activities in rehabilitation programs, such as run-

ning, cycling, climbing stairs, vertical jump, full-body endurance routines, and sit-to-stand



[9,11,12,44,52–57]. Depending on the training plan rehabilitation goals, these exercises may

be non-stopped or split into training and resting intervals. Owing to the different movements

and muscular groups implemented for each activity, the intensity is managed by changing spe-

cific features of exercise. Furthermore, each exercise performance can be evaluated through

dynamic and/or kinematic biomechanical features and can be executed by different meth-

ods. Table 2.3 contains the intensity characteristics, the main performance features, and the

execution methods of 6 common HIEs, that correspond to running, cycling, climbing stairs,

vertical jump, full-body endurance routines (), and sit-to-stand ().

Exercise Methods Intensity Performance features

Running [58]

Ground Inclination Cadence

Treadmill Speed stride length

lower limb joins angles

Cycling [59]

Resistance Cycling rate

Bicycle ergometer Cycling speed knee angular velocity

Ankle angular velocity

Climbing stairs [60]
Static stairs Number of stairs Average stair rate

Stairs machine Assistance of the upper-body Lower limb kinematic

Vertical jump [57]
Ground Number of repetitions Maximum reached height

resting intervals Ground forces

FBER [61]
External loads Number of repetitions time to complete routine

Body weight Exercise difficulty Ground forces

STS [62]
Static chair Training duration STS cycle rate

Movement displacement Lower limb kinematic

Table 2.3: High-intensity exercises in physical rehabilitation
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2.4 Fatigue in Physical Rehabilitation

Despite the benefits of PE, several considerations must be kept in mind at implementing it in

rehabilitation therapies. Specifically, because taking patients to inadequate exercise condi-

tions or extreme fatigue states might lead them to suffer physical or physiological complica-

tions [8]. Hence, it is essential to monitor the patient’s condition during training, especially

for s [4].

Fatigue is understood as a lack of energy to keep performing an activity [63], and it is used to

describe a decrease in physical performance associated with an increase in the real/perceived

difficulty of a task or exercise [64]. Because of its direct relation with the energy expended,

and therefore, with the exercise intensity, the measurement of fatigue has been widely imple-

mented to regulate exercise intensity [63]. However, it is considered as a subjective experience

that only the user can feel; hence, it is difficult to quantify [65]. Fatigue can be presented

in different ways (e.g. mental, emotional and muscular) [66], however, physical fatigue is the

most common in physical rehabilitation [67]. This type refers to a transient and recoverable

reduction in the force or power production in response to contractile activity [67]. Therefore,

repetitive movements with prolonged duration can lead patients to physical fatigue [68].

Considering the main aims of physical rehabilitation and its risks, monitoring the patient’s

fatigue during the whole process is important to provide a safe and effective rehabilitation

[69]. Hence, different strategies have been developed in order to measure fatigue such as

monitoring physiological parameters, implement subjective scales of fatigue perception, and

analyze exercise performance [69].



2.5 Physiological Parameters

Owing to the energy consumption during physical exercise, the body needs to increment the

creation and delivery of energy, by eliciting the corresponding metabolic ways and changing

the behavior of the cardiorespiratory system [64]. Hence, the subject’s physiological pa-

rameters, provide essential information about his/her fatigue condition [70, 71]. However,

according to the type of exercise performed, these parameters may present different behav-

iors, making it difficult to relate directly with fatigue [72]. Furthermore, some of them may

even present difficulties when monitoring in real-time or during exercise execution [72]. Due

to their direct relationship with the energy expended, the most relevant parameters are the

oxygen consumption (), the heart rate (), the blood lactate level () and the muscle electrical

activity, measured by surface electromyography . [68,70,71,73]. Table 2.4 presents the units,

main advantages and disadvantages of these four parameters.

Parameter Unit Advantages Disadvantages

[74]
mLO2/min/kg Strong linear relationship Complex instrumentation

with the energy cost and requires stabilization time

[17]

Beats per minute Easy to monitor Indirect measurement

(BPM) during of the energy

training consumption

[75]

Direct measurement Difficult to measure

mmol/L from the user’s during training

metabolism and requires stabilization time

[76, 77]

Direct measurement Affected by electrodes

mV from muscles to determine location and requires

physical fatigue complex real-time processing

Table 2.4: Physiological parameters for fatigue estimation during exercise
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2.6 Subjective Scales

The subjective scales of fatigue perception are ordinal numerical scales in which each number

represents a level of fatigue, in such a way that the lower number represents a state of absence

of fatigue, and the higher number represents a state of extreme fatigue. In extreme fatigue,

the person does not feel able to carry on with the corresponding activity [78]. Although this

method provide a practical and simple tool, due to its subjectivity, several studies have illus-

trated that the perception scales may present differences concerning other objective methods,

such as physiological parameters [79].

Because of fatigue is a subjective experience and can be presented in different ways, several

scales of perception have been developed, and even modified according to their application

[80]. However, these can be classified in two groups: unidimensional and multidimensional

scales [81].

2.6.1 Unidimensional Fatigue Scales

Unidimensional fatigue scales are the simplest because they contemplate one type of fatigue,

typically, user’s fatigue severity. Therefore, these scales are the most applied for fatigue man-

aging during physical exercise therapies [82]. However, they may be composed of different

items, in order to asses fatigue severity in different time or social conditions. Bearing in mind

the different rehabilitation scenarios, several unidimensional scales with different fatigue lev-

els and items, have been proposed [81]. In general, in this method a ordinal point scale is

implemented to determine the level of agreement that the user feels according to a established

affirmation (item) or a question. Table 2.5 presents 3 of the most common unidimensional

scales according to their focused population, the item number of and the point values



Scale Population Item number Point values

Brief Fatigue Inventory [83]
Patients with 9 11

cancer from 0 to 10

Fatigue Severity Scale [84]
General 9 7

population from 1 to 7

Fatigue Assessment Scale [85]

Patients with cancer,

Parkinson’s disease and 10 5

post-stroke population from 0 to 4

Table 2.5: Unidimensional fatigue scales according to the target population, number of items
and points

2.6.2 Borg Scale

The Borg Rating of Perceived Exertion scale is a 15-point scale composed of only 1 item. It

is a tool for measuring an individual’s effort and exertion, breathlessness and fatigue during

physical work and is highly relevant for occupational health and safety practice [1]. The scale

starts with “no feeling of exertion”, which rates a 6, and ends with “very, very hard”, which

rates a 20. The scale takes seconds to complete and can be a researcher or self-administered

and used on a single occasion or multiple times [65].

During the activity, participants are asked to rate their exertion on the scale, combining all

sensation, feeling of physical stress and fatigue. They are told to disregard any other factor

such as leg pain or shortness of breath but to try to focus on the whole feeling of exertion.

This number indicates the intensity of activity, allowing the participant to speed up or slow

down movements [86].

Borg also developed the Borg CR10, which is a 11-point scale [65]. It is a general method

for measuring most kinds of perceptions and experiences, including pain and also perceived

exertion. Figure 2.1 illustrates the representation of the 15-point Borg rating scale and Borg
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Figure 2.1: Borg scale table interpretation [1]

2.6.3 Multidimensional Fatigue Scales

Multidimensional fatigue scale group differs from the unidimensional one, basically because

they seek to analyze different fatigue factors and experiences, instead of only its intensity,

such as duration, daily pattern, cognitive, behavioral, social, and its effect on daily activi-

ties [85]. Therefore, these types of scales are commonly composed of more items than the

unidimensional ones and are more implemented for evaluating fatigue before and after the

rehabilitation procedure, aiming to quantify the rehabilitation effects regarding fatigue [85].

As well as the unidimensional group, several multidimensional scales have been proposed,

where in general, the idea is to use an ordinal numeric scale for determining the level of

agreement that the user feels according to some established affirmations or a questions. Ta-

ble 2.6 presents 3 of the most common multidimensional scales according to their fatigue

factors, the number of items of each corresponding factor and the point values.



Scale Factors Items Point values

Modified Fatigue Impact Scale [87]
Physical 7

Cognitive 7 5

psychosocial 7 from 0 to 4

Fatigue Scale [88]
Physical 7 4

Mental 7 from 1 to 4

Multidimensional Fatigue Inventory [88]

General 4

Physical 4 5

Mental 4 from 1 to 5

reduced activity 4

reduced motivation 4

Table 2.6: Multidimensional fatigue scales regarding their Factors, items and points

2.7 Exercise Performance Features

The decrease in exercise performance has a directly proportional relationship with the increase

in fatigue [72]. Therefore, novel methods for monitoring fatigue through exercise have been

explored. However, as it was mentioned in section 2.3, their evaluation depends heavily on

the type of exercise, which makes it difficult to propose a general method [89]. Moreover,

because of its novelty exploration, to author knowledge, there is not a work that has studied

this fatigue estimation technique in real rehabilitation scenarios. Hence, this technique is in

an initial development stage and presents a long path to become a clinical tool. Nevertheless,

it presents a great potential because it provides an objective indicator of the user’s fatigue

condition [26].

Although the exercise performance features can be measured by different sensors, one of the

goals of this technique is to provide a practical tool for rehabilitation scenarios [90]. There-

fore, this technique seeks to use sensors easy to implement, that do not affect the therapy
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development and exercise execution [91]. Table 2.7 contains some of the most common sen-

sors implemented for obtaining exercise performance features. In addition, this table presents

the exercise where the corresponding sensor is commonly implemented.

Sensor Measurement Exercises Features

Pressure [92]
User´s exerted pressure Running Gait phases

on a surface

Ultrasonic [93]

Displacement of Running, Step length,

an object Vertical Jump maximum height

and STS and hip displacement

Accelerometers [94]
Linear acceleration Vertical Jump Maximum acceleration

of an object and STS and STS cycle rate

Gyroscopes [95]
Angular velocity Running Gait phases,

an object and Cycling and cycle rate

Force platforms [96]
force and/or pressure Running Lower limb dynamics

exerted by the user’s feet and Vertical Jump and exerted ground forces

Image-based [91]
Movement of essential Vertical Jump Maximum height

activity body parts and STS and lower limb kinematic

Table 2.7: Sensors implemented for exercise performance assessment

As an initial evaluation, current studies have shown that these previous sensors can be used to

estimate some exercise features related significantly to the fatigue level [20–22]. Furthermore,

other studies have gone beyond to an initial exploration, by proposing fatigue estimation

models based on healthy subject metrics and machine learning techniques [22, 26,27].

2.8 Machine Learning for Fatigue Estimation During PR

Machine learning is a branch of the artificial intelligence area, that focuses on developing

algorithms for creating computational models able to "learn", in order to be able to take



decisions in unknown situations based on initial data. Therefore, it is required an initial data

set that allows the model to determine the possible cases that are going to face [97].

This data set is composed of two parts, the features and the targets. The features correspond

to the metrics obtained from the corresponding situation, in this case, the user’s exercise

performance features. On the other hand, the targets represent the desired result of the model

estimation, in this case, the fatigue condition. In general, machine learning techniques can

find different types of patterns and relationships among features, according to the target [97].

Hence, considering the number of features that can be extracted from physical activity,

machine learning algorithms are very useful [27].

The development and assessment of a computation model are normally divided into two

phases, training and test [97]. In the training phase, a huge part of the data set is used

to train the model (normally, between 70% and 90%), in such that way, it can process

the features to find the corresponding patterns and relationships. In the testing phase, the

remaining part of the data set is used to assess the trained model by comparing the estimated

outputs to the targets, so that, the model is evaluated with data that were not implemented

for the training [97]. In general, the model performance is evaluated by a metric called

"accuracy", which is the relation between the total right estimations obtained in each testing

process or true positives (TP), and the complete amount of data (N).

Studies have proposed models for estimating 2 user’s fatigue conditions (non-fatigued and

fatigued) in different exercises, such as vertical jump [27], lower limb endurance training [22],

and walking [26]; showing an accuracy between 85% and 95%. However, there are also

relevant rehabilitation exercises, where this novel method can be explored.



Chapter 3

Systematic Review of HIEs in PR

Aiming to understand the context of high-intensity exercises in physical rehabilitation, a

systematic review was carried out, considering specific article inclusion criteria. Despite the

huge number of articles about this topic, this review pretends to obtain a general idea about

the use of different HIEs, the fatigue regulation methods, and the rehabilitation implemented

areas.

3.1 Systematic Review Methodology

The review seeks to find articles that study the use of any high-intensity exercise, in a reha-

bilitation program, implementing any method for fatigue intensity regulation or evaluation.

Therefore, the main keywords were "fatigue", "high-intensity exercise", "physical" and "re-

habilitation". Nevertheless, similar words to these main keywords were also included. The

Systematic Review was carried out in the "Google Scholar" database, by using the follow-

ing word equation: "(fatigue OR exhaustion OR tiredness OR lethargy) AND ((high AND

intensity) OR anaerobic OR endurance) AND ((physical OR corporeal) AND (exercise OR

activity OR training)) AND (rehabilitation)".

22



Moreover, there were only considered articles that fit the following inclusion criteria (IC):

• IC1: Articles written only in English.

• IC1: Articles published only in Q1 or Q2 journals.

• IC3: Articles that contemplates the usage of at least one high-intensity exercise.

• IC4: Articles about physical rehabilitation programs.

• IC5: Articles with a chronic disease study population (no healthy subjects).

• IC6: Articles that implement at least one method for fatigue or intensity regulation.

It is important to highlight that a year publish criteria was not implemented, because the

use of high-intesity exercise in physical rehabilitation is currently explored. In fact, in 2012

the American Health Association recognized these activities as relevant for a good quality of

life, and therefore, important for physical rehabilitation [45].

3.2 Systematic Review Results

Approximately 216.000 articles were obtained by using the specified word equation in the

"Google Scholar" data base. However, after reading and analyzing the abstract of 210 articles,

a total of 146 articles were taken as possible candidates. Besides, the google sorting relevance

algorithm according to the research word, was used to select these initial candidates. After-

wards, each candidate was completely reviewed according to the inclusion criteria, and only

48 articles were finally selected. The discrimination result process regarding each inclusion

criteria item can be seen in Table 3.1.
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IC number Number of rejected articles

IC1 0

IC2 32

IC3 19

IC4 37

IC5 3

IC6 7

Table 3.1: Systematic review inclusion criteria discrimination Results

It is possible to see in Table 3.2 the 48 selected articles, where the second column contains

the rehabilitation area (as described in Table 2.1), the third column display the specific high-

intensity activities studied in the corresponding population (as mentioned in section 2.3),

and the third column has the specific fatigue evaluation methods implemented (from the

methods seen in section 2.4).

Reference Rehab Area HIEs Fatigue regulation Method

[53]

Heart rate

Cardiac Ruining treadmill Blood pressure

Borg Scale

Multidimensional Fatigue Inventory

[54]

Heart rate

Cardiac Sit-to-stand

Borg Scale

[98] Oncology Climbing stairs Borg Scale

Multidimensional Fatigue Inventory

[99]
Musculoskeletal Full-body routine Fatigue Scale

Heart rate

[100]

Vertical jump Heart rate

Oncology Sit-to-stand



Fatigue Assessment Scale

[101]
Oncology Full-body routine Multidimensional Fatigue Inventory

Sit-to-stand Heart rate

[102]

Multidimensional Fatigue Inventory

Oncology Full-body routines Borg Scale

[103]
Oncology Cycling ergometer Heart rate

Ruining treadmill Borg Scale

[104]

Heart rate

Cardiac Cycling ergometer

Borg Scale

[105]

Heart rate

Pulmonary Ruining treadmill

Borg Scale

[106] Pulmonary Cycling ergometer Multidimensional Fatigue Inventory

Borg Scale

[107]

Heart rate

Neuromuscular Cycling ergometer Multidimensional Fatigue Inventory

Borg Scale

[108]

Heart rate

Cardiac Cycling ergometer

Borg Scale

[109]
Oncology Cycling ergometer Heart rate

Fatigue Severity Scale

[110]
Oncology Full-body routine Borg Scale

Modified Fatigue Impact Scale

[111]

Brief Fatigue Inventory

Oncology Ruining treadmill Heart rate

Blood lactate level

[112]

Heart rate

Cardiac Cycling ergometer
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Borg Scale

[113]
Oncology Cycling ergometer

Multidimensional Fatigue Inventory

[114]

Sit-to-stand Heart rate

Oncology Ruining treadmill Borg Scale

Multidimensional Fatigue Inventory

[115]

Sit-to-stand Blood lactate level

Oncology Full-body routine Borg Scale

Multidimensional Fatigue Inventory

[116]

Heart rate

Pulmonary Sit-to-stand

Borg Scale

Oxygen saturation

[117]

Heart rate

Pulmonary Sit-to-stand

Borg Scale

[118]
Cardiac Climbing stairs Heart rate

Sit-to-stand Fatigue Severity Scale

[119]

Heart rate

Oncology Full-body routine Blood lactate level

Multidimensional Fatigue Inventory

Borg Scale

[11]

Sit-to-stand Heart rate

Cardiac Full-body routine Blood pressure

Borg Scale

[12]

Sit-to-stand Heart rate

Cardiac Ruining treadmill Borg Scale

[120]

Heart rate

Cardiac Ruining treadmill

Borg Scale

Multidimensional Fatigue Inventory



[121]
Oncology Ruining treadmill Borg Scale

Sit-to-stand Modified Fatigue Impact Scale

[122]

Full-body routine Heart rate

Neuromuscular Ruining treadmill

Multidimensional Fatigue Inventory

[123]

Heart rate

Oncology Sit-to-stand

EMGs

Brief Fatigue Inventory

[124]

Full-body routine Heart rate

Oncology Cycling ergometer

Multidimensional Fatigue Inventory

[125]

Heart rate

Pulmonary Cycling ergometer

Borg Scale

[126] Pulmonary Full-body routine

[127]
Cardiac Full-body routine Heart rate

Borg Scale

[128]
Oncology Full-body routine Heart rate

Multidimensional Fatigue Inventory

[129]

Heart rate

Cardiac Cycling ergometer

Borg Scale

[55]
Cardiac Ruining treadmill Heart rate

Climbing stairs Borg Scale

[56]

Climbing stairs Heart rate

Cardiac Sit-to-stand

Borg Scale

[130]

Heart rate

Other Cycling ergometer Borg Scale

Full-body routine EMGs

Fatigue Scale
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[131]

Heart rate

Oncology Sit-to-stand Borg Scale

Multidimensional Fatigue Inventory

[57]
Pulmonary Ruining treadmill Heart rate

Sit-to-stand Borg Scale

[132]
Cardiac Cycling ergometer Heart rate

Sit-to-stand Borg Scale

[133]

Cycling ergometer Heart rate

Neuromuscular Sit-to-stand EMG

Multidimensional Fatigue Inventory

[134]
Musculoskeletal Sit-to-stand Heart rate

Borg Scale

[135]
Neuromuscular Cycling ergometer Modified Fatigue Impact Scale

[136]

Heart rate

Neuromuscular Full-body routine Blood pressure

EMGs

Borg Scale

[137]
Neuromuscular Sit-to-satnd Borg Scale

Multidimensional Fatigue Inventory

[138]
Oncology Sit-to-stand Borg Scale

Vertical jump Fatigue Scale

Table 3.2: Systematic review table of high-intensity exercises in physical rehabilitation
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Figure 3.1: Rehabilitation area distribution for HIEs in PR

Figure 3.1 displays in a cake graph the distribution of the rehabilitation areas found in Table

3.2. It is possible to see that oncology rehabilitation is the area where the HIEs are applied the

most, containing more than one-third of the reviewed articles. It is followed by the cardiac

and pulmonary rehabilitation. The area "Others" refers to rehabilitation processes that

were not contemplated in chapter 2, generally, they correspond to rehabilitation procedures

implemented after a surgery. Hence, the musculoskeletal area contains the minimum number

of articles, for the contemplated rehabilitation programs.

Figure 3.2 presents a bar graph that contains the high-intensity exercise distribution of Table

3.2. It can be seen that the sit-to-stand activity is the most implemented in rehabilitation

programs, being presented in the 41.6% of the selected articles. It is followed by cycling on

an ergometer (31.2%) and full body routines (31.2%). Moreover, the vertical jump activity

is the less found in the reviewed articles (4.1%). It is important to mention that the sum of

these percentage values, overcomes the 100%, because some articles contemplates more than

one activity.
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Figure 3.2: High-intensity exercise distribution in physical rehabilitation
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Figure 3.3: Fatigue regulation and assessment method distribution

Figure 3.3 presents a bar graph that contains the different fatigue regulation method distri-

bution of Table 3.2. It can be seen that the unidimensional subjective scales are the most

implemented in rehabilitation programs, showing a percentage value of 81.3% of the selected



articles. Besides, because of the articles only implement one unidimesional method, a sub

bar that represents the most used unidimensional scale is also presented, wich correspond to

the Borg scale with a value of 70.8%. The second method is measuring the user’s heart rate

(68.7%), which is the physiological parameter used the most in the rehabilitation programs.

It is followed by the multidimensional group, which presents a value of 47.9%. Furthermore,

as well as the unidimensional group, it also contains a sub bar that represents the most used

scales, that corresponds to the multidimensional fatigue inventory (MDFI) with a value of

35.4%. The next method are physiological parameters, where only the measurement of V O2

shows a relevant value of 41.6%, because the other three groups have values lower than 10%.

The group "Others" correspond to physiological measurements that were not taken into ac-

count in chapter 2, which are parameters difficult to measure during the exercise execution

(e.g blood pressure and oxygen saturation).

3.3 Systematic Review Discussion

Due to the reaches of this work, only a part of the articles reported by the Google scholar

database was considered for this review. However, rigorous inclusion criteria were defined,

in order to obtain relevant articles according to the objectives of this work. Hence, it is

possible to see in Table 3.2 that almost two-thirds of the candidate articles were not selected.

Furthermore, it is also possible to see that the inclusion criteria items from 2 to 4 (IC2 to

IC4) were the strongest filters. Considering that this elimination process is sequential and

that the first item is just about the article written language, it was expected that most of

the eliminated articles corresponded to these initial criteria.

It can be seen that 32 articles were not selected by the IC2, in general, because they were

published in local conferences or journals without a high impact factor. On the other hand,

although the keywords "high-intensity exercise" were implemented, 19 candidates were elim-
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inated by IC3, normally because they considered exercises or routine focused on developing

the aerobic capability. Despite IC4 is followed by the other 3 items, it presents the highest

number of candidates eliminated. Basically, by reason of these articles are cases of study

with healthy people to explore the use of HIE, these 37 articles were not selected. Hence,

it may explain why the IC5 just considered 3 candidates, which are articles that consider

other types of diseases. Considering the general objective of these articles, they are almost

compelled to implement any method for fatigue estimation or assessment, hence, the 7 can-

didates eliminated by IC6 correspond to studies with a different aim to analyze the patient’s

fatigue regarding the use of HIE in physical rehabilitation.

Result in Figure 3.1 shows that in this preliminary review, the studies about fatigue evaluation

during HIE tend to focused on Oncology rehabilitation. Taking into account that one of its

main goals is to ease the effects of pathological fatigue, this result was expected. Moreover,

as it was shown in section 2.6, many of the subjective fatigue scales are focused on the

oncology population. Hence, in order to determine the effects of new physical intervention

based on HIE, this rehabilitation area is where the subjective fatigue methods are more

applied. In contrast, owing to the cardiac rehabilitation objectives and the risks of patients

regarding their cardiac condition, in this area is where normally different methods are applied.

Especially, methods that allow a real-time estimation, such as the Borg scale or the heart

rate. A similar case is presented of the pulmonary rehabilitation. Due to these rehabilitation

areas contains the 81% of the selected articles, these results suggest that in order to cover

the different requirements of the rehabilitation programs, the proposed fatigue estimation

system should be able to asses fatigue during the rehabilitation process and during exercise

performance.

Figure 3.2 displays that the articles tend to be focused on the implementation of the sit-to-

stand exercise. This may be related to the facts that the requirements of this exercise are

minimum and that it is one of the most common daily life activity, which make this activity



ideal for a simple and effective rehabilitation. Besides, some articles explored home physical

interventions, enhancing the use of this type of exercise. Therefore, this result suggests that

the proposed fatigue estimation model should focus on STS exercise.

Bearing in mind that fatigue is a subjective state that only the user can feel, it is normal to

see in Figure that the subjective fatigue estimation methods are the most implemented. In

addition, by reason of the importance of monitoring the patient’s fatigue state, it can be seen

that the Borg scale is presented in the majority of the articles, regardless it is a subgroup

of the unidimensional methods. This result could be also related to its easy implementation

during the rehabilitation therapies. On the other hand, the heart rate is the second method

most used, and the first one comparing to the other physiological parameters. Taking into

account the direct relation of this physiological parameter with the energy consumption, and

that it easy to measure during training, this result was expected. Therefore, these results

suggest the use of the Borg scale and the heart rate, in the development of the proposed

fatigue estimation system.

This review allows understanding the context of fatigue assessment and estimation for HIE

in physical rehabilitation, providing relevant information regarding the general objectives

of fatigue estimation, the most used HIE exercises, and the fatigue estimation methods

implemented the most. Hence, the next chapter is focused on the development and evaluation

of the proposed fatigue estimation model, according to the results obtained in this chapter.



Chapter 4

Sit-to-Stand Fatigue Estimation Study

According to the results in the previous chapter, the sit-to-stand (STS) exercise is the most

implemented HIE in physical rehabilitation. To the author’s knowledge, only two studies

have explored the use of exercise performance features, to determine the user’s fatigue condi-

tion during the STS exercise. In [21], the authors determined which STS features presents a

relation with fatigue, implementing a Kinect depth sensor and the Borg’s scale, with twenty

healthy volunteers. Results show that two temporal (stand-to stand time and sit-to-stand

time) and three kinematic STS features (vertical-velocity of the spine, knee-flexo-extension

velocity, and hip-flexo-extension velocity) present a significant lineal relation to the exhaus-

tion level, however, a model to estimate fatigue is not developed. Otherwise, authors in [18]

present a case of study for detecting fatigue employing EMG signals and a smartphone ac-

celerometer, with an obese and sedentary volunteer who performed eight STS tests. Results

exhibit that relative energy acceleration of the movement increase, and the number of repeti-

tions decreases when the person is physically exhausted. Nevertheless, an estimation model

is not displayed, and it is concluded that future work should use these characteristics to

develop robust models [18].

Hence, considering that the implementation of a fatigue estimation computational model

34



has not been explored completely for the STS exercise, this chapter presents the method-

ology, results, and discussion of a study carried out to develop and evaluate a fatigue es-

timation model. In general, the proposed system estimates three levels of fatigue (low-

fatigue,moderate-fatigue, and high-fatigue), and is based on machine learning techniques,

the user’s heart rate and 32 STS performance features obtained with a Kinect sensor. Figure

4.1 illustrates the general diagram of the proposed system, where it is possible to see the

STS execution, the extraction of the performance features and the user’s heart rate, their

integration in the fatigue estimation model, and the system output, which corresponds to

the user’s fatigue condition estimation.

STS exercise

User’s

heart rate

32 user’s

STS performance

features

Heart rate

sensor

Kinect

sensor

Machine learning 

trained model for

fatigue estimation

User’s fatigue 

condition 

(low, moderate or high)

Figure 4.1: General diagram of the proposed fatigue estimation system

4.1 STS Study Methodology

This study aimed to obtain the corresponding data set that allowed to develop and evaluate

a fatigue estimation model for the sit-to-stand exercise. As it was mentioned in section 2.8, it

is required an initial data set in order to develop a machine learning model. This study was

carried out with 60 healthy people and its protocol was accepted by the ethics committee of
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the "Colombian School of Engineering Julio Garavito," (Bogotá, Colombia).

4.1.1 Subjects recruitment

30 females and 30 males were recruited to perform a 2 minutes sit-to-stand test, according

to the following criteria. Inclusion criteria contemplated adult healthy subjects between 18

and 30 years old, and weight between 50 and 75 Kg. Besides, volunteers must have been in

a non-fatigued condition, according to the "multi-dimensional fatigue inventory" shown in

Table 2.6. In contrast, subjects with physical impairments that prevent them from sitting

down and standing up, cognitive impairments that do not allow them to follow instructions,

conditions that put them at risk in a fatigued state and/or use prostheses or orthosis in their

limbs, were excluded from the study. Finally, the volunteers signed an informed consent to

clarify that they voluntarily accepted to participate in this study. The mean and standard

deviation (M ± SD) of volunteers’ demographic data, for the female and male groups, are

shown in Table 4.1.

Table 4.1: Volunteer descriptive data (M ± SD)

Gender Age (years) Weight (kg) Height (cm)

Female 20.8± 1.7 59.3± 5.5 164.1± 7.7

Male 21.9± 1.9 65.9± 6.4 172.8± 8.3

4.1.2 Model Tools

In order to analyze the STS kinematic, the heart rate and the fatigue level of each volunteer,

a multitasking application was developed to incorporate and synchronize the following tools

in a single computer process:



• Kinect V2 (Windows, USA): This sensor implements depth and RGB images to seg-

ment the human body. In this work the second version of this sensor was used with the

Windows SDK, which provides 25 body points. It can measure the 3D position and

orientation of each body point at a sample rate of 30Hz. Considering the analysis pre-

sented in section 2.7 this sensor presents several advantages for STS kinematic analysis,

and it has been widely used to analyze the STS movement, showing great accuracy and

performance [139]. The sensor was placed on a tripod at 1 meter from the floor and 4

meters from the subject, as it is suggested for a right usage [139].

• Zephyr HxM BT (Medtronic, Ireland): This sensor has been implemented in several

studies for measuring heart rate. Its data was collected through a Bluetooth communi-

cation channel, with a sample rate of 1Hz. It was placed on the volunteer’s chest with

an elastic band. Moreover, it is implemented to measure the resting heart rate of each

subject.

• Borg CR10: Bearing in mind the subjectivity of fatigue, and the several use of this tool

in physical rehabilitation (as it is shown in Figure 3.3), the Borg scale was used as the

target of the user’s fatigue condition. Aiming to avoid as much as possible to provide

different explanations of this scale, Figure 4.2 was used to explain the values meaning

to each volunteer, where, it is possible to see the division of the fatigue levels (low,

moderate and high). Besides, due to the multi-dimensional fatigue inventory criteria,

it was considered that the initial fatigue state of the subject was 0. This scale was

asked to the volunteer every 30 seconds during the STS test. Hence, if the volunteer

was able to complete the 2 minutes exercise, the corresponding test register ended up

with 4 Borg CR10 values.
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Figure 4.2: Borg CR10 table values and interpretation

4.1.3 Procedure

Initially, the maximum heart rate (MHR) of each volunteer was estimated implementing the

"Tanaka equation", shown in equation 4.1. This equation uses the user age for getting an

approximation of his MHR. The volunteers were informed about the use of the Borg CR10

scale and instructed to 5 minutes warm-up, composed of stretching movements and a 3

minutes treadmill walking. Afterwards, they were instrumented with the Zephyr sensor and

taken to the test room, where a chair of 40cm in height and without armrests was located in

front of a wall, and the Kinect V2 sensor was located 4 meters in front of the chair.

MHR = 206.9− (0.67 ∗ AGE) (4.1)
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Figure 4.3: Set-up of the study and sit-to-stand representation, (A) standing position and
(B) sitting position.

The test consisted of sitting down and standing up from the chair as fast as possible for

120 seconds (2 minutes), after the command "go" and starting in a standing position. The

subjects were asked to be with their hands on their shoulders, to look straight forward

during the whole test and not to stop executing the activity. Nevertheless, if the heart rate

overcame the 90% of the MHR, or a 10 Borg value was notified, the test was immediately

concluded. Finally, the volunteers were instructed to a 5 minutes cold-down. The STS

exercise representation and the study set-up can be seen in Figure 4.3. Although the Kinect

V2 provides 25 body markers, in Figure 4.3A only the markers used for the data processing

are shown. These correspond to 3 markers located in the middle part of the upper body
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right (M_[name of marker]), 4 in the right leg (R_[name of marker]), and 4 in the left leg

(L_[name of marker]). Figure 4.3B illustrates the sitting position, the sensor locations, the

reference system of the Kinect V2 (X, Y and Z) and the orientation of some Kinect points

(Xp, Yp and Zp).

4.1.4 Data processing

Considering the metrics mentioned above, Figure 4.4 presents an example of a test register.

In Figure 4.4A, it is shown the movement of the M_hip marker on the Y axis (M_hipy),

where it is possible to appreciate the sit-to-stand movement as an harmonic signal, because

the STS test consisted of performing a repetitive activity, which creates a repetitive behavior

in the position signals, especially for the vertical movements. Figure 4.4B illustrates the

heart rate register and how it increments during the test. Finally, Figure 4.4C contains the

4 Borg CR 10 values mentioned by the volunteer every 30 seconds.
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4.1.5 Kinect STS exercise features
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Taking advantage of the M_hip repetitive behavior on the Y axis, an automated procedure

was implemented to detect each stand-to-stand cycle. Essentially, the process consisted of

subtracting the mean value of the whole M_hip signal and detecting the minimum and

maximum values of each cycle. Therefore, these maximum values were considered as the

moments when the volunteer was stood, and the minimum values when he was sat. Hence,

these values allow estimating the two phases of the STS activity, stand-to-sit and sit-to-stand.

Figure 4.5 presents an example of M_hip signal on the Y axis (M_hipy) of one test register,

where it is possible to see the maximum values (Max_val) and minimum values (Min_val)

of the corresponding signal. Furthermore, Figure 4.5 shows a zoom of one part of the signal,
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where a stand-to-stand cycle and its phases can be appreciated.

According to these stand-to-sit and sit-to-stand phases, the following 32 kinematic and tempo-

ral features were estimated for each stand-to-stand cycle, where "Fn" represented the feature

number "n", and the symbol "*" indicates that the corresponding feature was estimated with

the mean value of both sides, left and right:

• F1: Stand-to-stand time (s), estimated with the duration of the stand-to-stand cycle .

• F2: Sit-to-stand time (s), estimated with the duration of the sit-to-stand phase.

• F3: Stand-to-sit time (s), estimated with the duration of the stand-to-sit phase.

• F4: M_hip vertical range (m), measured as the difference between the maximum and

minimum value of the M_hipy signal during the stand-to-stand cycle.

• F5: M_hip depth range (m), measured as the difference between the maximum and

minimum value of the M_hipz signal during the stand-to-stand cycle .

• F6: M_hip max vertical velocity (m/s), estimated by deriving the M_hipy signal and

obtaining its maximum value during the sit-to-stand phase.

• F7: M_hip min vertical velocity (m/s), estimated by deriving the M_hipy signal and

obtaining its minimum value during the stand-to-sit phase.

• F8: M_hip max depth velocity (m/s), estimated by deriving the M_hipz signal and

obtaining its maximum value during the stand-to-sit phase.

• F9: M_hip min depth velocity (m/s), estimated by deriving the M_hipz signal and

obtaining its maximum value during the sit-to-stand phase.

• F10*: Knee flexo-extension range (o). The knee flexo-extension signal was obtained by

measuring angle between the vectors composed by the hip, knee and ankle Kinect 3D



points (Figure 4.3A). Hence, this feature was estimated with the difference between

the maximum and minimum value of the corresponding signal during the sit-to-stand

phase (m/s).

• F11*: Knee flexo-extension max velocity (o/s), estimated by deriving the knee flexo-

extension signal and obtaining its maximum value during the stand-to-sit phase.

• F12*: Knee flexo-extension min velocity (o/s), estimated by deriving the knee flexo-

extension signal and obtaining its minimum value during the sit-to-stand phase.

• F13*: Hip flexo-extension range (o). The hip flexo-extension signal was obtained with

the X axis angle of the matrix rotation between the M_hip and the knee Kinect 3D

orientation (Figure 4.3B). Hence, this feature was estimated with the difference between

the maximum and minimum value of the corresponding signal during the sit-to-stand

phase.

• F14*: Hip flexo-extension max velocity (o/s), estimated by deriving the hip flexo-

extension signal and obtaining its maximum value during the stand-to-sit phase.

• F15*: Hip flexo-extension min velocity (o/s), estimated by deriving the hip flexo-

extension signal and obtaining its minimum value during the sit-to-stand phase.

• F16*: Hip abduction-adduction range (o). The hip abduction-adduction signal was

obtained with the Z axis angle of the matrix rotation between the M_hip and the

knee Kinect 3D orientation (Figure 4.3B). Hence, this feature was estimated with the

difference between the maximum and minimum value of the corresponding signal during

the sit-to-stand phase.

• F17*: Hip abduction-adduction max velocity (o/s), estimated by deriving the hip

abduction-adduction signal and obtaining its maximum value during the stand-to-sit

phase.
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• F18*: Hip abduction-adduction min velocity (o/s), estimated by deriving the hip

abduction-adduction signal and obtaining its minimum value during the sit-to-stand

phase.

• F19*: Ankle flexo-extension range (o). The Ankle flexo-extension signal was obtained

by measuring angle between the vectors composed by the knee, ankle and foot Kinect

3D points (Figure 4.3A). Hence, this feature was estimated with the difference between

the maximum and minimum value of the corresponding signal during the sit-to-stand

phase.

• F20*: Ankle flexo-extension max velocity (o/s), estimated by deriving the ankle flexo-

extension signal and obtaining its maximum value during the stand-to-sit phase.

• F21*: Ankle flexo-extension min velocity (o/s), estimated by deriving the ankle flexo-

extension signal and obtaining its minimum value during the sit-to-stand phase.

• F22: M_shoulder vertical range (m), measured as the difference between the maximum

and minimum value of the M_shouldery signal during the stand-to-stand cycle.

• F23: M_shoulder depth range (m), measured as the difference between the maximum

and minimum value of the M_shoulderz signal during the stand-to-stand cycle.

• F24: M_shoulder max vertical velocity (m/s), estimated by deriving the M_shouldery

signal and obtaining its maximum value during the sit-to-stand phase.

• F25: M_shoulder min vertical velocity (m/s), estimated by deriving the M_shouldery

signal and obtaining its minimum value during the stand-to-sit phase.

• F26: M_shoulder max depth velocity (m/s), estimated by deriving the M_shoulderz

signal and obtaining its maximum value during the sit-to-stand phase.

• F27: Spine flexo-extension range (o). The spine flexo-extension signal was obtained with

the X axis angle of the matrix rotation between the M_shoulder and the M_hip Kinect



3D orientation (Figure 4.3B). Hence, this feature was estimated with the difference

between the maximum and minimum value of the corresponding signal during the sit-

to-stand phase.

• F28: Spine flexo-extension max velocity (o/s), estimated by deriving the spine flexo-

extension signal and obtaining its maximum value during the stand-to-sit phase.

• F29: Spine flexo-extension min velocity (o/s), estimated by deriving the spine flexo-

extension signal and obtaining its minimum value during the sit-to-stand phase.

• F30: Spine abduction-adduction range (o/s). The spine abduction-adduction signal

was obtained with the Z axis angle of the matrix rotation between the M_shoulder

and the M_hip Kinect 3D orientation (Figure 4.3B). Hence, this feature was estimated

with the difference between the maximum and minimum value of the corresponding

signal during the sit-to-stand phase.

• F31: Spine abduction-adduction max velocity (o/s), estimated by deriving the spine

abduction-adduction signal and obtaining its maximum value during the stand-to-sit

phase.

• F32: Spine abduction-adduction min velocity (o/s), estimated by deriving the spine

abduction-adduction signal and obtaining its minimum value during the sit-to-stand

phase.

Figure 4.6 illustrates an example of some different features estimation in two consecutive

stand-to-stand cycle. The dashed lines contain the stand-to-stand cycles, the superscript

symbol " ’ " represents the derivative operation of the corresponding signal, the dark dots

presents the maximum values (Max_val) of each signal, and the gray polygons the minimum

values (Min_val). Figure 4.6A presents graphically the estimation of the stand-to-stand time

(F1), sit-to-stand time (F2), stand-to-sit time (F3) and M_hip vertical range (F4). Figure

4.6B shows the derivative of the M_hipy signal (M_hip
′
y), the M_hip max and min vertical
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velocity (F6 and F7). Figure 4.6C shows the knee flexion-extension signal (Knee fle-ext) and

the estimation of the Knee flexo-extension range (F10). Finally, Figure 4.6D presents the

derivative of the Knee flexo-extension signal (Knee fle− ext
′), the Knee flexo-extension max

and min velocity (F11 and F12).
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Figure 4.6: Features estimation, (A) M_hip vertical movement signal, (B) M_hip vertical
velocity signal, (C) Knee flexo-extension signal and (D) Knee flexo-extension velocity signal.

4.1.6 Borg interpolation, features relation and heart rate incorpo-

ration

The 60 volunteers were able to finish the 2 minutes test, thus, at the end of the data rec-

ollection, there were 240 Borg vales, 4 for each volunteer as it is shown in Figure 4.4C.

Furthermore, 8 subjects reported a 10 Borg CR10 value at the end of the test, which means

that they reached the maximum fatigue level. Bearing in mind that the study aims to develop

a computational model based on a data set and machine learning techniques, the idea is to

get as much data as possible. Hence, in order to obtain more fatigue values, the Borg CR10



values were interpolated every 10 seconds employing linear estimation, based on the original

4 values and the assumption of the 0 Borg sate at the beginning of the test (Figure 4.2). The

idea consisted of estimating the 4 straight-line equations, by using the 4 provided Borg values

and then calculating the Borg value at the corresponding time. Therefore, after this process,

every register contains 13 Borg values, considering the 0 as the initial one. Figure 4.7 presents

an example of this procedure, where the black dots represents the original Borg values, the

gray squares the interpolated Borg values, and the black lines the lineal estimation.
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Figure 4.7: Borg value linear interpolation every 10 seconds.

On the other hand, because the performance test is strongly dependent on each subject

physical capability, the number of stand-to-stand cycle executed may be different for each

register, and therefore, also the amount of STS features and their values. In fact, the lowest

number of cycles obtained was 71, and the highest was 127. Therefore, to relate the fatigue

level to each performance feature (F1 to F32), the five closets stand-to-stand cycle to each

Borg value were used to estimate an average of each STS feature. This number of cycles was

obtained by analyzing the 10 registers with the least number of stand-to-stand cycle. Thus,

no cycle was repeated for the Borg values, except for the last one, because in the final test

part is where the lowest cycle rate is presented, which does not allow to accomplish the non-

repeated cycle requirement. Figure 4.8, presents an example of these nearest cycle selection,
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where the dashed lines with the gray light background contain the selected sit-to-stand cycles

for each Borg value. Besides, it can be seen in the white background rectangles, which cycles

were not used and that the final Borg was not related to any cycle.
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Figure 4.8: Selection of the five nearest sit-to-stand cycles to each Borg value.

Considering the importance of the heart rate for the patient’s fatigue monitoring in the

rehabilitation programs, this parameter was incorporated to the data set as the feature

number 33 (F33), in a similar way as the other features. Due to the Zephyr sample rate

is 1Hz, each test register contains 120 heart rate records. Thus, aiming to get an average

value without repeating records, the mean values of the five closest heart rate measurements

to each Borg value (except for the last one), were used to relate the fatigue level with this

physiological parameter. Figure 4.9 presents an example of these heart rate records selection,

represented by the dashed lines and the gray clear background.
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Figure 4.9: Selection of the five nearest heart rate records to each Borg Value.

Therefore, at the end of this process, the interpolated and original Borg values are related to

the average of the corresponding 32 kinematic/temporal features (F1 to F32) and the average

heart rate (F33).

4.1.7 Data normalization

It is important to keep in mind that with these average feature values, it is difficult to perform

a direct comparison among the volunteer registers, due to the feature variability caused by

the subject physical condition, which requires a normalization of the data according to each

initial subject performance. Hence, considering that all the volunteers were in a 0 fatigue

level at the beginning of the test and it is where the best performance should be presented, all

features extracted were normalized by dividing it with the corresponding initial value. Hence,

it is possible to determine how much each feature has changed regarding the beginning of

the test.
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Figure 4.10: Features normalized behavior and fatigue level example of one volunteer, (A)
Borg CR10 interpolated, (B) stand-to-stand time normalized, (C) Knee flexo-extension max
velocity normalized, (D) Hip flexo-extension range normalized and (E) heart rate normalized.

Figure 4.10 presents an example of one volunteer for three different features normalized.

Figure 4.10A shows the Borg values reported and interpolated. Figure 4.10B exhibit the

behavior of the sit-to-stand time (F1) and how this feature tends to increase. Figure 4.10C

display the behavior of the Knee flexo-extension max velocity (F11) and how this feature

tends to decrease. Figure 4.10D shows the behavior of the Hip flexo-extension range (F13)

and how this feature does not present a continues increment or decrement, however, it presents

constant behaviors in some parts of the test (like at the end of the test, where this feature

remains higher values than the beginning). Finally, Figure 4.10E, shows the mean normalized

values of the heart rate are increasing.



4.1.8 Data set construction

Taking into account that the last Borg value was no used and that the initial one was used to

normalize the features, there were 11 fatigue levels related to the STS performance features

for each register. Thus, at the end of the process, a total of 660 Borg registers related to the

performance features were obtained for the data set.

To determinate the target for the all registers, each one was labeled with 3 fatigue states (low,

moderate and high, as it is shown in Figure 4.2), according to the corresponding Borg value.

In such that way, registers with a related Borg value: between 0 and 3, were considered

as low fatigue (LF); between 4 and 6, as moderate fatigue (MF); and between 7 and 10,

as high fatigue (HF). Thus, each register is conformed by 33 normalized features (32 STS

kinematic/temporal and 1 of the heart rate) and one target. The representation of the data

set can be seen in Figure 4.11, where it can be seen how the 606 registers contain their

corresponding features and targets.

F1 F2 F3 F4 F5 Target

1

2

3

658

659

660

...

F33F32F31F30...

LF
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MF

LF
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HF

1.059 1.008 0.988 0.937 0.936 1.009 0.999 0.970 1.157

1.084 1.050 0.955 1.104 0.991 0.975 0.982 0.940 1.184

1.305 1.119 0.972 0.948 0.860 1.055 0.811 0.927 1.299

.....

......

......

1.115 1.086 0.984 0.947 0.937 0.933 0.948 0.951 1.137

...... ........................ ...... ...... ...... ......

......

1.287 1.150 0.959 0.937 0.823 1.052 0.902 0.937 1.324......

1.464 1.300 0.930 1.188 0.748 0.923 0.748 0.883 1.404.....

..........

Features
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Figure 4.11: Data set representation composed of 660 STS registers, 33 features and the
fatigue target.

Finally, to analyze in general how the features change according to the 3 fatigue categories, the

mean and standard deviation were calculated for each feature regarding the fatigue condition.

Therefore, it is possible to observe if the features in general present statistically different
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values and how they behave concerning the fatigue.

4.1.9 Fatigue estimation model development and assessment

In order to develop and evaluate a computational model for estimating the three fatigue

states by mean of the 33 features, different machine learning methods were explored based

on the data set obtained. In this work, a specific technique called "cross validation" was

implemented for evaluating each model. This technique divides the data set in "n" equal

parts, to train and assess "n" computational models of the same type, in this way, each model

is trained with ’n-1’ different data groups and assessed with the reminder group [97]. In the

end, this technique provides a general performance metric called "accuracy", which is the

relation between the total right estimations obtained in each testing process or true positives

(TP), and the complete amount of data (N), as it is shown in Equation 4.2.

Accuracy =
TP

N
(4.2)

Considering the size of the data set, 6 folds were selected for this validation process, hence,

each fold is conformed of 110 registers. Figure 4.12 illustrates this process, where "TPn"

represents the number of true positives of the corresponding "n" iteration, and "Acc" the

final accuracy metric.
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Figure 4.12: Cross validation process for the machine learning model development and as-
sessment.

Moreover, the false negatives (FN), that represents the amount register which were estimated

as other fatigue groups; and the false positives (FP), that refers to the number of registers

which belong to other groups and were wrongly estimated, were calculated to obtain 3 more

performance metrics known as "Precision" (Equation 4.3), "Recall" (Equation 4.4) and "F-

Score" (Equation 4.5).

Precision =
TP

TP + FP
(4.3)
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Recall =
TP

TP + FN
(4.4)

F − score =
Precision ∗Recall

Precision+Recall
∗ 2 (4.5)

Finally, the open source python library "scikit-learn" [140] was used to execute a general

quick training for different machine learning models: support vector machines, decision trees,

linear discriminates, neural networks, quadratic discriminates and clustering classifiers. Af-

terward, according to the accuracy metric, the best 5 models were selected to be adjusted

and retrained, by modifying their training parameters automatically through computational

iterations.

4.2 STS Study Results

Table 4.2 shows the descriptive data of the number of stand-to-stand cycles obtained in the 60

registers, specifically, the mean, median standard deviation, maximum, and minimum cycle

number. It is possible to see that on average the subjects executed 97.24 stand-to-stand

cycles, which means that in general, the cycle rate was 0.803 cycles per second. Furthermore,

it shows in the table that the minimum stand-to-stand cycle number gotten was 71, and the

maximum was 127, obtaining a difference of 56 cycles.

Table 4.2: Descriptive data of the number of stand-to-stand cycles

Mean Median Standard Deviation Maximum Minimum

97.24 95 18.60 127 71

Table 4.3 presents the number of registers for the three fatigue states, according to the labeling



process present end in the subsection 4.1.8: low fatigue (LF), moderate fatigue (MF) and

high fatigue (HF). It can be seen that the MF group contains most of the registers, followed

by the LF group. Hence, the HF group has the lowest value, showing a difference of 57

registers regarding the MF group, which corresponds to 8.6% of the total data.

Table 4.3: Number of registers for each fatigue state

Fatigue state Number of registers

LF 221 (33.5%)

MF 248 (37.6%)

HF 191 (28.9%)

Figure 4.13 display the mean (bars) and standard deviation (black lines) of each normalized

feature, regarding the fatigue state, where the light gray bars correspond to LF, the gray

bars to the MF, and the black bars to the HF. Besides, the features are split in 3 different

bar graphs, hence, Figure4.13A contains features from 1 to 11, Figure4.13B from 12 to 2,

and Figure4.13C from 23 to 33. It is important to highlight that these features are almost

center to 1, owing to the normalization process carried out in subsection 4.1.7, which allows

comparing the feature behavior among them. Therefore, it can be appreciated how some

features increment or decrement their statistical values according to the fatigue condition,

presenting that in general there their values have changed. Among the features, the stand-to-

stand time (F1), the sit-to-stand time (F2) the and the heart rate (F33), Spine flexo-extension

max velocity (F28), and M_shoulder depth range (F23), show the highest changes. Regarding

the LF, MF and HF: F1 has mean values of 1.125, 1.307 and 1.477; F2 values of 1.130, 1.335

and 1.537; F33 values of 1.340, 1.497 and 1.605; F23 values of 0.904, 0.824 and 0.799; and

F28 values of 0.981, 1.113 and 1.181. Finally, there are some features that do not illustrate

high changes. These features correspond to the M_hip min vertical velocity (F7), M_hip

max depth velocity (F8) and hip abduction-adduction max velocity (F17).
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Figure 4.13: Mean and standard deviation values of each feature, according to the 3 fatigue
conditions.
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Figure 4.14: Features scatter graphs regarding the stand-to-stand time, (A) stand-to-stand
time vs sit-to-stand time, (B) sit-to-stand time vs heart rate, (C) sit-to-stand time range vs
M_shoulder depth range, and (D) sit-to-stand time vs M_hip max depth velocity.

Figure 4.14 presents four examples of the data distribution regarding two specific features,

using the stand-to-stand time (F2) always as the horizontal axis. Therefore, the black tri-

angles represent the high fatigue registers; the gray squares, the moderate fatigue; and the

clear gray circles, the low fatigue. Specifically, Figure 4.14A shows the distribution according

stand-to-stand time (F1); Figure 4.14B, according to the heart rate (F33); Figure 4.14C,

according to the M_shoulder depth range (F23); and Figure 4.14D, according to the M_hip

max depth velocity (F8). Essentially, these plots display some patters that can be found in
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the data set, where it is possible to see how some features are related (4.14A) and others not

(4.14D). Considering the number of features, there are 33! scatter plot options, hence, there

were shown the most relevant considering the Figure 4.13.

Nonetheless, aiming to provide a general view of how the data is distributed according to

the hole features, the technique "Uniform Manifold Approximation and Projection" (UMAP)

was implemented. This technique allows to reduce the number of data set features, in order

to be used for visualization, and determine patters or clusters [141]. Hence, Figure 4.15

presents the obtained 2D plot, by reducing the number of features to 2. It can be seen that

the LF registers tend to be apart from the MF and HF ones. However, the UMAP technique

does not present a clear separation between the MF and HF registers.
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Figure 4.15: Features scatter graphs regarding the stand-to-stand time, (A) stand-to-stand
time vs sit-to-stand time, (B) sit-to-stand time vs heart rate, (C) sit-to-stand time range vs
M_shoulder depth range, and (D) sit-to-stand time vs M_hip max depth velocity.

Table 4.4 contains the best five models obtained after exploring in a grid search manner to the

data obtained in subsection 4.1.9. The k-nearest neighbor (KNN) method using Euclidean

distance classified the registers by a majority vote of its nearest elements with 27 neighbors

(K=12). The logistic regression (LR) classifier implements the large-scale bound-constrained



optimization as a penalty algorithm (solver=lbfgs), and a value of 1000 for its inverse of

regularization strength learning parameter (C=1000). Then, the artificial neuronal network

(ANN) with a stochastic gradient-based optimizer (solver=adam), and 100, 20, and 100 as

hidden layer sizes (hls=(100, 20, 100). The support vector machine (SVM) with a radial

basis function kernel (kernel=rbf) and a constrain value of 2 (C=2). Finally, the best model

is a random forest (RF) classifier with 60 estimators (n_estimators=60), which means that

the model integrates 60 decision tree models to merge their prediction. Moreover, Table 4.4

provides the mean values of the performance metrics: accuracy, recall, precision, and F-score,

where the RF model presents the highest values as presented in Figure 4.4.

Table 4.4: Performance of the five best fatigue estimation models

Model Main parameters Accuracy(%) Precision(%) Recall(%) F-score(%)

RF n_estimators=60 82.5% 83.2% 82.0% 81.9%

SVM kernel=rbf, C=2 78.6% 78.5% 78.9% 78.1%

ANN hls=(100, 20, 100) 76.0% 77.1% 74.8% 75.0%

LR solver=lbfgs, C=1000 72.2% 73.3% 72.1% 71.5%

KNN K=12 66.6% 75.2% 64.7% 62.1%

Taking into account that the values in Table 4.4 are the mean values obtained after the 6

test of the cross validation process (Figure 4.12), Figure 4.16 presents the box plot of each

reliability metric, for the five machine learning implemented methods. Hence, each method

contains four box plots, where the middle horizontal line represents the median value, the four

quartiles are contained by the vertical lines and the boxes, and the black dots are atypical

data. It can be seen that the RF method always presents the highest values, showing the

lowest dispersion and therefore, the best consistence.
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Figure 4.16: Box plot of the performance metric results for the five best machine learning
methods.

Finally, considering that the best model corresponds to a random forest, its property "feature

importance" was used to quantify the importance of each feature for the corresponding model.

This property allows to obtain a relatively weight value to each feature, which represents a

direct relation to the importance of the corresponding feature for this specific machine learn-

ing model. Figure 4.17 presents as a bar graph, the relative importance values obtained for

each feature, sorted from the highest to the lowest. It is possible to see that F23 (M_shoulder

depth range), F1 (stand-to-stand time) and F33 (heart rate) have the highest values.
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4.3 STS Study Discussion

According to previous works [142] that have studied the reference number of cycles in a 1

minute STS test for healthy people, the results obtained in Table 4.6 are lower. Specifically,

authors in [142] reported that subjects between 20 and 24 years have an average stand-to-

stand rate of 1.183. On the other hand, results in Table 4.6 show an average rate of 0.803.

This is presented because in this work the STS test ha twice longer, which makes the test

harder, and hence, the general performance decrease. Moreover, these results suggest that

the volunteers were being fatigued.

Despite the lowest number of cycles executed was 71, it is important to highlight that the

cycle rate is not constant and tends to decrease during the test because of the induced fatigue.
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This makes that at the end of the test, the number of cycles decreases. Hence, 5 cycles were

used to get the average for each feature for the data set.

Although every volunteer started in a low fatigue condition, results in Table 4.3 display

that most of the registers belong to the moderate fatigue (MF). In contrast, the lowest

register number is presented for the high fatigue group (HF). Considering that reaching a

Borg value in the HF band, requires to pass firstly for the LF and MF groups, this result

was expected. However, a difference of 8.6% (57 registers) is acceptable for data analysis and

training computational models [97]. Moreover, these results present that the data set registers

are distributed similarly among the 3 fatigue groups and that in general, the volunteers

experimented the 3 fatigue states during the test.

Bearing in mind previous studies have demonstrated that the times of the sit-to-stand phases

are the most relevant exercise performance features [62], the results in Figure 4.13 are con-

cordant to the literature. Where, an increment of approximately 20% can be seen for these

types of features (F1 and F2), between the mean values of the LF and HF groups. However,

despite the use of heart rate is criticized for managing the patient’s fatigue condition during

HIE [17], it can be seen the direct relation with fatigue level. The heart rate (F33) has a

difference of 21.7%, between the LF and HF groups. Thus, the heart rate provides important

information.

Nonetheless, other features present the opposite behavior. Specifically, the M_hip depth

range (F5), the knee flexo-extension max velocity (F11), knee flexo-extension min veloc-

ity (F12), Hip flexo-extension min velocity (F15), M_shoulder vertical (F22) range and

M_shoulder depth range (F23), present the highest decrements. Because of they are related

to the phases time and the movement of the spine, it is normal that the lower limb angu-

lar velocities decrease, especially the minimum velocities that correspond to the sit-to-stand

phase.

However, features that come from the upper part of the body, specifically the M_shoulder



movement ranges (F22 and F23) also decrease. This phenomenon could be because the

volunteers tried to change the exercise execution technique, in order to be able to keep

performing the activity as fast as possible and to ease the load on the main lower limb

muscles. Therefore, by moving the chest and the back to the front part, the exercise becomes

easier [143], which causes the upper movement range features to decrease. Thus, although

these features do not change as much as the time phases features and the heart rate, they

also provide important information about the fatigue condition.

The relationship among the features themselves and the fatigue condition can be better

analyzed in the 2D plots of Figure 4.14. Figure 4.14A the data distribution follows a linear

straight, due to, the sit-to-stand time is part of the stand-to-stand time, hence, both features

are very related. It can be seen that the HF samples are clustered around the highest values.

In contrast, the LF samples tend to be grouped in the lowest values. However, this graph

does not present a clear difference between the LF and MF samples. Moreover, there are

also some irregular HF registers that are in the lowest values, which make it difficult to

differentiate them from the other fatigue categories just with these two features, showing

that with just one parameter is insufficient for a good calcification.

Figure 4.14B exhibit the data distribution regarding two features that are not related, the

sit-to-stand time and heart rate. Hence, the samples are more dispersed and do not follow a

clear equation. As above, the LF samples tend to be grouped in the lowest values, however,

it can be seen that some LF registers reach values of about 1.6. This means that during

the test, the heart rate reached values of approximately 60% higher than the repose heart

rate of the corresponding volunteer, and do not overcome a value of 1.5 of the sit-to-stand

time. This represents exercise conditions where the volunteers were requiring more energy

for doing the exercise and did not feel fatigued, and thus, they were able to keep a simi-

lar performance. Taking into account that these heart rate values are acceptable in some

rehabilitation scenarios (e.g oncology rehabilitation), this case may be optimal for physical
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training [4, 144]. Nevertheless, by monitoring just the heart rate, it would be difficult to

distinguish this optimal training condition, from the cases where moderate or high fatigue

levels are reached.

On the other hand, it is possible to see HF samples that do not overcome a 1.4 value in the

heart rate and are in the highest values of the sit-to-stand time. These registers represent

cases when the cardiac system was not able to adapt as fast as the exercise requires, which

might happen in high-intensity exercises and very depended on the subject’s cardiorespiratory

capability [17], and hence, they felt exhausted and were not able to keep executing the exercise

with similar performance. However, it is possible to see the opposite case, where some HF

and MF samples are presented in the heart rate highest values and in the lowest values of the

sit-to-stand time. This case shows conditions where the volunteers felt compelled to adapt

their execution technique, to keep performing the activity quickly. Thus, it is important to

monitor other exercise performance features, where these changes can be appreciated.

The execution exercise technique change and its influence in the sit-to-stand time can be

appreciated in Figure 4.14C, where many HF samples are grouped in the lowest values of

the M_shoulder depth range. Considering that moving the back to the front facilitates the

execution of the exercise and reduce the upper body displacement on the Z-axis [143], the

exercise phase times will tend to decrease, showing a better performance. However, the real

situation reflects a pattern that, owing to the fatigue condition, the volunteers may modify

their posture to reduce the load on the lower limbs. Therefore, the LF samples are clustered

in the highest values of the M_shoulder depth range. In Figure 4.14B and Figure 4.14C, it is

possible to see how the fatigue distribution changes in both axes. In contrast, Figure 4.14D

presents the data distribution the M_hip max depth velocity, that does not provide visually

a clear pattern. Thus, it is not possible to determinate data groups, clustered on the vertical

axis, despite the feature change it values in a similar range of the sit-to-stand time.

In addition, Figure 4.15 presents that in general, the LF registries are the easier to classify,



because they tend to be clustered according to the UMAP features reduction technique. It

could be related to the fact that the LF state was always the initial state because it eases

the errors that may have presented for the subjectivity of the Borg scale, providing a more

direct relation to the initial registers. However, it is important to mention that Figure 4.15

also presents atypical registers, which may be presented because reducing the number of

features does not allow to detect the hole patterns. Although Figure 4.15 does not present

a clear separation between the MF and HF groups, this can be appreciated better in Figure

4.14 where the data tend to be clustered in specific ranges of the features. Specifically, it is

possible to see that in the extreme values, the HF registers are normally shown.

Taking into account the different patterns that can be presented and the number of features,

one of the best ways to analyze the data set, is by employing computational models able to

determine these and other behaviors. It can be seen in table 4.4 and in Figure 4.16, that the

machine learning model that with the lowest reliability values is the KNN, which based on

distance techniques for classifying. Hence, considering the data distribution presented in the

scatter plots (Figures 4.14 and 4.15), it is possible to see that this is not the recommended

method for this type of data. Despite the SVM and the ANN present a better performance

estimation, these models based on estimating curves for classifying do not present the best

performance, because the groups are not enough separated. Hence, the RF model has the

best reliability results. Considering the different cases that may be presented, this result

suggests that the best method consists of merging different estimators that analyze the hole

data, in order to provide a consensual result.

Despite the STS exercise is focused on the lower body part, Figure 4.17 shows that the

most important feature for the RF model is the M_shoulder depth range (F23), which is

extracted from the upper body part and represents the displacement of the middle shoulder

Kinect marker. Considering that people try to move their upper body part to make easier the

STS execution [143], it was expected that the movement of the upper part on the Z-axis was
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reduced. On the other hand, the second important feature corresponds to the stand-to-stand

time (F1), which is the most assessed characteristic in the STS test general and it was also

expected to be relevant. These results are concordant to the STS literature because authors

in [18] reported that the acceleration of the chest is strongly related to the fatigue condition.

Besides, authors in [21] reported that owing to the stand-to-stand time contains information

about both STS phases, it is the one that presents the strongest lineal relationship according

to the fatigue level.

Figure 4.17 displays that the heart rate (F33) is the third most important feature, bearing

in mind the use of this parameter for fatigue regulation, it provides essential information

regarding the fatigue condition. Due to the tests were carried out with healthy people, it was

expected in most cases the volunteers were able to create enough energy to perform the STS

activity, without increasing uncontrollably their heart rate. Hence, these results suggest that

some STS performance features are more relevant for fatigue estimation than the heart rate.

This provides an advantage in clinical scenarios because it is not desired to take patients

to extreme physiological conditions, to determine that they are exhausted. Moreover, some

features do not contribute any relevant information, because they correspond to movements

on the frontal plane, like abduction-adduction movements. Hence, taking into account the

STS exercise is primarily performed on the sagittal plane, it is normal that these features do

no change strongly, or change randomly.

Comparing to other similar studies [18, 21], to the authors’ knowledge, this work is the first

that presents a model for fatigue estimation during the STS exercise execution, by mon-

itoring kinematic/temporal features and the heart rate. Specifically in [18], the authors

demonstrated that the acceleration of the chest on the vertical movement is related to the

fatigue, by using an accessible and practical device, the IMU of a smartphone. However,

it presents one case of study and just analyzes one kinematic feature, that may change its

behavior if the subject modifies the execution technique. On the other hand, in [21] the au-



thors carried out an analysis methodology, to determine which STS features are significantly

linearly related to the fatigue level, measured with the Borg CR10 scale. However, it only

presents a linear analysis and does not analyze the different patterns and behaviors that can

be presented.

Similar studies that proposed fatigue estimation models during different exercises employing

IMUs, such as: walking [26], vertical jumps [27], and lower limb endurance [22], have shown

accuracy values between 85% and 95%. Therefore, contrasting the proposed ensemble model

performance with the literature, its results are in the lowest part of the range. However,

it must be considered that in these similar studies only considered two fatigue conditions,

fatigued and no-fatigued. In contrast, this work contemplates three states, increasing the

probability to miss the estimation, and also provides a clear separation for the LF registers,

regarding the MF and HF (Figure 4.15).

Even though the proposed model is not based on IMUs, it implements a KinectV2 for ob-

taining the exercise features, which is an affordable sensor that has shown to be useful in

clinical scenarios and allows to measure more STS features [139]. Considering the different

patters that may be presented in the lower and upper body parts, this sensor present several

advantages at being able to extract relevant STS features form different body parts. Fur-

thermore, owing to the heart rate relevant information regarding the fatigue state, and its

facility for being measured, this model also integrates an affordable heart rate sensor.

One limitation of this work is the tool implemented for obtaining the fatigue target of the

registers. The Borg scale is a subjective measurement that can be affected by how the user

interprets its values, and how it is explained. Despite, this scale was explained to each

subject by using the same word and interpretation, it is a limitation that can not be ignored.

Nevertheless, it is still a clinical tool widely used in rehabilitation programs. Furthermore,

the purposed model compares the user’s exercise condition with a database conformed of 660

different registers, providing a general estimation, and therefore, a more objective fatigue
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metric.

Another limitation is related to the study population, because of all the volunteers were

healthy people, and the features may show different behaviors and patterns with patients, or

other groups with different physical conditions. However, the normalization process makes

that the model compares the user’s state with his initial condition, reducing the difference

features variability presented among the volunteers. Besides, the other similar studies also

recruited healthy subjects [18, 21, 22, 26, 27], hence, as a first approximation for a complete

clinical tool, this work presents relevant results.

Finally, owing to the global confinement caused by the COVID19, the need for clinical tools

for telemedicine, has significantly increase [28]. Hence, keeping in mind the importance of

fatigue monitoring in physical rehabilitation, and the practical tools that it implements, this

work presents the initial development of a potential clinical tool for estimating fatigue during

one of the most implemented HIE in rehabilitation programs.



Chapter 5

Conclusions and Future Works

High-intensity exercises have become an essential tool in physical rehabilitation because they

have shown to be very effective at developing the patient’s anaerobic capability. Because this

metabolic way is required for executing sudden daily life activities, it has been considered

as an important component for having a good quality of life. However, taking patients to

inadequate exercise conditions or extreme fatigue states might lead them to suffer physical or

physiological complications. Hence, it is required to monitor the patient’s condition during

training.

Bearing in mind that fatigue is a subjective experience, several studies have been carried

out to propose indirect and direct methods for quantifying fatigue, such as monitoring user’s

physiological parameters, implementing subjective fatigue scales, and monitoring the user’s

exercise performance. Due to the novelty of the fatigue estimation method based on ex-

ercise performance, and the potential that it presents for physical rehabilitation, this work

implements this method for developing a computational fatigue estimation model.

In order to analyze the state of the art of the implementation of high-intensity exercises in

physical rehabilitation, a systematic review was performed. After a rigorous review process,

a total of 48 articles were selected from 146 candidates, according to the inclusion criteria

69



70 Chapter 5. Conclusions and Future Works

which allowed determining the exercise distribution regarding the rehabilitation area, the

fatigue regulation implemented methods, and the type of activities studied. In general, most

of the eliminated candidates were articles published in journals without a high impact factor

or cases of study that explore the use of high-intensity exercises with healthy subjects.

The review results suggest that the implementation of high-intensity exercises, and the use of

fatigue estimation and assessment methods, tend to be focused on the oncology, cardiac and

pulmonary rehabilitation programs because these 3 rehabilitation areas contain the 81% of the

selected articles. Oncology rehabilitation contains the most part of the selected articles (36%).

This result can be related to the fact that one main goal of this rehabilitation program consists

of easing the symptoms of pathological fatigue, which is a common symptom for patients that

suffer cancer. Therefore, several studies have been carried out to determine the most effective

physical interventions. Moreover, results present that in cardiac and pulmonary rehabilitation

the use of high-intensity exercise is also relevant. However, due to the physiological conditions

and risks that patients may suffer, these are the areas where real-time fatigue estimation

methods are applied the most, such as heart rate, Borg scale, and oxygen consumption.

Regarding the type of high-intensity exercises, results suggest that the sit-to-stand exercise

is the most high-intensity exercise implemented in physical rehabilitation, being presented

in the 42.6% of the selected articles. Considering that it represents a common daily life

activity and that it is easy to implement in physical therapies, this result allowed to select

the exercise for the proposed fatigue estimation system. Besides, to the author’s knowledge,

this work presents the first approximation of a fatigue estimation model for this exercise. It

is important to mention that other exercises such as cycling and full body endurance routines

are relevant in the rehabilitation programs.

According to the review results the heart rate is the most used physiological parameter for

fatigue regulation, showing to be in 68.7% of the selected articles. On the other hand, the

Borg scale is in 70.8% of the chosen articles, which makes it the most applied subjective



metric for fatigue regulation. These results led this work to develop a fatigue estimation

tool based on these parameters. Besides, results showed that the multidimensional fatigue

inventory is the most employed multidimensional fatigue scale. Hence taking into account

that this scale is developed, for general population, it was implemented to determine the

initial fatigue condition of the volunteers.

In conclusion, the systematic review results provide the corresponding information for the

design of the proposed fatigue estimation model, regarding the type of exercise and the fatigue

estimation metrics.

As the main contribution of this master thesis, a study was carried in order to obtain a data

set of 660 sit-to-stand registers, composed of 32 kinematic/temporal exercise features and the

heart rate, each one labeled with a fatigue condition (low, moderate and high) based on the

Borg scale values provided by the volunteers. An analysis process was executed to determine

that many of these features are related to the fatigue condition, showing different behaviors

and patterns. Results suggest that the most important feature is the depth displacement

of the upper body part, followed by the stand-to-stand time and the heart rate. Hence,

these results suggest that the user’s physiological condition, the upper body features, and

the lower body features, contain relevant information regarding fatigue estimation during the

STS exercise. Moreover, these results show to be concordant to the sit-to-stand literature,

because previous studies have demonstrated that the upper-body movement and the sit-to-

stand time have a strong relationship with the user’s fatigue condition.

Taking into account that the patterns may be affected by chaining the exercise execution

technique, caused by the user’s fatigue, it is essential to monitor kinematic features that

reflect this technique changes. In such that way, it is possible to determine the different

behaviors, such as the reduction of the stand-to-stand time caused by the moment of the

upper body, which makes easier the exercise execution.

An approach of a fatigue estimation model is proposed, aiming to show that these features
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can be implemented for estimating the three fatigue conditions with an accuracy of 82.5%,

by means of accessible and practical sensors. Results suggest that the data is not enough

separated to among the three fatigue groups for a perfect classification, specially between the

moderate and high fatigue groups.Nevetherlss, according to similar studies, the performance

classification metrics are in the acceptable range. Hence, this work presents the development

of a potential tool for physical rehabilitation scenarios and telemedicine applications, which

has become an important area during this global emergency caused by the COVID19.

Initially, future works should focus on adapting this proposed model to a real-time estimation

tool, aiming to provide a fatigue metric that can be used during training. In order to achieve

this initial future goal, the proposed model can be integrated into previously developed

systems for real-time stand-to-stand cycle detection and real-time sit-to-stand permanence

assessment [139], providing a fatigue estimation tool that can be used in general sit-to-stand

training.

Moreover, future works should focus on the development of this tool with patients in real

physical rehabilitation scenarios, especially for people with cancer or cardiac diseases, which

are the areas that implement more this type of exercise. Considering the rigorous process

that must be held to develop and validate a clinical tool, it is recommended that future works

employ more objective fatigue, such as electromyography or oxygen consumption. Besides,

it also required to study the repeatability of the proposed system, by carrying out more

validation studies in different moments, and with different volunteers.

Finally, taking into account the variety of high-intensity exercise implemented in physical

rehabilitation, future works should also explode this fatigue estimation methodology for other

relevant high-intensity exercises, such as cycling and running, aiming to expand knowledge

regarding the use of exercise performance features for fatigue estimation
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