Maestría en Ingeniería Civil

Correlaciones entre el CBR de la Subrasante y Deflexiones Medidas con FWD en Colombia

Ingrid Adriana Rodríguez Torres

Bogotá, D.C., 08 de Julio de 2020

Correlaciones entre el CBR de la Subrasante y Deflexiones Medidas con FWD en Colombia

Tesis para optar al título de magíster en Ingeniería Civil, con énfasis en geotecnia

> Fernando Estrada Sánchez Director

Bogotá, D.C., 08 de Julio de 2020

La tesis de maestría titulada "Correlaciones entre el CBR de la Subrasante y Deflexiones Medidas con FWD en Colombia", presentada por Ingrid Adriana Rodriguez Torres, cumple con los requisitos establecidos para optar al título de Magíster en Ingeniería Civil con énfasis en Geotecnia.

Fernando Estrada Sánchez

Director de la tesis

Sandra Ximena. Campagnoli Martínez

Jurado

.

Oscar Javier Reyes Ortiz

Jurado

Bogotá, D.C., 8 de julio de 2020

Dedicatoria

A Dios y la Virgen María. A mi familia, mi hija por su paciencia y el estar ahí siempre conmigo con sus palabras mágicas, a mi esposo por sus consejos y motivación y a mis padres, familia y amigos, por su amor, apoyo y aliento para lograr esta meta que hoy se ve reflejada en estas líneas.

Agradecimientos

Primero que todo, a Dios Todopoderoso y la Virgen María, por estar siempre ahí bendiciéndome y guiándome en todo este proceso de superación profesional. A mi esposo, por sus enseñanzas académicas de un investigador, a mi director de tesis, Ing. Fernando, quiero agradecer por su orientación a lo largo de la investigación, así como toda la información proporcionada para el logro de los objetivos de esta. Al Ing. Carol Bockelmann, por el espacio permitido para llegar a cabo los estudios de la maestría, así como a las empresas de Consultoría Vial que me proporcionaron la información base para la investigación con fines académicos.

Resumen

Las metodologías actuales para el diseño y rehabilitación de pavimentos flexibles, como la -American Association of State Highway and Transportation Officials (AASHTO, 1993) y Guide For Mechanistic – Empirical Pavement Design (MEPDG), involucran dentro de sus parámetros de diseño el módulo resiliente de la subrasante, M_R. La complejidad de los procedimientos de las pruebas de laboratorio (tiempo, costo, disponibilidad), ha incitado a las agencias de carreteras a nivel internacional a explorar otros métodos de prueba, principalmente pruebas de campo (in situ), como mediciones de deflectometría (FWD) para determinar el módulo de la subrasante por retrocálculo y mediante fórmulas empíricas relacionada con otros ensayos básicos de capacidad de Soporte, como el CBR (California Bearing Ratio).

El presente estudio tiene como propósito buscar correlaciones entre el CBR de la subrasante y las deflexiones medidas con FWD, para diferentes tipos de suelo (finos, arenas y gravas). Para ello, se contó con información simultánea de datos de CBR sobre muestras inalteradas y muestras compactadas en laboratorio, propiedades del suelo y medidas de deflexiones en diferentes proyectos viales desarrollados en Colombia, información que fue proporciona por dos empresas de consultoría vial con fines académicos y de investigación.

Para el análisis de la información disponible, se emplearon gráficas de dispersión simple con el fin de observar la tendencia de los datos de las propiedades del suelo y deflexiones ubicadas a una distancia r del centro de aplicación de carga, con los datos de CBR de muestras inalteradas y compactadas en laboratorio. Las propiedades analizadas del suelo fueron límites de Atterberg, granulometría, humedad natural del suelo y módulo determinado mediante las metodologías AASHTO y método directo.

Una vez analizadas las variables que mejor correlacionaron con el CBR para cada tipo de suelo, se aplicó un modelo lineal MLG para determinar el valor de CBR a partir de mediciones de deflectometría y parámetros índices del suelo.

A partir de los modelos desarrollados, se puede indicar que para los suelos finos, existe una buena correlación entre el CBR en condiciones de humedad natural y la deflexión dr, medida en el sensor ubicado a una distancia r y la humedad natural. Para el caso de los suelos arenosos, el CBR de muestras compactadas en laboratorio se correlaciona bien con la deflexión dr y la distancia r. Por último, para los suelos tipo grava, con una correlación más baja, el CBR de muestras compactadas en laboratorio se relaciona mejor con la deflexión dr, la distancia r y el porcentaje de finos. Adicionalmente, se obtiene que la relación del CBR con los parámetros físicos como LL, LP, IP, % gravas, % arenas y % finos, presenta una gran dispersión. Esta baja homogeneidad indica que no existe una correlación directa de cada parámetro con el CBR y puede requerirse un análisis multivariables o correlaciones múltiples para llegar a una buena correlación.

Índice general

I	Introduc	ción		19
(Capítulo	51 E	stado del Arte	24
1.1	Mó	dulo	Resiliente de la Subrasante	24
	1.1.1 ensayos	Det s de l	erminación del módulo resiliente del suelo de subrasante, a partir de aboratorio	24
	1.1.2 estudio	Det de de	erminación del módulo resiliente del suelo de subrasante a partir del eflectometría	32
	1.1.2.	1	Ventajas y desventajas de los equipos de carga por impulso:	34
	1.1.2.	2	Determinación del módulo por el método AASHTO	34
	1.1.2.	3	Análisis de los resultados de la deflectometría (retrocálculo de módu 35	los)
F	1.1.3 proceso	Rela de r	aciones entre el módulo resiliente de laboratorio y el determinado por etrocálculo	41
	1.1.4 CBR	Esti 49	mación del módulo resiliente de la subrasante a partir del ensayo de	
1.2	2 Cor	relac	iones CBR y FWD	56
(Capítulo	2 M	etodología de Investigación	61
2.1	Red	copila	ación, análisis y validación de la información	61
2	2.1.1	Esp	esores de la estructura de pavimento	63
	2.1.2	Res	sultados de ensayos de laboratorio	64
	2.1.2.	1	Granulometría	64
	2.1.2.	2	Límites de Atterberg	66
	2.1.2.	3	Datos de CBR	69
2.2	2 Det	ermi	nación del módulo de la subrasante a partir de la deflectometría	70
2	2.2.1	Dat	os de mediciones de deflectometría	70
	2.2.1.	1	Normalización de deflexiones por carga	72
2 1	2.2.2 medicio	Det nes c	erminación del módulo resiliente de la subrasante a partir de las de FWD	73
	2.2.2.	1	Método AASHTO 1993	73
	2.2.2.	2	Método directo	75
2.2.2.3		3	Resultados obtenidos de módulo	78

Cap	ítulo 3 Co	omportamiento entre el CBR y Parámetros del Suelo	.81
3.1	Relación	entre el CBR y granulometría	.81
3.1.1	1 CBF	ty porcentaje de gravas	.81
3.1.2	2 CBF	g y porcentaje de arenas	.82
3.1.3	B CBF	g y porcentaje de finos	.83
3.2	Relación	entre el CBR y límites de Atterberg	.84
3.2.7	1 CBF	ty límite líquido	.84
3.2.2	2 CBF	ty límite plástico	.85
3.2.3	B CBF	t e Índice de Plasticidad	.86
3.3	CBR vs	Plasticidad y contenido de finos para suelos finos	.87
Сар	ítulo 4 Co	omparación de los datos del Estudio con Correlaciones Internacionale	S
entre FW	/D - CBR		.88
4.1	Suelos fi	nos	.88
4.2	Suelos a	renosos	.90
4.3	Suelos ti	po grava	.92
Сар	ítulo 5 Ar	alisis de Regresión y Correlaciones entre CBR y FWD	.95
5.1	Datos er	npleados para el análisis	.95
5.2	Análisis	de regresión con modelos clásicos	.96
5.2.7	1 Sue	los finos	.97
5. A/	2.1.1 ASHTO)	CBR muestra inalterada humedad natural vs dr, MR y dr*r (metodolog 97	jía
5.	2.1.2	CBR muestra inalterada humedad natural vs dr, MR y dr* r_{50} (M. Direc 98	;to)
5.2.2	2 Sue	los arenosos	.98
5. A/	2.2.1 ASHTO)	CBR muestra inalterada humedad natural vs MR, dr*r y dr (metodolog 98	jía
5. Di	2.2.2 recto)	CBR muestra inalterada humedad natural vs MR, dr*r ₅₀ y dr, (M. 99	
5. A/	2.2.3 ASHTO)	CBR muestra compactada en laboratorio vs MR, dr*r y dr (metodolog 100	ía
5. dr	2.2.4 *r ₅₀ *%fino	CBR muestra compactada en laboratorio vs dr, MR, dr*r ₅₀ , dr*r ₅₀ *HN y os (M. Directo)	y 102
5.2.3	B Sue	los tipo grava	102

	5.2.3. y dr*r	CBR muestra compactada en laboratorio vs MR, dr, dr*r, dr*r* % gravas % finos (metodología AASHTO)				
	5.2.3. grava	 CBR muestra compactada en laboratorio vs dr, dr*r₅₀, MR, dr*r₅₀* % y dr*r₅₀* % finos (M. Directo)103 				
5	.2.4	Resumen de los análisis de regresión104				
5.3	Aná 109	lisis estadísticos para la determinación de correlaciones entre CBR y FWD				
5	.3.1	Análisis de residuales114				
5	.3.2	Residuales en función de los valores ajustados117				
5.4	Mo	lelo de análisis de regresión lineal generalizado118				
5	.4.1	Empleando los parámetros obtenidos por la metodología AASHTO - 93119				
	5.4.1. hume	Modelos de regresión para suelos finos, CBR muestra inalterada ad natural119				
	5.4.1.	2 Modelos de regresión para suelos arenosos127				
	5.4.1. en lat	Modelos de regresión para suelos tipo grava, CBR muestra compactada oratorio, en inmersión				
	5.4.1. mues	Modelos de regresión adicionales para suelos tipo grava y arenas, CBR ra compactada en laboratorio en inmersión143				
5.4.2 Empleando los parámetros obtenidos por el método directo						
5.4.2.1 Modelos de regresión para suelos finos, CBR muestra inalte humedad natural						
	5.4.2.	2 Modelos de regresión para suelos arenosos150				
5.4.2.3 en lab		3 Modelos de regresión para suelos tipo grava, CBR muestra compactada oratorio en inmersión				
5.5	Dis	cusión de resultados de correlación157				
5.6	Cor	nparación entre los modelos propuestos y otras correlaciones167				
5	.6.1	Suelo finos				
5	.6.2	Suelos arenosos168				
5	.6.3	Suelos tipo grava				
5.7	Мо	lelos propuestos170				
5	.7.1	Suelo: finos (arcillas y limos), CBR muestra inalterada humedad natural170				
5	.7.2	Suelos: arenas, CBR muestra compactada en laboratorio, en inmersión172				
5.7.3		Suelos: gravas, CBR muestras compactadas en laboratorio, en inmersión 173				

6	Con	clusiones y Recomendaciones	.175
	6.1	Suelo fino (arcillas y limos): CBR muestra inalterada, humedad natural:	.176
	6.2	Suelo arenoso: CBR muestras compactadas en laboratorio, en inmersión:	.177
	6.3	Suelo tipo grava: CBR muestras compactadas en laboratorio, en inmersión:	.177
7	Bibl	iografía	.180

Índice de tablas

Tabla 1. Tipo de onda utilizada y frecuencia de carga en los protocolos AASHTO (suelos
finos)
Tabla 2. Estado de esfuerzos aplicados en los protocolos AASHTO
Tabla 3. Factor de ajuste empleado por diferentes Agencias de Transporte en Estados
Unidos47
Tabla 4. Factor de ajuste para suelos de subrasante de acuerdo con el tipo de suelo48
Tabla 5. Correlaciones M _R Vs CBR52
Tabla 6. Modelos que relacionan el índice del material y propiedades mecánicas a Mr55
Tabla 7. Consistencia del suelo a partir del IL67
Tabla 8. Estado del suelo partir del lc68
Tabla 9. Coeficientes del modelo Hogg
Tabla 10. Resumen regresiones CBR vs variables – coeficiente de determinación104
Tabla 11. Resultados análisis ANOVA, RStudio 107
Tabla 12. Resumen valores P-value
Tabla 13. Intervalo de clasificación del coeficiente de correlación 110
Tabla 14. Criterio de bondad de ajuste110
Tabla 15. Comparativo entre el modelo ML y MLG 112
Tabla 16. Histograma de residuos 116
Tabla 17. Test Durbin – Watson, suelos finos CBR Wn 123
Tabla 18. Resultados del análisis del modelo, Suelos finos CBR humedad natural (CBR
Wn)126
Tabla 19. Test Durbin – Watson, suelos arenosos CBR Wn 129
Tabla 20. Resultados del análisis del modelo, Suelos arenosos CBR humedad natural
(CBR Wn)131
Tabla 21. Test Durbin – Watson, suelos arenosos CBR Lab 135
Tabla 22. Resultados del análisis del modelo, Suelos arenosos CBR muestra compactada
en laboratorio (CBR Lab)137
Tabla 23. Test Durbin – Watson, suelos tipo grava CBR Lab140
Tabla 24. Resultados del análisis del modelo, Suelos tipo grava CBR muestra compactada
en laboratorio (CBR Lab)142
Tabla 25. Test Durbin – Watson, suelos tipo grava y arenas, CBR Lab145
Tabla 26. Resultados del análisis del modelo, Suelos tipo grava y arenas, CBR muestra
compactada en laboratorio (CBR Lab)146
Tabla 27. Resultados del análisis del modelo, Suelos finos CBR humedad natural (CBR
Wn)149
Tabla 28. Resultados del análisis del modelo, Suelos arenosos CBR humedad natural
(CBR Wn)151
Tabla 29. Resultados del análisis del modelo, Suelos arenosos CBR muestra compactada
en laboratorio (CBR Lab)154

Tabla 30. Resultados del análisis del modelo, Suelos tipo grava CBR mues	stra compactada
en laboratorio (CBR Lab)	
Tabla 31. Resultados diagrama de cajas y bigotes modelos MLG	

Índice de figuras

Figura 1. Esquema de esfuerzos en una muestra en pruebas triaxiales. Fuente: Rahim	&
George (2003)	26
Figura 2 Estado de estuerzos provocados en la subrasante por el paso de un vehículo	en
movimiento. Fuente: Limaymanta & Gutiérrez (2003)	26
Figura 3. Deformación bajo carga repetida. Fuente: Limaymanta & Gutiérrez (2003)	27
Figura 4. Prueba de módulo de resiliencia para la subrasante del tramo de prueba	
AASHO, reportadas por Seed et al. (1962). Fuente: Publicación Técnica N. 142, MT	
(2001)	31
Figura 5 Módulos de resiliencia del tramo prueba AASHO reportados por Thompson y	
Robnett (1 ksi = 1000 psi). Fuente: Publicación Técnica N. 142, MT (2001)	32
Figura 6 Diagrama típico de cuenco de deflexión. Fuente: (FHWA, 2017)	33
Figura 7 Diagrama esquema de prueba FWD. Fuente: (FHWA, 2017)	33
Figura 8 Cuenco de deflexión teórico y real. Fuente: (FHWA, 2017)	36
Figura 9 Diagrama de flujo de un proceso de retrocálculo. (FHWA, 2017)	37
Figura 10 Esquema del pavimento para el proceso de retrocálculo. Fuente: (INVIAS,	
2008)	39
Figura 11 Esquema de la zona de esfuerzos en el pavimento bajo la carga de un equipe	0
dinámico. Fuente: (FHWA, 2017)	40
Figura 12 CBR Versus Módulo de Elasticidad. Fuente: Eka et al. (2012)	50
Figura 13 CBR Versus E obtenidos a partir de diferentes relaciones de Poisson. Fuente):
Eka et al. (2012)	51
Figura 14 Comparativo resultados correlaciones M _R vs CBR	53
Figura 15 Grafica de Correlación MR vs CBR. Fuente: Shell (1978)	54
Figura 16 Correlación CBR vs plasticidad de los materiales. Fuente: NCHRP (2001)	55
Figura 17 Módulo de la superficie Versus Localización Sensor. Fuente: Chai et al. (2013	3)
Figure 10 Oréfices de médules de superficie tínices para estructures de povimente	58
Figura To Grancos de modulos de supericie lípicos para estructuras de pavimento	50
(Ullidiz, 1897). Fuente: Horak (2017)	59
Figura 19 Espesores carpeta astaltica	63
Figura 20 Espesores material granular (BG/SBG)	64
Figura 21 Granulometria base de datos	64
Figura 22 Clasificacion para suelos finos	65
Figura 23 Clasificación para suelos arenosos	65
Figura 24 Clasificación para suelos tipo grava	65
Figura 25 Gráfica de límites líquidos, suelos finos	66
Figura 26 Gráfica límites plásticos, suelos finos	66
Figura 27 Gráfica índice de plasticidad, suelos finos	66
Figura 28 Gráfica índice de liquidez	68
Figura 29 Gráfica índice de consistencia	69
Figura 30 CBR suelos finos, muestras inalteradas	70

Figura 31 CBR suelos arenosos muestras inalteradas y compactadas	70
Figura 32 CBR suelos tipo grava, muestras compactadas	70
Figura 33 Fotografías equipo deflectómetro. Fuente: Empresa de consultoría	71
Figura 34 Medida y registro de deflexiones con un deflectómetro de impacto	72
Figura 35 Módulos de la subrasante	78
Figura 36 Sensor empleado en AASHTO	79
Figura 37 Sensor empleado en método directo	79
Figura 38 Comportamiento del módulo en función de la deflexión, puntos aleatorios	80
Figura 39 Gráfica de dispersión CBR vs % Gravas	82
Figura 40 Gráfica de dispersión CBR vs % Arenas	83
Figura 41 Gráfica de dispersión CBR vs % Finos	84
Figura 42 Gráfica de dispersión CBR vs % Límite líquido, suelos finos	85
Figura 43 Gráfica de dispersión CBR vs % Límite líquido, suelos arenosos y gravas	85
Figura 44 Gráfica de dispersión CBR vs Límite plástico, suelos finos	86
Figura 45 Gráfica de dispersión CBR vs Límite plástico, suelos arenosos y gravas	86
Figura 46 Gráfica de dispersión CBR vs Índice de plasticidad, suelos finos	86
Figura 47 Gráfica de dispersión CBR vs Índice de plasticidad, suelos arenosos y grava	ıs 86
Figura 48 Gráfica de dispersión CBR vs wPI y correlación NCHRP	87
Figura 49 Gráfica de dispersión CBR (humedad natural) vs Deflexión a 900 mm vs	
ecuación 1, suelos finos	89
Figura 50 Gráfica de dispersión CBR (humedad natural) vs Deflexión a 900 mm vs	
ecuación 2, suelos finos	89
Figura 51 Gráfica de dispersión CBR (humedad natural) vs Deflexión a 900 mm vs	
ecuación 3, suelos finos	90
Figura 52 Gráfica de dispersión CBR vs Deflexión a 900 mm vs ecuación 1, suelos	
arenosos	91
Figura 53 Gráfica de dispersión CBR vs Deflexión a 900 mm vs ecuación 2, suelos	
arenosos	91
Figura 54 Gráfica de dispersión CBR vs Deflexión a 900 mm vs ecuación 3, suelos	
arenosos	92
Figura 55 Gráfica de dispersión CBR (Lab) vs Deflexión a 900 mm vs ecuación 1, suel	OS
tipo grava	92
Figura 56 Gráfica de dispersión CBR (Lab) vs Deflexión a 900 mm vs ecuación 2, suel	OS
tipo grava	93
Figura 57 Gráfica de dispersión CBR (Lab) vs Deflexión a 900 mm vs ecuación 3, suel	OS
tipo grava	93
Figura 58 Número de datos de CBR por tipo de suelo	96
Figura 59 Gráfica de dispersión CBR M.inalterada humedad natural vs MR, dr*r y dr,	
suelos finos	97
Figura 60 Gráfica de dispersión CBR M. inalterada humedad natural vs MR, dr y dr*r ₅₀ ,	, (M.
Directo), suelos finos	98

Figura 61 Gráfica de dispersión CBR M. inalterada humedad natural vs MR, dr*r y dr),
suelos arenosos
Figura 62 Gráfica de dispersión CBR M. inalterada humedad natural vs MR, dr*r ₅₀ y dr (M. Directo). suelos arenosos
Figura 63 Gráfica de dispersión CBR laboratorio vs MR dr*r v dr (AASHTO) suelos
arenosos
Figura 64 Gráfica de dispersión CBR laboratorio vs MR dr*r v dr (M Directo) suelos
arenosos
Figura 65 Gráfica de dispersión CBR laboratorio ys MR dr*r y dr (AASHTO) suelos tipo
Figura 66 Cráfica de dispersión CBP laboratorio ve MP, dr*r, v dr. suelos tipo grava 104
Figura 60 Granica de dispersion CBR laboratorio vs IVIR, di 150 y di, suelos lipo grava 104
Figura 67 Granica valores P vs niver de significancia, analisis ANOVA
Figura 68 Casos en los que no se recnaza la nipotesis H_0 : $\beta_1 = 0$. Fuente: (Montgomery,
Peck, & Vining, 2002)
Figura 69 Casos en los que si se rechaza la hipotesis H_0 : $\beta_1 = 0$. Fuente: (Montgomery et
al., 2002)
Figura 70 Gráficas de probabilidad normal: a) ideal; b) distribución con colas gruesas; c)
distribución con colas delgadas; d) Asimetría positiva; e) asimetría negativa. Fuente:
(Montgomery et al., 2002)116
Figura 71 Patrones en las gráficas residuales: a) satisfactorio; b) en embudo: c) en doble
arco; d) no lineal. Fuente: (Montgomery et al., 2002)117
Figura 72 Gráfica de normalidad de residuos, suelos finos, CBR Wn121
Figura 73 Graficas análisis de residuos estandarizados vs valores ajustados, suelos finos
CBR Wn122
Figura 74 Graficas análisis de residuos vs orden de observación, suelos finos CBR Wn122
Figura 75 Graficas de autocorrelación, suelos finos CBR Wn124
Figura 76 Graficas distancia de Cook, suelos finos CBR Wn125
Figura 77 Gráfica de normalidad de residuos, suelos arenosos, CBR Wn
Figura 78 Graficas análisis de residuos estandarizados vs valores ajustados, suelos
arenosos CBR Wn
Figura 79 Graficas análisis de residuos vs orden de observación, suelos arenosos CBR
Wn
Figura 80 Graficas de autocorrelación, suelos arenosos CBR Wn
Figura 81 Graficas distancia de Cook, suelos arenosos CBR Wn 130
Figura 82 Gráfica de normalidad de residuos, suelos arenosos, CBR Lab.
Figura 82 Graficas análisis de residuos estandarizados ys valores ajustados, suelos
arenosos CBR Lab
Figura 84 Graficas análisis de residuos ve orden de observación, suelos arenosos CBP
1 gura of Oranicas analisis de residuos va orden de observación, suelos arenosos CDN 1 sh
Figura 85 Graficas do autocorrolación, sucles aronasos CPP Leb 425
Figure 96 Crefiese distancia de Cock, aucles areneses CPD Leb
Figura do Granicas distancia de Cook, suelos arenosos CBR Lab
Figura 87 Gratica de normalidad de residuos, suelos tipo grava, CBR Lab139

grava CBR Lab
Figura 89 Graficas análisis de residuos vs orden de observación, suelos tipo grava CBR Lab
Figura 90 Graficas de autocorrelación, suelos tipo grava CBR Lab
Figura 91 Graficas distancia de Cook, suelos tipo grava CBR Lab
Figura 92 Gráfica de normalidad de residuos, suelos tipo grava y arenas, CBR Lab144 Figura 93 Graficas análisis de residuos estandarizados vs valores ajustados, suelos tipo grava y arenas, CBR Lab
Figura 93 Graficas análisis de residuos estandarizados vs valores ajustados, suelos tipo grava y arenas, CBR Lab
grava y arenas, CBR Lab
Figura 94 Graficas análisis de residuos vs orden de observación, suelos tipo grava y arenas, CBR Lab
arenas, CBR Lab
Figura 95 Graficas de autocorrelación, suelos tipo grava y arenas, CBR Lab
Figura 96 Comparación entre el valor de CBR Wn observado y el CBR wn predicho
suelos finos
Figura 97 Comparación entre el valor de CBR LAB observado y el CBR LAB predicho,
suelo arenoso
Figura 98 Comparación entre el valor de CBR LAB observado y el CBR LAB predicho,
suelo tipo grava160
Figura 99 Comparación entre el valor de CBR LAB observado y el CBR LAB predicho,
suelo tipo grava y arenoso161
Figura 100 Interpretación diagrama de cajas y bigotes162
Figura 101 Comparación de los diagramas de cajas y bigotes de los modelos para suelos
finos, con CBR Wn163
Figura 102 Comparación de los diagramas de cajas y bigotes de los modelos para suelos
arenosos, con CBR Lab163
Figura 103 Comparación de los diagramas de cajas y bigotes de los modelos para suelos
tipo grava, con CBR Lab
Figura 104 Comparación de los diagramas de cajas y bigotes del modelo para suelos tipo
grava-arenas, con CBR Lab
Figura 105 Comparación de los diagramas de cajas y bigotes modelos gravas y grava-
arenas, con CBR Lab
Figura 106 Comparativo modelos propuestos con otras correlaciones, suelos finos167
Figura 107 Comparativo modelos propuestos con otras correlaciones, suelos arenosos 168
Figura 108 Comparativo modelos propuestos con otras correlaciones, suelos tipo grava
Figure 100 Modele MLC CBP We versus dr*r*HN 171
Figure 110 Modelo potencial CBR Wn versus dr*r*HN
Figura 111 Modelo MI G CBR Lab versus dr*r 172
Figure 112 Modelo potencial CBR Lab versus dr*r 173
Figura 113 Modelo potencial, CBR Lab versus dr*r*% finos

Índice de anexos

- Anexo 1 Base de datos, deflectometría y geotecnia
- Anexo 2 Certificados de calibración deflectómetro de impacto
- Anexo 3 Módulos de la subrasante determinados a partir de la deflectometría
- Anexo 4. Correlaciones CBR, deflexiones versus parámetros del suelo
- Anexo 5. Análisis estadístico, modelo MLG parámetros método directo

Introducción

Las metodologías actuales para el diseño y rehabilitación de pavimentos flexibles, como la American Association of State Highway and Transportation Officials (AASHTO, 1993) y Guide For Mechanistic – Empirical Pavement Design (MEPDG), involucran dentro de sus parámetros de diseño el módulo resiliente de la subrasante, M_R, siendo el parámetro universalmente más aceptado para calificar la respuesta de la subrasante, el cual varía con el estado de tensiones (esfuerzo de confinamiento y esfuerzo desviador), tipo de suelo y estado físico del suelo (humedad y densidad). Ensayos de laboratorio de módulo resiliente fueron propuestos en 1992 por la AASHTO T294-92I, método que originalmente fue desarrollado por S.H.R.P (Strategic Highway Research Program), conocido como "protocolo 846", y que es una modificación del ensavo AASHTO T274. La complejidad de los procedimientos de las pruebas de laboratorio (tiempo, costo, disponibilidad), ha incitado a las agencias de carreteras a nivel internacional a explorar otros métodos de prueba, principalmente pruebas de campo (in situ), como mediciones de deflectometría (FWD) para determinar el módulo de la subrasante por retrocálculo y mediante fórmulas empíricas relacionada con otros ensayos básicos de capacidad de Soporte, como el CBR (California Bearing Ratio).

Los estudios de deflectometría con equipos de medida dinámica (carga vibratoria sinusoidal o impacto) se pueden emplear para determinar los módulos de las capas del pavimento y de la subrasante a partir de las mediciones de deflexión. Los procedimientos más utilizados para predecirlos son el retrocálculo, cálculo directo y ecuaciones de regresión.

La relación entre el ensayo de relación de soporte de California (CBR) y el módulo resiliente, para suelos de subrasante, se ha estudiado extensamente en el pasado (Heukelom & Klomp, 1962, Green and Hall 1975, Lister 1987); el CBR es el ensayo para determinar la capacidad de soporte de la subrasante más usado en Colombia. Tanto en Colombia, como en otras partes del mundo, es aceptado estimar el módulo resiliente de diseño a partir de los ensayos de CBR.

El ensayo de Penetrómetro dinámico de cono (PDC), un dispositivo introducido en la década de 1960 para la evaluación del pavimento, es otro método que se ha empleado para caracterizar el suelo de subrasante (Hassan 1996; Burnham y Johnson 1993; Chai y Roslie 1998), como prueba in situ.

La guía AASHTO permite el uso tanto de ensayos de laboratorio como el módulo retrocalculado a partir de pruebas in situ, pero reconoce que los módulos determinados en ambos procedimientos no son iguales.

Hay muchos factores que pueden llevar a la discrepancia entre el módulo del laboratorio y módulos retrocalculados; una de las razones es la dificultad de obtener muestras representativas de campo debido a la variabilidad o heterogeneidad inherente de los materiales de la capa de subrasante.

En Colombia, las normativas vigentes permiten emplear correlaciones a partir de la relación de soporte de California (CBR) para la determinación del módulo resiliente de la subrasante a través de ecuaciones empíricas como la descrita por Heukelom & Klomp (1962).

Cuando se emplean ecuaciones de correlación, surgen múltiples incertidumbres. Una de ellas, es que el ensayo de CBR es una medida empírica indirecta de la resistencia al corte y de la rigidez del material en condiciones no drenadas que se mide bajo una carga monotónica, y en un pavimento, la carga es cíclica. Además, los niveles de esfuerzo en un pavimento son muchos más bajos que aquellos que se generan en la muestra cuando se realiza el ensayo de CBR.

Por lo tanto, para el caso colombiano, donde existe variedad de composición y tipos de suelos, escoger arbitrariamente una ecuación empírica puede conducir a diseños de estructuras sub o sobredimensionadas (Rondón & Reyes, 2007).

El ensayo de CBR se realiza normalmente sobre suelo preparado en el laboratorio en condiciones determinadas de humedad y densidad. Este índice se utiliza para evaluar la capacidad de soporte de los suelos de subrasante y se rige por la norma ASTM 1883 o INVÍAS INV-E-148-13. Este ensayo permite obtener un número de relación de soporte, que

no es constante para un suelo dado, sino que se aplica solo al estado en el cual se encontraba el suelo durante el ensayo. El CBR se obtiene como un porcentaje del esfuerzo requerido para que el pistón penetre 2.54 o 5.08 mm (0.1 o 0.2 ") en una muestra de suelo y el esfuerzo requerido para hacer penetrar el mismo pistón, a las mismas profundidades, en una muestra patrón de grava bien gradada.

En cuanto al módulo resiliente de laboratorio, su determinación se realiza mediante ensayos triaxiales dinámicos de cargas repetidas en probetas cilíndricas que simulan un elemento de suelo. Estas probetas de suelo, confeccionadas o talladas de muestras inalteradas, son ensayadas luego de proporcionales condiciones representativas que se esperan tener en campo; las probetas se someten a una presión de confinamiento σ_3 y a un esfuerzo desviador σ_d ; este estado de esfuerzos pretende reproducir la condición del suelo cuando es sometido a las cargas sucesivas del tráfico. A partir de este ensayo se puede definir el módulo resiliente del material. (Limaymanta & Gutiérrez, 2003).

Una alternativa, que puede proporcionar datos de módulos determinados con información medida in situ, es a través de mediciones de deflexiones empleando el equipo deflectómetro de impacto (FWD), cuya relación con el valor de CBR no ha sido ampliamente estudiada en Colombia; sin embargo, a nivel mundial se ha tratado de correlacionar el CBR con la respuesta a las cargas (deflectometría), obteniéndose resultados variables. La deflectometría (respuesta del pavimento a las cargas) es, teóricamente, la mejor forma de determinar las propiedades mecánicas de los materiales de las capas que conforman la estructura del pavimento.

En Colombia, existe una gran cantidad de información de proyectos viales en los cuales hay información simultánea de deflectometría y de CBR. Se considera de la mayor utilidad para la ingeniería de pavimentos en el país aprovechar esa información para tratar de encontrar correlaciones propias entre CBR y deflectometría.

Basados en la Guía MEPDG (NCHRP, 2014), se tienen tres métodos básicos para obtener el MR de la subrasante: pruebas de módulo de resiliencia a carga repetida en laboratorio, análisis o retrocálculo mediante deflectómetro de impacto, FWD, y correlaciones con otras propiedades físicas de los materiales. Hoy en día, las pruebas de FWD son un método de evaluación de pavimento de rutina, y los resultados de las pruebas desempeñan un papel integral en la determinación de las propiedades estructurales de las capas in situ (FHWA, 2017). Basados en lo indicado en MEPDG, existe una necesidad apremiante de una revisión exhaustiva del estado actual de la técnica y estado de la práctica de pruebas de FWD, retrocálculo y la interpretación, y de esta manera, proporcionar una guía de mejores prácticas sobre cómo evaluar de manera efectiva estructuras de pavimento existentes y llevar a cabo un análisis mecanicista en el proceso de evaluación y rehabilitación de pavimentos (FHWA, 2017). Adicionalmente, estos métodos han sido altamente sistematizados y se pueden realizar de forma rápida y económica.

El trabajo propuesto se enmarca en el grupo de investigación de geotecnia, línea de investigación pavimentos, reconocida en desarrollar proyectos en materiales para carreteras, pavimentos, vías de bajos volúmenes de tránsito, y fundaciones. El trabajo de investigación busca contribuir al análisis de resultados de ensayos in situ y ensayos de laboratorio y determinar una correlación para caracterizar los materiales de subrasante, basados en datos medidos en proyectos viales a nivel de Colombia.

Objetivo general:

Determinar la correlación entre el CBR de la subrasante y deflexiones medidas con FWD en Colombia.

Objetivos específicos:

- Determinar el módulo resiliente de la subrasante de un pavimento en servicio, a partir de mediciones de deflexiones con deflectómetro de impacto (FWD) disponibles de proyectos viales realizados en Colombia, mediante la metodología AASHTO 1993 y cálculo directo.
- Analizar los perfiles estratigráficos de las estructuras de pavimento existente, donde se cuenta con valores simultáneos de CBR de laboratorio y mediciones de deflectometría con FWD, en proyectos realizados en Colombia.

- Conocer y evaluar la caracterización del tipo de material de subrasante en los puntos donde se cuenta con valores de CBR y deflectometría de manera simultánea.
- Analizar resultados del índice de resistencia del suelo de subrasante denominado CBR (California Bearing Ratio) en suelos compactados en laboratorio y sobre muestras inalteradas de la información recopilada.
- 5. Establecer correlaciones entre el módulo del material de subrasante, obtenido mediante el estudio de deflectometría, y los resultados de CBR de laboratorio, para diferentes tipos de suelo de subrasante.

Capítulo 1 Estado del Arte

Desde la década de 1960 hasta la Guía de 1986, todas las versiones de la Guía de diseño de pavimentos flexibles se basaron en ecuaciones empíricas limitadas; estas ecuaciones de desempeño fueron desarrolladas por la AASHO Road Test, cerca de Ottawa, Illinois, a finales de los años cincuenta. Desde el momento de la prueba de carretera AASHO, se ha presentado muchos cambios importantes en los volúmenes de tráfico, materiales de construcción, clima, en los métodos de rehabilitación y diseño.

El ahuellamiento de un pavimento asfáltico puede comenzar en cualquier capa de la estructura por deficiencias en su calidad o en su comportamiento, lo que hace que la predicción de este fenómeno sea más difícil que la del fisuramiento por fatiga. Dos procedimientos han sido usados para limitar el ahuellamiento: el primero, limita la deformación vertical de compresión sobre la subrasante y el otro limita la deformación total permanente acumulada en la superficie del pavimento, con base en las propiedades de deformación permanente de cada una de las capas. Los métodos mecanísticos clásicos de diseño de pavimentos utilizan el primer procedimiento y asumen que la falla por ahuellamiento se genera en la subrasante y que las diferentes capas de la estructura poseen la resistencia al corte suficiente para soportar adecuadamente la acción de las cargas del tránsito (SHELL International Petroleum Company, 1978) ("THE ASPHALT INSTITUTE," 1991). Esta recomendación se basa en el análisis de los pavimentos del ensayo vial AASHO y de secciones diseñadas a partir de la prueba CBR.

1.1 Módulo Resiliente de la Subrasante

1.1.1 Determinación del módulo resiliente del suelo de subrasante, a partir de ensayos de laboratorio

Los procedimientos mecanicistas de diseño de pavimentos, basados en la teoría de capas elásticas, requieren la determinación o estimación de módulos elásticos para cada capa de la estructura de pavimento.

Según (Drumm, Pierce, & Members, 1990), los módulos de los materiales de base y subbase granular y el suelo de subrasante son determinados mediante pruebas triaxiales de carga repetida. En las pruebas de carga repetidas, se observa que a medida que el número de ciclos de carga aumentan la energía disipada durante un ciclo de carga dado disminuye. Esto se evidencia por una disminución en la histéresis de tensión-deformación, y es acompañado por un aumento de los módulos secantes. Después de una serie de cargas cíclicas, el módulo se vuelve casi constante, y la respuesta puede ser asumida como un comportamiento elástico. Este valor constante de módulo se define como el módulo elástico, Er y se supone que ocurre después de unos 200 ciclos de carga (Barksdale et al. 1976; AASHTO: "Methods" 1982, citado en (Drumm, Pierce, & Members, 1990). El módulo resistente se calcula como:

$$E_{\rm r} = \frac{\sigma_1 - \sigma_3}{\varepsilon_{\rm axial}} = \frac{\sigma_{\rm d}}{\varepsilon_{\rm axial}}$$

Ecuación 1

Donde:

- σ₁: Esfuerzo principal mayor
- σ₃: Esfuerzo principal menor
- σ_d: Esfuerzo desviador
- Eaxial: Deformación axial elástica o recuperable

Dado lo mencionado por Drumm, Pierce, & Members (1990), el procedimiento del ensayo consiste esencialmente en la aplicación de un esfuerzo desviador cíclico, $\sigma_d = \sigma_1 - \sigma_3$, con una presión de celda constante y la medición de la deformación axial. Aunque esta es la prueba más común, se ha analizado que los módulos bajo otras consideraciones de esfuerzo y de carga pueden ser importantes (Brown y Pappin 1981; McVay y Taesiri 1985; Stewart 1986; Leshchinsky y Rawlings 1988) (citado en Drumm et al., 1990). El módulo elástico, Er, depende en gran medida de la magnitud de σ_d o el nivel de esfuerzo medio. Para materiales granulares, Er aumenta con el incremento del esfuerzo de confinamiento.

Figura 1. Esquema de esfuerzos en una muestra en pruebas triaxiales. Fuente: Rahim & George (2003)

Figura 2 Estado de esfuerzos provocados en la subrasante por el paso de un vehículo en movimiento. Fuente: Limaymanta & Gutiérrez (2003)

Como lo menciona Limaymanta & Gutiérrez, 2003, si se considera el material de subrasante con un comportamiento elástico, isótropo y homogéneo, hipótesis básica de la mecánica de suelos, los esfuerzos y las deformaciones se relacionarán con el módulo de elasticidad y la relación de Poisson, propios del material. Pero la respuesta real está en función de las características propias de los materiales que conforman el pavimento y donde las cargas impuestas por el tránsito tienen un carácter dinámico con muy cortos tiempos de aplicación. Luego de cesar la carga aplicada, la deformación total inducida se recupera.

Esto indica que los materiales no presentan un comportamiento elástico, y por ello se introduce el término de módulo resiliente, que corresponde a un "módulo elástico supuesto", el cual relaciona las solicitaciones de carga aplicadas con las deformaciones recuperables. La determinación del módulo resiliente en los suelos se realiza mediante ensayos triaxiales dinámicos de cargas repetidas en probetas cilíndricas que simulan un elemento del suelo. La respuesta típica esperada de este ensayo se puede observar en la Figura 3 y a partir de este ensayo se puede definir el módulo resiliente del material.

Figura 3. Deformación bajo carga repetida. Fuente: Limaymanta & Gutiérrez (2003)

El módulo de resiliencia no es una propiedad constante del suelo, sino que depende de muchos factores. Los principales se enuncian a continuación:

Materiales finos:

- Condiciones de carga o estado de esfuerzos
- Tipo de suelo y su estructura
- Estado físico del suelo
- Método de compactación
- Grado de compactación y contenido de agua

Materiales granulares:

- Tipo de material
- Tamaño del espécimen, tipo de compactación, peso específico y granulometría
- Contenido de agua

Según FHWA NJ 2000-01, en 1982 la Asociación Americana de Oficiales de Carreteras Estatales y Transporte (AASHTO) establece el método estándar de prueba para el módulo elástico del suelo de subrasante, designado AASHTO T 274-82 (Especificaciones AASHTO 1986).

Hasta la fecha, AASHTO ha adoptado el procedimiento para determinar el módulo elástico de subsuelo, descrito en el Programa Estratégico de Investigación de Carreteras (SHRP). La prueba AASHTO T-307 Método de prueba estándar para determinar el módulo elástico de suelos y materiales granulares, ha sido adoptada como la prueba de laboratorio universal, para determinar el módulo de resiliencia de los suelos de subrasante.

En general, los procedimientos de laboratorio para la determinación del módulo elástico son basados esencialmente en los métodos triaxiales cíclicos (propiedades bajo cargas repetidas). Algunos de los cambios más reconocidos de la prueba AASHTO son:

a Las secuencias de carga y el número de ciclos de carga

Tabla 1. Tipo de onda utilizada y frecuencia de carga en los protocolos AASHTO (suelos finos)

	T-274-82	T-292-91	T-294-94	T-307-99
Señal aplicada	Seno, haversine, rectangular y	Rectangular	Haversine	Haversine
	triangular	y triangular		
Duración de la carga	0.1	0.1 a 1.0	0.1	0.1
(s)				
Duración del ciclo (s)	1.0 a 3.0	1.0 a 3.0	1.0	1.0 a 3.0

Fuente: Publicación Técnica No. 475 IMT, (2016)

Tabla 2.	Estado d	le esfuerzos	aplicados	en los	protocolos	AASHTO
----------	----------	--------------	-----------	--------	------------	--------

	T-274-82	T-292-91	T-294-94	T-307-99
Señal aplicada	Seno, haversine, rectangular y	Rectangular	Haversine	Haversine
	triangular	y triangular		
Duración de la carga	0.1	0.1 a 1.0	0.1	0.1
(s)				
Duración del ciclo (s)	1.0 a 3.0	1.0 a 3.0	1.0	1.0 a 3.0

Fuente: Publicación Técnica No. 475, IMT (2016)

- b Metodología de clasificación de los tipos de suelo y métodos de compactación.
- c Diferentes secuencias de prueba para suelos de base y subrasante independientes del tipo de suelo.
- d Cambio de la tensión de confinamiento en la secuencia de prueba de subbase.
- e Implementación de una presión de contacto del 10% de la tensión desviadora aplicada a la muestra. La presión de contacto proporciona una pequeña tensión axial en la muestra durante el período de descanso de la secuencia de carga cíclica para asegurar el contacto completo del espécimen y muestra.
- f Los suelos tipo I, de naturaleza granular, no plástica, se analizan a un tamaño de muestra de 6.0 Pulgadas de diámetro, con una altura de 12.0 pulgadas. Suelos tipo II, de grano fino, suelos cohesivos, se prueban a un tamaño de muestra de 2.8 pulgadas de diámetro, con una altura de 5,6 pulgadas.

De acuerdo con lo mencionado en la FHWA NJ 2000-01, el procedimiento revisado en la AASHTO TP46-94 es más preciso en la simulación de la carga debido al tráfico vehicular y en la representación real de las tensiones en la prueba de laboratorio, comparada con la que se pueden experimentar en campo. Además, en una serie de estudios recientes incluyendo a Maher et al. (1996), Pezo et al. (1991) y Nazarian y Feliberti (1993) citados en (Maher, Bennert, Gucunski, & Papp, 2000), se han abordado varios temas que requieren más investigación, los cuales incluyen el efecto de preacondicionamiento de la muestra, contacto de las placas de la muestra y del extremo, viabilidad de las secuencias de carga existentes, y la colocación de LVDT en la muestra dentro de la cámara o fuera de la cámara en la carga del pistón.

Varias son las metodologías para diseño de pavimentos, tanto rígidos como flexibles que consideran al parámetro módulo de resiliencia como la base para la caracterización del comportamiento de suelos y materiales granulares. Es por ello, que la selección apropiada del módulo de resiliencia de un material se debe de realizar con sumo cuidado, teniendo en cuenta los factores que en él influyen.

Según el Instituto Mexicano del Transporte (IMT), Publicación Técnica No. 478 (Pérez, Garnica, & Mestas, 2016) muchas de las discusiones respecto al módulo de resiliencia han estado centradas en métodos de prueba, equipo, repetitividad de resultados, etc. Sin

embargo, hay otras preguntas fundamentales que necesitan discutirse, preguntas que seguramente fueron consideradas al desarrollarse la Guía AASHTO de 1986, pero que hasta ahora no han sido entendidas. Estas preguntas están relacionadas con la selección del valor "correcto" del módulo de resiliencia para ser usado en el diseño de pavimentos. Por lo tanto, el valor apropiado de módulo de resiliencia debe ser determinado para las condiciones que corresponden a la condición final del suelo y de acuerdo con el nivel de esfuerzo aplicado por un vehículo, idealmente, este sería el caso.

El tramo de prueba AASHO fue construido cerca de Ottawa, Illinois, entre los años 1956 y 1958; las pruebas empezaron en octubre de 1958 y se terminaron a finales de 1960.

Con base en los estudios realizados en este tramo de prueba, se desarrolló el procedimiento de diseño de pavimentos de la guía AASHTO. Al adoptar las ecuaciones para diseño, la guía AASHTO simplemente utiliza una escala de soporte del suelo para representar los cambios de condiciones, sin definir completamente la escala o qué prueba debería ser utilizada con ésta.

De acuerdo con lo descrito en IMT (2001), con la guía de 1986, esa escala es abandonada y reemplazada por una relación basada en el módulo de resiliencia. Se utilizó un valor de 3000 psi para caracterizar a la subrasante del tramo de prueba ya mencionado. Por lo tanto, para que esta guía sea usada correctamente, el módulo de resiliencia de la subrasante debe de ser consistente con 3000 psi. En los apéndices de la guía AASHTO no se indica cómo fue obtenido ese valor, tal vez los primeros que sugirieron este valor fueron Skok y Finn (1962), que derivaron dicho valor a partir de los datos de deflexiones obtenidos con Viga Benkelman.

En 1962, en la primera conferencia internacional sobre diseño de pavimentos (llevada a cabo en Michigan), Seed et al (1962) (citado en (Drumm et al., 1990)) presentaron datos de pruebas de laboratorio sobre módulo de resiliencia de materiales empleados en la subrasante del tramo correspondiente a la prueba AASHO. Dentro de los datos presentados se destacan los factores que influyen en la determinación de las características resilientes de una muestra de suelo, en los que juegan un papel muy importante la tixotropía, las condiciones de compactación y el nivel de esfuerzos aplicado.

Un ejemplo es la Figura 4, en la cual se puede observar la influencia del tipo de compactación en la determinación del módulo de resiliencia. Los datos mostraron el valor de 3000 psi como un valor razonable, si el esfuerzo desviador es mayor a 12 psi (82.8 kPa), cuando se compacta por amasado, o 25 psi cuando se utiliza compactación estática.

Figura 4. Prueba de módulo de resiliencia para la subrasante del tramo de prueba AASHO, reportadas por Seed et al. (1962). Fuente: Publicación Técnica N. 142, MT (2001)

Thompson y Robnett (Citado en IMT, 2001) reportaron un estudio más completo sobre el comportamiento resiliente de la subrasante del tramo de prueba AASHO. Ellos desarrollaron pruebas de módulo de resiliencia en suelos de Illinois (Figura 5). De los datos se puede concluir que 3000 psi es un valor apropiado para ese suelo cuando el contenido de agua es 1% mayor al óptimo y está sujeto a un esfuerzo desviador de 6 psi o más.

Figura 5 Módulos de resiliencia del tramo prueba AASHO reportados por Thompson y Robnett (1 ksi = 1000 psi). Fuente: Publicación Técnica N. 142, MT (2001)

Lo que no es discutido por Thompson y Robnett, (citado en IMT, 2001) es que los resultados obtenidos están basados en pruebas sin confinamiento. Sin embargo, el procedimiento actual de prueba AASHTO recomienda utilizar una presión de confinamiento de 3 psi para un cierto rango de esfuerzos desviadores.

Finalmente, como el procedimiento de diseño de la Guía AASHTO fue desarrollado como una modificación del comportamiento de la ecuación obtenida de los resultados del tramo de prueba AASHO, los datos de entrada deben de ser consistentes con las condiciones de prueba del tramo de prueba AASHO. Así entonces, el módulo de resiliencia debe ser determinado para niveles de esfuerzo desviador de 6 psi, o más, y en condiciones de compresión no confinada. De no ser así, la metodología puede conducir a secciones estructurales de pavimento subdiseñadas.

1.1.2 Determinación del módulo resiliente del suelo de subrasante a partir del estudio de deflectometría

La prueba de deflectometría es una forma rápida y fácil de evaluar la condición estructural de un pavimento en servicio de manera no destructiva. En la actualidad, se cuenta con

diversos equipos de medición, desde dispositivos simples como la viga con medidores de marcación mecánica, hasta equipos más sofisticados que utilizan tecnología basada en láser. Sin embargo, todos los equipos de prueba de deflexión del pavimento funcionan básicamente de la misma manera: se aplica una carga conocida al pavimento y la deflexión máxima resultante de la superficie o el conjunto de deflexiones de la superficie ubicadas a distancias fijas de la carga, conocido como cuenco de deflexión, son medidos de acuerdo con el siguiente esquema:

Figura 6 Diagrama típico de cuenco de deflexión. Fuente: (FHWA, 2017)

En general, existen tres métodos principales para realizar pruebas de deflexión: carga estática o cuasi-estática, carga en estado estacionario y carga por impulso o impacto. Seguidamente, se describen los fundamentos del método de carga por impulso, siendo el método empleado en el estudio de deflectometría objeto de la presente investigación.

La carga de impulso o por impacto, se realiza dejando caer un peso en varias alturas de caída para aplicar un impulso de carga, que varía de 6.7 a 120 kN (1,500 a 27,000 lbf), a la superficie del pavimento. Las deflexiones son medidas utilizando sismómetros, transductores de velocidad o acelerómetros. Los dispositivos de este tipo son conocidos como FWD.

Figura 7 Diagrama esquema de prueba FWD. Fuente: (FHWA, 2017)

La frecuencia de medición de las pruebas depende de la longitud de la vía y el nivel de investigación o las exigencias de cada proyecto. Las pruebas pueden realizarse en la huella exterior del carril, en el centro del carril, o ambos.

El uso de pruebas no destructivas ha sido una herramienta efectiva en la evaluación de pavimentos tanto de aeropuertos como de carreteras. Las evaluaciones se utilizan para estimar la vida remanente y permisible del pavimento, así como para proporcionar datos en los cálculos de diseño. Se han desarrollado métodos (Bush & Alexander, 1985) de evaluación que han dado resultados razonables tanto para pavimentos rígidos como flexibles.

1.1.2.1 Ventajas y desventajas de los equipos de carga por impulso:

1.1.2.1.1 Ventajas

- Simulación realista de la carga real de la rueda.
- Alta productividad
- Capacidad para medir el cuenco de deflexión
- Capacidad para medir la transferencia de carga de juntas / grietas (pavimentos de concreto)

1.1.2.1.2 Desventajas

- Alto costo inicial (en caso de adquisición de equipo)
- Necesidad de control de tráfico (especialmente para trabajos nocturnos)
- Sistema electromecánico relativamente complejo.

1.1.2.2 Determinación del módulo por el método AASHTO

Según FHWA 2017, varios investigadores han desarrollado ecuaciones de regresión para predecir los módulos de capa a partir de datos de prueba de deflexión. Por ejemplo, Newcomb desarrolló ecuaciones de regresión para dos y tres capas de pavimento para

predecir el módulo de subrasante como parte de un esfuerzo general para desarrollar un procedimiento de diseño de superposición empírico-mecanicista para el Departamento de Wisconsin de Transporte; Horak también desarrolló una ecuación de regresión para predecir el módulo de subrasante utilizando la desviación a 2.000 mm (79 pulgadas) del centro de aplicación de la carga.

La ecuación más utilizada para predecir el módulo de subrasante es la presentada en la guía AASHTO 1993, la cual vincula la carga aplicada (P), en Lb (o N), la deflexión medida a la distancia r de la carga aplicada (dr) en pulgada (o mm) y la distancia radial a la cual se mide la deflexión (r), en pulgadas (o mm).

$$MR = \frac{0.24 P}{dr r}$$

Ecuación 2

1.1.2.3 Análisis de los resultados de la deflectometría (retrocálculo de módulos)

El retrocálculo es una evaluación mecanística, a través de la cual se busca la coincidencia, con algún margen de tolerancia, entre el cuenco de deflexión calculado mediante la aplicación de la teoría elástica y el cuenco producido en el pavimento por el equipo de medida de deflexiones (Figura 8). El proceso que involucra los módulos de las diversas capas del pavimento y la subrasante es normalmente iterativo y se resuelve con ayuda de un software utilizable en computadores.

Figura 8 Cuenco de deflexión teórico y real. Fuente: (FHWA, 2017)

El retrocálculo se ejecuta con la secuencia que muestra el diagrama de flujo de la Figura 9 y comprende los siguientes pasos:

- Medida de las deflexiones a distintas distancias del punto de aplicación de la carga.
- Registro de la carga aplicada y de los espesores del pavimento en el sitio del ensayo.
- Introducción de módulos elásticos iniciales de las diversas capas de pavimento (módulos semilla), los cuales se escogen, bien a partir de la experiencia del diseñador o bien empleando algunas ecuaciones que permiten su estimación a partir de las deflexiones.
- Mediante algún programa de computador apropiado, se determina el cuenco de deflexión del modelo del pavimento.

Figura 9 Diagrama de flujo de un proceso de retrocálculo. (FHWA, 2017)

El programa de retrocálculo compara el cuenco calculado con el medido en el sitio de ensayo y establece si existe o no una adecuada convergencia. La medida más utilizada para ello es la raíz del error medio cuadrático (RMS). Normalmente, se considera que la convergencia es adecuada si el RMS no es mayor de 1 o 2 % (INVIAS, 2008).

El primero programa multicapa disponible para modelar la respuesta estructural de pavimentos, fue el programa LAYER, desarrollado por la Chevron Oil Company (Michelow, 1963), el programa tenía ciertas limitaciones, ya que solo se podría usar una sola carga. LAYER se mejoró y se ha conocido comúnmente como CHEVRON, el cual permitió la definición de múltiples cargas, pero aun así no permitió fricción entre capas. ELSYM5 fue desarrollado por Ahlborn (1972) y se basa en el programa LAYER (ELSYM5).

Los recientes desarrollos en la evaluación no destructiva de pavimentos, han llevado al uso de los modelos en capas elásticas (Bush & Alexander, 1985). El análisis se realizó modelando el sistema de pavimento como un sistema equivalente de capas elásticas. La solución para un sistema multicapa, fue formulada por primera vez por Burmister (1943), y se limitó a un caso de dos o tres capas. En el trabajo de Burmister, Mehta y Veletsos (1959) se amplió el caso a n capas.

La teoría elástica multicapa predice la respuesta elástica a la carga estática o cuasi estáticas. Sin embargo, el uso de un sistema elástico equivalente puede ser útil al analizar cargas dinámicas y deflexiones. Mientras que el enfoque del análisis cuasi estático es ciertamente una correlación empírica aplicado a pruebas dinámicas no destructivas. Una gran cantidad de literatura ha indicado que las predicciones empíricas basadas en modelos elásticos lineales son útiles para la evaluación y cálculos de diseño. Para las predicciones de respuesta de las cargas de prueba no destructiva, el método típico es modelar la carga dinámica máxima como una carga cuasi estática equivalente y asumir que el cuenco de deflexión elástica equivalente calculada es una buena aproximación de la envolvente de las deflexiones máximas medidas.

La investigación por Bodare y Orrje (1985) indicó que el módulo dinámico teórico de una prueba de carga dinámica que simula la carga de una llanta, se acerca al módulo estático teórico, cuando el tiempo de aplicación de carga máxima es relativamente largo. Aunque el tiempo que se consideraría largo, está en función de varios factores, incluidas las propiedades del material y el radio de carga, Bodare y Orrje (1985) presentaron un ejemplo utilizando las propiedades típicas del sistema, lo que indica que el tiempo necesario para alcanzar el pico fue de unos 10 milisegundos, menor al tiempo para alcanzar el pico con el deflectómetro de impacto.

El modelo elástico lineal multicapa tiende a dar deflexiones más grandes y valores picos dinámicos superiores a los medidos cuando se supone que la capa inferior es semi-infinito. Investigaciones anteriores (Bush 1980), han indicado que la relación entre las deflexiones elásticas predichas y las deflexiones dinámicas medidas, se asemejan, si se incluye una capa rígida en el sistema elástico equivalente a una profundidad de 20 pies. Aunque este supuesto es una correlación empírica, otros investigadores (Roesset y Shao 1985, Mamlouk 1985) han apoyado el uso de este supuesto.

Los programas de retrocálculo de mayor utilización se basan en una aplicación iterativa inversa de la teoría de elasticidad en sistemas de capas. Ejemplos de ellos son BISDEF, ELSDEF, CHEVDEF y EVERCALC, los cuales se basan en los programas BISAR, ELSYM5, CHEVRON y WESLEA, respectivamente.

La Figura 10 presenta un ejemplo del esquema e información requerida para el proceso de retrocálculo, para un sistema de cuatro (4) capas, a partir de las medidas de deflexión con el FWD en un punto del pavimento.

Figura 10 Esquema del pavimento para el proceso de retrocálculo. Fuente: (INVIAS, 2008)

1.1.2.3.1 Métodos de retrocálculo

Un gran número de programas de computación para el retrocálculo de módulos se ha desarrollado a partir de datos de ensayos no destructivos. Basados en la literatura disponible (FHWA, 2017), se indica que todos los algoritmos empleados se pueden agrupar en tres métodos generales.

- a. Métodos simplificados,
- b. Métodos de relajación de gradiente, y
- c. Métodos directos de interpolación

La Figura 11 presenta un esquema de la zona del pavimento que queda sometida a esfuerzos bajo la carga de un equipo de medida de deflexión de tipo dinámico (por vibración o por impacto). Cuando la carga es aplicada, dicha zona se extiende a través de una porción de la estructura, como lo muestra la parte cónica de la figura. La pendiente de los lados de esta zona, que varía entre una capa y otra, está relacionada con el módulo de la capa (a

medida que el material es más rígido, el esfuerzo se distribuye sobre un área mayor) (INVIAS, 2008).

Figura 11 Esquema de la zona de esfuerzos en el pavimento bajo la carga de un equipo dinámico. Fuente: (FHWA, 2017)

Para determinar los valores de los módulos dinámicos a partir de las deflexiones, se considera que el pavimento es un sistema elástico de capas múltiples, del cual se requieren conocer los espesores de las capas y las relaciones de Poisson de los materiales que las constituyen. Los primeros se establecen a través de las perforaciones y de la auscultación con georradar, mientras que las segundas pueden ser calculadas o asumidas en función de los materiales constitutivos de las capas.

Los módulos dinámicos de las capas de un pavimento asfáltico se pueden estimar a partir de las deflexiones mediante tres procedimientos básicos: (i) retrocálculo, (ii) cálculo directo y (iii) ecuaciones de regresión. Los valores obtenidos con cada uno de ellos suelen ser diferentes, por lo que el buen juicio ingenieril será determinante en la elección del más apropiado para cada caso particular.

Otro método es el denominado método de espesor equivalente (MET), el cual se basa en la suposición de Odemark, en el cual, a partir de las deflexiones de un pavimento multicapa

se puede obtener un sistema con módulos Ei y espesores de capa hi utilizando una sola capa de espesor H y el módulo E. ELMOD3 es un ejemplo de un programa que utiliza el método Odemark-Boussinesq, el cual emplea el concepto de espesor equivalente de capa y el método del radio de curvatura; las propiedades de rigidez del material de subrasante y su comportamiento no lineal, se calculan utilizando las desviaciones de los sensores externos. BOUSDEF es otro programa que usa el método MET.

El concepto de módulo de superficie es muy útil para estimar el módulo de subrasante y para diagnosticar si el material de subrasante es sensible al esfuerzo (comportamiento no lineal) y la presencia de capas rígidas.

Los programas de cálculo directo se utilizan para generar una base de datos de cuencos de deflexión para diferentes combinaciones de módulos de capa, espesores de capa especificados, propiedades del material, tipos de pavimento y condiciones de carga. Los cuencos de deflexión medidos se comparan con los cuencos de deflexión en la base de datos mediante una búsqueda de algoritmo, y un conjunto de módulos se interpolan a partir de los módulos de capa que producen el más cercano al cuenco de deflexión calculado en la base de datos. Dentro de este sistema de cálculo se encuentra los programas MODULUS y WESDEF.

1.1.3 Relaciones entre el módulo resiliente de laboratorio y el determinado por proceso de retrocálculo

La guía AASHTO permite el uso tanto de ensayos de laboratorio como módulos retrocalculados in situ, pero reconoce que los módulos determinados en ambos procedimientos no son iguales. La guía sugiere que el módulo de subrasante determinado a partir de los cuencos de deflexión, medido en la superficie del pavimento, se ajuste por un factor de 0,35. (NCHRP, 2004).

Hay muchos factores que puede contribuir a la diferencia entre módulo de laboratorio y el retrocalculado. Una de las razones es la dificultad de obtener muestras representativas de campo debido a la variabilidad inherente de la capa de subrasante. Chou y Lytton (1991) (Citado en Gopalakrishnan, 2009), atribuyen la diferencia en la asignación de parámetros

de entrada en programas de retrocálculo, a una variación sustancial en los valores del módulo. Una buena discusión de las diferencias entre el módulo de laboratorio. M_R y módulos retrocalculado E _{back} se presenta en Houston, Mamlouck, & Perera, 1992.

Debido a la complejidad del procedimiento de prueba de laboratorio para la determinación del M_R , las agencias de carreteras han estado explorando pruebas no destructivas, como el deflectómetro de impacto. En el estudio "Falling Weight Deflectometer for Estimating Subgrade, (Rahim & George, 2003), se estudiaron 12 secciones de prueba con diferentes tipos de subrasante, suelos de grano fino y grueso, realizando mediciones de deflectometría y toma de muestras en tubos Shelby de pared delgada hasta una profundidad de 1,5 m para las pruebas de laboratorio (M_R).

El procedimiento consistió en mediciones de FWD directamente en el suelo de subrasante y después de la construcción de la estructura de pavimento. Estos resultados facilitaron una comparación uno a uno de módulos de laboratorio y dos ciclos de retrocálculo de módulos a partir del estudio de FWD.

Los resultados de las pruebas de laboratorio muestran de manera concluyente que el suelo de la subrasante en las 12 secciones de prueba es bastante heterogéneo, mostrando más variación espacial que con la profundidad.

Como conclusión se obtiene, que para un amplio espectro de suelos, el valor del módulo retrocalculado a partir de las mediciones de deflexiones con FWD directamente sobre la subrasante coincide con el valor de módulo determinado en el laboratorio (M_R). Cuando la medición se hace sobre la estructura de pavimento, el módulo de la subrasante retrocalculado E (back) aumenta en un 40% para suelos finos, mientras que el aumento es del 100% para suelos de grano gruesos, esto es debido principalmente al confinamiento resultante de la conformación de las diferentes capas de la estructura de pavimento.

Los resultados de este estudio, aunque tentativos, sugieren fuertemente una necesidad de reevaluar el factor C = 0.33 sugerido por la Guía AASHTO (1993) para calcular el M_R de laboratorio a partir de valores retrocalculados.

Ali & Khosla, 1987, evaluaron tres secciones de pavimento en una carretera primaria en Carolina del Norte; se tomaron muestras de material de las secciones de pavimento para prueba de laboratorio, analizando las propiedades mecánicas de los materiales del pavimento; dichas muestras fueron ensayadas a diferentes condiciones ambientales. La relación de los módulos de laboratorio y los retrocalculados por deflectometría variaron según se indica a continuación:

- Utilizando el modelo VESYS se tuvo la menor variación respecto a los valores de laboratorio, con una relación MR_{lab}/ MR_{pred} entre 0.48 y 1.08 y la mayoría de los valores entre 0.77 y 0.97.
- Los valores para ELMOD variaron entre 0.54 y 1.56, con la mayoría de los valores entre 0.80 y 1.26.
- Las mayores variaciones en la relación de MR_{lab}/ MR_{pred} fueron exhibidas por los valores de los modelos MODCOMP2 y OAF. La relación de MR_{lab}/ MR_{pred} para MODCOMP2 varió de 0.1 a 18.2 con la mayoría de estos valores entre 0.55 y 5.61.
- La relación MR_{lab}/ MR_{pred} para OAF osciló entre 0.18 y 14.80, con la mayoría de los valores entre 0.32 y 9.80.

De lo anterior, se puede ver que los modelos de VESYS y ELMOD son los más adecuados para la predicción de los módulos de las capas del pavimento.

Newcomb (1987) presento los resultados de pruebas similares para el estado de Washington. Las deflexiones del equipo FWD Dynatest se midieron con cuatro niveles de carga y los módulos correspondientes se calcularon utilizando el programa Chevron N-layer P y el procedimiento de iteración desarrollado por Bush (1980). Para el nivel de esfuerzos la relación de los valores de laboratorio a los módulos de campo estaba en el rango de 0.8 y 1.3 para los materiales de subrasante. Por otro lado, Von Quintus y Killingsworth (1998) reportaron un rango de relación entre 0.1 a 3.5.

Bonaquist et al. (1986) (citado en utilizó un enfoque diferente. En lugar de retrocalcular los valores de módulo a partir de datos de deflexión, los valores determinados por laboratorio se utilizaron en un programa de teoría de capas elásticas para calcular deflexiones. Las

deflexiones calculadas se compararon con las deflexiones medidas con una viga Benkelman, un plato de carga y un FWD Dynatest. Los detalles de la investigación son demasiados extensos, sin embargo, las conclusiones son muy significativas, en cuanto al procedimiento de prueba de laboratorio para llegar al módulo, el cual podría emplearse para predecir de manera confiable las deflexiones medidas con cualquier dispositivo de medida de deflexión.

Houston et al. (1992), realizó un estudio comparativo bastante extenso de laboratorio, comparando valores de módulo de laboratorio versus valores de campo como parte de un proyecto de Universidad Estatal de Arizona (ASU) para el Departamento de Transporte de Arizona, Phoenix, Arizona, (Mamlouk, Houston, Houston, & Zaniewski, 1988). Veinte sitios en Arizona fueron seleccionados para pruebas de campo y recolección de muestras para pruebas de laboratorio.

Las pruebas de campo incluyeron mediciones de deflexiones con FWD y pruebas de penetración de cono (PDC) en muestras de subrasante no alteradas, así como muestras alteradas de materiales de base, subbase y subrasante. Las muestras no alteradas de subrasante se sometieron a pruebas de módulo elástico y las muestras alteradas se analizaron para determinar el contenido de humedad, la gradación y límites de Atterberg. Los valores de módulos calculados fueron aproximadamente 1.5 veces los valores de laboratorio, en promedio. En el caso de las muestras de subrasante, se concluyó que la principal causa de las diferencias entre los módulos de laboratorio y los valores de campo (retrocalculados) se relacionaron con los diferentes volúmenes de material probado en ambos procedimientos.

Una buena relación entre los módulos de laboratorio y los medidos en campo no existe si se sigue la práctica habitual de muestrear y probar solo 1 o 2 pies de profundidad (0,3 o 0,6 m) del subsuelo, debido a que se prueban diferentes volúmenes de material; la heterogeneidad en cualquier capa contribuye a diferentes módulos. También se concluye que el costo de determinar los módulos mediante pruebas de módulo resiliente de laboratorio es típicamente 60-80 veces mayor que el costo de un programa de pruebas de campo equivalente con FWD

Debido al alto costo de los ensayos de laboratorio, se llega a la conclusión de que el uso de NDT con FWD y retrocálculo de módulos es el enfoque apropiado para la caracterización de materiales para el diseño de pavimentos, cuando hay capas construidas sobre la misma subrasante. Esta conclusión no significa que las pruebas de módulo de resiliente de laboratorio no tienen lugar en el diseño de pavimento; el papel apropiado de este tipo de pruebas de laboratorio es en la investigación, ya que representan la forma más eficiente de estudiar los efectos de ciertos parámetros sobre los módulos del material.

Petersen, Wahr y Palma (Leal Noriega, 2010), investigaron en Chile la relación entre el módulo resiliente (M_R) obtenido en ensayos de laboratorio y el obtenido mediante retrocálculo de deflexiones medidas con deflectómetro de impacto. El estudio se realizó sobre una estructura de pavimento flexible, encontrando materiales de subrasante de tipo granular con presencia de limo y arcilla, sobre los cuales se estimaron 12 puntos para medidas de deflexión.

Una vez realizadas las mediciones de deflexión, se procedió al análisis de éstas mediante el método propuesto por AASHTO, obteniendo de esta forma el módulo resiliente retrocalculado. En el laboratorio se ejecutaron 24 ensayos de módulo resiliente, dos por cada punto donde se midieron las deflexiones. Con base en los resultados obtenidos se propuso un factor de ajuste igual a 0,45, formulando la siguiente relación:

MRL = 0.45 * MRREcuación 3

Donde:

MRL: Módulo resiliente hallado en laboratorio.

MRR: Módulo resiliente obtenido por retrocálculo.

Por otra parte, Fuentes, Sepúlveda y Gaete, mencionados en Leal Noriega (2010), al igual que investigadores chilenos, realizaron un procedimiento similar seleccionando 5 sitios para realizar los ensayos, donde se obtuvieron 3 muestras de suelos gruesos (material granular) y 6 muestras de suelos finos (arena, arcilla y limo), que posteriormente se ensayaron según la guía AASHTO T294-92.

Paralelo al muestreo se midieron las deflexiones con FWD, realizando un total de 9 pruebas, la misma cantidad de ensayos de módulo resiliente ejecutados en laboratorio.

Los resultados obtenidos están discriminados según el tipo de suelo, así:

Correlación para suelos finos:

MRL = 0.94 * MRREcuación 4

Correlación para suelos gruesos:

MRL = 0.90 * MRREcuación 5

MRL: Módulo resiliente hallado en laboratorio.

MRR: Módulo resiliente obtenido por retrocálculo.

Otros investigadores como George (2003), citado en Leal Noriega (2010), recomendaron, a partir de su trabajo realizado en la ciudad de Mississippi, el uso de los siguientes factores de corrección, según el tipo de suelo existente en la subrasante: 0,65 para suelos finos y 0,51 para suelos granulares.

Por su parte, estudios realizados por Guzmán Suarez (2017), el Módulo Resiliente de la subrasante retrocalculado (Mrr) y el Módulo Resiliente medido en laboratorio (Mr) no son iguales por varias razones. La principal razón es que las presiones de confinamiento uniforme y los esfuerzos verticales repetidos usados durante el ensayo en laboratorio, no simulan realmente el confinamiento y estado de esfuerzos a que se ve sometida la subrasante al ser solicitada por la carga del FWD o las ruedas de los vehículos.

Algunos de los aspectos mencionados en cuanto a las relaciones entre el M_R y el módulo retrocalculado son citados por Guzmán Suarez y se resaltan a continuación:

 Basados en los resultados de AASHTO, los departamentos de transporte de diferentes estados han realizado investigaciones independientes, tendientes a desarrollar su propia calibración del factor de ajuste, con el fin de mejorar la eficiencia en el diseño de rehabilitación de pavimentos y reflejar las prácticas locales. Los resultados se presentan en la Tabla 3 (Ng, Kam & Hellrung, Daniel & Ksaibati, Khaled & S. Wulff, Shaun, 2016)

Tabla 3. Factor de ajuste empleado por diferentes Agencias de Transporte en Estados Unidos

Agencia	Factor de ajuste – C	Observación
AASHTO	0.33	
Departamento de Transporte de Colorado	0.52	
Departamento de Transporte de Idaho	0.35	
Departamento de Transporte de Missouri	0.35	
Departamento de Transporte de Montana	0.50	
Departamento de Transporte de Utah	0.55	Para suelos fino-granulares
	0.67	Para suelos granulares
Departamento de Transporte de Wyoming	0.645	

Fuente: (Guzmán Suarez, 2017)

- El Estudio experimental Realizado en la Universidad Técnica Federico Santa María

 Chile, consistió en comparar el Módulo Resiliente de subrasante obtenido mediante el deflectómetro de impacto y el obtenido en laboratorio. Los suelos evaluados en este estudio fueron clasificados como A-2-4 y A-2-6, en el sistema AASHTO. Con base en los resultados obtenidos, se propone un factor de ajuste C=0.45 para estimar el módulo resiliente de laboratorio a partir del módulo retrocalculado de deflexiones medidas con el FWD (Petersen, Wahr, Palma, Castro, & Albornoz, n.d.).
- En el Estudio de la Universidad del Estado De Michigan, para cada tipo de suelo evaluado según la Tabla 4, se presenta la relación entre el valor del módulo resiliente retrocalculado promedio, usando los datos de las medidas de deflexiones y el promedio obtenido en el laboratorio (Baladi, Dawson, & Sessions, 2009).

Sistema d clasificaci	e ión	Resultados de la	aboratorio	Resultados del r	retrocálculo	Factor de
SUCS	AASHTO	Número de ensayos	Mr promedio MPa	Número de ensayos	Mrr promedio MPa	ajuste - C
CD1	A-1-a	16	100	1400	100	0.06
SPI	A-3	10	199	1499	190	0.96
CD2	A-1-b 10 176	176	562	172	0.08	
SP2	A-3	10	1/0	505	172	0.98
	A-1-b					
SP-SM	A-2-4	8	145	364	140	0.96
	A-3					
SC-SM	A-2-4	7	160	1024	120	0.87
3C-3W	A-4	1′	160	1924	159	0.87
	A-2-6					
SC	A-6	16	129	1517	147	1.14
	A-7-6					
c M	A-2-4	- 17	117	270	170	1.45
SM	A-4		117	370	170	1.43
	A-4					
CL	A-6	9	256	774	104	0.41
	A-7-6					
ML	A-4	4	169	23	110	0.65
Promedio						0.93

Tabla 4. Factor de ajuste para suelos de subrasante de acuerdo con el tipo de suelo

Fuente: (Guzmán Suarez, 2017)

- En el Estudio Instituto de Transporte de Texas (Oh, Fernando, Holzschuher, & Horhota, 2011) se documentan los estudios hechos para evaluar los factores de corrección aplicables a los materiales para pavimentos en Florida. El proyecto recomienda los factores de ajuste para determinar el módulo equivalente de laboratorio relacionado con el módulo retrocalculado en materiales de base, subrasante estabilizada y terraplén. El factor de ajuste fue evaluado a diferentes profundidades en cada una de las capas; sin embargo, aunque pruebas estadísticas de significancia mostraron diferencias entre los factores determinados a diferentes profundidades, la magnitud de estas diferencias dentro de un intervalo de confianza del 95 % no fue lo suficientemente significativa, por lo que se optó por combinar los datos del factor de ajuste determinados en las diferentes profundidades de cada capa, con el fin de generar los siguientes modelos de regresión del factor de corrección en función del módulo retrocalculado de cada capa.
- ✓ Capa de base

 $C = 10.503 * M_{rr}^{-0.855}$ Ecuación 6

✓ Capa de subrasante estabilizada

 $C = 8.041 * M_{rr}^{-0.848}$ Ecuación 7 ✓ Capa de terraplén

$$C = 7.837 * M_{rr}^{-0.833}$$

Ecuación 8

Donde:

C: Factor de ajuste

M_{rr:} Módulo resiliente retrocalculado

Leal Noriega (2010) presenta el estudio de investigación, el cual se desarrolló en un proyecto de maestría en el año 2010 en la Ciudad de Bogotá. En él, se realizó la evaluación estructural del pavimento en 8 puntos de ensayo mediante deflectometría, y se comparó los módulos para cada una de las capas con los obtenidos en los ensayos de laboratorio. El estudio encontró que, para el material de subrasante, que correspondió a un material granular remanente, el factor de ajuste para el módulo es de 0.65; para el material de subbase granular es igual a 0.24; y para el material de base granular, es igual a 0.17.

Estudios realizados a nivel de Colombia (Guzmán & Higuera, 2016), en suelos finos de subrasante con comportamiento típico, el módulo resiliente debe aumentar con la profundidad a la que se evalúe, y la relación entre el módulo de retrocálculo y de laboratorio debe ir aumentando; es decir, que en un punto bajo de la subrasante estos dos módulos coinciden.

En este estudio en particular, se encontró que el factor que representa la relación entre el módulo resiliente de laboratorio con el obtenido por retrocálculo con el método AASHTO (1993) es 0,37. Al caracterizar la resistencia de la subrasante mediante el método de Rohde (1994), el factor de ajuste por utilizar es 0,63.

1.1.4 Estimación del módulo resiliente de la subrasante a partir del ensayo de CBR

Terzaghi (1955), (citado en (Eka Putri, V Kameswara Rao, & Mannan, 2012)), propuso una correlación empírica entre CBR y E como se muestra en la Figura 12 (Jones, 1997). La Figura 12 también presenta las correlaciones empíricas entre el módulo de elasticidad, E

con CBR que han sido resueltas por Heukelom y Klomp (1962), NAASRA (1950) y Powell, Potter, Mayhew y Nunn (1984) (citados en Eka et al. 2012).

Figura 12 CBR Versus Módulo de Elasticidad. Fuente: Eka et al. (2012)

Heukelom y Klomp (1962) estudiaron la correlación de CBR con E y propusieron una relación empírica como:

E = 1500 CBR (psi)

Ecuación 9

Por otra parte, Powell, Potter, Mayhew, & Nunn (1984), proponen una correlación entre el CBR y el módulo, E (aplicada para suelos con CBR entre el 2 y 12%):

 $E = 17.6 \text{ CBR}^{0.64} \text{ (MPa)}$ Ecuación 10

NAASRA (1950), ha dividido en dos partes la correlación entre E y CBR:

La primera para CBR menores a 5%:

$$E = 16.3 \text{ CBR}^{0.7} \text{ (MPa)}$$

Ecuación 11

La segunda para CBR mayores de 5%:

 $E = 22.4 \text{ CBR}^{0.5} \text{ (MPa)}$ Ecuación 12 De acuerdo con lo establecido en el estudio de Eka et al. (2012), para desarrollar el procedimiento para correlacionar el resultado de CBR con la relación entre la carga y la deflexión de diferentes suelos con varios valores de módulos, E, se utiliza el método de elementos finitos para modelar la prueba de CBR con el parámetro de entrada obtenido de las pruebas de laboratorio. Este método ofrece un enfoque racional para desarrollar la correlación de CBR frente a E. Las correlaciones de CBR vs. E se presentan en la Figura 13. Las correlaciones desarrolladas por otros autores también se presentan en la comparación.

Figura 13 CBR Versus E obtenidos a partir de diferentes relaciones de Poisson. Fuente: Eka et al. (2012)

El resultado de la correlación del estudio de Eka et al. (2012), es cercano al resultado de Terzaghi (1955), mientras que la correlación realizada por Heukelom y Klomp (1962), NAASRA (1950) y Powell, Potter, Mayhew y Nunn (1984) difieren considerablemente, probablemente debido a que su naturaleza es empírica. De la Figura 13, las correlaciones entre E y CBR de la investigación son las siguientes:

E = 863.82 CBR (kPa), v = 0Ecuación 13

E = 840.53 CBR (kPa), v = 0.3Ecuación 14

E = 751 CBR (kPa), v = 0.4Ecuación 15 De acuerdo con lo descrito por Maher, Bennert, Gucunski, & Papp (2000), el Instituto de Asfalto (1982) desarrolló la siguiente ecuación para calcular módulo elástico M_R :

Según Dione, Fall, Berthaud, Benboudjema, & Michou (2015), La primera relación entre el módulo resiliente y CBR fue desarrollado por Heukelom y Foster, además de las pruebas dinámicas en varios tipos de suelo de plataforma. Los resultados llevaron a la siguiente relación:

Referencia	Correlación
Shell Oil (Heukelom and Foster 1960)	Mr = 1500 CBR (psi) Mr = 10 CBR (MPa)
U.S.Army Corps of Engineers (USACE) (Green	Mr = 5409 CBR ^{0.711} (psi)
and Hall 1975)	Mr = 37.3 CBR ^{0.71} (MPa)
South African Council on Scientific and Industrial Research (CSIR)	Mr = 3000 CBR ^{0.65} (psi)
Bowel	Mr = 2554 CBR ^{0.64} (psi)
Fower	CBR entre 1 – 12%
Transport and Road Research Laboratory (TRRL) (Lister 1987)	Mr = 2555 CBR ^{0.64} (psi)

Tabla 5. Correlaciones M_R Vs CBR

Fuente: Elaboración Propia, Adaptado de Dione et al. (2015)

Según la Tabla 5, se muestra que hay una gran cantidad de relaciones entre el módulo resiliente y CBR. Para ver su comparativo, se genera la Figura 14 y el análisis de la variabilidad de resultados que se pueden obtener.

Figura 14 Comparativo resultados correlaciones M_R vs CBR

A partir de los módulos obtenidos para diferentes valores de CBR (entre 0.5 y 12.0 %) empleando las correlaciones anteriores (ver Figura 14), la correlación U.S.Army Corps of Engineers (USACE), presenta valores mayores de módulo con relación a las demás correlaciones, desde el valor de CBR de 0.5%. Se puede observar un punto de quiebre aproximadamente en el CBR de 5% entre las correlaciones de Powel y TRLL, cambiando su tendencia a disminuir para esta última. Al igual, se puede observar un punto de intersección aproximado en el valor de CBR del 7%, entre Powel y CSIR.

En cuanto a los valores medios obtenidos y comparados con el valor medio más bajo para el grupo de CBR entre 0.5 y 12%, correlación Powel, las demás correlaciones tienen una variación entre el 12% (Shell Oil) y el 59% (USA Army).

Así mismo, basados en la Figura 15 presentada por la Shell (1978), la relación entre el módulo de la subrasante y el CBR, puede estar entre 5 y 20 (MPa); no obstante, la Shell propone un valor de 10, de modo que el valor del MR puede ser entre la mitad y el doble del propuesto. Por ejemplo, para un valor de CBR del 6%, el módulo de la subrasante varía entre 30 y 120 MPa, lo que indica un comportamiento con gran dispersión.

Figura 15 Grafica de Correlación MR vs CBR. Fuente: Shell (1978)

Las correlaciones determinadas por Uzan (1985) y NCHRP (2004), se basan en el análisis estadístico y pruebas de significación para su eventual establecimiento. Los resultados permiten establecer la siguiente relación con un R² de 0.69 para el modelo de Uzan y un R² de 0.66 para el modelo NCHRP:

 $Mr = 91.226 + 0.017 \times (CBR)^2$ (Uzan, 1985) Ecuación 17

 $Mr = 99.720 + 0.019 \times (CBR)^2$ (NCHRP, 2004) Ecuación 18

El modelo de Uzan es aplicable en capas de base para el diseño utilizando el método de elementos finitos.

En la NCHRP (2004), se detallan las correlaciones generales que describen la relación entre el índice de suelo y las propiedades de resistencia y que pueden ser usadas para estimar el M_R . Las relaciones podrían ser directas o indirectas. Por las relaciones indirectas está primero la relacionada con el CBR y luego el CBR está relacionada con los modelos de M_R , tal como se ilustra en la siguiente tabla:

Strength/Index Property	Model	Comments	Test Standard
CBR	M _r = 2555(CBR) ^{0.64} (TRL) Mr, psi	CBR = California Bearing Ratio, percent	AASHTO T193, "The California Bearing Ratio"
R-value	M _r = 1155 + 555R (20) Mr, psi	R = R-value	AASHTO T190, "Resistance R- Value and Expansion Pressure of Compacted Soils"
AASHTO layer coefficient	$M_{r} = 30000 \left(\frac{a_{i}}{0.14}\right) (20)$ Mr, psi	a _i = AASHTO layer coefficient	AASHTO Guide for the Design of Pavement Structures
PI and gradation*	$CBR = \frac{75}{1 + 0.728(wPI)}$ (see Appendix CC)	wPI = P200*PI P200= percent passing No. 200 sieve size PI = plasticity index, percent	AASHTO T27. "Sieve Analysis of Coarse and Fine Aggregates" AASHTO T90, "Determining the Plastic Limit and Plasticity Index of Soils"
DCP*	$CBR = \frac{292}{DCP^{1.12}}$	CBR = California Bearing Ratio, percent DCP =DCP index, mm/blow	ASTM D 6951, "Standard Test Method for Use of the Dynamic Cone Penetrometer in Shallow Pavement Applications"

Tabla 6. Modelos que relacionan el índice del material y propiedades mecánicas a M_r

*Estimates of CBR are used to estimate Mr.

Fuente: NCHRP (2004)

Para el caso de la correlación entre el CBR y wPI de la AASHTO T-27, se obtiene un coeficiente de determinación, R², de 0.67; sin embargo, se puede observar una base de datos limitada.

Figura 16 Correlación CBR vs plasticidad de los materiales. Fuente: NCHRP (2001)

Por consiguiente, y dado lo mencionado en la presente revisión bibliográfica, surge la necesidad de evaluar una correlación entre los valores de CBR, ensayo empleado muy comúnmente en Colombia en el diseño y rehabilitación de pavimento, y los módulos retrocalculados con FWD (mediciones in situ) o deflexiones, con el fin de evaluar las condiciones propias en terreno y tipos de suelos en Colombia, debido a los pocos estudios encontrado valorando estas dos variables.

1.2 Correlaciones CBR y FWD

Varias autoridades estatales de carreteras en Australia han desarrollado métodos para estimar valores de CBR de la subrasante a partir de datos de deflexión FWD (Austroad, 2004). Estos métodos generalmente son empíricos y pueden proporcionar valores indicativos para ciertos tipos de suelos. Como menciona Chai, (Chai et al., 2013), las deflexiones registradas en el sensor D₉₀₀, ubicadas a 900 mm del centro de la placa de carga, son las que generalmente se emplean en los modelos.

Tres modelos basados en la deflexión son comúnmente utilizados en Australia; estos modelos fueron desarrollados por Jameson (1993), Roberts et al (2006) y Queensland Department of Main Roads (QDMR, 1992), citados en Chai et al 2013. Jameson desarrolló la siguiente relación para predecir el CBR de la subrasante a partir del análisis de una amplia gama de pavimentos viales en Hong Kong.

$$CBR_{Subgrade} = 1836(D_{900})^{-1.018}$$

Ecuación 19

Donde:

D ₀ :	Deflexión a 700 kPa (micrones),
CBR:	Capacidad de soporte de la subrasante (%)
D ₉₀₀ :	Deflexión a 900 mm desde el centro de la placa de carga (micrones)

Roberts (2006) demostró que la resistencia del material de la capa de subrasante puede estimarse utilizando la deflexión medida con FWD. Se demostró que la resistencia del material de la capa de subrasante de un pavimento está relacionada al comportamiento de las franjas exteriores del cuenco de deflexión, en gran medida independiente de la forma de la parte interna del cuenco. Los datos de deflexión estructural se obtuvieron de pruebas de FWD a 700 kPa como carga de impacto. Usando los datos de FWD recopilados en un proyecto en Australia, se derivó una relación, vinculación directa de la subrasante CBR (según estimaciones de los pozos de prueba por PDC) con el valor de la deflexión FWD D900. La relación se muestra en la siguiente ecuación:

$$CBR_{Subgrade} = 850(D_{900})^{-1}$$

Ecuación 20

Donde:

D ₀ :	Deflexión a 700 kPa (micrones),
CBR:	Capacidad de soporte de la subrasante (%)
D ₉₀₀ :	Deflexión a 900 mm desde el centro de la placa de carga (micrones)

El tercer modelo basado en la desviación fue desarrollado por el Departamento de Main de Queensland Carreteras (QDMR). Este modelo es actualmente utilizado por el Ayuntamiento de Brisbane (BCC) para evaluar la respuesta de la subrasante utilizando datos de la deflexión D₉₀₀. La respuesta de la subrasante se refleja en D₉₀₀ y es relativamente independiente de la estructura del pavimento subyacente. Para pavimentos no ligados, asfalto grueso o capas rígidas, se ha encontrado que la deflexión D₉₀₀ refleja una respuesta de la subrasante que esencialmente no se ve afectada por la estructura del pavimento subyacente y se utilizó para estimar el CBR de subrasante al momento de la prueba (QDMR, 1992). Esta relación se muestra en la siguiente ecuación:

 $CBR_{Subgrade} = 0.5996(D_{900})^{-1.4543}$ Ecuación 21

Donde:

CBR:Capacidad de soporte de la subrasante (%)D900:Deflexión a 900 mm desde el centro de la placa de carga (mm).

Según Chai et al. (2013), el cual estudió pavimentos delgados con espesores de material granular entre 16 y 25 cm y capa asfáltica entre 3 y 5 cm, el material de subrasante es elástico lineal hasta una ubicación del sensor D₄₅₀. Esto se evidencia en el módulo de superficie que disminuye a medida que el esfuerzo disminuye a una distancia de aproximadamente 450 mm desde el centro de la placa de carga. Más allá de la D₄₅₀, el módulo de superficie aumenta a medida que disminuye el nivel de esfuerzo, lo que confirma el comportamiento no lineal de los materiales de subrasante.

Lo anterior, puede considerarse aplicable para pavimentos delgados, el cual es la base del estudio de Chai.

Figura 17 Módulo de la superficie Versus Localización Sensor. Fuente: Chai et al. (2013)

Basados en la Figura 17, el módulo de superficie generalmente disminuye con la distancia, a partir del punto de la carga; en los puntos cercanos a la carga, la respuesta del pavimento depende no solamente del módulo de la subrasante sino de los módulos de las capas subyacentes que componen la estructura del pavimento, los cuales son mucho mayor. A cierta distancia, dependiendo del espesor y rigidez del pavimento, la respuesta empieza a depender principalmente de la subrasante, y ahí es donde se puede calificar si la subrasante tiene un comportamiento elástico lineal o no.

Teóricamente, ese punto de quiebre podría estar asociado o coincidir con la distancia que define la metodología AASHTO-93 para escoger el sensor alejado para analizar el comportamiento de la subrasante. Para los pavimentos tan delgados del estudio de Chai, está asociado al sensor ubicado a 450 mm; por tanto, el módulo crece de ahí en adelante, lo que indica que el suelo tiene un comportamiento elástico no lineal, donde el módulo aumenta a medida que se reducen los esfuerzos (a medida que la distancia a la carga aumenta), comportamiento típico de suelos finos. Pero podría ser que el módulo siguiera disminuyendo con la distancia, en el caso de suelos granulares, tal como se indica en E. Horak (Horak, 2007).

E. Horak, ilustra las gráficas típicas de módulos de superficie para estructuras de pavimento.Los módulos de superficie calculados a la distancia horizontal r son representativos del

material comprimido en la zona de influencia por debajo de la profundidad z, (ver Figura 18). A medida que la distancia horizontal aumenta, se alcanza un punto en el que solo la subrasante cae dentro de la zona de influencia y los módulos de superficie solo reflejan los módulos del material de la subrasante.

Figura 18 Gráficos de módulos de superficie típicos para estructuras de pavimento (Ullidtz, 1897). Fuente: Horak (2017)

En el estudio de Chai, si la deflexión a D_{900} se usa en el modelo del CBR de la subrasante, el modelo predeciría un exceso en los valores de CBR porque los datos de deflexión son muy bajos (<0.100 mm), debido a que se tiene estructuras de pavimento muy delgados. El nuevo modelo desarrollado en el estudio utilizó la deflexión en el sensor D_{450} y se presenta en la siguiente ecuación:

> $CBR_{Subgrade} = 2.6523(D_{450})^{-1.001}$ Ecuación 22

CBR: Capacidad de soporte de la subrasante (%)

D₄₅₀: Deflexión a 450 mm desde el centro de la placa de carga (mm).

Es importante mencionar, que las investigaciones respecto a correlaciones entre resultados de FWD y CBR son muy limitadas; por ende, la importancia y relevancia para la ingeniería

de pavimentos en nuestro país, aprovechar la información disponible de datos simultáneos de CBR y mediciones de FWD, para tratar de encontrar correlaciones propias entre estas dos variables consideradas dentro de los parámetros de diseño de pavimentos flexibles, teniendo en cuenta la facilidad del procedimiento para obtener datos de CBR contra la disponibilidad de información de ensayos de módulo resiliente.

Capítulo 2 Metodología de Investigación

El actual trabajo de investigación está dividido en cuatro etapas; la primera de ellas está relacionada con la recopilación de la información disponible de proyectos viales en Colombia, de sitios donde se tiene simultáneamente ensayos de CBR y mediciones de deflectometría, así como su respectivo análisis y validación de la información disponible; la segunda etapa permite determinar las propiedades de rigidez de los materiales de subrasante mediante diferente métodos de análisis como AASHTO 1993 y cálculo directo, la tercera consiste en analizar el comportamiento de los valores de CBR con relación a las propiedades del suelo y por último una cuarta etapa, en donde se establecen las correlaciones entre la deflectometría y resultados de CBR para diferentes tipo de suelo de subrasante.

2.1 Recopilación, análisis y validación de la información

Una de las primeras actividades a realizar en la investigación, es la búsqueda, recopilación, revisión y organización de información disponible en sitios simultáneos de mediciones de deflectometría, exploración geotécnica y ensayos de laboratorio como: clasificación de suelo (SUCS), límites de Atterberg, humedad natural y CBR, producto de la ejecución de proyectos viales de evaluación estructural de pavimentos realizados en Colombia. Esta información es proporcionada por dos empresas de Consultoría Vial en Colombia.

Para tal fin, se logra recopilar información de proyectos viales entre los años 2010 y 2019, con proyectos ubicados en los siguientes departamentos:

- ✓ Cundinamarca
- ✓ Boyacá
- ✓ Antioquia
- ✓ Valle del Cauca
- ✓ Bogotá
- ✓ Meta

- ✓ Norte de Santander
- ✓ Tolima
- ✓ Huila
- ✓ Nariño

Basado en lo anterior, el tamaño de la base de datos definida para el estudio corresponde a 501 puntos, en donde se cuenta con datos simultáneos de FWD y geotecnia, los cuales representan un tamaño adecuado para determinar la correlación entre CBR y módulo determinados para diferentes tipos de materiales de subrasante, analizando diferentes parámetros que sean incidentes en los resultados.

La base de datos recopilada y organizada se presenta en el Anexo 1.

De los datos de deflectometría, se recopila información referente a:

- Carga aplicada (kN)
- Temperaturas de la capa asfáltica y ambiente (°C)
- Deflexiones obtenidas en campo, a distancia a 0, 30, 60, 90, 120, 150, 180 cm del centro de aplicación de carga (micrones)
- Espesores de capa asfáltica y materiales granulares (base granular y/o subbase granular cm).

Por otro lado, de la exploración geotecnia disponible en cada proyecto analizado y registro de ensayos de laboratorio, se obtiene:

- Profundidad de exploración
- Perfiles estratigráficos
- Humedad natural
- Limite líquido, límite plástico e índice de plasticidad
- Granulometría: % gravas, % arenas y % finos
- Clasificación: Sistema Unificado de Clasificación de Suelo (SUCS) American Association of State Highway and Transportation Officials (AASHTO)

• CBR de laboratorio sobre muestras inalteradas y muestras compactadas

De la información recopilada, se analizan aspectos influyentes en el desarrollo de la investigación como, espesores de la estructura de pavimento, profundidad de la exploración geotécnica, clasificación del material de subrasante, límites de Atterberg, resultados de CBR de muestras inalteradas en humedad natural y CBR de muestras compactadas en laboratorio en inmersión.

2.1.1 Espesores de la estructura de pavimento

De los datos registrados en la base de datos, se tiene los siguientes espesores de carpeta asfáltica:

Figura 19 Espesores carpeta asfáltica

Como se puede observar, los espesores de carpeta asfáltica, en general, están comprendidos entre 10 y 30 cm, correspondiente al 75.6% de la muestra total. Sin embargo, se están analizando variedad de espesores de capa asfálticas, entre 4 y 40 cm.

Por otro lado, el material granular, entendiéndose como la capa de base y/o subbase granular de la estructura de pavimento, presenta estructuras más heterogéneas, ya que sus espesores varían entre 20 y 100 cm, como se indica en la siguiente en la Figura 20. Como la presenta investigación no contempla el comportamiento en particular de estos materiales, no se ha realizado el análisis del tipo de suelo y su caracterización.

Figura 20 Espesores material granular (BG/SBG)

2.1.2 Resultados de ensayos de laboratorio

Las propiedades de los suelos de subrasante son de los parámetros más relevantes e importante a considerar dentro del objetivo de la presente investigación. La subrasante se denomina al suelo que sirve como fundación para todo el paquete estructural de un pavimento.

De los ensayos de laboratorio recopilados, se describen a continuación, cada una de sus características.

2.1.2.1 Granulometría

✓ Los suelos que se encontraron fueron diversos: tipo grava, arenas, limos y arcillas.

Figura 21 Granulometría base de datos

 Se cuenta con arcillas y limos de alta y baja plasticidad, suelos orgánicos, de grano grueso: gravas bien y mal graduadas, gravas arcillosas, gravas limosas, arenas arcillosas y arenas limosas.

Figura 22 Clasificación para suelos finos

Figura 23 Clasificación para suelos arenosos

Figura 24 Clasificación para suelos tipo grava

- ✓ Los suelos predominantes recopilados fueron del tipo fino, arcillas y limos en un 67.5%, le sigue las gravas con el 16.6% y finalmente la arenas con un 16%.
- ✓ En cuanto a los suelos tipo fino, se tiene en su mayoría arcillas de baja plasticidad (CL 47.6%), arcillas de alta plasticidad (CH 16.3%) y limos de alta plasticidad (14.8%).

Basados en lo anterior, para la investigación se establecen los suelos categorizados como suelos finos, arenosos y tipo grava.

2.1.2.2 Límites de Atterberg

Los límites de Atterberg para los puntos evaluados, se presentan en las siguientes gráficas, para los suelos clasificados como limos y arcillas:

Figura 25 Gráfica de límites líquidos, suelos

Figura 26 Gráfica límites plásticos, suelos

Figura 27 Gráfica índice de plasticidad, suelos finos

Para el caso de los límites líquidos, se presenta un rango ente 17% y el 100%, con mayor incidencia entre 20 - 60%. Por otro lado, los límites plásticos varían entre 10% y mayor a 100%, con promedio en general del 25%.

En los suelos finos o cohesivos, la humedad es un parámetro muy importante ya que nos permite determinar numerosas propiedades geotécnicas. A partir de la humedad natural de

los suelos y los límites de Atterberg es posible determinar el índice de liquidez (IL) y el índice de consistencia (Ic), los cuales nos permiten analizar la resistencia del terreno.

El índice de liquidez se define como la consistencia relativa de un suelo en estado natural y se determina con la siguiente ecuación:

$$IL = \frac{w - LP}{LL - LP}$$

Ecuación 23

Donde:

- IL: Índice de liquidez
- W: contenido de humedad del suelo in situ
- LP: Limite plástico
- LL: Límite liquido

Con el fin de comprobar el estado del suelo durante la ejecución de las mediciones de deflectometría, en la Figura 28 se presenta los datos obtenidos para el índice de liquidez.

Con base en la siguiente información tabulada, se puede valorar la consistencia del suelo:

Valor del I _L	Consistencia
1.00 - 0.80	Muy blando
0.80 - 0.65	Blando
0.65 - 0.40	Media
0.40 - 0.25	Duro
< 0.25	Muy Duro

Tabla 7. Consistencia del suelo a partir del IL

Fuente: http://geotecniafacil.com/limites-de-atterberg/

Figura 28 Gráfica índice de liquidez

De la Figura 28 se puede decir que los suelos evaluados en general presentan una consistencia dura y, en algunas zonas y en menor proporción, suelos blandos. Para valores de índice de liquidez menores a 0, la humedad natural es menor que el límite plástico.

Por otro lado, el índice de consistencia se determina de la siguiente manera:

$$Ic = \frac{LL - w}{LL - LP}$$

Ecuación 24

Donde:

- Ic: Índice de consistencia
- W: contenido de humedad del suelo in situ
- LP: Limite plástico
- LL: Límite liquido

Con base en la información de la Tabla 10, se puede definir el estado del suelo:

Valor del Ic	Estado del suelo
< 0	Liquido
0 - 0.25	Semilíquido

Valor del Ic	Estado del suelo
0.25 - 0.50	Plástico muy blando
0.50 - 0.75	Plástico blando
> 1	Sólido

Fuente: http://geotecniafacil.com/limites-de-atterberg/

Figura 29 Gráfica índice de consistencia

La consistencia de los suelos, según el índice evaluado, en general se encuentra entre estado plástico duro y sólido; sin embargo, se cuenta con consistencias debajo de la condición plástico, muy blando a estado líquido, lo que se puede ver influenciado en los rangos de deflexiones obtenidas.

2.1.2.3 Datos de CBR

Dentro de la base de datos recopilada, se tiene información de CBR de muestras inalteradas tomadas en terreno (comúnmente para suelos arcillosos y limosos), en condiciones de humedad natural y algunos casos sumergidos, y otras muestras compactadas en laboratorio (suelos arenosos y gravas) para CBR de laboratorio compactados al 95, en inmersión.

A modo ilustrativo, se presenta los valores de CBR a ser usados para el objetivo de la investigación, los cuales se agrupan por tipo de suelo y tipo de muestreo.

100

80

00 (%) CBK (%) 40

20

0

0 50

100 150 200

2

•

Figura 30 CBR suelos finos, muestras

punto evaluado

300 350 400 450 500 550 600 650 700

Inalteradas (Humedad natural)

Inalteradas (Inmersión)
 Laboratorio (inmersión)

Figura 32 CBR suelos tipo grava, muestras compactadas

2.2 Determinación del módulo de la subrasante a partir de la deflectometría

2.2.1 Datos de mediciones de deflectometría

La información base de mediciones de deflectometría, corresponde a evaluaciones realizadas en diferentes proyectos viales a nivel de Colombia, información que ha sido proporcionada por dos empresas Consultoras del área de la infraestructura vial, con fines académicos e investigativos.

Los equipos empleados para las mediciones de deflectometría fueron el deflectómetro de impacto HFWD KUAB-240 y FWD 50, dispositivos de carga dinámica remolcado por un vehículo, que cumple todos los requisitos estandarizados por la ASTM D 4694-96 y el protocolo de calibración de SHRP para equipos de este tipo. En el **Anexo 2** se presentan los certificados de calibración de dichos equipos empleados en los diferentes proyectos viales, fuente de la información recopilada para la presente investigación.

Figura 33 Fotografías equipo deflectómetro. Fuente: Empresa de consultoría

Los datos de deflexión estructural se obtuvieron de las pruebas con FWD con una presión de impacto de 566 kPa; este impacto simula el paso de la rueda de un vehículo pesado y es registrado por un sensor ubicado en el centro del plato, durante el instante en que el disco cae sobre el pavimento.

Las deflexiones producidas son medidas por un grupo de siete (7) sismómetros espaciados entre sí cada 0.30 m, permitiendo la obtención de la curva completa del cuenco de deflexiones, (ver Figura 34) (distancias de 0, 0.30, 0.60, 0.90, 1.20, 1.50 y 1.80 m del centro del disco de carga).

Figura 34 Medida y registro de deflexiones con un deflectómetro de impacto Fuente: (INVIAS, 2008)

Las siguientes son algunas características de los deflectómetros de impacto:

- Configuración de dos masas: factor que permite la producción de un pulso de carga que simula los efectos reales de un vehículo en movimiento.
- La fuerza es monitoreada con una celda de carga
- Plata de carga circular, diámetros 15 30 45 cm (diámetro empleado 30 cm)
- Plato de carga segmentado: esta condición asegura una distribución uniforme de presión sobre la superficie del pavimento.
- Sensores de medición: Reporta deflexiones en un rango de 0 a 200 mili pulgadas (0 a 5000 micrones).

2.2.1.1 Normalización de deflexiones por carga

Los datos de deflexión, obtenidos en los estudios de deflectometría se normalizan por carga (a 40 kN) teniendo en cuenta el valor de la carga con que fueron generadas y considerando que la reacción al aplicar la carga no siempre es constante.

Esta corrección se realiza proporcionalmente, es decir, aplicando la siguiente ecuación:

$$d_i = d_{io} * \frac{Pr}{Po}$$

Ecuación 25

Donde:
d_i = Deflexión del sensor i, corregida a la carga Pr.
d_{i0}= Deflexión del sensor i, medida en campo con la carga de aplicación P₀.
P_r= Carga a la cual se normalizarán las mediciones, en este caso igual a 40 KN.
P₀ = Carga (en KN) aplicada en las mediciones de campo.

2.2.2 Determinación del módulo resiliente de la subrasante a partir de las mediciones de FWD

La obtención de los módulos de la subrasante a partir de las mediciones de deflectometría, se realiza mediante dos metodologías: AASHTO 1993 y método directo. Seguidamente, se presenta el procedimiento a seguir y en el **Anexo 3** se presenta los resultados obtenidos para cada uno de los puntos evaluados.

2.2.2.1 Método AASHTO 1993

De acuerdo con la metodología AASHTO-93, el cálculo del módulo resiliente de la subrasante puede determinarse a partir de las deflexiones obtenidas con el deflectómetro de impacto (FWD), por medio de la siguiente expresión la cual está en función de los siguientes parámetros:

 $Mr = \frac{P(1 - \mu^2)}{\pi r d_r}$ Ecuación 26

Donde:

- Mr: Módulo resiliente de la subrasante en kg/cm²
- P: Carga aplicada en kg
- d_r: Deflexión medida a una distancia r del centro del plato de carga en cm
- r: Distancia desde el centro del plato de carga en cm
- μ: Relación de Poisson de la subrasante

Suponiendo que la relación de Poisson de la subrasante, μ = 0.50 (AASHTO-93), la ecuación se reduce a:

$$Mr = \frac{0.24P}{d_r r}$$

Ecuación 27

Donde:

- Mr: Módulo resiliente de la subrasante en kg/cm²
- P: Carga aplicada en kg
- D_r: Deflexión medida a una distancia r del centro del plato de carga en cm
- r: Distancia desde el centro del plato de carga en cm

Sin embargo, para este estudio se empleó una relación de Poisson de 0.45 para suelos finos y 0.40 para suelos arenosos y tipo grava.

De acuerdo con lo propuesto por la AASHTO, la deflexión empleada para retro calcular el módulo de la subrasante debe ser medida lo suficientemente lejos del punto de aplicación de carga, de tal modo que provea un buen estimativo del módulo de la subrasante, independientemente de los efectos de cualquiera de las capas por encima de ésta; pero también debe estar lo suficientemente cerca, de tal modo que no sea muy pequeña e impida una medición precisa. La mínima distancia debe determinarse por medio de la siguiente relación:

$$r \ge 0.7a_e$$

$$a_{e} = \sqrt{a^{2} + \left(D_{\sqrt{3}}^{3} \frac{Ep}{M_{R}}\right)^{2}}$$

Ecuación 28

Donde:

- a_e: Radio del bulbo de esfuerzos en la interfaz estructura-subrasante en cm.
- a: Radio del plato de carga del deflectómetro en cm.

- D: Espesor de las capas del pavimento en cm.
- E_P: Modulo efectivo de todas las capas del pavimento por encima de la subrasante en kg/cm².
- M_R: Módulo de la subrasante en kg/cm²

El valor de E_p se obtiene despejando la siguiente expresión:

$$d_{0} = 1.5 * p * a * \left\{ \frac{1}{M_{r} \sqrt{1 + \left(\frac{D}{a} \sqrt[3]{\frac{E_{p}}{M_{r}}}\right)^{2}}} + \left[\frac{1 - \frac{1}{\sqrt{1 + \left(\frac{D}{a}\right)^{2}}}}{E_{p}}\right] \right\}$$

Ecuación 29

Dónde:

- d₀ : Deflexión central en cm.
- P : Presión del plato de carga, psi.
- a : Radio del plato de carga, cm
- D : Espesor total de las capas del pavimento sobre la subrasante, cm
- M_R : Módulo resiliente de la subrasante, kg/cm²
- $E_{\rm p}~$: Módulo efectivo de las capas que conforman el pavimento, kg/cm^2

2.2.2.2 Método directo

El cálculo directo es un método desarrollado por la FHWA, a través del programa LTPP (Long-Term Pavement Performance), el cual permite estimar los módulos de la subrasante y del conjunto de capas asfálticas, a partir de las medidas de deflexión y de los espesores de la estructura del pavimento, sin necesidad de realizar tanteos como lo exige el retrocálculo.

Para el cálculo del módulo de la subrasante, el método utiliza una formulación basada en el modelo de Hogg.

Los autores del método mencionan las siguientes ventajas: A) Puesto que los módulos de la subrasante y de las capas asfálticas calculados por este procedimiento no dependen de los módulos de otras capas del sistema, sólo se obtiene una solución para cada cuenco de deflexión, al contrario de lo que sucede con el retrocálculo. B) El cálculo directo es fácil de entender y usar, en tanto que el retrocálculo exige un juicio ingenieril especializado, así como el conocimiento de la manera de correr el programa iterativo escogido. C) Según su experiencia con la información de la base de datos del LTPP, para los mismos espesores y deflexiones, la técnica de cálculo directo producen menos dispersión en los resultados que la obtenida mediante retrocálculo al analizar pavimentos flexibles.

Este método propuesto en el documento FHWA-HRT-05-152, emplea la deflexión máxima y una adicional de las medidas con el FWD, a una distancia tal, que el valor de deflexión correspondiente sea aproximadamente igual a la mitad del máximo. La ecuación para determinar el módulo es la siguiente:

$$\mathsf{E}_{0} = \mathsf{I} \times \frac{(1+\mu_{0})(3-4\mu_{0})}{2\times(1-\mu_{0})} \times \left[\frac{\mathsf{S}_{0}}{\mathsf{S}}\right] \times \left[\frac{\mathsf{p}}{\mathsf{D}_{0}I_{0}}\right]$$

Ecuación 30

Donde:

- E₀: Modulo de la subrasante
- I: Factor de Influencia (Tabla 9)
- μ_0 : Relación de Poisson de la subrasante
- S: Rigidez del pavimento (p/D₀)
- p: Carga aplicada
- D₀: Deflexión central (deflexión máxima)
- I₀: Longitud característica del cuenco de deflexión.

$$I_{0} = y_{0} \frac{r_{50}}{2} + \left[\left(y_{0} r_{50} \right)^{2} - 4m\alpha r_{50} \right]^{0.5}$$

Ecuación 31

Si
$$\frac{\alpha}{I_0} < 0.2$$
 entonces $I_0 = (y_0 - 0.2m)r_{50}$

S₀/S: relación entre la rigidez de la carga puntual teórica y la rigidez del pavimento.

$$\left[\frac{S}{S_0}\right] = 1 - m \left[\frac{\alpha}{I_0} - 0.2\right]$$

Ecuación 32

Si
$$\frac{\alpha}{I_0} < 0.2 \text{ entonces } \left[\frac{S}{S_0}\right] = 1.0$$

Donde:

- y₀: Coeficiente de longitud característica
- m: Coeficiente de longitud característica
- α Coeficiente de ajuste de la curva
- r_{50} : Distancia a la cual la deflexión es igual a la mitad de la máxima ($D_r/D_0=0.5$)

$$r_{50} = r \frac{(1/\alpha)^{1/\beta} - B}{\left[\frac{1}{\alpha} \left\{\frac{D_0}{D_r} - 1\right\}\right]^{1/\beta} - B}$$

Ecuación 33

Donde:

- β : Coeficiente de ajuste de la curva
- B: Coeficiente de ajuste de la curva

Esta implementación del modelo de Hogg considera tres (3) casos. El Caso III corresponde a una fundación elástica infinita, mientras los Casos I y II son para capas elásticas finitas, con un espesor efectivo que se asume aproximadamente igual a diez (10) veces la longitud característica del cuenco de deflexión (10*I₀). Los dos casos de espesor finito son para subrasante con relación de Poisson de 0.40 y 0.50, respectivamente, lo que puede corresponder a suelos finos y también granulares en el caso de la relación 0.40. Las diferentes constantes usadas para los 3 casos del modelo se muestran en la Tabla 9.

El Caso II ha sido empleado de manera amplia para calcular módulos de subrasante con propósitos de evaluación de pavimentos mediante cálculo directo.

Los coeficientes de Hogg utilizados para los cálculos, corresponden al Caso II (capas elásticas finitas).

		CASO I	CASO II	CASO III
Distancia a soporte rígido	H/I	10	10	Infinito
Relación de Poisson	μο	0.50	0.40	Cualquiera
Factor de influencia	1	0.1614	0.1689	0.1925
Rango D ₁ /D ₀		> 0.70	> 0.43	Cualquiera
$r_{50} = f(D_0/D_0)$	α	0.4065	0.3804	0.3210
	β	1.6890	1.8246	1.7117
	В	0	0	0
Rango D./D.		< 0.70	< 0.43	
$r_{50} = f(D_t/D_0)$	α	2.6947E-3	4.3795E-4	
	β	4.5663	4.9903	
	В	2	3	
l = f (r ₅₀ ,a)	Yo	0.642	0.603	0.527
	m	0.125	0.108	0.098
$(S/S_0) = f(a/I)$	\overline{m}	0.219	0.208	0.185

Tabla 9. Coeficientes del modelo Hogg

Fuente: (INVIAS, 2008)

2.2.2.3 Resultados obtenidos de módulo

Si se grafican los resultados de los módulos obtenidos por cada metodología, se observa una trayectoria similar en su comportamiento; (Figura 35), sin embargo, las gráficas también indican que se logra obtener valores mayores de módulo mediante la metodología AASHTO, en promedio en un 24% aproximadamente.

Figura 35 Módulos de la subrasante

Los resultados del sensor determinado para la estimación del módulo, permite establecer el empleo del sensor ubicado a 90 cm en un mayor porcentaje en la metodología AASHTO y el ubicado a 60 cm en el método directo (ver Figura 36 y Figura 37).

Figura 36 Sensor empleado en AASHTO

Figura 37 Sensor empleado en método directo

Con el fin de validar lo indicado por Chai et al. (2013), en donde se indica que el material de subrasante es elástico lineal hasta una ubicación del sensor a 450 mm desde el centro de la placa de carga, para el caso de pavimentos delgados, a continuación, se presenta el comportamiento del módulo en diferentes puntos, aleatorios, para diferentes estructuras de pavimento, tomando los resultados obtenidos por la metodología AASHTO:

Carpetas menores a 5 cm y material granular entre 24 y 90 cm

- Para el caso del punto #120, se puede observar que el módulo disminuye con respecto a la distancia del sensor, y tiene un comportamiento elástico lineal más allá del sensor ubicado a 90 cm. Algo similar para con el punto #200.
- Para el caso de los puntos evaluados # 206, 230 y 317, a partir del sensor localizado a 60 cm, el módulo tiende a aumentar, esto puede estar asociado a la disminución de esfuerzos a partir de esta distancia y por ende una deflexión muy baja, viéndose reflejado en un módulo mayor obtenido por retrocálculo calculado con los sensores más allá del de 60 cm, (comportamiento típico desuelo finos).
- Los puntos en círculo en rojo corresponden a los sensores empleados para el cálculo del módulo por ٠ la metodología AASHTO.

Carpetas entre 10 y 20 cm y material granular entre 30 y 50 cm

- Para el caso del punto #87 se tiene un comportamiento lineal elástico, allí el módulo tiene poca variación con respecto a la distancia del sensor.
- Para el punto # 31, el módulo aumenta hasta una distancia del sensor, después se observa una leve disminución (comportamiento típico de suelos granulares).
- Para el punto #252, el módulo disminuye hasta el sensor ubicado entre 60 y 90 cm, posterior a este aumenta en consideración (comportamiento de un suelo fino, aumenta el módulo a menor esfuerzo). Así mismo el comportamiento de los puntos # 103 y # 379, el módulo tiende a aumentar a mayor distancia del sensor (menor esfuerzo).
- Los puntos en círculo en rojo corresponden a los sensores empleados para el cálculo del módulo por la metodología AASHTO.

Figura 38 Comportamiento del módulo en función de la deflexión, puntos aleatorios

El análisis anterior, nos permite analizar el comportamiento del suelo según su tipo, el efecto en el módulo determinado con diferentes deflexiones según el sensor analizado. De aquí la importancia de analizar la determinación del sensor a emplear para la determinación del comportamiento del suelo de subrasante, a partir del estudio de deflectometría.

Capítulo 3

Comportamiento entre el CBR y Parámetros del Suelo

Previo a definir algún tipo de modelo estadístico, se realizaron gráficas de dispersión para observar el comportamiento de los datos entre el CBR y los parámetros de suelo.

Con la información disponible de los ensayos de laboratorio se realizaron gráficas de dispersión entre el CBR y las propiedades relacionadas con la gradación y límites de consistencia. Lo anterior, con la finalidad de poder realizar un análisis dimensional para los parámetros de mayor incidencia.

Para la presente investigación, se cuenta con valores de CBR en las siguientes condiciones:

- Suelos finos (arcillas y limos): muestras inalteradas en condiciones de humedad natural.
- Suelos arenosos: muestras inalteradas en condiciones de humedad natural y muestras compactadas en laboratorio, 95% de la densidad máxima, en inmersión.
- Suelos tipo grava: muestras compactadas en laboratorio al 95% de la densidad máxima, en inmersión.

3.1 Relación entre el CBR y granulometría

Seguidamente, se presenta el análisis de dispersión, entre la granulometría de todos los tipos de suelos analizados, finos, arenas y gravas y el CBR (para suelos finos: muestra inalteradas humedad natural, suelos arenosos: muestras inalteradas humedad natural y muestras compactadas en laboratorio y gravas: muestras compactadas en laboratorio):

3.1.1 CBR y porcentaje de gravas

La Figura 39 presenta la gráfica de dispersión entre el CBR y el porcentaje de gravas (%G), se puede observar, en general, que entre más alto sea el contenido de grava, la tendencia del valor de CBR es mayor. Sin embargo, se nota que la dispersión es alta para porcentajes

mayores al 30%. Esto podría indicar la existencia de otros factores que influyen en la capacidad de los suelos, además del % de gravas.

100 80 60 40 20 0 10 20 30 40 50 60 70 80 90 100 % Gravas

Suelos finos, CBR muestra inalterada, humedad

Suelos arenosos, CBR compactado en laboratorio, en inmersión

humedad natural

Figura 39 Gráfica de dispersión CBR vs % Gravas

3.1.2 CBR y porcentaje de arenas

Para la gráfica de dispersión entre el CBR y el contenido de arena (% S), se nota una tendencia similar entre el 0% y 30% de contenido de arena, en este rango, el CBR se mantiene por debajo del 20%. Entre el 30% y 45% (S), el CBR se dispara presentando una mayor dispersión de los datos. Y, por último, para porcentajes mayores al 45% (S), el valor

del CBR disminuye, mostrando valores inferiores al 20%, siendo similar la tendencia al de los datos. También se podría indicar que él % de contenido de arena no es un factor determinante del comportamiento del CBR.

Suelos finos, CBR muestra inalterada, humedad natural

Suelos arenosos, CBR compactado en laboratorio, en inmersión 100 80 \widehat{B} 60 \widehat{B} 40 20 0 10 20 30 40 50 60 70 80 90 100 % Arenas

Suelos grava, CBR compactado en laboratorio, en inmersión

Figura 40 Gráfica de dispersión CBR vs % Arenas

3.1.3 CBR y porcentaje de finos

Suelos arenosos, CBR muestra inalterada,

En cuanto a la gráfica de dispersión para el CBR y % de finos (arcillas y limos), se nota claramente una tendencia a disminuir el CBR a medida que aumenta la cantidad de finos. La relación entre estos dos valores parece ser del tipo potencial, con valores mayores de CBR entre el 0 y 20% del contenido de finos y disminuye después de este último intervalo.

3.2 Relación entre el CBR y límites de Atterberg

3.2.1 CBR y límite líquido

Al graficar la dispersión de los valores de CBR y límite líquido del suelo, se puede observar claramente el comportamiento del suelo según su gradación; para suelos tipo grava, los valores de CBR son mayores y para suelos finos, con mayores porcentajes de límite líquido, el valor del CBR disminuye.

También se puede observar que, para valores de límites líquidos del mismo rango, se obtienen valores de CBR bajos y altos; esto especialmente para suelos arenosos, lo cual podría significar que, aunque el límite líquido influye en el valor del CBR, lo determinante es el porcentaje de grava presente en el suelo, ya que se tiene una tendencia clara en los suelos finos y suelos tipo grava. Para los suelos arenosos, el comportamiento es más variado, debido a que su gradación puede estar más hacia al lado de granos gruesos o granos finos.

Figura 42 Gráfica de dispersión CBR vs % Límite líquido, suelos finos

Figura 43 Gráfica de dispersión CBR vs % Límite líquido, suelos arenosos y gravas

Lo que puede concluir es que el valor del CBR en muestras inalteradas y elaboradas en laboratorio no tiene una correlación clara con el límite líquido.

3.2.2 CBR y límite plástico

Figura 44 Gráfica de dispersión CBR vs Límite plástico, suelos finos

Figura 45 Gráfica de dispersión CBR vs Límite plástico, suelos arenosos y gravas

De acuerdo con la dispersión presentada entre el CBR y el límite plástico, es claro que el CBR disminuye a medida que aumenta el LP. Para limites plásticos menores al 20%, el CBR aumenta considerablemente; esto se evidencia para los suelos tipo grava y arenosos. Arriba del 20% del límite plástico, el CBR en suelos finos es inferior al 10% en general. De igual manera que para el límite líquido, no se encuentra una correlación clara entre el CBR y el límite plástico.

3.2.3 CBR e Índice de Plasticidad

Figura 46 Gráfica de dispersión CBR vs Índice de plasticidad, suelos finos

Figura 47 Gráfica de dispersión CBR vs Índice de plasticidad, suelos arenosos y gravas

Al igual que el comportamiento del límite plástico, el valor del CBR disminuye con el aumento del índice de plasticidad. Del análisis realizado, al comparar los valores de CBR y los límites de consistencia del suelo, se puede apreciar que existe una mayor dispersión de los datos de CBR para suelos tipo grava y arenosos; para los suelos finos, el comportamiento es más homogéneo, con valores de CBR menores del 10%, para valores bajos y altos de limites líquidos, límites plásticos e índice de plasticidad.

3.3 CBR vs Plasticidad y contenido de finos para suelos finos

La National Cooperative Higway Research Program (NCHRP) of United States of America, propuso la siguiente correlación para estimar los valores de CBR para suelos finos, donde w es el porcentaje que pasa el tamiz 0.075 mm y PI el índice de plasticidad.

$$CBR = \frac{75}{1 + 0.728(wPI)}$$

Ecuación 34

La Figura 48 muestra los datos de CBR para suelos finos en condiciones de humedad natural versus wPI y los resultados obtenidos para el CBR a partir de la correlación establecida por la NCHRP. Se puede ver que se mantiene una misma tendencia, aunque se presenta una gran dispersión entre la predicción del CBR y el CBR medido en campo, frente a los valores de wPI.

Figura 48 Gráfica de dispersión CBR vs wPI y correlación NCHRP

Capítulo 4

Comparación de los Datos del Estudio con Correlaciones Internacionales

Entre FWD – CBR

Basados en lo mencionado en el estado del arte, existen varias correlaciones para estimar el CBR a partir de las deflexiones medidas a diferentes distancias del centro de aplicación de la carga. En este capítulo se analiza si las ecuaciones disponibles reproducen las tendencias de la base de datos empleada; es decir, si aplican para las condiciones de suelos típicos existentes en Colombia.

Las Figura 49 a Figura 57 presentan, por tipo de suelo, los datos en este estudio (corregidas a una presión de 700 kPa) y las correlaciones entre el CBR y la deflexión D900 de tres modelos comúnmente utilizados en Australia; estos modelos fueron desarrollados por Jameson (1993), Roberts et al (2006) y Queensland Department of Main Roads (QDMR, 1992).

- o Ecuación 1: Jameson
- Ecuación 2: Roberts et al
- Ecuación 3: QDMR
- Adicionalmente, se presenta la línea de tendencia que presenta los datos del estudio.

4.1 Suelos finos

Figura 49 Gráfica de dispersión CBR (humedad natural) vs Deflexión a 900 mm vs ecuación 1, suelos finos

Figura 50 Gráfica de dispersión CBR (humedad natural) vs Deflexión a 900 mm vs ecuación 2, suelos finos

Figura 51 Gráfica de dispersión CBR (humedad natural) vs Deflexión a 900 mm vs ecuación 3, suelos finos

Como se puede ver en las gráficas para suelos finos (limos y arcillas), las tres ecuaciones disponibles presentan una gran diferencia en cuanto a los valores de CBR medidos (datos de este estudio) y los estimados por ellas. Las tres ecuaciones sobrevaloran el valor de CBR a partir de la deflexión; por ejemplo, para una deflexión de 100 micrones, se tiene un CBR del 16.9%, 8.50% y 17.07% (ecuación 1, 2 y 3 respectivamente); mientras que los valores del estudio dan entre 5.6% y 6.2%, lo anterior, puede estar asociado, que no siempre la deflexión ubicada en el sensor a 900 mm es la que evalúa el comportamiento de la subrasante, como se mencionó en capítulos anteriores y, adicionalmente, que la deflexión puede estar asociada al tipo de suelo u otras características del suelo.

Basados en la línea de tendencia estimada para los datos de estudio, entre el CBR y la deflexión D900, se observa un mejor ajuste (Figura 51 $R^2 = 0.32$), sin embargo, con gran dispersión.

4.2 Suelos arenosos

Se grafican los valores de CBR de muestras inalteradas en condiciones de humedad natural (Wn) y CBR compactados en laboratorio (LAB, 95% de compactación y en inmersión).

Figura 52 Gráfica de dispersión CBR vs Deflexión a 900 mm vs ecuación 1, suelos arenosos

Figura 53 Gráfica de dispersión CBR vs Deflexión a 900 mm vs ecuación 2, suelos arenosos

Figura 54 Gráfica de dispersión CBR vs Deflexión a 900 mm vs ecuación 3, suelos arenosos

Para el caso de los materiales arenosos, la dispersión de los datos es un poco menor, ajustándose la ecuación 1 a los CBR compactados en laboratorio y la ecuación 2 a los CBR de muestras inalteradas en humedad natural. Para valores menores a 50 micrones de la deflexión D_{900} , el CBR puede aumentar considerablemente y para valores mayores a 100 micrones, el CBR lleva una tendencia a disminuir y a ser constante. Según la línea de tendencia de los datos de estudio, los CBR de muestras compactadas en laboratorio presentan una mejor correlación, con un R^2 de 0.46.

4.3 Suelos tipo grava

Figura 55 Gráfica de dispersión CBR (Lab) vs Deflexión a 900 mm vs ecuación 1, suelos tipo grava

Figura 56 Gráfica de dispersión CBR (Lab) vs Deflexión a 900 mm vs ecuación 2, suelos tipo grava

Figura 57 Gráfica de dispersión CBR (Lab) vs Deflexión a 900 mm vs ecuación 3, suelos tipo grava

Por último, para los suelos tipo grava, se puede apreciar que la ecuación 1 y 3 (Jameson y QMDR), se vincula más con los datos de la base de datos, presentando una menor diferencia entre los valores de CBR medidos y los estimados. La ecuación 2, básicamente no relaciona los datos de CBR (medidos y estimados); no tiene ninguna relación con la base de datos. La línea de tendencia de los datos de estudio, en general, no presentan una buena correlación para el CBR y la deflexión a 900 mm; su coeficiente de determinación es muy pobre ($R^2 = 0.19$).

De los análisis anteriores, se puede concluir que para los tipos de suelo arenas y gravas una de las tres ecuaciones presentadas tiene mejor correlación con la base de datos; para los suelos arenosos con la ecuación 1 (Jameson) y para los suelos tipo grava con la ecuación 3 (QDMR). Para el caso de los suelos finos, ninguna de las ecuaciones se ajusta a la base de datos. De las líneas de tendencia propias evaluadas para la base de datos, la que mejor ajuste presenta es para los suelos arenosos con el CBR de laboratorio, seguido la de suelos finos y por último para los suelos tipo grava y arenas (CBR muestra inalterado), con una correlación muy pobre.

Una vez más, se ve la necesidad de evaluar no solo la deflexión medida a una distancia horizontal fija, sino también las características del suelo por su clasificación (suelos finos, arenosos y tipo grava). Es necesario establecer correlaciones con el CBR para cada tipo de suelo, así como la opción de incorporar otros parámetros del suelo; esto se evidencia en los resultados de línea de tendencia obtenidos para los datos de estudios, especialmente para los suelos finos y gravas.

Capítulo 5

Análisis de Regresión y Correlaciones entre CBR y FWD

Para llevar a cabo la determinación de las correlaciones entre el CBR y mediciones de deflectometría, se tiene presente las siguientes consideraciones:

- Se hará una diferenciación entre materiales de subrasante finos, arenoso y tipo grava.
- Análisis del sensor a una distancia r del centro de la carga, empleando la metodología AASHTO y método directo.
- Basados en lo expuesto en el Capítulo 3, se concluye que no existe una correlación directa entre el CBR y los límites de consistencia del suelo. Sin embargo, se analiza la significancia de estas variables independientemente, para ser incluidas, de ser el caso, en un análisis multivariado.
- En esta investigación se propone realizar un análisis de regresión sobre los datos agrupados, con la finalidad de desarrollar diferentes formas de relacionar los valores de CBR:
 - Suelos finos: CBR muestra inalterada en condición de humedad natural.
 - Suelos arenosos: CBR muestra inalterada en condición de humedad natural y muestras compactadas en laboratorio al 95% y en inmersión.
 - Suelos tipo grava, CBR para muestras compactadas en laboratorio al 95% y en inmersión.
- Analizar los datos organizados a partir de correlaciones lineales o no lineales; los resultados de este análisis estadístico se evaluarán mediante los parámetros estadísticos.

5.1 Datos empleados para el análisis

En el **Anexo 1** se muestra la base de datos recopilada y organizada en cuanto a los datos de FWD y ensayos de laboratorio, correspondiente a proyectos viales realizados en Colombia entre los años 2010 y 2019; y en el **Anexo 3** los módulos determinados a partir del estudio de deflectometría mediante las metodologías AASHTO 1993 y Método Directo,

en donde se relaciona el sensor y deflexión empleada para su determinación. Como se mencionó anteriormente, se han agrupado los datos según tipo de suelo (Finos, arenas y gravas) y estos a su vez, con CBR de muestras inalteradas en humedad natural y compactados en laboratorio, en inmersión.

Figura 58 Número de datos de CBR por tipo de suelo

Dentro del rango de valores de CBR menores al 20%, la mayor base de datos es para suelos finos (limos y arcillas), con 338 datos, seguido de las arenas con 36 datos, mientras que el rango de valores de CBR mayores al 30% la mayor frecuencia la presentan los suelos tipo grava con 66 datos dentro de la base de investigación. Por tanto, se tiene una base más amplia para el análisis de suelos finos contrario para los suelos arenosos, en donde la base de datos es más limitada. En conclusión, se tienen: 338 datos para suelos finos (CBR muestras inalteradas humedad natural), 80 datos para suelos arenosos (37 CBR muestra inalterada, humedad natural y 43 CBR muestras compactadas en laboratorio, en inmersión) y 83 para los tipo grava (CBR muestras compactadas en laboratorio, en inmersión).

5.2 Análisis de regresión con modelos clásicos

Lo primero antes de definir un modelo teórico de regresión, es evaluar qué variables son de interés, así como cuáles son las relaciones entre ellas, para que el modelo se pueda describir de la forma más simple posible, o bien que la concordancia entre el modelo y los datos sea lo más completa posible, es decir, con el mínimo error.

Por consiguiente, se evalúa la relación entre el CBR con los resultados obtenidos del estudio de deflectometría: módulos por AASHTO y método directo (MR, MPa), deflexión (dr, mm), distancia del sensor de la deflexión empleada (r o r₅₀, mm) de acuerdo a lo indicado a cada metodología.

5.2.1 Suelos finos

5.2.1.1 CBR muestra inalterada humedad natural vs dr, MR y dr*r (metodología AASHTO)

Figura 59 Gráfica de dispersión CBR M.inalterada humedad natural vs MR, dr*r y dr, suelos finos

5.2.1.2 CBR muestra inalterada humedad natural vs dr, MR y dr*r₅₀ (M. Directo)

Figura 60 Gráfica de dispersión CBR M. inalterada humedad natural vs MR, dr y dr*r₅₀, (M. Directo), suelos finos

5.2.2 Suelos arenosos

5.2.2.1 CBR muestra inalterada humedad natural vs MR, dr*r y dr (metodología AASHTO)

Figura 61 Gráfica de dispersión CBR M. inalterada humedad natural vs MR, dr*r y dr), suelos arenosos

5.2.2.2 CBR muestra inalterada humedad natural vs MR, dr*r50 y dr, (M. Directo)

Figura 62 Gráfica de dispersión CBR M. inalterada humedad natural vs MR, dr*r₅₀ y dr (M. Directo), suelos arenosos

5.2.2.3 CBR muestra compactada en laboratorio vs MR, dr*r y dr (metodología AASHTO)

Figura 63 Gráfica de dispersión CBR laboratorio vs MR, dr*r y dr (AASHTO), suelos arenosos

5.2.2.4 CBR muestra compactada en laboratorio vs dr, MR, dr $*r_{50}$, dr $*r_{50}$ *HN y dr $*r_{50}$ *%finos (M. Directo)

Figura 64 Gráfica de dispersión CBR laboratorio vs MR, dr*r y dr (M. Directo), suelos arenosos

5.2.3 Suelos tipo grava

5.2.3.1 CBR muestra compactada en laboratorio vs MR, dr, dr*r, dr*r* % gravas y dr*r* % finos (metodología AASHTO)

Figura 65 Gráfica de dispersión CBR laboratorio vs MR, dr*r, y dr (AASHTO), suelos tipo grava

5.2.3.2 CBR muestra compactada en laboratorio vs dr, dr $*r_{50}$, MR, dr $*r_{50}$ * % gravas y dr $*r_{50}$ * % finos (M. Directo)

Figura 66 Gráfica de dispersión CBR laboratorio vs MR, dr*r₅₀ y dr, suelos tipo grava

5.2.4 Resumen de los análisis de regresión

Tino suelo	Variables Correlación Par		Parámetros AASHTO	Parámetros M. Directo	
ripo sueio	valiables	Correlacion	R ²	R ²	
	CBR muestra inalterada humedad natural, módulo	CBR Wn vs MR	0.3464	0.3045	
Finos	CBR muestra inalterada humedad natural, deflexión sensor a la distancia r y r	CBR Wn vs dr.r	0.3471	0.3067	
	CBR muestra inalterada humedad natural, deflexión sensor a la distancia r	CBR Wn vs dr	0.2373	0.1819	
Arenas	CBR muestra inalterada humedad natural, módulo	CBR Wn vs MR	0.0986	0.1191	

Tabla 10. Resumen regresiones CBR vs variables – coeficiente de determinación

Tipo quelo			Parámetros AASHTO	Parámetros M. Directo	
npo sueio	CBR muestra inalterada	R ²	R ²		
	CBR muestra inalterada humedad natural, deflexión sensor a la distancia r y r	CBR Wn vs dr.r	0.0973	0.1167	
	CBR muestra inalterada humedad natural, deflexión sensor a la distancia r	CBR Wn vs dr	0.0466	0.0671	
	CBR muestra compact. En laboratorio, módulo	CBR Lab vs MR	0.5132	0.4034	
	CBR muestra compact. En laboratorio, deflexión sensor a la distancia r y r	CBR Lab vs dr.r	0.5152	0.4168	
	CBR muestra compact. en laboratorio, deflexión sensor a la distancia r	CBR Lab vs dr	0.4486	0.1823	
	CBR muestra compact. En laboratorio, módulo	CBR Lab vs MR	0.1785	0.1335	
Gravas	CBR muestra compact. En laboratorio, deflexión sensor a la distancia r y r	CBR Lab vs dr.r	0.1794	0.1423	
	CBR muestra compact. en laboratorio, deflexión sensor a la distancia r	CBR Lab vs dr	0.1326	0.046	

De acuerdo con los resultados del análisis de tendencia entre las relaciones del CBR y el MR, deflexión (dr) y ubicación del sensor empleado (r), se observa que existe una gran dispersión (a excepción para los suelos arenosos para el CBR de muestras compactadas en laboratorio), donde se tiene una correlación aceptable evaluada a partir del R², la cual puede disminuir si se involucra otra variable del comportamiento del suelo. Por tanto, en el siguiente numeral se evalúan modelos de regresión para encontrar una correlación entre la deflectometría (ensayos in situ) y resultados de CBR (muestras inalteradas y muestras compactadas en laboratorio), vinculando otras propiedades del suelo, para los tipos de suelos definidos: finos, arenas y gravas, que logre definir una mejor tendencia para estimar una buena correlación. En general, no se espera que las ecuaciones empíricas desarrolladas previamente y las ecuaciones que se desarrollen en el futuro determinen el valor de CBR con precisión para todos los suelos.

Como se puede observar, se obtienen correlaciones pobres y muy pobres evaluadas a partir del coeficiente de determinación, (R² menor a 0.40), a excepción para los suelos arenosos para la relación con el CBR compactado en laboratorio.

Por consiguiente, para la investigación, lo primero fue realizar un análisis dimensional, en donde se evaluó la relación entre variables y la planificación de las correlaciones posibles a partir de las regresiones analizadas. Con lo anterior, se pudo estudiar con mayor facilidad el conjunto de la base de datos objeto de la presente investigación y establecer las variables que indicien en la respuesta del objetivo, el cual es determinar una correlación entre el CBR y mediciones de deflectometría (FWD). Luego, se adicionaron al modelo variables que logren aumentar el coeficiente de determinación R² y verificación mediante otro parámetros estadísticos; solo se incluyó una variable adicional a la vez, teniendo en cuenta que no se debe incluir demasiados términos en el modelo que logre sobre ajustarlo y en la práctica se vuelva inapropiado.

Por tanto, se realiza un análisis de varianza (ANOVA por sus siglas en inglés, Analysis Of Variance), el cual prueba la hipótesis de que las medias de dos o más variables son iguales. Los ANOVA evalúan la importancia de uno o más factores al comparar las medias de la variable de respuesta en los diferentes niveles de los factores. La hipótesis nula establece que todas las medias de las variables son iguales mientras que la hipótesis alternativa establece que al menos una es diferente.

Los análisis ANOVA requieren datos que sigan una distribución aproximadamente normal con varianzas iguales entre los niveles de factores. Sin embargo, los procedimientos de ANOVA funcionan bastante bien incluso cuando se viola el supuesto de normalidad, a menos que una o más de las distribuciones sean muy asimétricas o si las varianzas son bastante diferentes.

Para determinar si cualquiera de las diferencias entre las medias es estadísticamente significativa, se compara el valor p con el nivel de significancia para evaluar la hipótesis nula. Por lo general, un nivel de significancia (denotado como α o alfa) de 0.05 funciona adecuadamente. Un nivel de significancia de 0.05 indica un riesgo de 5% de concluir que existe una diferencia cuando no hay una diferencia real.

Valor $p \le \alpha$: Las diferencias entre algunas de las medias son estadísticamente significativas Si el valor p es menor que o igual al nivel de significancia, se rechaza la hipótesis nula y concluye que no todas las medias de población son iguales. Valor p > α : Las diferencias entre las medias no son estadísticamente significativas Si el valor p es mayor que el nivel de significancia, no se cuenta con suficiente evidencia para rechazar la hipótesis de que las medias de población son todas iguales.

En consecuencia, con ayuda de la herramienta estadística Rstudio y el análisis ANOVA, se analiza algunas de las propiedades del suelo con relación al CBR para cada tipo de suelo. A continuación, los resultados obtenidos:

Tabla 11. Resultados análisis ANOVA, RStudio

HN Residuals	Df Sum Sq Mean Sq F value Pr(>F) 1 326.5 326.5 48.88 1.48e-11 *** 336 2244.3 6.7	LP Residuals	Df Sum Sq Mean Sq F value Pr(>F) 1 23.3 23.257 3.059 0.0812 . 328 2494.1 7.604						
IP Residuals	J Sum Sq Mean Sq F value Pr(>F) 1 14.2 14.219 1.863 0.173 328 2503.1 7.631	p200 Residuals	Df Sum Sq Mean Sq F value Pr(>F) 1 11.4 11.396 1.849 0.175 292 1799.7 6.163						
Suelos finos, CBR muestra inalterada, Wn									

HN Residuals	Df Sum Sq Mean Sq F Value Pr(>F) 1 226.6 226.56 11.29 0.0019 ** 35 702.5 20.07	Dt Sum Sq Mean Sq F value Pr(>F, LP 1 9.1 9.143 0.572 0.45 Residuals 27 431.3 15.973
IP Residuals	Df Sum Sq Mean Sq F value Pr(>F) 1 64.7 64.69 4.649 0.0401 * 27 375.7 13.92	Df Sum Sq Mean Sq F value Pr(>F) HN 1 142.65 142.65 13.195 0.00121 ** LP 1 16.68 16.68 1.543 0.22522 Residuals 26 281.08 10.81

Suelos arenosos, CBR muestra inalterada, Wn

- HN Residuals	Df Su 1 41 :	um Sq M 2359 10441	ean Sq F 2358.6 254.7	value P 9.262 O.	r(>F) 00407 **	LP Residuals	Df 1 24	Sum Sq 836 5963	Mean Sq F 836.3 248.4	value 3.366	Pr(>F) 0.079	
IP Residuals	Df 1 24	Sum Sq 49 6750	Mean Sq 48.91 281.25	F value 0.174	Pr(>F) 0.68	p200 Residuals	Df 1 41	Sum Sq 1515 11285	Mean Sq I 1514.7 275.3	value 5.503	Pr(≻F) 0.0239	ŵ

Suelos arenosos, CBR compact. Laboratorio, inmersión

grava Residuals	Df 1 81	Sum Sq 1871 27831	Mean Sq 1870.8 343.6	F value 5.445	Pr(>F) 0.0221	ŵ		finos Residua	D1 : Is 8:	f 5 1 1	um Sq 4283 25418	Mean Sq 4283 314	F value 13.65	Pr(>F) 0.000399)) ***
				gra fin Res	va os iduals	Df 1 1 80	Sum Sq 1871 2414 25417	Mean Sq F 1870.8 2413.6 317.7	value 5.888 7.597	Pr 0.0 0.0	(>F) 1749 * 10724 *	×			

Suelos tipo grava, CBR compact. Laboratorio, inmersión

Tipo de suelo		Pr (>F)								
	ODR	HN	LP	IP	% finos	% gravas	HN+IP	%gravas+%finos		
Fino	Muestra inalterada, humedad natural	0.0000	0.0812	0.1730	0.175					
Arono	Muestra inalterada, humedad natural	0.0019	0.4560	0.0401			0.00121 - 0.22522			
Arena	Compactado en laboratorio, inmersión	0.0047	0.0790	0.6800	0.0239					

Tabla 12. Resumen valores P-value

HN: Humedad Natural, LP: Límite Plástico, IP: Índice de Plasticidad

Figura 67 Gráfica valores P vs nivel de significancia, análisis ANOVA

Como se puede observar en la Tabla 12 y Figura 67, la variable HN tiene un nivel de significancia alta frente a los valores de CBR para los suelos finos y arenas; para los suelos tipo grava, las variables % finos y % gravas evaluadas tiene gran significancia frente a los valores de CBR. Por el contrario, las variables LL e IP, los valores de p son bastante altos, muy por encima del valor de significancia adoptado de 5%, según las hipótesis planteadas.

Los resultados del análisis ANOVA, permiten indicar que las variables que tienen mayor influencia adicional a los datos de deflectometría en el análisis del CBR son la humedad natural y el porcentaje de finos del suelo.

Adicionalmente, se hace un análisis de correlaciones entre el CBR, dr*r y los parámetros del suelos, el cual se presenta en el **Anexo 4**. Allí se muestra el coeficiente de correlación, r, obtenido para cada análisis. De los resultados se concluye, al igual que el análisis Anova, que las variables de mayor incidencia para mejor las correlaciones entre el CBR y la deflectometría son la humedad natural, el porcentaje de finos y gravas del suelo.
5.3 Análisis estadísticos para la determinación de correlaciones entre CBR y FWD

El análisis de regresión es una técnica estadística muy útil en el campo de la ingeniería y la ciencia para modelar e investigar las relaciones entre dos o más variables (dependiente una o más variables independientes (o predictoras). El método de análisis de regresión se emplea para desarrollar la línea o curva que proporciona el mejor ajuste a través de un conjunto de puntos de datos.

Ajustar un modelo de regresión requiere varios supuestos. El método de mínimos cuadrados se utiliza para elegir la mejor línea de ajuste para un conjunto de datos. La estimación de los parámetros del modelo requiere la suposición de que los residuales (valores reales menos valores estimados) correspondientes a diferentes observaciones, son variables aleatorias no correlacionadas con media cero y varianza constante (σ^2). En la situación más práctica, la varianza (σ^2) del error aleatorio (ϵ) será desconocida y debe estimarse a partir de los datos de la muestra. El error estándar de una estimación da alguna idea sobre la precisión de una estimación de acuerdo con el modelo escogido. Durante la modelación, una variable que muestra el menor error estándar de las estimaciones es la que se debe elegir. (Bekele, 2017).

El desarrollo de modelos de regresión múltiple incluye varios pasos. En el primer paso los diagramas de dispersión entre la variable dependiente y las variables independientes se examinan para posibles correlaciones lineales. La importancia de las correlaciones lineales entre dos de las variables se mide utilizando el coeficiente de correlación de Pearson (r). El coeficiente de correlación de Pearson es un índice que mide el grado de covariación entre distintas variables relacionadas linealmente. El rango de valores que r puede asumir va de -1.0 a +1.0, siendo más débil la relación para r más cerca de 0.0, y una mejor o mayor relación, cuanto más cerca esté r de -1.0 o +1.0.

La Tabla 13, presenta el intervalo de clasificación según el valor de r.

Nula	Muv baia	Baia	Moderada	Alta	Muv alta	Perfecta
		j -:				
0.0	0.01 - 0.19	0.20 - 0.39	0.40 - 0.69	0.70 - 0.89	0.90 - 0.99	1.0
0.0	0.0.0	0.20 0.00	00	00	0.00 0.00	

Tabla 13. Intervalo de clasificación del coeficiente de correlación

En la Tabla 14, se muestran los criterios sugeridos por Pellinen, para determinar la bondad del ajuste en función del R².

Criterio	R ²			
Excelente	≥0.90			
Buena	0.70 – 0.89			
Aceptable	0.40 - 0.69			
Pobre	0.20 – 0.39			
Muy Pobre	≥0.19			

Tabla 14. Criterio de bondad de ajuste

Fuente: Araujo Navaro, 2014

Investigation of the use of dynamic modulus as an indicator of hot – mix asphalt performance. Pellien (2001)

En el análisis de regresión múltiple, para verificar su validez, se examina la importancia de variables independientes y detectar cualquier multicolinealidad (posibles correlaciones entre variables independientes) o problemas de heterocedasticidad (varianza de error desigual). La idoneidad del modelo se evalúa mediante la prueba F. La probabilidad asociada con la prueba F se designa como Pr> F o valor p. Un valor p pequeño (menor que 0.05) implica que el modelo es significativo al explicar la variación en la variable dependiente. La prueba t se utiliza para examinar la importancia de cada una de las variables independientes utilizadas en el modelo. Similar a la prueba F, la probabilidad asociada con la prueba t se designa con un valor p. Un valor que es inferior a 0,05 indica que, a un nivel de confianza del 95 por ciento, la variable independiente es significativa para explicar la variación de la variable dependiente. La multicolinealidad se detecta utilizando el factor de inflación de varianza (VIF). Un factor VIF mayor que 10 indica que las dependencias débiles pueden estar comenzando a afectar las estimaciones de regresión. Finalmente, la gráfica residual se usa para verificar la heterocedasticidad examinando si los datos tienen un cierto patrón.

Fuente: (Rowntree, 1984)

En los modelos de regresión lineal multivariado, en muchas ocasiones, se tiene que uno o varios de estos supuestos no se cumplen. Estos problemas se pueden llegar a solucionar mediante la transformación de la variable respuesta. Sin embargo, estas transformaciones no siempre consiguen corregir la falta de normalidad, la heterocedasticidad (varianza no constante) o la no linealidad de los datos. Además, muchas veces, resulta difícil interpretar los resultados obtenidos.

Una alternativa a la transformación de la variable respuesta y a la falta de normalidad, es el uso de los modelos lineales generalizados. Los modelos lineales generalizados (GLM de las siglas en ingles de Generalized Linear Models) son una extensión de los modelos lineales que se pueden aplicar cuando los errores no son normales (binomial, Poisson, multinomial, entre otros). Estos modelos fueron propuestos en Nelder and Wedderburn en 1972. Ciertos tipos de variables respuesta sufren indefectiblemente la violación de estos supuestos de los modelos gaussianos y los GLM ofrecen una alternativa para evaluarlos. (Duarte, 2016)

En el modelo de regresión lineal generalizado es posible flexibilizar este criterio y considerar una formulación más general que permita también contemplar variables dependientes con una estructura no métrica, es decir, variables categóricas (ordinales o nominales), al tiempo que relajar los supuestos del Modelos Lineal clásico, como la linealidad o la homocedasticidad, no así la independencia de los errores.

Los modelos Generalizados Lineales tienen tres propiedades:

- 1. La estructura del error
- 2. El predictor lineal
- 3. La función de vínculo.

En modelos generales lineales la variable dependiente y sus residuos deben ajustarse a una normal. Sin embargo, hay numerosas situaciones en las que esto no ocurre. Por tanto, los modelos MLG logran conseguir la normalidad de los errores (residuos). Si se generaliza la definición de la distribución de los errores, se puede trabajar con otras distribuciones de los mismos: a) distribuciones Poisson (útiles con conteos) b) distribuciones Binomiales (útiles con proporciones) c) distribuciones Gamma (datos con CV homogéneo). (https://slideplayer.es/slide/3447951/).

Modelo Lineal (ML)	Modelo Lineal Generalizado (MLG)					
$\mathbf{y}_i = \sum_j \boldsymbol{\beta}_j \mathbf{X}_{ij} + \boldsymbol{\varepsilon}_i$	$\mathbf{y}_i = \sum_j \boldsymbol{\beta}_j \mathbf{X}_{ij} + \boldsymbol{\varepsilon}_i$					
$\mu_i = E(Y_i)$	$\mu_i = E(Y_i)$					
$\mathbf{\eta}_i = \sum_j \mathbf{\beta}_j \mathbf{X}_{ij}$	$\mathbf{\eta}_i = \sum_j \boldsymbol{\beta}_j \mathbf{X}_{ij}$					
$\eta_i = \mu_i$	$\eta_i = g(\mu_i)$					
\mathbf{y}_i : vector de la variable respuesta,						
\mathbf{X}_{ij} : matriz de variables predictoras y covariables						
$\mathbf{\beta}_j$: vector de parámetros						
$\mathbf{\eta}_i$: vector del predictor lineal						

Tabla 15. Comparativo entre el modelo ML y MLG

Fuente: (Lopez Gonzalez & Ruiz Soler, 2011)

Como se puede ver en la Tabla 15, la expresión del modelo lineal (ML) y generalizado (MLG) es la misma, siendo los valores ajustados $\mu_i = E(Y_i)$. El predictor lineal también coincide: $\eta i = \Sigma_j \beta_j x_j$. Aparecen diferencias, en la relación entre los valores ajustados μ_i y el predictor lineal η_i . Estas diferencias se concretan en la función de enlace y en la distribución que ésta debe seguir, función que cobra un especial significado como se indica a continuación (Lopez Gonzalez & Ruiz Soler, 2011):

1. Mientras que en el ML se produce una relación de identidad entre los valores ajustados y el predictor lineal, $\mu_i = \eta_i$, en el MLG la linealidad se establece en la escala del predictor lineal pero no en la escala de los valores ajustados.

No se da, por tanto, la identidad entre valores ajustados y valores predichos, sino que entre ellos media una función que los relaciona, la función de enlace: g(μ_i) = η_i . Esto hace que

en el MLG ambos lados de la ecuación no se expresen en la misma escala de medida, lo que sí sucede en el ML.

- 2. El componente aleatorio del Modelo Lineal debe distribuirse normalmente, y este hecho tiene una importancia considerable: según sea la distribución de los errores serán las distribuciones condicionadas de los valores pronosticados del criterio, que, por tanto, deben ser normales también. Esto es así porque ambas distribuciones están relacionadas a través de una matriz. En el MLG sucede que el componente aleatorio no sigue necesariamente una distribución normal, sino que utiliza cualquier distribución de la familia exponencial y, en consecuencia, las distribuciones de los valores pronosticados del criterio no serán normales necesariamente.
- 3. Las distribuciones condicionadas de los valores pronosticados de la variable de respuesta en el ML deben ser homocedásticas, y ello es posible siempre que esta condición se cumpla en el componente aleatorio. Como en el MLG los errores pueden seguir cualquier distribución de la familia exponencial, resulta que para la distribución de los errores la homocedasticidad no es imprescindible.
- Las diferencias indicadas, obligan a estimar los parámetros de un MLG con un método de ajuste distinto al procedimiento de mínimos cuadrados que se emplea en el ML: el método de máxima verosimilitud (que también puede ser aplicado en el ML).

La inversa de la función de enlace (o función de transformación), al ser aplicada al resultado del predictor lineal η i, se obtiene el valor esperado, μ , que se encuentra en la escala de la variable de respuesta:

$$\mu_i = g^{-1}(\beta_0 + \beta_0 X_i)$$

Ecuación 35

El protagonismo de ese tercer elemento que relaciona los componentes aleatorio y sistemático, es decir, el valor esperado y el valor predicho por el modelo, la función de enlace g (μ), se destaca en el modelo MLG.

5.3.1 Análisis de residuales

Interesa probar hipótesis y establecer intervalos de confianza de los parámetros del modelo. Los procedimientos de comprobación requieren hacer la hipótesis adicional de que los errores \mathcal{E}_i del modelo estén distribuidos normalmente. Así, las hipótesis completas son: que los errores estén distribuidos en forma normal e independiente, con media 0 y varianza σ^2 .

La prueba de significancia de la regresión más común empleada es la siguiente:

$$H_0: \beta_1 = 0$$

 $H_1: \beta_1 \neq 0$
Ecuación 36

✓ El no rechazar H₀: β_1 = 0 implica que no hay relación lineal entre x y.

Figura 68 Casos en los que no se rechaza la hipótesis H_0 : $\beta_1 = 0$. Fuente: (Montgomery, Peck, & Vining, 2002)

 ✓ Por otro lado, si se rechaza, H₀:β₁=0, eso implica que x sí tiene valor para explicar la variabilidad de y.

Figura 69 Casos en los que si se rechaza la hipótesis $H_0:\beta_1 = 0$. Fuente: (Montgomery et al., 2002)

Rechazar $H_0:\beta_1$ Podría equivaler a que el modelo de línea recta es adecuado o que, aunque hay un efecto lineal de *x* se podrían obtener mejores .resultados agregando términos polinomiales en *x*.

Con el uso y resultados del paquete estadístico, RStudio, se obtienen los errores estándar de la pendiente, junto con el estadístico t para probar H_0 : $\beta_1=0$ y H_0 : $\beta_0=0$. En RStudio se usa el método del valor p para pruebas de hipótesis.

Las pequeñas desviaciones respecto a la hipótesis de normalidad no afectan mucho al modelo, pero una no normalidad grande es potencialmente más seria, porque los estadísticos t o F y los intervalos de confianza y de predicción dependen de la suposición de normalidad. Además, si los errores provienen de una distribución con colas más gruesas que la normal, el ajuste por mínimos cuadrados será sensible a un subconjunto menor de datos.

Las distribuciones de error con "colas" gruesas generan con frecuencia valores atípicos que "jalan" demasiado en su dirección el ajuste por mínimos cuadrados. Un método muy sencillo de comprobar la suposición de normalidad es trazar una gráfica de probabilidad normal de los residuales. Es una gráfica diseñada para que al graficarse la distribución normal acumulada parezca una línea recta. (Montgomery et al., 2002).

La Figura 70 muestra la gráfica de probabilidad posible, tomado de (Montgomery et al., 2002). La Figura 70 (a) muestra una gráfica de probabilidad normal "idealizada", los puntos caen aproximadamente sobre una recta. Las partes b a e de la gráfica muestran otros problemas característicos. La parte b muestra una curva que va bruscamente hacia arriba y hacia abajo en los dos extremos, lo que indica que las colas de esta distribución son demasiado gruesas para poder considerarla como normal. Al contrario, la parte c muestra un aplanamiento en los extremos, que es un comportamiento característico de las muestras tomadas de una distribución con colas más delgadas que la normal. Las partes d y e de la gráfica muestran patrones asociados con asimetría positiva y negativa, respectivamente.

Figura 70 Gráficas de probabilidad normal: a) ideal; b) distribución con colas gruesas; c) distribución con colas delgadas; d) Asimetría positiva; e) asimetría negativa. Fuente: (Montgomery et al., 2002)

Según Daniel y Wood [1980], con frecuencia, los tamaños pequeños de muestra ($n \sim 16$) producen gráficas de probabilidad normal que se desvían bastante de la linealidad. Para muestras mayores ($n \sim 32$), las gráficas se comportan mucho mejor. Por lo general, se requieren unos 20 puntos para producir gráficas de probabilidad suficientemente estables como para poder interpretarse con facilidad. Un defecto común que aparece en la gráfica de probabilidad normal es la ocurrencia de uno o dos residuales grandes. A veces esto es indicativo de que las observaciones correspondientes son atípicas. (Montgomery et al., 2002).

El Histograma de residuos muestra la distribución de los residuos para todas las observaciones. Se utiliza el histograma de los residuos para determinar si los datos son asimétricos o incluyen valores atípicos. Los patrones en la siguiente tabla pueden indicar que el modelo no cumple con las premisas del modelo.

Asimetría
Un valor atípico

Tabla 16. Histograma de residuos

Fuente: Paquete estadístico, Minitab

5.3.2 Residuales en función de los valores ajustados

Es útil una gráfica de los residuales \mathcal{E}_i , en función de los valores ajustados correspondientes *Yi'* para detectar algunos tipos frecuentes de inadecuaciones del modelo i. Los modelos, según su patrón pueden indicar lo siguiente (Figura 71):

Figura 71 Patrones en las gráficas residuales: a) satisfactorio; b) en embudo: c) en doble arco; d) no lineal. Fuente: (Montgomery et al., 2002)

La parte a de la Figura 71, indica que los residuales se pueden encerrar en una banda horizontal, entonces no hay defectos obvios del modelo. Las gráficas de e_i en función de Y_i que se parezcan a cualquiera de los patrones de las partes b a d son síntomas de deficiencias del modelo.

El método común para manejar la no constancia de la varianza es aplicar una transformación adecuada ya sea a la variable regresora o a la de respuesta o usar el método de mínimos cuadrados ponderados. En la práctica, se emplean en general las transformaciones de la variable de respuesta para estabilizar la varianza. Una gráfica en curva, como la de la parte d, indica no linealidad. Esto podría indicar que se necesitan otras variables regresoras en el modelo. Por ejemplo, podría ser necesario un término al cuadrado. Las transformaciones de la variable regresora y/o la de respuesta también podrían ayudar en estos casos. Una gráfica de los residuales en función de y_i también puede revelar uno o más residuales anormalmente grandes. Esos puntos son, es natural,

valores atípicos potenciales, los residuales grandes que están en los valores extremos de y_i también podrían indicar que la varianza no es constante, o bien que la relación real entre y y x no es lineal. Se deben investigar esas posibilidades antes de considerar los puntos como atípicos

5.4 Modelo de análisis de regresión lineal generalizado

En este trabajo de investigación, buscando mejorar las correlaciones presentadas en el numeral 5.2, se intenta aplicar un modelo lineal generalizado para caracterizar el valor del CBR a partir de mediciones de deflectometría y posibles parámetros índice de suelo (según numeral 5.2.4) utilizando un enfoque estadístico. Este modelo de regresión está dado por la siguiente función:

$$y = \beta_0 + \beta_1 x + \varepsilon$$
$$\frac{1}{f(y)} = \beta_0 + \beta_1 x + \varepsilon$$
Ecuación 37

Donde:

β₀: Ordenada al origen

 β_1 : Pendiente

- ε: Componente aleatorio de error
- x: Variable independiente o predictora
- y: Variable dependiente o de respuesta

Específicamente para esta investigación, se emplea el paquete estadístico R y RStudio, el cual es un software de libre uso y distribución bajo Licencia Pública General de GNU, para programar análisis estadístico y gráfico. R fue creado en 1993 por Robert Gentleman y Ross Ihaka del Departamento de Estadística de la Universidad de Auckland-Nueva Zelanda y desde 1997 se desarrolla con aportes de diversas partes del mundo, bajo la coordinación del equipo principal de desarrollo de R (R Core Team Development) (R Project).

Con el uso de esta herramienta, se desarrolla el modelo de regresión lineal generalizada, así como el análisis de la validación del modelo.

5.4.1 Empleando los parámetros obtenidos por la metodología AASHTO - 93

5.4.1.1 Modelos de regresión para suelos finos, CBR muestra inalterada humedad natural

Utilizando los parámetros dr, r, humedad natural (HN), porcentaje de finos (w) e índice de plasticidad (IP) para crear el modelo de regresión lineal generalizado, en una función de enlace Inversa y con el modelo perteneciente a una familia de distribución Gamma, se obtiene los siguientes resultados:

Empleando los Betas del modelo, se tiene la siguiente ecuación:

$$\frac{1}{f(x)} = 0.0489844 + 0.0012682 * dr * r + 0.0022392 * HN$$

$$\sum_{\substack{\text{Coefficients:} \\ \text{(Intercept) } 0.0489844 & 0.0113397 & 4.320 & 2.06e-05 & *** \\ \text{`dr*r` } 0.0012682 & 0.0001241 & 10.217 & < 2e-16 & *** \\ \text{HN} & 0.0022392 & 0.0004629 & 4.838 & 2.01e-06 & *** \\ \text{HN} & 0.0022392 & 0.001 & (**' & 0.01 & (*' & 0.05 & (.' & 0.1 & (' & 1)) \\ \text{Signif. codes: } 0 & (***' & 0.001 & (**' & 0.01 & (*' & 0.05 & (.' & 0.1 & (' & 1)) \\ \text{rsq } (R^2) = 0.39$$

Ecuación 38

Como se puede apreciar, los dos parámetros son significativos dentro del modelo ya que su p-value es menor a 0.05; sin embargo, se presenta un nuevo modelo que vincula las dos variables, para reducir la ecuación:

$$\frac{1}{f(x)} = 0.1186 + 0.00004087 * dr * r * HN$$
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.186e-01 6.073e-03 19.53 <2e-16 ***
'dr*r*HN' 4.087e-05 3.442e-06 11.87 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

$rsq (R^2) = 0.41$ Ecuación 39

$$\frac{1}{f(x)} = 0.1327 + 0.0000413 * dr * r * HN - 0.000669 WPI$$

Coefficients	:					
	Estimate	Std. Error	t value	Pr(> t)		
(Intercept)	1.327e-01	8.848e-03	15.003	<2e-16	**	
`dr*r*HN`	4.130e-05	3.692e-06	11.185	<2e-16	**	
WPI	-6.690e-04	4.191e-04	-1.596	0.111		
Signif. code	es: 0 '***'	0.001 '**'	0.01 '*	<u>, 0.05</u>	' 0.1	• • 1

 $rsq (R^2) = 0.42$ Ecuación 40

La diferencia entre los R² entre los dos últimos modelos es casi que despreciable; por tanto, su definición será determinada a partir del siguiente análisis de verificación de los modelos planteados con las variables dr*r*HN y dr*r*HN+wPI.

De acuerdo con el análisis de la hipótesis planteada, se comprueba que x sí tiene valor para explicar la variabilidad de y, por tanto, se rechaza la hipótesis H₀: $\beta_1=0$.

La prueba de Shapiro-Wilk, publicada en 1965 por Samuel Shapiro y Martin Wilk, se emplea para contrastar la normalidad de un conjunto de datos.

La prueba de Kolmogorov-Smirnov (con la corrección Lilliefors) se utiliza para contrastar si un conjunto de datos se ajusta o no a una distribución normal. Es similar en este caso al test de Shapiro Wilk, pero la principal diferencia con éste radica en el número de muestras. Mientras que la prueba de Shapiro Wilk se puede utilizar con hasta 50 datos, la prueba de Kolmogorov Smirnov es recomendada con más de 50 observaciones. Para conocer los resultados de esta prueba, se hace uso del software estadístico RStudio.

La prueba utiliza el contraste de hipótesis para rechazar la normalidad de la muestra. La hipótesis nula asume que la muestra proviene de una población distribuida normalmente. Si el valor p (valor de probabilidad) es menor al nivel de significación establecido (0.05) se rechaza la hipótesis nula y se considera que hay evidencia para concluir que la muestra no proviene de una distribución normal. Por el contrario, si el valor de probabilidad es mayor a 0.05, la muestra de datos en estudio sigue una distribución normal. En la Figura 72 se puede ver la dispersión respecto de la recta para cada valor predicho (cuánto se alejan de nuestro ajuste).

Figura 72 Gráfica de normalidad de residuos, suelos finos, CBR Wn

En los dos modelos, el valor de probabilidad p-value es mayor a 0.05, por tanto, los datos siguen una distribución normal.

Por otro lado, la Figura 73 presenta las gráficas de residuos estandarizados vs los valores ajustados, de los modelos CBR Wn vs dr*r+HN y CBR Wn vs dr*r*HN + wPI para suelos finos; lo importante de estas graficas es observar la dispersión de los residuos y que la variabilidad se mantenga constante a lo largo de todo el dominio y esta se puede encerrar en una banda horizontal; por consiguiente, no se ven síntomas de deficiencia en el modelo y esto descarta el incumplimiento del modelo por heterocedasticidad, con mejor variabilidad en el modelo 1.

Figura 73 Graficas análisis de residuos estandarizados vs valores ajustados, suelos finos CBR Wn

También se presenta las gráficas de residuos vs orden de observaciones. Se aprecia que los errores no presentan un patrón; están distribuidos de manera aleatoria, lo que implica que son independiente.

Figura 74 Graficas análisis de residuos vs orden de observación, suelos finos CBR Wn

El Test de Durbin-Watson permite evaluar si existe autocorrelación en una Regresión lineal, sea simple o múltiple. Con ello se pretende ver si los valores presentan algún tipo de dependencia en cuanto al orden de obtención. Si fuera así, se estaría incumpliendo una de las condiciones del modelo y cuando se incumplen las condiciones de un modelo de Regresión lineal (normalidad, homogeneidad de varianzas, independencia de los datos) las estimaciones de los parámetros del modelo (los coeficientes del modelo) no tienen los criterios de calidad establecidos, en menor incidencia la homogeneidad de varianza para el caso de los modelos MLG.

El contraste de hipótesis tiene como Hipótesis nula que la autocorrelación es cero versus la alternativa que afirma que es distinta de cero:

En una regresión la noción de residuo es la diferencia entre el valor de la variable dependiente de un valor muestral y el valor estimado, mediante el modelo construido mediante esa regresión.

Mediante la prueba de Durbin-Watson, se puede detectar si los residuos de la regresión estimada están auto correlacionados o no. Mediante el uso de RStudio, obtenemos los siguientes resultados:

lag Autocorrelation D-W	Statistic	p-value				
1 0.2443187	1.507774	0.666				
Alternative hypothesis: rho != 0						
Modelo 1						

Tabla 17. Test Durbin – Watson, suelos finos CBR Wn

lag Autocorrelation D-W Statistic p-value 1 0.1770726 1.645518 0.9 Alternative hypothesis: rho != 0 Modelo 2

Puesto que el valor p-value es mayor que el nivel de significación (5%), la hipótesis nula no puede ser rechazada; por tanto, se considera que los datos de la muestra son independientes.

Para medir la autocorrelación, también se puede emplear otra función del programa RStudio denominada ACF; los gráficos generados a partir de esta función se denominan correlogramas, los cuales contienen bandas con un intervalo de confianza del 95%, que son representación gráfica de las auto correlaciones de una muestra consigo misma. Sirve en una regresión lineal para ver como los residuales; se van comparando \mathcal{E}_t y \mathcal{E}_t -(t-1) para su autocorrelación y rechazar o no el supuesto de correlación cero entre los errores.

La autocorrelación toma medidas en el intervalo cerrado [-1,1]:

- Los valores de -1 o 1 indican autocorrelación fuerte
- Los valores cercanos a 0, indican autocorrelación débil o correlación 0.
- Los valores negativos indican inversa y los valores positivos, una relación directa

Figura 75 Graficas de autocorrelación, suelos finos CBR Wn

Para ambos modelos se omite la primera barra, ya que corresponde a la autocorrelación con la misma observación, retraso/lag =0. La mayoría de las líneas, a excepción de la segunda, se encuentra entre el intervalo de confianza (95%, líneas azules), indicando una autocorrelación cero; sin embargo, como se presenta una línea fuera del intervalo se indicaría que los residuos no presentan una independencia, que por el análisis de la prueba de Durbin-Watson, analizada anteriormente, sí se cumple el supuesto de que los residuos son independientes (no se rechaza la hipótesis nula).

Esta dependencia de la segunda línea podría estar asociada a valores atípicos dentro de la muestra de datos empleada para los suelos finos y por ende en la determinación de la regresión. Con la ayuda del programa RStudio, se mide aquellas observaciones que suelen tener un peso específico mayor en la estimación de los coeficientes de regresión (sobreestimados), por lo que se trata de valores atípicos, con la gráfica de distancia de Cook, la cual nos proporciona un medio adicional para detectar observaciones que pesan excesivamente en las ecuaciones de regresión.

Se calcula una distancia de Cook para cada observación. Estas distancias se hacen máximas cuando se dan dos circunstancias: la observación es un valor atípico (outlier) en una o más de las variables predictoras y, además, cuando se aleja de la nube de puntos de la regresión; para ello es recomendable detectar aquellos valores que tengan una distancia de Cook superior a 1.

Como se puede observar en la Figura 76, ninguna de las líneas de distancia Cook supera el umbral de 1.0, llegando a una rango máximo de 0.10, lo que indica que no se cuenta con muchos valores atípicos que afectan el modelo de regresión con respecto a las observaciones, por tanto, el modelo predice de forma adecuada la variable CBR con respecto al CBR observado para las dos ecuaciones planteadas.

La Tabla 18, muestra resultados del análisis de regresión para los suelos finos, correlacionando el CBR en condiciones de humedad natural:

							Normalidad de residuos Autocorrela			ación de los residuos	
Modelo	Variable	Coeficientes	Error estándar	t value	Pr (> t)	rsq (R²)	Shapiro-Wilk	Kolmogorov-Smirnov	Observación	Durbin-Watson	Observación
								P-value			P-value
	Intercepto	0.1186	0.006073	19.53	< 2e-16	0.41	0.4264	0.7258	Los datos siguen una distribución normal	0.666	Los datos de la muestra son independientes.
	dr*r*HN	0.00004087	0.000003442	11.87	< 2e-16						·
1	$\frac{1}{f(x)} =$ Dónde: CBR Wn: c dr: deflexio r: distancia HN: hume	0.1186 + 0 apacidad de ón medida a a del sensor r dad natural (.00004087 <i>d</i> : soporte de la si la distancia r (n (mm) %)	r * r * j ubrasan nm)	* $r * HN$ $CBR_{Wn} = \frac{1}{0.1186 + 0.00004087 * dr * r * HN}$ brasante (%), muestra inalterada en condiciones de humedad natural m)						
			[[
	Intercepto	0.1327	0.008848	16.003	< 2e-16				Los datos siguen una		Los datos de la muestra
	dr*r*HN	0.0000413	0.000003692	11.185	< 2e-16	0.47	.7 0.1034	0.2937	distribución normal	0.542	son independientes.
	wPI	-0.000669	0.0004194	-1.596	0.111						
	$\frac{1}{f(x)} = 0.1327 + 0.0000413 * dr * r * HN - 0.00043194 wPI$										
2	Dónde [.]						ODIQ	0.1327 + 0	0.0000413 * dr *	r * HN - 0.0	0004194 wPI
	CBR Wn: c	apacidad de	soporte de la s	ubrasan	te (%), mı	uestra ina	alterada en co	ondiciones de humed	ad natural		
	dr: deflexi	ón medida a	la distancia r (n	nm)							
	r: distancia HN: hume	a dei sensor r dad natural ('	"(mm) %)								
w: % que pasa el tamiz 0.075 mm											
	PI: índice c	de plasticidad	l (%)								

Tabla 18. Resultados del análisis del modelo, Suelos finos CBR humedad natural (CBR Wn)

5.4.1.2 Modelos de regresión para suelos arenosos

5.4.1.2.1 Correlación CBR muestra inalterada, humedad natural

Para el caso de los suelos arenosos, se tiene el análisis para el CBR de muestra inalterada en condición de humedad natural y CBR compactado en laboratorio, en inmersión. Utilizando los parámetros deflexión (dr), localización del sensor (r) y humedad natural (HN) para crear el modelo de regresión lineal generalizado, al igual que para los suelos finos, se empleó una función de enlace Inversa y con el modelo perteneciente a una familia de distribución Gamma, se obtiene los siguientes resultados:

Empleando los Betas del modelo, se tiene las siguientes ecuaciones:

4

$$\frac{1}{f(x)} = 0.095929 + 0.019219 * dr * HN$$

Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.095929 0.013820 6.941 4.55e-08 *** 'dr*HN' 0.019219 0.008085 2.377 0.023 * ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

 $rsq (R^2) = 0.20$

Ecuación 41

$$\frac{1}{f(x)} = 0.009045 + 0.00002654 * dr * r * HN$$

Coefficients:			
Est	imate Std. Error t	value Pr(> t)	
(Intercept) 9.04	5e-02 1.373e-02	6.589 1.31e-07 ***	
`dr*r*HN` 2.654	4e-05 9.809e-06	2.705 0.0105 *	
Signif. codes: (0 '***' 0.001 '**'	0.01 '*' 0.05 '.' 0.1	· ' 1

 $rsq (R^2) = 0.25$ Ecuación 42

Como se puede apreciar, los dos modelos planteados, su p-value es menor a 0.05, por lo que las variables empleadas son significativa dentro del modelo. Por otro lado, su coeficiente de determinación, R² es pobre, 0.20 y 0.25 respectivamente.

La diferencia entre los R² entre los dos modelos es de 0.05, por tanto, su definición será determinada a partir del siguiente análisis de verificación del modelo planteado, que vincula la variable dr*r*HN.

A continuación, se ilustra la gráfica de normalidad de los residuos y los resultados del test de Shapiro Wilk y Kolmogorov-Smirnov. En el modelo, el valor de probabilidad p-value es mayor a 0.05, por lo que se puede indicar que los datos siguen una distribución normal.

Figura 77 Gráfica de normalidad de residuos, suelos arenosos, CBR Wn

Por otro lado, la Figura 78 presenta las gráfica de residuos estandarizados vs los valores ajustados, del modelo CBR Wn vs dr*r*HN para suelos arenosos, y esta se puede encerrar en una banda horizontal, por tanto, no se ve síntomas de deficiencia en el modelo, esto descarta el incumplimiento del modelo por heterocedasticidad, sin embargo, los datos se concentran más hacia el lado derecho.

Figura 78 Graficas análisis de residuos estandarizados vs valores ajustados, suelos arenosos CBR Wn

Basados en la gráfica de residuos o errores vs orden de observación, se observa que los errores presentan cierto patrón, sin tener un componente aleatorio, lo que implica que pueden ser dependientes (correlacionados).

Figura 79 Graficas análisis de residuos vs orden de observación, suelos arenosos CBR Wn

Mediante la prueba de Durbin-Watson, el valor p-value es menor que el nivel de significación (5%), la hipótesis nula es rechazada, se considera que los datos de la muestra están correlacionados o presentan una dependencia.

Tabla 19. Test Durbin – Watson, suelos arenosos CBR Wn

lag	Autocori	elation	D-W	Stat	istic	p-value	
1	0.	2811115		1.4	122881	0.006	
Alte	ernative	hypothes	sis:	rho	!= 0		

Basados en el análisis de autocorrelación, la mayoría de las líneas, a excepción de la tercera, se encuentran entre el intervalo de confianza (95%, líneas azules), indicando una autocorrelación cero, sin embargo, como se presenta una línea fuera del intervalo se

indicaría que los residuos no presentan una independencia, al igual que la prueba de Durbin-Watson, analizada anteriormente.

Figura 80 Graficas de autocorrelación, suelos arenosos CBR Wn

Como se puede observar en la Figura 81 ninguna de las líneas de distancia Cook superar el umbral de 1.0, llegando a una rango máximo de 0.25 aproximadamente, lo que nos indica que no se cuenta con muchos valores atípicos que afectan el modelo de regresión con respecto a las observaciones. Sin embargo, como se mencionó anteriormente, los residuos no presentan una independencia, lo que indicaría que la aproximación de los valores predichos no es válida, ya que se incumple la condición de independencia

Figura 81 Graficas distancia de Cook, suelos arenosos CBR Wn

La Tabla 20 muestra resultados del análisis de regresión para los suelos arenosos correlacionando el CBR en condiciones de humedad natural:

							Norma	alidad de residuos		Autocorrelació	n de los residuos
Modelo	Variable	Coeficientes	Error estándar	t value	Pr (> t)	rsq (R2)	Shapiro-Wilk	Kolmogorov-Smirno)	Observación	Durbin-Watson	Observación
								P-value		P-v	alue
1	Intercepto	0.095929	0.01382	6.941	4.55E-08	0.20					
1	dr*HN	0.019219	0.008085	2.377	0.023	0.20					
	Intercepto	0.009045	0.01373	6.59	0.00000131				Los datos		Los datos de la
	dr*r*HN	0.00002654	0.000009809	2.705	0.0105	0.25	0.6338	0.682	distribución normal	0.006	muestra no son independientes.

Tabla 20. Resultados del análisis del modelo, Suelos arenosos CBR humedad natural (CBR Wn)

2

Basados en la prueba de Durbin, se considera que los datos están correlacionados o presentan cierta dependencia, lo que indicaría que la aproximación de los valores predichos no es válida, ya que se incumple la condición de independencia.

5.4.1.2.2 Correlación CBR muestra compactada en laboratorio, en inmersión

Por otro lado, para el caso de los suelos arenosos en cuanto al análisis para el CBR compactado en laboratorio, este se relacionara con los parámetros de porcentaje de finos, deflexión (dr), localización del sensor (r) y humedad natural (HN) para crear el modelo de regresión lineal generalizado, al igual que para los demás análisis, se emplea una función de enlace Inversa y con el modelo perteneciente a una familia de distribución Gamma, se obtiene los siguientes resultados:

Empleando los Betas del modelo, se tiene las siguientes ecuaciones:

1

$\frac{1}{f(x)} = 0.0210714 + 0.0011776 * dr * r * \% finos$
Coefficients:
Estimate Std. Error t value Pr(> t)
(Intercept) 0.0210714 0.0035869 5.874 6.53e-07 ***
`dr*r*%finos` 0.0011776 0.0002886 4.080 0.000202 ***
signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 $rsq (R^2) = 0.35$ Ecuación 43

Coefficients:	
Estimate Std. Error t	value Pr(> t)
(Intercept) 0.0125363 0.0048433	2.588 0.0133 *
`dr*r` 0.0005092 0.0001145	4.446 6.53e-05 ***
Signif. codes: 0 '***' 0.001 '**'	0.01 '*' 0.05 '.' 0.1 ' ' 1

 $rsq (R^2) = 0.45$

Ecuación 44

$$\frac{1}{f(x)} = 0.02064 + 0.00003704 * dr * r * HN$$

Coefficients	
	Estimate Std. Error t value Pr(> t)
(Intercept)	2.064e-02 3.079e-03 6.703 4.33e-08 ***
`dr*r*HN`	3.704e-05 7.543e-06 4.911 1.49e-05 ***
Signif. code	es: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 $rsq (R^2) = 0.47$ Ecuación 45

$\frac{1}{f(x)} = 0.05661 - 0.0000677 * MR$										
, (- ,									
Coefficients	5:									
	Estimate Std. Error t value Pr(> t)									
(Intercept)	5.661e-02 6.311e-03 8.971 3.21e-11 ***									
MR 	-6.771e-05 1.477e-05 -4.585 4.22e-05 ***									
Signif. code	es: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	L								

 $rsq (R^2) = 0.3027$ Ecuación 46

Como se puede apreciar, para los cuatro modelos planteados el parámetro p-value es menor a 0.05, por lo que las variables empleadas son significativas dentro del modelo. Por otro lado, su coeficiente de determinación, R², son de 0.35, 0.45, 0.47 y 0.30 respectivamente, siendo para los modelos 2 y 3 una correlación aceptable.

La diferencia entre los R² entre los modelos 2 y 3, es despreciable, por lo que su definición será determinada a partir del siguiente análisis de verificación del modelo que vincula las variables dr*r y dr*r*HN.

A continuación, se ilustra la gráfica de normalidad de los residuos y los resultados del test de Shapiro Wilk y Kolmogorov-Smirnov. En el modelo, el valor de probabilidad p-value es mayor a 0.05, por tanto, lo datos siguen una distribución normal.

Figura 82 Gráfica de normalidad de residuos, suelos arenosos, CBR Lab.

La Figura 83 presenta las gráfica de residuos estandarizados vs los valores ajustados, del modelo CBR Lab vs dr*r*HN para suelos arenosos, y esta se puede encerrar en una banda horizontal, lo que nos indica que no se ve síntomas de deficiencia en el modelo, por el incumplimiento del modelo por heterocedasticidad.

Figura 83 Graficas análisis de residuos estandarizados vs valores ajustados, suelos arenosos CBR Lab

Basados en la gráfica de residuos o errores vs orden de observación, se observa que los errores no presentan un patrón, están distribuidos de manera aleatoria lo que implica que son independientes (no correlacionados).

Figura 84 Graficas análisis de residuos vs orden de observación, suelos arenosos CBR Lab

Basados en la prueba de Durbin-Watson, se detecta si los residuos de la regresión estimada están auto correlacionados o no. Mediante el uso de RStudio, obtenemos los siguientes resultados:

Para el caso del modelo que vincula la variable dr*r, el valor de p-value es mayor que el nivel de significancia (5%), por tanto, se considera que los datos de la muestra no están correlacionados o presentan una independencia, caso contrario ocurre con el modelo con las variables dr*r*HN, el valor p-value es menor que el nivel de significación (5%), la hipótesis nula es rechazada, se considera que los datos de la muestra están correlacionados o presentan una dependencia.

Del análisis de autocorrelación, para el primero modelo, las líneas se encuentran entre el intervalo de confianza (95%, líneas azules), indicando una autocorrelación cero, para el modelo 2, sin embargo, como se presenta una línea fuera del intervalo se indicaría que los residuos no presentan una independencia, al igual que la prueba de Durbin-Watson, analizada anteriormente.

Figura 85 Graficas de autocorrelación, suelos arenosos CBR Lab

Con la gráfica de distancia de Cook, como se puede observar en la Figura 86, ninguna de las líneas de distancia Cook superar el umbral de 1.0, llegando a una rango máximo de 0.60 aproximadamente, lo que nos indica que no se cuenta con muchos valores atípicos que afectan el modelo de regresión con respecto a las observaciones, especialmente en el modelo con la variable dr*r. Sin embargo, como se mencionó anteriormente, para el caso

del modelo 2 (dr*r*HN) los residuos no presentan una independencia, lo que indicaría que la aproximación de los valores predichos no es válida, ya que se incumple la condición de independencia.

Figura 86 Graficas distancia de Cook, suelos arenosos CBR Lab

La Tabla 22 muestra resultados del análisis de regresión para los suelos arenosos correlacionando el CBR compactado en laboratorio.

	o Variable	Coeficientes	Error estándar	t value	Pr (> t)	rsq (R2)	Normalidad de residuos			Autocorrelación de los residuos	
Modelo							Shapiro-Wilk	Kolmogorov-Smirnov	Observación	Durbin-Watson	Observación
								P-value			P-value
	Intercepto	0.0125363	0.0048433	2.588	1.33E-02	0.45	0.08384	0.827	Los datos siguen una distribución normal	0.168	Los datos de la muestra
	dr*r	0.0005092	0.0001145	4.446	6.53E-05						
1	$\frac{1}{f(x)} = 0.0125363 + 0.0005092 * dr * r$ $CBR_{LAB} = \frac{1}{0.0125363 + 0.0005092 * dr * r}$ Dónde: CBR Lab: capacidad de soporte de la subrasante (%), Compactado en laboratorio, inmersión dr: deflexión medida a la distancia r (mm) r: distancia del sensor r (mm)										
2	Intercepto	0.02064	3.08E-03	6.70	4.33E-08	0.47-	0.5524	0.3874	Los datos siguen una distribución normal	0	Los datos de la muestra no son independientes.
۷		0.00003704	7.34E-00	4.911	1.49E-05						•

Tabla 22. Resultados del análisis del modelo, Suelos arenosos CBR muestra compactada en laboratorio (CBR Lab)

5.4.1.3 Modelos de regresión para suelos tipo grava, CBR muestra compactada en laboratorio, en inmersión

Por último, para los suelos tipo grava, se quiere correlacionar el CBR compactado en laboratorio con las variables dr, r y % de finos, basados en el comportamiento de correlación presentada en la Figura 65.

Empleando los Betas del modelo, se tiene la siguiente ecuación:

 $\frac{1}{f(x)} = 0.0167611 + 0.0009627 * dr * r * \% finos$

-

 $rsq (R^2) = 0.23$

Ecuación 47

Como se puede apreciar, los dos parámetros son significativos dentro del modelo ya que su p-value es menor a 0.05; sin embargo, se crea un nuevo modelo con las variables independientes, con el fin de evaluar su R².

Coefficient	S:
	Estimate Std. Error t value Pr(> t)
(Intercept)	0.0094791 0.0026011 3.644 0.000475 ***
`dr*r`	0.0001647 0.0000517 3.186 0.002059 **
finos	0.0456150 0.0144726 3.152 0.002284 **
5ianif. cod	es: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Como se puede apreciar, para los dos modelos planteados el parámetro p-value es menor a 0.05, por lo que las variables empleadas son significativas dentro del modelo. Por otro lado, su coeficiente de determinación, R² son de 0.23 y 0.27 respectivamente.

La definición del modelo será definida a partir del siguiente análisis de verificación estadístico.

A continuación, se ilustra la gráfica de normalidad de los residuos y los resultados del test de Shapiro Wilk y Kolmogorov-Smirnov. En el modelo, el valor de probabilidad p-value es mayor a 0.05, siguiendo una distribución normal los datos.

Figura 87 Gráfica de normalidad de residuos, suelos tipo grava, CBR Lab.

La Figura 88 presenta las gráfica de residuos estandarizados vs los valores ajustados, de los modelos analizados para suelos tipo grava, y estos se pueden encerrar en una banda horizontal, lo que nos indica que no se ve síntomas de deficiencia en el modelo, por el incumplimiento del modelo por heterocedasticidad, como mejor distribución en el modelo 2.

Figura 88 Graficas análisis de residuos estandarizados vs valores ajustados, suelos tipo grava CBR Lab

Basados en la gráfica de residuos o errores vs orden de observación, se observa que los errores no presentan un patrón, están distribuidos de manera aleatoria lo que implica que son independientes (no correlacionados).

Figura 89 Graficas análisis de residuos vs orden de observación, suelos tipo grava CBR Lab

Para los dos modelos planteados los valores de p-value son menores que el nivel de significancia (5%), por tanto, se considera que los datos de la muestra están correlacionados o presentan una dependencia, evaluado por el test de Durbin-Watson.

<pre>lag Autocorrelation D-W Statistic p-value 1 0.259591 1.44408 0 Alternative hypothesis: rho != 0</pre>	lag Autocorrelation D-W Statistic p-value 1 0.2651609 1.438018 0 Alternative hypothesis: rho != 0

Alternative hypothesis: rho != 0

Tabla 23. Test Durbin – Watson, suelos tipo grava CBR Lab

Según el análisis de auto correlación, para los dos modelos, las líneas se encuentran entre el intervalo de confianza (95%, líneas azules), indicando una autocorrelación cero, a pesar de que el test de Durbin, indican una dependencia.

Como se puede observar en la Figura 91 ninguna de las líneas de distancia Cook superar el umbral de 1.0, llegando a un rango máximo de 0.08 aproximadamente, lo que nos indica que no se cuenta con muchos valores atípicos que afectan el modelo de regresión con

respecto a las observaciones.

La Tabla 24 muestra resultados del análisis de regresión para los suelos tipo grava correlacionando el CBR compactados en laboratorio:

		Coeficientes	Error estándar	t value	Pr (> t)	rsq (R2)	Normalidad de residuos Autocorrelación de los res				ción de los residuos
Modelo	Variable						Shapiro-Wilk	Kolmogorov-Smirnov	Observación	Durbin-Watson	Observación
								P-value		P-value	
	Intercepto	0.0167611	0.0014827	11.305	2.00E-16	0.23	0.484	0.4464	Los datos siguen una distribución normal	0	Los datos de la muestra son dependientes
	dr*r *%Finos	0.0009627	0.0002179	4.418	3.06E-05						acpendientes
1	$\frac{1}{f(x)} = 0.0167611 + 0.0009627 * dr * r * \% finos$ $CBR_{LAB} = \frac{1}{0.0167611 + 0.0009627 * dr * r * \% finos$										
	Donde: CBR Lab: capacidad de soporte de la subrasante (%), compactado en laboratorio, en inmersión dr: deflexión medida a la distancia r (mm) r: distancia del sensor r (mm) %Finos: porcentaje de finos										
	Intercepto	0.0094791	0.0026011	3.644	4.75E-04			0.3764	Los datos siguen una distribución normal	0	Los datos de la muestra son dependientes
	dr*r	0.0001647	0.0000517	3.186	2.06E-03	0.27	0.4237				
	% Finos	0.045615	0.0144726	3.152	2.28E-03						
2	$\frac{1}{f(x)} = 0.0094791 + 0.0001647 * dr * r + 0.0456152 \% finos \qquad CBR_{LAB} = \frac{1}{0.0094791 + 0.0001647 * dr * r + 0.0456152 \% finos}$ Dónde: CBR Lab: capacidad de soporte de la subrasante (%), compactado en laboratorio, en inmersión dr: deflexión medida a la distancia r (mm) r: distancia del sensor r (mm) %Finos: porcentaje de finos)456152 %finos		
	Basados en la prueba de Durbin, para los dos modelos, se considera que los datos están correlacionados o presentan cierta dependencia, lo que indicaría que la aproximación de los valores predichos no es válida, ya que se incumple la condición de independencia.										

Tabla 24. Resultados del análisis del modelo, Suelos tipo grava CBR muestra compactada en laboratorio (CBR Lab)

5.4.1.4 Modelos de regresión adicionales para suelos tipo grava y arenas, CBR muestra compactada en laboratorio en inmersión

Dadas las condiciones encontradas para los modelos de los suelos tipo grava, en donde la correlación evaluada presenta un R² categorizado como pobre y, adicionalmente, se detecta que los valores presentan una dependencia evaluada a partir de la prueba Durbin-Watson, se evalúa un último modelo donde se analiza los datos de CBR compactados en laboratorio de suelos arenosos y tipo gravas en conjunto versus la deflexión, la distancia del sensor y el % de finos.

Se obtiene la siguiente ecuación:

$$\frac{1}{f(x)} = 0.005543 + 0.0002796 * dr * r + 0.05183 \% finos$$

$$\sum_{\substack{\text{Estimate Std. Error t value Pr(>|t|) \\ (Intercept) 5.543e-03 2.288e-03 2.423 0.0169 * \\ idr*r' 2.796e-04 4.884e-05 5.724 7.50e-08 *** \\ finos 5.183e-02 1.054e-02 4.917 2.75e-06 *** \\ --- \\ signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 \end{bmatrix}$$

 $rsq (R^2) = 0.42$

Ecuación 49

Como se puede apreciar, los dos parámetros son significativos dentro del modelo ya que su p-Value es menor a 0.05, obteniendo un coeficiente determinación, R², de 0.42, mucho mayor al obtenido solo para los datos de suelo tipo grava.

Seguidamente, se ilustra la gráfica de normalidad de los residuos y los resultados del test de Shapiro Wilk y Kolmogorov-Smirnov. En el modelo, el valor de probabilidad p-value es mayor a 0.05, por tanto, los datos siguen una distribución normal.

Figura 92 Gráfica de normalidad de residuos, suelos tipo grava y arenas, CBR Lab.

La gráfica de residuos estandarizados vs los valores ajustados, del modelo analizado para suelos tipo grava y arenas, se pueden encerrar en una banda horizontal, lo que nos indica que no se ve síntomas de deficiencia en el modelo, por el incumplimiento del modelo por heterocedasticidad.

Figura 93 Graficas análisis de residuos estandarizados vs valores ajustados, suelos tipo grava y arenas, CBR Lab

Por otro lado, la gráfica de residuos o errores vs orden de observación se observa que los errores no presentan un patrón, están distribuidos de manera aleatoria lo que implica que son independientes (no correlacionados).

Figura 94 Graficas análisis de residuos vs orden de observación, suelos tipo grava y arenas, CBR Lab

A partir del test de Durbin-Watson, para los dos modelos planteados, los valores de p-value son menores que el nivel de significancia (5%), por tanto, se considera que los datos de la muestra están correlacionados o presentan una dependencia,

Tabla 25. Test Durbin – Watson, suelos tipo grava y arenas, CBR Lab

lag Autocorrelation D-W	Statistic	p-value
1 0.3843806	1.189548	0
Alternative hypothesis:	rho != 0	

Según el análisis de autocorrelación, para el modelo analizado, en general, las líneas se encuentran entre el intervalo de confianza (95%, líneas azules), sin embargo, una de las líneas se encuentra fuera del intervalo de confianza, al igual que el test de Durbin, indican una dependencia.

Figura 95 Graficas de autocorrelación, suelos tipo grava y arenas, CBR Lab

La Tabla 26 muestra resultados del análisis de regresión para los suelos tipo grava correlacionando el CBR compactados en laboratorio:

								Normalidad de resi	duos	Autocorrela	ción de los residuos				
Modelo	Variable	Coeficientes	Error estándar	t value	Pr (> t)	rsq (R2)	Shapiro-Wilk	Kolmogorov-Smirnov	Observación	Durbin-Watson	Observación				
							P-value P-value								
	Intercepto	0.005543	0.002288	2.423	0.0169	0.42	0.6224	0 (127	Los datos siguen una	0	Los datos de la				
	dr*r	0.0002796	0.00004884	5.724	7.50E-08	0.42	0.6324	0.0127	distribución normal	U	dependientes				
	dr*r +%Finos	0.05183	0.01054	4.917	2.75E-06										
1	$\frac{1}{f(x)} = 0$ Dónde: CBR Lab: c: dr: deflexió r: distanci %Finos: poro Basados en a que la aprox	0.005543 + apacidad de s n medida a la a del sensor centaje de fin la prueba de kimación de l	00002796 soporte de la su a distancia r (m r (mm) os (mm) Durbin, para la os valores pred	* dr * 1 ubrasant m) Ds dos m lichos no	r + 0.051 e (%), con podelos, se p es válido	183 % f npactado e conside a, ya que	inos CBR en laboratori ra que los dat se incumple l	$R_{LAB} = \frac{1}{0.005543}$ + 0, en inmersión tos están correlacion ta condición de indep	1 - 0.0002796 * dr * ados o presentan cie endencia.	rta dependencio	₩ finos				

Tabla 26. Resultados del análisis del modelo, Suelos tipo grava y arenas, CBR muestra compactada en laboratorio (CBR Lab)

5.4.2 Empleando los parámetros obtenidos por el método directo

5.4.2.1 Modelos de regresión para suelos finos, CBR muestra inalterada humedad natural

Utilizando los parámetros dr, r₅₀ y humedad natural (HN) para crear los modelos de regresión lineal generalizado, se tiene las siguientes ecuaciones empleando lo betas del modelo:

$$\frac{1}{f(x)} = 0.0520434 + 0.0010484 * dr * r_{50} + 0.0024452 * HN$$

Coefficients:		
Estima	e Std. Error t value	Pr(> t)
(Intercept) 0.05204	4 0.0113799 4.573	6.77e-06 ***
`dr*r` 0.00104	4 0.0001085 9.662	< 2e-16 ***
HN 0.00244	2 0.0004633 5.278	2.35e-07 ***
Signif. codes: 0 '	**' 0.001 '**' 0.01	'*' 0.05'.'0.1''1

 $rsq (R^2) = 0.37$

Ecuación 50

.

$$\frac{1}{f(x)} = 0.1201 + 0.00003658 * dr * r_{50} * HN$$

Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.201e-01 6.044e-03 19.86 <2e-16 *** `dr*r*HN` 3.658e-05 3.117e-06 11.73 <2e-16 *** ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

 $rsq (R^2) = 0.40$

Ecuación 51

 $\frac{1}{f(x)} = 0.1321 + 0.00003696 * dr * r_{50} * HN - 0.000517 wPI$

Coefficients	5:				
	Estimate	Std. Error	t value I	Pr(> t)	
(Intercept)	1.321e-01	8.879e-03	14.872	<2e-16 ***	
`dr*r*HN`	3.696e-05	3.371e-06	10.963	<2e-16 ***	
WPI	-5.170e-04	4.157e-04	-1.244	0.215	
Signif. code	es: 0 '***'	' 0.001'**'	0.01 '*	' 0.05'.'0.1'	' 1

 $rsq (R^2) = 0.40$ Ecuación 52

Como se puede apreciar, los tres parámetros son significativos dentro de los modelos ya que su p-value es menor a 0.05.

La diferencia entre los R² entre los dos modelos es casi que despreciable, por tanto, su definición será determinada a partir del siguiente análisis de verificación de los modelos planteados.

En el **Anexo 5** se presenta los resultados de verificación de los modelos analizados para los parámetros del método directo.

La Tabla 27, muestra resultados del análisis de regresión para los suelos finos correlacionando el CBR en condiciones de humedad natural:

								Normalidad de resi	iduos	Autocorrel	ación de los residuos	
Modelo	Variable	Coeficientes	Error estándar	t value	Pr (> t)	rsq (R2)	Shapiro-Wilk	Kolmogorov-Smirnov	Observación	Durbin-Watson	Observación	
								P-value		P-value		
	Intercepto	0.1201	0.006044	19.86	< 2e-16	0.40	0.0871	0.6002	Los datos siguen una distribución normal	0.946	Los datos de la muestra	
	dr*r ₅₀ *HN	0.00003658	0.000003117	11.73	< 2e-16							
1	$\frac{1}{f(x)} =$ Dónde: CBR Wn: c dr: deflexior r ₅₀ : distance HN: humeon	0.1201 + 0 apacidad de s ón medida a cia del sensor dad natural ('	.00003658 * soporte de la s la distancia r (r r (mm) %)	$dr * r_5$ ubrasani nm)	₀ * <i>HN</i> te (%), mu	$CBR_{Wn} = \frac{1}{0.1201 + 0.00003658 * dr * r_{50} * HN}$ %), muestra inalterada en condiciones de humedad natural					ĪN	
	Intercepto	0.1321	0.008879	14.872	< 2e-16							
	$dr^*r_{50}^*HN$	0.00003696	0.000003371	10.963	< 2e-16	0.40	0 0.5215	0.6601	distribución normal	0.962	son independientes.	
1	wPl	-0.000517	0.0004157	-1.244	0.214							
2	$\frac{1}{f(x)} = 0.1321 + 0.00003696 * dr * r_{50} * HN + 0.000517 WPI$ $CBR_{Wn} = \frac{1}{0.1321 + 0.00003696 * dr * r_{50} * HN - 0.000517 WPI$ Dónde: CBR Wn: capacidad de soporte de la subrasante (%), muestra inalterada en condiciones de humedad natural dr: deflexión medida a la distancia r (mm) r_{50}: distancia del sensor r (mm) HN: humedad natural (%) w: % que pasa el tamiz 0.075 mm IP: índice de plasticidad											

Tabla 27. Resultados del análisis del modelo, Suelos finos CBR humedad natural (CBR Wn)

5.4.2.2 Modelos de regresión para suelos arenosos

5.4.2.2.1 Correlación CBR inalterado, muestra inalterada humedad natural

Para el caso de los suelos arenosos, se tiene el análisis para el CBR inalterado en condición de humedad natural y CBR compactado en laboratorio. Utilizando los parámetros deflexión (dr), localización del sensor (r₅₀) y humedad natural (HN), se presenta a continuación los modelos planteados:

 $rsq (R^2) = 0.27$

Ecuación 53

$$\frac{1}{f(x)} = 0.08578 + 0.00002904 * dr * r_{50} * HN$$

Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 8.578e-02 1.403e-02 6.112 5.5e-07 *** 'dr*r*HN` 2.901e-05 9.982e-06 2.907 0.0063 ** ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Para los dos modelos las variables dr, r_{50} y HN son significativas ya que su p-value es menor de 0.05, según la hipótesis nula planteada, aunque su valor tiene una significancia baja. También se puede observar valores de R² pobre, de 0.27 y 0.28 respectivamente.

La diferencia entre los R² entre los dos modelos es de 0.01, por tanto, su definición será determinada a partir del siguiente análisis de verificación de los modelos planteados, analizado solo para el modelo 2 que vincula la variable dr*r₅₀*HN.

La Tabla 28 muestra resultados del análisis de regresión para los suelos arenosos correlacionando el CBR en condiciones de humedad natural:

							Norma	alidad de residuos		Autocorrelaciór	n de los residuos
Modelo	Variable	Coeficientes	Error estándar	t value	Pr (> t)	rsq (R2)	Shapiro-Wilk	Kolmogorov-Smirno)	Observación	Durbin-Watson	Observación
								P-value		P-v	alue
1	Intercepto	0.083774	0.014307	5.855	1.20E-06	0.27					
1	dr*HN	0.020200	0.006821	2.961	0.00547	0.27					
	Intercepto	0.08578	0.01403	6.112	5.5E-07				Los datos		Los datos de la
	dr*r ₅₀ *HN	0.00002901	0.000009982	2.907	0.0063	0.28	0.0873	0.6002	distribución normal	0.014	muestra no son independientes.
	$\frac{1}{f(x)} = 0.08578 + 0.00002901 * dr * r_{50} * HN \qquad CBR_{Wn} = \frac{1}{0.08578 + 0.00002901 * dr * r_{50} * HN}$										
2	 Dónde: CBR Wn: capacidad de soporte de la subrasante (%), muestra inalterada en condiciones de humedad natural dr: deflexión medida a la distancia r (mm) r₅₀: distancia del sensor r (mm) HN: humedad natural (%) Basados en la prueba de Durbin, se considera que los datos están correlacionados o presentan cierta dependencia, lo que indicaría que la aproximación de la condición de la condic										
	los valore:	s predichos n	o es valida, ya	que se i	ncumple la co	ondicion	de independencia.				

Tabla 28. Resultados del análisis del modelo, Suelos arenosos CBR humedad natural (CBR Wn)

5.4.2.2.2 Correlación CBR muestra compactada en laboratorio, en inmersión

En cuanto al análisis para el CBR de muestras compactadas en laboratorio, en suelos arenosos, este se relacionara con los parámetros de porcentaje de finos, deflexión (dr), localización del sensor (r₅₀) y humedad natural (HN) para crear el modelo de regresión lineal generalizado, al igual que para los demás análisis, se emplea una función de enlace Inversa y con el modelo perteneciente a una familia de distribución Gamma, se obtiene los siguientes resultados:

Empleando los Betas del modelo, se tiene las siguientes ecuaciones:

$$\frac{1}{f(x)} = 0.0243623 + 0.0007642 * dr * r_{50} * \% finos$$

$$\begin{bmatrix} \text{Coefficients:} & \text{Estimate Std. Error t value } Pr(>|t|) \\ (\text{Intercept}) & 0.0243623 & 0.0036065 & 6.755 & 3.66e-08 *** \\ `dr*r*%finos` 0.0007642 & 0.0002305 & 3.315 & 0.00193 ** \\ \hline dr*r*%finos` 0.0007642 & 0.001 `**` 0.01 `*` 0.05 `.` 0.1 `` 1 \end{bmatrix}$$

$$rsq (R^{2}) = 0.26$$

$$Ecuación 55$$

$$\frac{1}{f(x)} = 0.01741 + 0.0003541 * dr * r_{50}$$

$$\begin{bmatrix} \text{Coefficients:} \\ \text{Coefficients:} \end{bmatrix}$$

Estimate Std. Error t value Pr(>|t|) (Intercept) 1.741e-02 4.755e-03 3.662 0.000708 *** `dr*r` 3.541e-04 9.619e-05 3.682 0.000670 *** ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 $rsq (R^2) = 0.35$

Ecuación 56

$$\frac{1}{f(x)} = 0.02311 + 0.0000266 * dr * r_{50} * HN$$

Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 2.311e-02 3.197e-03 7.230 7.83e-09 *** `dr*r*HN` 2.660e-05 6.427e-06 4.139 0.000169 *** ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> $rsq (R^2) = 0.38$ Ecuación 57

$$\frac{1}{f(x)} = 0.05552 - 0.00008718 * MR$$

Coefficients	5:										
	Estir	mate St	d. Eri	ror t	value	e Pr	(> t)			
(Intercept)	5.552	e-02 6	.489e	-03	8.556	51.	16e-1	0 **	e sie		
MR	-8.718	e-05 2	.006e	-05	-4.346	58.	92e-0	5 **	e sie		
Signif. code	es: 0	'***' 0	.001	' * * [*]	0.01	·*'	0.05	'·'	0.1	•	' 1

 $rsq (R^2) = 0.28$ Ecuación 58

Para los cuatro modelos planteados el parámetro p-value es menor a 0.05, por lo que las variables empleadas son significativas dentro del modelo. Por otro lado, su coeficiente de determinación, R² son de 0.26, 0.35, 0.38 y 0.28 respectivamente, presentando todos los modelos una correlación pobre.

La diferencia entre los R² entre los modelos 2 y 3, es despreciable, por lo que su definición será determinada a partir del siguiente análisis de verificación del modelo que vincula las variables dr^*r_{50} y $dr^*r_{50}^*HN$.

La Tabla 29 muestra resultados del análisis de regresión para los suelos arenosos correlacionando el CBR compactado en laboratorio.

								Normalidad de residuc)S	Autocorrelac	ión de los residuos
Modelo	Variable	Coeficientes	Error estándar	t value	Pr (> t)	rsq (R2)	Shapiro-Wilk	Kolmogorov-Smirnov	Observación	Durbin-Watson	Observación
								P-value		P-value	
	Intercepto	0.01741	0.004755	3.662	0.000708	0.35	0.5027	0.922	Los datos siguen una distribución normal	0	Los datos de la muestra no son independientes.
	dr*r	0.0003541	0.00009619	3.682	0.000670						
1	$\frac{1}{f(x)} = 0.01741 + 0.0003541 * dr * r \qquad CBR_{LAB} = \frac{1}{0.01741 + 0.0003541 * dr * r}$										
	Dónde: CBR Lab: dr: deflex r ₅₀ : dista	capacidad de ión medida a ancia del sens	soporte de la subrasante (%), Compactado en laboratorio, en inmersión a distancia r (mm) or r (mm)								
	Intercepto	0.02311	2.3118E-02	7.230	7.83E-09	0.38-	0 2057	0 1821	Los datos siguen	0	Los datos de la
	dr*r*HN	0.0000266	6.427E-06	4.139	0.000169	0.50-	0.2357	0.1021	normal	0	independientes.
	$\frac{1}{f(x)} = 0.$	02311 + 0	.0000266 * ($dr * r_{5}$	₀ * HN		$CBR_{LAB} =$	1 0.02311+0.0000266	*dr*r ₅₀ *HN		
2	Dónde: CBR Lab: capacidad de soporte de la subrasante (%), Compactado en laboratorio, en inmersión dr: deflexión medida a la distancia r (mm) r ₅₀ : distancia del sensor r (mm)										
	Basados e que indice	en la prueba aría que la a	de Durbin, po proximación d	ira los d de los vi	los model alores pre	os, se co dichos n	nsidera que l o es válida, y	os datos están corro a que se incumple l	elacionados o p a condición de i	resentan cierta ndependencia.	dependencia, lo

Tabla 29. Resultados del análisis del modelo, Suelos arenosos CBR muestra compactada en laboratorio (CBR Lab)

5.4.2.3 Modelos de regresión para suelos tipo grava, CBR muestra compactada en laboratorio en inmersión

Por último, para los suelos tipo grava, se quiere correlacionar el CBR compactado en laboratorio con las variables dr, r_{50} y % de finos:

Empleando los Betas del modelo, se tiene la siguiente ecuación:

Ecuación 60

Como se puede apreciar, los tres parámetros son significativos dentro del modelo ya que su p-value es menor a 0.05. Por otro lado, su coeficiente de determinación, R² son de 0.23 y 0.25 respectivamente, presentando una correlación pobre.

La definición del modelo será definida a partir del siguiente análisis de verificación estadístico.

La Tabla 30 muestra resultados del análisis de regresión para los suelos tipo grava correlacionando el CBR compactados en laboratorio:

								Normalidad de resi	duos	Autocorrela	ción de los residuos
Modelo	Variable	Coeficientes	Error estándar	t value	Pr (> t)	rsq (R2)	Shapiro-Wilk	Kolmogorov-Smirnov	Observación	Durbin-Watson	Observación
								P-value		P-value	
	Intercepto	0.0173971	0.0014166	12.281	2.00E-16	0.23	0.7287	0.8522	Los datos siguen una distribución normal	0	Los datos de la muestra son dependientes
	dr*r *%Finos	0.0007776	0.0001827	4.255	5.57E-05						dependientes
1	$\frac{1}{f(x)} = 0$).0173971 -	+ 00007776	6 * dr *	* r ₅₀ * %	finos	CBR _I	$_{LAB} = \frac{1}{0.0173971} - \frac$	1 + 0.0007776 * <i>dr</i> ÷	* r ₅₀ * %finos	<u>-</u> s
	Dónde: CBR Lab: capacidad de soporte de la subrasante (%), compactado en laboratorio, en inmersión dr: deflexión medida a la distancia r (mm) r ₅₀ : distancia del sensor r (mm) %Finos: porcentaje de finos										
	Intercepto	0.01070	0.002508	4.266	5.41E-05						Los datas da la
	dr*r	0.000127	0.00004343	2.925	0.00448	0.25	0.5094	0.3472	Los datos siguen una distribución normal	0	muestra son dependientes
	% Finos	0.04435	0.01495	2.967	0.00396						
1	$\frac{1}{f(x)} = 0.01070 + 0.000127 * dr * r_{50} + 0.04435 \% finos \qquad CBR_{LAB} = \frac{1}{0.01070 + 0.000127 * dr * r_{50} + 0.04435 \% finos \\ Donde: \\ CBR Lab: capacidad de soporte de la subrasante (%), compactado en laboratorio, en inmersión \\ dr: deflexión medida a la distancia r (mm) \\ r_{50}: distancia del sensor r (mm) \\ \%Finos: porcentaje de finos \\ \end{cases}$										
	Basados en la prueba de Durbin, para los dos modelos, se considera que los datos están correlacionados o presentan cierta dependencia, lo que indicaría que la aproximación de los valores predichos no es válida, ya que se incumple la condición de independencia.										

Tabla 30. Resultados del análisis del modelo, Suelos tipo grava CBR muestra compactada en laboratorio (CBR Lab)

5.5 Discusión de resultados de correlación

Los siguientes gráficos se generan para analizar la aproximación de los modelos desarrollados de mejor ajuste, entre los valores observados y los predichos, como se muestra en la Figura 96, Figura 97 y Figura 98, según los modelos presentados en el numeral 5.2 y lo presentado en el análisis de ANOVA para las variables de los parámetros del suelo, empleando la deflexión (dr) y distancia del sensor (r) establecidos por la metodología AASHTO-93. Lo anterior, debido a que los resultados de análisis estadístico indican que los modelos analizados con los parámetros del método directo (dr y r₅₀) para las arenas y gravas tienen resultados deficientes, analizados a partir del coeficiente de determinación R² y del análisis de dependencia de los residuos.

Para el caso de la correlación entre el CBR muestra inalterada en condiciones de humedad natural de los suelos arenosos, todos los modelos analizados presentan deficiencia en la predicción; por tanto, se descarta plantear una correlación para estas condiciones de CBR en suelos arenosos.

Para el caso de los suelos tipo grava, la predicción de los valores del CBR de muestras compactadas en laboratorio, presentan cierta dependencia de los residuos, por lo que se debe analizar este efecto en los valores predichos; por consiguiente, se muestra un modelo donde se agrupan los datos de los suelos arenosos y tipo grava, el cual logra mejorar el coeficientes de determinación R² de 0.27 a 0.42 (rango aceptable), sin embargo, sigue presentando resultados de dependencia según la prueba de Durbin-Watson.

Modelo 2 CBR Wn vs dr*r*HN + wPl Figura 96 Comparación entre el valor de CBR Wn observado y el CBR Wn predicho, suelos finos

Figura 97 Comparación entre el valor de CBR LAB observado y el CBR LAB predicho, suelo arenoso

Modelo 2 CBR Lab vs dr*r + % finos Figura 98 Comparación entre el valor de CBR LAB observado y el CBR LAB predicho, suelo tipo grava

Modelo 1 CBR W Lab vs dr*r* + % finos

Figura 99 Comparación entre el valor de CBR LAB observado y el CBR LAB predicho, suelo tipo grava y arenoso

Adicionalmente, se valida el modelo de estimación al comparar los valores observados de CBR y los predichos, por cada modelo, con la ayuda del diagrama de cajas y bigotes. En la Figura 101, se presenta los resultados del análisis.

Este grafico de cajas y bigotes es bastante útil para visualizar la distribución de los datos obtenidos. Allí se presenta información sobre los cuartiles de la distribución, valores atípicos y valores extremos de la variable evaluada, en este caso, el CBR. En la Figura 100 se muestra la media, los cuartiles 1 y 3 (Q1 y Q3) y los valores máximos y mínimos (Max y Min).

La media, la línea negra más gruesa que está dentro de la caja, es el valor del CBR que ocupa el lugar central o medio del conjunto de datos ordenados. Q1, el cuartil Primero, es el valor mayor que el 25% de los valores de la distribución; Q3, el Tercer Cuartil, es el valor que sobrepasa al 75% de los valores de la distribución. Las líneas que sobresalen de la caja se llaman bigotes. Estos bigotes tienen un límite de prolongación (máximo y mínimo), de modo que cualquier dato o caso que no se encuentre dentro de este rango es marcado e identificado individualmente; se caracterizan por ser datos atípicos.

Observado

Figura 100 Interpretación diagrama de cajas y bigotes

El análisis de los diagramas de cajas y bigotes se realiza solo para los modelos lineales generalizados determinados.

Figura 101 Comparación de los diagramas de cajas y bigotes de los modelos para suelos finos, con CBR Wn

Para el caso de los suelos finos, se obtiene rangos intercuatiles (Q1 – Q3) de valores de CBR Wn, para el modelo 1 entre 4.6 y 6.5 %, para el modelo 2 entre 4.5 y 6.2 %, comparados con el CBR Wn observado entre 3.6 y 6.7 %, existiendo una diferencia del 4% y 8% respectivamente en el rango inferior y del 28% y 26 % respectivamente en el rango superior, de los valores de CBR Wn; sin embargo, esta última diferencia se debe a un valor atípico presentado en la muestra. En cuanto a los valores máximo y mínimos de CBR Wn predichos, para el modelo 1 se tiene valores de 1.3 y 7.6 %, para el modelo 2 de 1.3 y 7.5 %, confrontados con 0.4 y 11.6 % (excluyendo los valores atípicos) de los CBR Wn observados. Se pude concluir que los dos modelos se asemejan a los datos para valores CBR bajos y el modelo 1 a los valores más altos de CBR Wn.

Figura 102 Comparación de los diagramas de cajas y bigotes de los modelos para suelos arenosos, con CBR Lab

Como resultados, para los suelos arenosos, el rango intercuatil (Q1 – Q3) de valores de CBR Lab, del modelo 1 propuesto se encuentra entre 22.4 y 35.6 %, contrarrestado con el CBR Lab observado entre 16.0 y 37.5 %, existiendo unas diferencias del 40% y 5% en el rango inferior y superior respectivamente; estos datos corresponden al 50% de la distribución. Esta diferencia del 40 % obedece al comparativo de los valores del 16% (CBR observado) y 22.4% del valor predicho de CBR. En cuanto a los valores máximo y mínimos de CBR Lab predichos, para el modelo 1 se tiene valores de 8.6 y 47.0 %, comparados con 5.3 y 64.3 % (excluyendo el valor atípico de 86.5%) de los CBR Lab observados.

Observado Modelo 1 Modelo 2

Figura 103 Comparación de los diagramas de cajas y bigotes de los modelos para suelos tipo grava, con CBR Lab

Para los resultados de CBR Lab en suelos tipo grava, de los modelos se puede observar que los modelos propuestos (1 y 2) tienen rangos intercuartiles (Q1-Q3) entre 39.8 – 49.9 % y 37.7 – 51.0 %, comparados con 31.5 – 53.4 % de los valores observados; por tanto, se puede indicar que la variabilidad de los datos en los modelos presentan el mismo comportamiento de los datos observados de CBR Lab, sin embargo, existe una diferencia del 26% y 20% respectivamente en el rango inferior y del 7% y 4% respectivamente en el rango superior, con respecto a los valores de CBR WLab. En cuanto a los valores mínimos y máximos de CBR Lab predichos, para el modelo 1 se tiene valores de 13.7 y 57.4 % y para el modelo 2 de 16.6 y 64.8%, confrontados con 11.0 y 83.3% (excluyendo los valores atípicos) de los CBR Lab observados.

Para el caso del análisis del conjunto de datos de CBR de laboratorio de los suelos arenosos y tipo grava, se tiene el siguiente análisis:

Figura 104 Comparación de los diagramas de cajas y bigotes del modelo para suelos tipo gravaarenas, con CBR Lab

Para este modelo, el rango intercuatil (Q1 – Q3) de valores de CBR Lab, del modelo 1 propuesto se encuentra entre 46.0 y 70.7 %, contrarrestado con el CBR Lab observado entre 25.0 y 50.4 %, existiendo una diferencia del 84% y 40% en el rango inferior y superior respectivamente; estos datos corresponden al 50% de la distribución. A diferencia del modelo analizado solo para los suelos tipo grava, este modelo podría abarcar valores de CBR superiores al 50%; sin embargo, se puede observar que la predicción es mucho mayor a los valores observados, a pesar de que el modelo presenta un mejor coeficiente de determinación R². Por consiguiente, se recomienda el modelo establecido solo con los datos de CBR de laboratorio para suelos tipo grava. En el siguiente diagrama de cajas y bigotes se analiza los dos modelos:

Figura 105 Comparación de los diagramas de cajas y bigotes modelos gravas y grava-arenas, con CBR Lab

En la Tabla 31 se resumen los datos de los diagramas de cajas y bigotes para cada uno de los modelos.

	S	Suelos Finos		Suelos A	renosos	Sue	elos tipo grav	Suelos tipo grava-arenas		
_	CBR Wn observado	CBR Wn predicho modelo 1	CBR Wn predicho modelo 2	CBR Lab observado	CBR Lab predicho modelo 1	CBR Lab observado	CBR Lab predicho modelo 1	CBR Lab predicho modelo 2	CBR Lab observado	CBR Lab predicho modelo 1
Mínimo	0.4	1.3	1.3	5.3	8.6	11.0	13.7	16.6	0.4	1.3
Q1	3.6	4.6	4.5	16.0	22.4	31.5	39.8	37.7	3.6	4.6
Media	4.9	5.6	5.5	25.6	29.7	40.8	47.0	45.0	4.9	5.6
Q3	6.7	6.5	6.2	37.4	35.6	53.4	49.9	51.0	6.7	6.5
Máximo	21.2	7.6	7.5	86.5	17.0	97.9	57.4	64.8	21.2	7.6

Tabla 31. Resultados diagrama de cajas y bigotes modelos MLG

5.6 Comparación entre los modelos propuestos y otras correlaciones

Para realizar la comparación entre los modelos propuestos para cada tipo de suelo y los modelos disponibles de correlación entre FWD, CBR y algunas propiedades del suelo, mencionados en los capítulos 3 y 4, se analizó el cociente entre el CBR predicho y el observado. En la Figura 106 se ilustra los diagramas de cajas y bigotes, en el eje Y se presenta el cociente mencionado y en el eje X los modelos analizados.

5.6.1 Suelo finos

Figura 106 Comparativo modelos propuestos con otras correlaciones, suelos finos

Para suelos finos, en el modelo de la NCHRP 2001, el cual vincula las variables pasa #200 y el IP, la media de la relación CBR Wn predicho / CBR Wn observado es de 0.85. Para el modelo de Jameson es de 3.76, en Roberts et al es de 1.90 y en el de QDMR es de 4.1; estos tres modelos correlacionan el CBR con la deflexión D900. Los resultados de los modelos propuestos en este estudio (1 y 2) presentan las medias más cercanas a 1 (1.07 modelo 1 y 0.98 modelo 2); por tanto, entre los modelos comparados, los parámetros calculados con los modelos de este estudio son los que más se acercan a los parámetros observados. El valor 1 en el eje "y" representa la igualdad entre el CBR predicho y el observado.

La diferencia de la media con los cuartiles 1 y 3 (Q1 y Q3) representa la desviación estándar y a su vez nos indica que tan dispersos están los datos con respecto a la media. En la Figura 106 se observa que la desviación estándar de los modelos propuestos 1 y 2 es de 0.34 para ambos caso y la desviación estándar del modelo (NCHRP, 2001) es de 0.52, para el resto de los modelos comparados, la desviación estándar es mayor a 0.55. Se puede observar que las mayores desviaciones se presentan para valores de CBR mayores.

Adicionalmente, se puede observar que los modelos que correlacionan la deflexión localizada a 900 mm del centro de aplicación de carga se alejan en gran medida a los valores observados de CBR en condiciones de humedad para los suelos clasificados como finos. Por el contrario, el modelo de la (NCHRP, 2001), se asemeja más a los valores predichos a partir de los modelos planteados en el presente estudio.

5.6.2 Suelos arenosos

Figura 107 Comparativo modelos propuestos con otras correlaciones, suelos arenosos

Para el caso de los suelos arenosos, el modelo propuesto en este estudio correlaciona el CBR compactado en laboratorio; para la relación entre el CBRLab predicho / CBRLab observado, la media del modelo de Jameson es de 1.12, la de Roberts et al de 0.55 y la de QDMR de 1.24, los cuales correlacionan el CBR con la deflexión D900. Los resultados del modelo propuesto en este estudio presentan la media más cercana a 1 (1.06); por tanto,

entre los modelos comparados, los parámetros calculados con el modelo de este estudio son los que más se acercan a los parámetros observados, seguido del modelo de Jameson y, por último, los dos restantes.

Según lo observado, en el modelo de Roberts et al, los valores predichos son muy inferiores a los CBR observados; por el contrario, en el modelo de QDMR, la predicción del CBR es mucho mayor a los valores de CBR observados.

En la Figura 107 se observa que la desviación estándar del modelo propuesto es de 0.33; la desviación estándar del modelo de Jameson es de 0.53, siendo este modelo el que se asemeja más a los datos de CBR observados de los modelos australianos.

5.6.3 Suelos tipo grava

Figura 108 Comparativo modelos propuestos con otras correlaciones, suelos tipo grava

Por último, para los suelos tipo grava, al igual que para los demás suelos, los resultados de los modelos propuestos en este estudio (1 y 2) presentan la media más cercanas a 1 (1.04 y 1.03 respectivamente); por tanto, entre los modelos comparados, los parámetros calculados con el modelo de este estudio son los que el que más se acercan a los parámetros observados, seguido del modelo de QDMR y, por último, los dos restantes.

La desviación estándar de los modelos propuestos 1 y 2 es de 0.40 para ambos casos. La del modelo QDMR es de 0.57 y para los modelos de Jameson y Roberts et al son de 0.38 y 0.19 respectivamente; para este último, los valores de CBR predichos son mucho más bajos a los observados.

5.7 Modelos propuestos

Con base en el análisis realizado de regresiones, análisis estadístico como el coeficiente de determinación R², coeficiente de correlación, r, normalidad de residuos, independencia entres si de los residuos y homocedasticidad (igualdad de varianza), en menor importancia que los demás parámetros analizados, por el tipo de regresión empleada, regresión lineal generalizada, a continuación se presenta las ecuaciones que mejor permiten estima el valor del CBR de muestra inalteradas en condiciones de humedad natural y compactados en laboratorio al 95% de la densidad máxima, en inmersión.

5.7.1 Suelo: finos (arcillas y limos), CBR muestra inalterada humedad natural

$$\frac{Modelo \ MLG}{1}$$

$$CBR_{Wn} = \frac{1}{0.1186 + 0.000041 * dr * r * HN}$$

$$R^{2} = 0.41, r = 0.64$$

Donde:

dr: Deflexión medida a la distancia r (mm)

r: distancia del sensor r (mm)

HN: Humedad natural (%)

Figura 109 Modelo MLG, CBR Wn versus dr*r*HN

Modelo Potencial

 $CBR_{Wn} = 114.14 * (dr * r * HN)^{-0.433}$

R² = 0.42, r = 0.65

Donde:

- dr: Deflexión medida a la distancia r (mm)
- r: distancia del sensor r (mm)

HN: Humedad natural (%)

Figura 110 Modelo potencial, CBR Wn versus dr*r*HN

Al comparar los modelos de tipo potencial, entre CBR vs dr*r y CBR vs dr*r*HN (vinculando la variable HN), se logra una mejor correlación evaluada a partir del coeficiente de determinación, pasando de un R² de 0.35 a un R² de 0.42.

5.7.2 Suelos: arenas, CBR muestra compactada en laboratorio, en inmersión

$$CBR_{LAB} = \frac{\frac{Modelo \ MLG}{0.0125 + 0.00051 * dr * r}}{R^2 = 0.52, r = 0.72}$$

Donde:

dr: Deflexión medida a la distancia r (mm)

r: distancia del sensor r (mm)

Modelo Potencial

$$CBR_{LAB} = 401.09 * (dr * r)^{-0.733}$$

 $R^2 = 0.52, r = 0.72$

Figura 112 Modelo potencial, CBR Lab versus dr*r

Para los suelos arenosos con CBR de muestras compactadas en laboratorio en inmersión, la mejor correlación se presenta para la relación entre el CBR vs dr*r, con un R² de 0.52.

5.7.3 Suelos: gravas, CBR muestras compactadas en laboratorio, en inmersión

<u>Modelo MLG</u>

$$CBR_{LAB} = \frac{1}{0.0095 + 0.00016 * dr * r + 0.04562 \% finos}$$

R² = 0.27, r = 0.52

Donde:

dr:	Deflexión medida a la distancia r (mm)
r:	distancia del sensor r (mm)
%finos:	Porcentaje de finos del suelo (mm)

Modelo Potencial

 $CBR_{LAB} = 67.962 * (dr * r * \% finos)^{-0.311}$

 $R^2 = 0.27, r = 0.52$

Donde:

dr: Deflexión medida a la distancia r (mm)

r: distancia del sensor r (mm) %finos: Porcentaje de finos del suelo (mm)

Figura 113 Modelo potencial, CBR Lab versus dr*r*% finos

En los suelos tipo grava, la mejor correlación entre CBR y la deflectometría se logra vinculando la variable % finos, pasando de un R² de 0.17 (CBR vs dr*r) a un R² de 0.27 (CBR vs dr*r*% finos). Sin embargo, aún se obtiene una correlación pobre, debido a la gran dispersión que presenta los datos.

Conclusiones y Recomendaciones

El objetivo principal de esta investigación es determinar la correlación entre el CBR de la subrasante y deflexiones medidas con FWD en Colombia. Para tal fin, se contó con una base de datos de 501 puntos en donde se tiene información simultánea de deflectometría y CBR de muestras inalteradas y suelos compactados en laboratorio.

Para tal fin, se determinaron los módulos de la subrasante mediante las metodologías AASHTO 1993 y método directo (INVIAS, 2008), siendo las metodologías de diseño más común empleadas en Colombia para la evaluación de pavimentos flexibles existentes, empleando resultados de mediciones de deflexiones con deflectómetro de impacto.

En cuanto al análisis del CBR, se agruparon los resultados por tipo de suelo, clasificándolos en suelos finos (arcillas y limos) con CBR de muestra inalterada y humedad natural, suelos arenosos y suelos tipo grava, con CBR compactados en laboratorio al 95% de la densidad máxima, en inmersión.

Con la información disponible de los ensayos de laboratorio, se realizaron gráficas de dispersión entre el CBR y las propiedades relacionadas con la gradación y límites de consistencia, con la finalidad de poder realizar un análisis dimensional para los parámetros de mayor incidencia. Como resultado, se obtiene que la relación del CBR con los parámetros físicos como LL, LP, IP, % gravas, % arenas y % finos, no es tipo lineal, y presenta una gran dispersión en la nube de puntos analizados, lo que indica que, por si solos, no presentan una correlación significativa con el CBR y puede requerirse un análisis multivariables o correlaciones múltiples para llegar a una buena correlación, tal como se menciona en Rivera Mena, 2013 y Araujo Navarro, 2014.

Existen varias correlaciones para estimar el CBR a partir de las deflexiones medidas a diferentes distancias del centro de aplicación de la carga. Aunque no es el objetivo central de la presente investigación, se analizó si las ecuaciones disponibles reproducen las tendencias de la base de datos empleada; es decir, a las condiciones de suelos típicos existentes a nivel de Colombia.

En muchas de ellas (Jameson (1993), Roberts et al (2006) y Queensland Department of Main Roads (QDMR, 1992)), se pudo observar que para los suelos tipo arena y grava, una de las tres ecuaciones presentadas tiene mejor correlación con la base de datos: para los suelos arenosos, la ecuación 1 (Jameson); para los suelos tipo grava, la ecuación 3 (QDMR). Para el caso de los suelos finos, ninguna de las ecuaciones se ajusta a la base de datos. Todas estas ecuaciones correlacionan entre el CBR con la deflexión a 900 mm del centro de aplicación de carga.

Las correlaciones directas obtenidas entre valores de deflexión y CBR son pobres según el coeficiente de determinación, R², por tanto, se buscó mejorar las correlaciones (disminuir la dispersión) introduciendo otros parámetros del suelo en las mismas, analizadas partir del análisis ANOVA y correlaciones. Se encontró que la humedad natural y el porcentaje de finos, mejora los indicadores estadísticos de correlación; sin embargo, para efectos prácticos, la dispersión de datos no disminuyó significativamente.

Por consiguiente, se plantean los modelos determinados con los parámetros dr y r establecidos por la metodología AASHTO-93, debido a que los modelos analizados con los parámetros del método directo (dr y r_{50}), para las arenas y gravas, los resultados de análisis estadístico nos indican resultados deficientes, analizados a partir del R² y el análisis de dependencia de los residuos.

Es importante indicar, que el trabajo de investigación se ha desarrollado con una amplia base de datos, de muchos tipos de suelos y muchas condiciones. Por eso la dispersión de las correlaciones puede ser mayor que la reportada por otros autores.

A partir de los resultados del análisis de regresión potencial y lineal generalizado, a continuación se presentan las correlaciones obtenidas:

6.1 Suelo fino (arcillas y limos): CBR muestra inalterada, humedad natural:

Modelo lineal generalizado:

$$CBR_{Wn} = \frac{1}{0.1186 + 0.000041 * dr * r * HN}$$

$$R^2 = 0.41, r = 0.64$$

Modelo potencial:

$$CBR_{Wn} = 114.14 * (dr * r * HN)^{-0.433}$$

R² = 0.42, r = 0.65

Donde:

dr: Deflexión medida a la distancia r (mm)r: distancia del sensor r (mm)HN: Humedad natural (%)

6.2 Suelo arenoso: CBR muestras compactadas en laboratorio, en inmersión:

Modelo lineal generalizado:

$$CBR_{LAB} = \frac{1}{0.0125 + 0.00051 * dr * r}$$

R² = 0.52, r = 0.72

Modelo potencial:

$$CBR_{HN} = 401.09 * (dr * r)^{-0.733}$$

R² = 0.52, r = 0.72

Donde:

dr: Deflexión medida a la distancia r (mm)

r: distancia del sensor r (mm)

6.3 Suelo tipo grava: CBR muestras compactadas en laboratorio, en inmersión:

Modelo lineal generalizado:

$$CBR_{LAB} = \frac{1}{0.0095 + 0.00016 * dr * r + 0.04562 \% finos}$$

R² = 0.27, r = 0.52

Donde:

dr: Deflexión medida a la distancia r (mm)

r: distancia del sensor r (mm) % finos: Porcentaje de finos del suelo (mm)

Los modelos más apropiados para estimar el CBR a partir de las medidas de deflexión, para los tres tipos de suelo, emplean la deflexión determinada a partir de la metodología AASHTO 1993, deflexión superficial del pavimento a una distancia "r" del centro de la placa de carga.

Es importante resaltar que el sensor que se utiliza para la escogencia de la deflexión que evalúa el comportamiento de la subrasante, y que se emplea en el cálculo del módulo en la metodología AASHTO, corresponde en un 42.1% al ubicado a 90 cm y en un 22.6% al ubicado a 120 cm, lo que permite indicar que las deflexiones medidas más allá de los efectos primarios del bulbo de esfuerzos son los que correlacionan con el módulo de la subrasante y el CBR.

Los resultados obtenidos de las correlaciones recomendadas en la presente investigación, pueden llegar a ser muy útil para el ingeniero de pavimentos, tanto en el diseño de pavimentos nuevos como en estudios de rehabilitación de pavimentos existentes; debido a que los análisis estadísticos muestran que hay una fuerte relación entre el CBR y los resultados de las evaluaciones deflectométricas (módulos, deflexiones), aunque, la dispersión obtenida es alta, la variabilidad obtenida está dentro de la variación reportada en otras correlaciones, como la de la Shell, Uzan, NCHRP y Heukelom.

Para el caso de pavimentos nuevos, se puede llegar hacer uso de equipos como el deflectómetro liviano (LWD), comúnmente usado en control de calidad en la etapa de construcción, el cual permite obtener la deflexión d0 o en algunos casos, deflexiones medidas a sensores adicionales ubicadas a 30 cm y 60 cm del centro de aplicación de carga, que al ser medidas en la capa de fundación del pavimento, se toma como la deflexión que evalúa el comportamiento de la subrasante.

Se considera de gran importancia poder estudiar correlaciones de ensayos de módulos triaxiales con valores de CBR a condiciones típicas de los proyectos viales que se realizan

en Colombia, para diferentes tipos de suelos; así mismo, comprobar la validez de las fórmulas de correlación que tradicionalmente se emplean en los diseños de pavimento nuevo y estudios de rehabilitación de pavimentos existentes.

Finalmente, dada la dispersión de valores en las correlaciones obtenidas, es necesario fortalecer los trabajos de medición directa de los módulos resilientes de la subrasante, por deflectometría en pavimentos existentes y mediante ensayos de laboratorio en el caso de pavimentos nuevos. Así mismo, promover la investigación en el país de relaciones entre módulos resilientes de laboratorio y módulos resilientes de deflectometría.

Bibliografía

- AASHTO. (1993). AASHTO Guide For Design of Pavemente Structures 1993. Washington, D.C.
- Ali, N. A., & Khosla, N. P. (1987). Determination of layer moduli using a falling weight deflectometer. *Transportation Research Record*, *1117*, 1–10.
- Austroads 2004, Pavement Design A Guide to the Structural Design of Road Pavements, Austroads Incorporated, Sydney, New South Wales, Australia.
- Baladi, G., Dawson, T., & Sessions, C. (2009). *Pavement Subgrade MR Design Values for Michigan's Seasonal Changes.*
- Burnham, T., and Johnson, D. (1993). "In-situ characterization using the dynamic cone penetrometer." *Rep. MN-93/05*, Minnesota Dept. of Transportation, Maplewood, Minn.
- Bekele, A. (2017). Correlation of CBR with Index Properties of Soils in Sululta Town.
- Bush, A. J., & Alexander, D. R. (1985). Pavement evaluation using deflection basin measurements and layered theory. *Transportation Research Record: Journal of the Transportation Research Board*, *1022*, 16–29.
- Chai, G., and Roslie, N. (1998). "The structural response and behavior prediction of subgrade soils using falling weight deflectometer in pavement construction." *Proc., 3rd Int. Conf. on Road and Airfield Pavement Technology*, China.
- Chai, G. W., Argadiba, S., Stephenson, G., Condric, I., Oh, E. Y., & Manoharan, S. P. (2013). Prediction of subgrade CBR using FWD for thin bituminous pavements. *International Journal of Pavement Research and Technology*, *6*(4), 280–286. https://doi.org/10.6135/ijprt.org.tw/2013.6(4).280
- Drumm, B. E. C., Pierce, T. J., & Members, A. (1990). Estimation of subgrade resilient modulus from standard tests. *Manager*, *116*(5), 774–789.
- Duarte, S. L. (2016). Modelos lineales generalizados: regresión de rango reducido y reducción suficiente de dimensiones.
- Eka Putri, E., V Kameswara Rao, N. S., & Mannan, M. A. (2012). Evaluation of Modulus of Elasticity and Modulus of Subgrade Reaction of Soils Using CBR Test. *Journal of Civil Engineering Research*, 2(1), 34–40. https://doi.org/10.5923/j.jce.20120201.05
- FHWA. (2017). Using Falling Weight Deflectometer Data with Mechanistic-Empirical Design and Analysis (March 2017). NO. FHWA-HRT-16-010.
- Gopalakrishnan, K. (2009). Backcalculation of Non-Linear Pavement Moduli Using Finite-Element Based Neuro-Genetic Hybrid Optimization. *Open Civil Engineering Journal*, (515), 83–92. Retrieved from http://mail.benthamscience.com/open/tociej/articles/V003/83TOCIEJ.pdf
- Guzmán, E. A., & Higuera, C. H. (2016). Comparación entre el módulo resiliente de la subrasante determinado en laboratorio y el retrocaculado, factor de ajuste "C." *Ingenio Magno*, *7*(1), 62–83.
- Guzmán Suarez, E. A. (2017). Factores para el Ajuste de los Módulos de Retrocálculo de Pavimentos Flexibles Adjustment Factors for Backcalculated Modulus of Flexible
Pavement. III, 73–89.

- Hassan, A. (1996). "The effect of material parameters on dynamic cone penetrometer results for fine-grained soils and granular materials." PhD dissertation, Oklahoma State Univ., Stillwater, Okla.
- Heukelom, W., & Klomp, A. J. G. (1962). Dynamic Testing as a Means of Controlling Pavements During and After Construction.
- Horak, E. (2007). Surface Moduli Determined with the Falling Weight Deflectometer Used as benchmarking Tool. (July).
- Houston, W. N., Mamlouck, M. S., & Perera, R. W. S. (1992). Laboratory versus Nondestructive Testing for Pavement Design. *Journal of Transportation Engineering*, 118(2), 207–222. https://doi.org/10.1061/(asce)0733-947x(1992)118:2(207)
- IMT. (2001). Módulos de Resiliencia en Suelos Finos y Materiales Granulares. Publicación Técnica N. 142, (142), 58.
- INVIAS. (1998). Manual de Diseño de Pavimentos Asfálticos en Vías con Medios y Altos Volúmenes de Tránsito.
- INVIAS. (2008). Guía Metodológica para el Diseño de Obras de Rehabilitación de Pavimentos Asfálticos de Carreteras. In Segunda Edición.
- INVIAS. (2013). Normas de ensayo para materiales de carreteras. Sección 100. 798. Retrieved from http://www.invias.gov.co/index.php/documentos-tecnicos-izq/139documento-tecnicos/1988-especificaciones-generales-de-construccion-de-carreterasy-normas-de-ensayo-para-materiales-de-carreteras

Jones, G., 1997. Analysis of beams an elastic foundation. Thomas Telford, United Kingdom.

- J. Roberts, N. Michel & D. Paine, STEP: A New Estimation of Flexible Pavement Configuration & Remaining Structural Life, Road and Transport Research Vol. 15 No. 4, 2006.
- Leal Noriega, M. H. (2010). Relación entre el módulo resiliente hallado por retrocalculo y el encontrado en ensayos de laboratorio. *Universidad Nacional De Colombia*, 131.
- Limaymanta, F., & Gutiérrez, W. (2003). Ensayo de módulo de resiliencia.
- Lopez Gonzalez, E., & Ruiz Soler, M. (2011). Análisis de datos con el Modelo Lineal Generalizado. Una aplicación con R. 59–80.
- Maher, A., Bennert, T., Gucunski, N., & Papp, W. (2000). *Resilient Modulus Properties of New Jersey Subgrade Soils*. (September).
- Mamlouk, M. S., Houston, W. N., Houston, S. L., & Zaniewski, J. P. (1988). AZ254 Rational characterization of pavement structures using deflection analysis Mamel.pdf.
- Michelow, J. (1963). Analysis of Stresses and Displacements in N-layered Elastic System Under a Load Uniformly Distributed on a Circular Area.
- Montgomery, D., Peck, E., & Vining, G. (2002). *Introducción al Análisis de Regresión Lineal* (Tercera).
- Nazarian, S., and Feliberti, M. "Methodology for Resilient Modulus Testing of Cohesionless Subgrades," Transportation Research Record 1406, TRB, National Research Council,

Washington D.C., 1993, pp. 108-115

- NCHRP. (2001). Guide for Mechanistic-Empirical Design Correlation of CBR Values with Soil Index. (March).
- NCHRP. (2004). Guide For Mechanistic Empirical Design of New And Rehabilitated Pavement Structures (March 2004). Illinois: ARA, Inc., ERES Consultants Division 505 Wes University Avenue Champaing, Illinois 61820.
- NCHRP. (2014). Guide For Mechanistic Empirical Design of New And Rehabilitated Pavement Structures. In National Cooperative Highway Research Program Transportation Research Board National Research Council (March 2014, Vol. 91, pp. 1–85). Illinois: ARA, Inc., ERES Consultants Division 505 Wes University Avenue Champaing, Illinois 61820.
- Newcomb, D. E. (1987). "Comparison of field and laboratory estimated resilient moduli of pavement materials." *Asphalt Paving Technol.*, 56, 91–106.
- Oh, J. H., Fernando, E. G., Holzschuher, C., & Horhota, D. (2011). International Journal of Pavement Engineering Comparison of resilient modulus values for Florida flexible mechanistic-empirical pavement design. (May 2015), 37–41. https://doi.org/10.1080/10298436.2011.633170
- Pérez, N., Garnica, P., & Mestas, N. (2016). El Módulo de Resiliencia: Cómo fluctúa después de la construcción del pavimento y cómo estimar estas fluctuaciones. (478).
- Petersen, M., Wahr, C., Palma, G., Castro, L., & Albornoz, J. (n.d.). Relación entre módulo resiliente determinado mediante deflectómetro de impacto y el de laboratorio.
- Pezo, R.F., Kim, D.S., Stokoe II, K.H., and Hudson, W.R. "A Reliable Resilient Modulus Testing System" Transportation Research Record 1307, TRB, National Research Council, Washington D.C., 1991, pp. 90 - 98.
- Powell, W.D., Potter, J.F., Mayhew, H.C., and Nunn, M.E. 1984. The structural design of bituminous roads. TRRL Re-port LR 1132,62pp.
- Rahim, A., & George, K. P. (2003). Falling Weight Deflectometer for Estimating Subgrade Elastic Moduli. *Journal of Transportation Engineering*, 129(1), 100–108. https://doi.org/10.1061/(ASCE)0733-947X(2003)129:1(100)
- Rondón, H., & Reyes, F. (2007). Metodologías De Diseño De Pavimentos Flexibles : Tendencias, Alcances Y Limitaciones Design Methodologies of Flexible Pavements : Tendencies, Reaches and Limitations. *Design*, *17*, 41–65.
- SHELL International Petroleum Company. (1978). SHELL pavement design manual (1978th ed.). London.
- THE ASPHALT INSTITUTE. (1991). In *Thickness design. Asphalt pavements for highways and streets*. Lexington, KY.
- Rowntree, D. (1984). Introducción a la estadística: un enfoque matemático (1ra Edició). Bogotá.
- Uzan, J. (1985). Characterization of Granular Material. 52–59.
- WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. (1995). In WSDOT pavement guide. Volume 2. Pavement notes for design, evaluation and rehabilitation

ANEXO 1. BASE DE DATOS, DEFLECTOMETRÍA Y GEOTECNIA

									D	EFLECTOM	IETRÍA															GEOTECNIA						
			Deflexi	ones: Dato	os Obtenido	os en Camp	00					- fl	C i.i.e		(Espesores de E	structura													CBP muestra
Punto	Carga	Temperatura			Defle	xiones Me	didas (µm)	_				enexiones	Corregida	s por Carga	ι (μm)		Сара	MG-1	MG-2	Espesor	Profundidad	Clasificación Suelo s	subrasante	Humedad	Limites de Att	erberg (%):	Gr	anulometría (%)	CBR, Muesti	a inalterada	compactada en laboratorio
	8-	Pav. Aire	d _o	d1	d ₂	d ₃	d ₄	d ₅	d ₆	d _{oc}	d _{1c}	d _{2c}	d _{3c}	d _{4c}	d _{5c}	d _{6c}	Asfáltica			Total	exploración (m)			Natural (%)		_						
#	kN	≌C °C	0 cm	30 cm	60 cm	90 cm	120 cm	150 cm	180 cm	0 cm	30 cm	60 cm	90 cm	120 cm	150 cm	180 cm	ст	cm	cm	cm		AASTHO	USCS		LL LP	IP	Gravas	Arenas	Finos	Humedad natural	inmersión	Inmersión
1	39	25 25	785	467	182	85	55	43	37	797	474	185	86	56	44	38	15	35		50	0.6	A-2-7	SP	4.8	23.7 14.9	8.8	42.10	54.20	3.70	7.50		
2	40	25 25	530	260	56	22	14	10	8	531	261	56	22	14	10	8	18	20		38	0.6	A-4	ML	16.6	33.0 27.7	7 5.3	9.50	38.30	52.20	7.30		26.00
4	39 41	27 27	319	208	123	84 71	49	32	22	308	201	159	69	45	33	23	14	63		36 78	0.4	A-7-6	СН	24.0	55.0 29.0	26.0	38.80	27.68	69.08	6.60	5.00	36.00
5	41	26 20	343	257	193	147	118	101	81	338	253	190	145	116	100	80	20	45		66	1.00-1.50	A-3	SW-SP	12.0	NP NP	NP	0.94	87.27	11.79	0.00	0.00	6.10
6	41	14 14	303	247	201	154	116	92	72	294	240	195	150	113	89	70	28	69		97	0.98-1.50	A-3	SW-SP	12.0	NP NP	NP	15.50	61.38	23.12			5.40
7	41	16 15	286	238	200	157	127	105	84	280	233	196	154	125	103	82	29	65		94	0.95-1.50	A-2-7	SC-SM	22.0	42.0 27.0	0 15.0	10.17	56.63	33.20			5.30
8	41	25 20	147	107	77	49	83 32	21	45	144	105	75	48	82 31	21	13	23	50		73	0.73-1.50	Δ-2-7	SC-SIVI	4.0	33.0 21.0	19.0	49.66	30.88	19.46 28.56			9.30
10	39	32 31	184	120	79	52	34	26	19	187	122	80	53	35	26	19	25	90		115	0.5-0.70	A-1-b	GM	4.3	20.0 17.0	3.0	46.70	30.30	23.00			59.50
11	40	29 29	253	124	60	30	18	13	11	255	125	60	30	18	13	11	25	90		115	0.5-0.8	A-2-4	GM-GC	3.8	20.0 16.0) 4.0	44.60	28.10	27.30			42.30
12	40	27 27	136	59	34	21	15	12	10	137	60	34	21	15	12	10	12	85		97	0.30-0.97	A-1-a	GP-GM	3.0	19.0 14.0) 5.0	57.00	32.30	10.70			50.70
13	40	27 26	161	73 92	41	23	16	12	8	162	/3 92	41	23	16	12	8	20	70		90	0.50-0.90	A-1-a	GC GP-GM	5.0	21.0 15.0	$\frac{0}{0}$ $\frac{6.0}{4.0}$	46.90	40.80	12.30 8.10			69.30
15	40	27 26	103	93	50	30	19	16	13	192	93	50	30	19	16	13	15	88		103	0.45-1.03	A-1-a	GP-GM GP-GM	3.0	NP NP	NP	63.60	28.30	8.10			50.80
16	40	26 27	129	73	49	31	19	12	8	130	73	49	31	19	12	8	14	90		104	0.24-1.04	A-1-b	SP-SM	2.0	NP NP	NP	34.80	56.70	8.50			64.30
17	41	27 26	238	145	90	56	38	27	20	235	143	89	55	38	27	20	16	91		107	0.36-0.90	A-1-a	GC-GM	3.6	20.0 16.0	0 4.0	57.80	29.90	12.30			20.40
18	40	29 25	254	105	52	30	22	19	16	254	105	52	30	22	19	16	16	54		70	0.70-0.93	A-1-a	GC-GM	17.0	18.0 14.0) 4.0	45.00	42.30	12.70			60.90
20	40	31 29	362	134	51	24	15	13	12	365	135	51	24	15	13	12	18	90		108	0.95-1.55	A-5 A-1-a	GM-GC	4.0 5.0	NP NP	NP	47.00	38.20	8.20 14.80			32.00
21	40	27 26	148	56	28	19	15	13	11	148	56	28	19	15	13	11	18	120		138	0.68-1.38	A-3	SC-SM	4.0	NP NP	NP	18.60	64.40	17.00			59.40
22	40	30 25	225	112	62	36	24	19	17	227	113	62	36	24	19	17	19	45		64	0.64-0.80	A-1-a	GP	4.0	NP NP	NP	50.80	47.10	2.10			95.10
23	40	30 25	232	123	63	34	23	19	16	231	123	63	34	23	19	16	11	100		111	0.71-1.11	A-1-a	GP-GM	3.0	NP NP	NP 7.0	59.50	33.80	6.70			62.00
24	40	24 26	195	103	56	35	24	19	10	195	103	56	35	24	19	10	18	102		120	0.80-1.20	A-2-4 A-3	SC SP-SM	4.0	21.0 14.0 NP NP	0 7.0 NP	40.70	45.90	16.70			50.30
26	40	25 27	265	142	79	53	39	35	28	267	143	80	53	39	35	28	12	56		68	0.68-0.88	A-2-4	GC	5.0	20.0 12.0	0 8.0	53.80	34.50	11.70			32.10
27	40	25 27	190	79	37	21	14	12	10	190	79	37	21	14	12	10	19	62		81	0.81-1.11	A-3	SP-SM	5.0	NP NP	NP	38.20	36.30	25.50			35.60
28	40	26 26	234	106	56	31	22	17	13	236	107	57	31	22	17	13	18	49		67	0.67-0.92	A-1-a	GP	4.0	NP NP	NP	56.40	40.50	3.10			58.30
30	40	27 20	247	131	77	51	38	31	27	248	131	77	51	38	31	27	17	64		82	0.74-0.94	A-1-a A-3	SP-SM	5.0	NP NP	NP	37.30	34.30	28.40			17.30
31	40	24 26	185	86	43	24	18	15	13	184	86	43	24	18	15	13	17	50		67	0.67-0.97	A-1-a	GC-GM	3.0	19.0 14.0	5.0	55.60	32.10	12.30			81.30
32	40	25 26	177	100	50	27	18	15	12	177	100	50	27	18	15	12	14	70		84	0.14-0.84	A-1-b	GC-GM	4.0	19.0 13.0	0 6.0	51.10	31.70	17.20			74.70
33	40	25 26	299	144	53	21	12	9	6	296	143	52	21	12	9	6	13	78		91	0.13-0.91	A-1-a	GC-GM	4.0 5.9	18.0 13.0	5.0	53.60	33.10	13.30			83.30
35	41	28 24	326	209	126	79	53	41	34	321	206	124	78	52	40	33	17	59		71	0.90-1.50	A-2-4	CL	22.0	47.0 17.0	30.0	6.00	39.15	54.85	4.20	2.70	97.90
36	40	25 23	168	112	79	60	46	39	32	166	111	78	59	46	39	32	12	52		64	1.10-1.50	A-7-5	SC	16.0	41.0 20.0) 21.0	15.00	46.20	38.80	6.90	3.90	
37	40	24 23	188	133	107	83	68	58	48	188	133	107	83	68	58	48	12	49		61	0.80-1.50	A-7-5	CL	23.0	44.0 17.0	27.0	3.00	34.43	62.57	5.80	3.50	
38	40	22 23	247	178	131	95	68 10	54	46	246	178	131	95	68 10	54	46	25	41		66 70	1.10-1.50	A-7-5	CL SC-SM	25.0	48.0 21.0	27.0	0.00	26.42	73.58	5.10	3.30	
40	41 40	25 23	290	140	117	65	37	24	19	247	195	116	64	37	24	19	25	41		70	1.10-1.50	A-2-4 A-1-b	SC-SM	9.0	22.0 16.0) 6.0	39.00	47.14	13.86	11.70	6.40	
41	40	20 18	295	182	125	93	72	63	55	292	180	124	92	71	62	54	19	68		88	1.00-1.50	A-7-6	SC	27.4	73.0 31.1	1 41.9	14.67	37.13	48.20	6.50	3.77	
42	40	21 19	251	144	84	50	37	31	28	252	144	84	50	37	31	28	22	61		82	0.80-1.50	A-7-6	MH	38.7	81.8 39.2	2 42.6	2.05	6.59	91.36	7.73	4.33	
43	40	20 17	251	178 95	110 51	74	20	46	40	178	93	109	73	20	46	40	21	<u>58</u>		79 81	0.80-1.50	A-7-6	СН	35.5	73.8 31 3	2 <u>29.5</u> 7 <u>42</u> 1	0.00	2.45	97.55	<u> </u>	4.33	
45	41	18 17	254	149	84	51	37	32	28	250	147	83	50	36	32	28	28	57		85	0.80-1.50	A-7-6	MH	31.4	53.3 34.9	9 18.4	0.00	6.71	93.29	8.50	5.53	
46	40	17 18	182	101	69	55	42	40	35	180	100	68	54	42	40	35	21	60		80	1.00-1.50	A-7-6	СН	32.0	80.6 31.5	5 49.1	1.00	4.81	94.19	8.20	4.98	
47	40	16 17	370	188	106	77	56	47	40	368	187	105	77	56	47	40	21	44		65	0.85-1.50	A-7-6	MH	35.0	67.4 36.3	3 31.1	0.40	2.82	96.78	7.10	4.01	
48	40	19 17	177	103	61	43	34	30	21	175	102	60	43	34	30	21	18	62		80	1.00-1.50	A-7-6	MH	36.6	62.6 41.0	$2 \frac{43.4}{21.7}$	0.00	14.91	85.09	5.60	4.00	
50	40	18 17	193	125	84	56	40	33	31	192	124	84	56	40	33	31	19	53		71	1.10-1.50	A-7-6	СН	39.0	75.7 32.0) 43.7	1.50	6.00	92.50	8.40	4.70	
51	41	19 17	220	121	66	40	26	23	20	217	120	65	40	26	23	20	19	65		84	0.90-1.50	A-7-6	MH	41.8	68.6 45.2	2 23.4	0.00	3.88	96.12	6.60	4.17	
52	41	18 17 18 17	223	141	85 65	50	32	26	20	217	137	83	49	31	25	19	20	86		106 9F	0.80-1.50	A-7-6	CH	42.0	80.3 34.1	L 46.2	0.20	6.95 5.52	92.85	7.60 9.70	4.20	
54	41 40	18 17	148	92	61	44	33	26	20	149	99	60	43	33	25	25	19	72		91	0.90-1.50	A-7-6	MH	45.0	80.0 37.4	41.9	0.10	4.99	94.28	6.50	4.95	
55	41	18 17	125	86	64	45	32	28	25	122	84	62	44	31	27	24	19	71		89	0.90-1.50	A-7-6	MH	40.4	85.8 40.1	1 45.7	0.00	7.59	92.41	8.40	4.73	
56	40	19 18	97	61	53	45	38	32	31	96	60	52	45	38	32	31	19	71		90	0.95-1.00	A-7-6	СН	32.0	76.6 32.5	5 44.1	1.10	6.14	92.76	7.80	4.87	
57	40	<u>19 18</u> 20 19	102	71 51	59 37	48	39	33	28	101	70	58	48	39	33	28	20	74		93	0.90-1.50	A-7-6	СН	38.0	69.2 31.4 86.7 52.0	$\frac{1}{37.8}$	0.10	7.34	92.56	7.00	4.33	
59	40	20 19	94	60	47	38	30	28	27	94	60	47	38	30	28	27	19	32		51	0.85-1.50	A-7-6	СН	30.0	75.7 31.7	7 44.0	0.60	3.44	95.96	8.70	5.16	
60	40	24 21	363	197	106	57	30	19	12	365	198	107	57	30	19	12	25	60		85	1.00-1.50	A-7-6	СН	35.0	68.8 32.3	3 36.5	0.20	6.66	93.14	6.80	4.26	
61	41	20 19	109	69	50	41	31	25	20	108	68	49	40	31	25	20	24	65		88	0.90-1.50	A-7-5	ML	19.4	40.6 29.3	3 11.3	0.00	15.81	84.19	7.60	4.87	
62	40	<u>21</u> 20 16 16	147	90 710	268	36	22 55	15	13	147	90	263	36	22	15	13	24	<u>63</u>		87	0.80-1.50	A-7-6	MH	36.0	67.9 36.4 34.0 17.0	$\frac{1}{170}$	0.50	8.68	90.82	8.10	4.99	
64	41	16 15	929	446	166	91	70	57	51	902	433	161	88	68	55	50	14	59	1	73	0.67-1.50	A-6	CL	24.0	36.0 21.0) 15.0	2.80	27.90	69.30	2.79	1.30	
65	41	14 13	400	339	270	208	156	121	97	391	332	264	203	153	118	95	17	59		76	0.75-1.50	A-7-5	CH-MH	47.4	62.0 35.4	1 26.6	2.20	11.00	86.80	4.02	2.94	
66	41	14 13	379	312	248	199	154	124	105	370	304	242	194	150	121	102	17	46		63	0.63-1.20	A-3	SM	54.7	NP NP	NP	4.60	52.40	43.00	4.52	2.53	
67 69	41	14 14	396	309	236	184	149 06	120	102	385	301	230	179	145 02	117	99	16	39		55 gr	0.55-1.20	A-2-7	SC	32.5	51.0 28.0 30.0 10.3	23.0	3.70	57.40	38.90 72.20	2.86 2.15	1.80	
69	41	22 18	532	470	358	261	191	145	121	522	461	351	256	187	142	119	17	51	+	68	0.68-1.10	A-0 A-7-5	СН	62.5	60.0 30.6	5 <u>29.4</u>	0.50	17.50	82.00	1.40	0.90	
70	40	20 20	1054	662	298	193	150	131	113	1057	664	299	193	150	131	113	14	46		60	0.60-1.15	A-6	CL	19.4	33.0 16.0	17.0	8.50	35.80	55.70	5.00	3.53	
71	41	20 20	800	546	333	222	169	131	119	790	539	329	219	167	129	118	15	58		73	0.73-1.20	A-7-5	ML	62.5	49.0 32.4	1 16.6	3.20	21.60	75.20	1.60	1.00	
72	41	22 19 10 19	934	576	325	223	174	142	119	920	567	320	220	171	140	117	16	64 E2		80	0.80-1.20	A-2-7	SM	65.7	51.0 31.5	2 19.5	14.30	39.60	46.10	2.20	1.40	
73	43	18 18	463	383	230	210	145	118	108	451	373	218	204	153	109	98 100	13	53		72	0.72-1.10	A-7-0 A-7-5	CH-MH	58.0	45.0 24.8 67.0 40.5	5 26.5	0.20	13.50	85.90	3.92 1.75	0.64	
75	41	18 19	400	318	240	173	129	103	88	391	311	235	169	126	101	86	18	55		73	0.73-1.10	A-7-5	ML	45.0	49.0 32.0	0 17.0	6.40	17.56	76.04	1.42	0.84	
76	41	17 19	439	383	279	201	140	112	93	430	375	274	197	137	110	91	15	59		74	0.74-1.10	A-7-6	CL	30.8	44.0 22.8	3 21.2	0.20	9.90	89.90	2.86	1.72	
77	41 //1	18 19 21 10	469	377	280 197	204	152	121 <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	104	459	369	274 192	200	149	118 92	102	20	63 61		83 85	0.83-1.10	A-7-6		39.0 7 5	41.0 21.0	J 20.0	0.00	0.00	100.00	0.57	0.26	10 20
79	41	20 19	490	389	282	200	150	119	99	482	382	277	197	147	117	97	17	53		70	1.13-1.50	A-7-6	CH	53.7	54.0 26.5	5 27.5	0.80	17.70	81.50	0.45	0.14	13.20

								D	EFLECTON	IETRÍA															C	GEOTECNIA						
			Deflexio	nes: Datos Ob	tenidos en C	Campo											Espesores de E	structura														
Punto		Temperatura			Deflexiones	Medidas (um			-	0	Deflexiones	Corregida	s por Carg	a (μm)					-	-	Clasificación Suelo s	subrasante		Limites	de Atterk	perg (%)	Gra	nulometría (%	.)	CBR, Mues	tra inalterada	CBR, muestra compactada en
	Carga						4		4	4		4	4	-		Capa Asfáltica	MG-1	MG-2	Espesor Total	Profundidad exploración (m)			Humedad Natural (%)									laboratorio
		Pav. Aire	a _o	d ₁		3 u ₄	a 5	a ₆	a _{0c}	a _{1c}	a _{2c}	a _{3c}	a _{4c}	a _{5c}	a _{6c}					-		1								Uumodod		
#	kN	≌C °C	0 cm	30 cm 60	0 cm 90 d	cm 120 cm	150 cm	180 cm	0 cm	30 cm	60 cm	90 cm	120 cm	150 cm	180 cm	cm	ст	cm	cm		AASTHO	USCS		ш	LP	IP	Gravas	Arenas	Finos	natural	inmersión	Inmersión
80	41	19 19 12 14	418	322 2	245 17	4 138	94	84	408	314	239	170	135	92	82	16	53		69 64	0.67-1.20	A-7-5	CH-MH	50.5	64.0	40.4	23.6	2.20	10.80	87.00	1.78	1.21	
82	42	12 14 12 14	366	317 2	248 19	5 148	119	98	353	306	234	188	143	105	94	16	54		70	0.70-1.50	A-7-5	CH-MH	47.0	85.0	54.0	31.0	1.30	38.70	60.00	2.82	1.37	
83 84	40	14 13 14 13	1042 2776	663 3 1805 7	367 24 730 38	5 185 2 260	137	113 145	1032 2833	656 1842	363	243 390	183 265	136	112 148	18	<u>49</u> 56	67	134 140	0.67-1.40	A-7-6 A-7-5	СН	50.1 48.4	53.0 58.0	28.3 30.6	24.7 27.4	0.90	14.90 18.90	84.20 81.10	2.74	2.13	<u> </u>
85	41	14 14	563	451 3	310 21	.1 154	116	95	553	443	305	207	151	105	93	13	47	60	120	0.60-1.30	A-6	CL	64.3	35.0	17.0	18.0	2.00	26.90	71.10	0.97	0.49	
86	41	14 14	858	627 3	397 25	7 <u>184</u>	143	116	841	615	389	252	180	140	114	10	60	70	140	0.70-1.50	A-1-b	SM	3.7	NP	NP	NP	33.90	41.80	24.30	1 96	1 20	20.50
88	40	14 14 14	555	466 3	353 25	1 183	133	112	540	454	344	208	179	132	104	12	48	60	100	0.60-1.30	A-7-5	CH-MH	53.0	60.0	48.0	12.0	0.80	31.10	68.10	2.15	1.14	
89	41	14 14	674	499 3	337 22	2 158	117	100	661	489	330	218	155	115	98	16	24	40	80	0.40-1.20	A-7-5	CH-MH	60.0	64.0	34.0	30.0	7.50	38.10	54.40	2.53	1.70	
90 91	40	14 13 14 14	1165 406	889 5 384 2	572 35 267 18	8 223 7 128	94	126	394	893	259	360	224 124	158 91	127	15	55	70	140	0.70-1.50	A-4 A-7-5	CH-MH	56.9 47.0	55.0	32.0	23.0	5.40	27.10 9.30	67.50 89.10	1.51	0.47	<u> </u>
92	40	14 14	1205	783 4	473 29	6 202	147	125	1208	785	474	297	203	147	125	12	58	70	140	1.10-1.50	A-6	CL	53.0	32.0	17.0	15.0	2.50	9.60	87.90	1.28	0.63	
93	40	12 14	1537	962 5	512 29	1 185	134	111	1541	964	513	292	185	134	111	11	59	70	140	0.70-1.50	A-2-4	SC-SM	11.0	23.0	17.0	6.0	18.90	34.40	46.70		'	15.40
94	40	12 14 16 17	304	256 1	187 13	<u> </u>	77	64	290	244	178	131	91	73	61	8	90	40	98	0.98-1.50	A-2-6 A-2-4	SC-SM	9.0	23.0	17.0	6.0	23.80	31.80	44.40		·'	12.70
96	40	20 21	1153	598 2	284 17	0 118	99	79	1147	595	283	169	117	99	79	10	45		55	0.94-1.8	A-7-6	СН	20.0	60.0	29.0	31.0	2.70	30.10	67.20	1.90	0.88	
97	40	20 <u>19</u> 17 15	553	335 2	267 20 236 14	07 106	88	73 57	550	333	266	206	105 88	<u>88</u>	73 53	12	46		58	0.60-1.00	A-7-5	ML CH	19.0	49.0	32.0	17.0	10.10	27.40	62.50 100.00	3.73	2 30	<u> </u>
99	43	18 15	975	660 3	338 16	i3 85	53	43	926	627	321	155	81	50	41	19	43		62	0.62-1.50	A-7-5	ML-OL	22.0	35.0	17.0	18.0	0.00	1.23	98.77	3.60	1.30	
100	39	23 20	463	351 2	245 15	3 97	66	49	477	362	253	158	100	68	51	11	39		50	0.50-1.50	A-2-4	SM	10.4	NP	NP	NP	0.00	78.68	21.32	3.80	3.60	
101	39	19 19 18	757	483 2	263 15 240 12	7 82	60	51	769	492	253	148	83	61	69 52	9	<u> </u>		46 60	0.46-1.50	A-6 A-7-6	CL	23.0	28.0 46.0	20.0	26.0	0.00	12.94	87.06	3.50 4.00	3.60	<u> </u>
103	41	20 17	683	438 2	207 97	7 54	40	35	675	433	204	96	53	40	35	14	50		64	0.75-1.50	A-7-6	СН	32.0	60.0	22.0	38.0	0.00	0.00	100.00	4.10	1.80	
104	43	17 18	585	316 1	105 40	0 28	24	24	545	295	98	37	26	22	22	18	38		56	0.56-1.50	A-7-6	СН	32.0	62.0	26.0	36.0	0.00	0.00	100.00	7.10	3.20	l
105	43 39	18 16 56 39	123	70 2	51 32	2 21	15	53	126	367	52	33	90 22	15	49	32	38		70	0.70-1.50	A-7-5 A-4	MH-OH SM	6.9	60.0 NP	24.0 NP	36.0 NP	0.00	54.40	45.00	3.30	1.04	<u> </u>
107	40	58 40	158	102	84 57	7 39	30	20	160	103	85	58	39	30	20	21	49		70	0.90-1.50	A-6	CL	19.9	28.6	17.5	11.2	0.00	40.20	59.80	2.70	1.30	
108	39 40	55 40 19 17	139 360	95 219 1	84 61 113 43	1 48 3 41	38	31	142	97	86	62 43	49	39	32	20	50	25	<u>70</u> 53	1.10-1.50	A-6	CL GP-GC	<u>16.0</u> 6.7	29.2	13.5 20.0	15.6 6.0	0.00	39.80 25.90	60.20 6.90	7.30	6.00	70.90
110	40	21 17	274	171	85 46	6 25	19	15	271	169	84	45	25	19	15	8	20	25	53	0.65-1.50	A-2-4	GC	6.5	30.0	20.0	10.0	49.10	35.90	15.00		′	77.50
111	40	22 18	523	310 1	139 63	1 43	33	26	522	309	139	61	43	33	26	8	20	25	53	0.9-1.50	A-1-b	SM	14.0	NP 22.0	NP	NP	13.10	73.20	13.70		'	12.10
112	40	32 26	258	149	85 69	9 27	22	12	257	160	85	69	41	22	12	9	20	25	54	0.60-1.50	A-1-d A-2-4	SW-SP	12.3	22.0	20.0	8.0	40.00	49.20	10.00		·'	16.60
114	40	19 16	1528	720 1	125 36	6 <u>30</u>	22	18	1540	725	126	36	30	22	18	6	35		41	0.42-0.92	A-7-6	CH-MH	22.0	50.0	27.0	23.0	22.60	21.70	55.70	4.37	0.38	
115	41 41	18 16 18 15	1397	615 2	234 93	2 <u>28</u> 344	23	19	1366	601	229	91	43	22	19	6	35		41 41	0.8-1.10	A-7-6 A-7-5	MH	35.0	48.0	43.0	39.0	5.00	23.10	71.80	1.66	0.59	
117	41	18 15	1319	661 2	284 14	3 93	62	45	1277	640	275	138	90	60	44	6	35		41	0.65-1.20	A-2-7	SM	18.0	44.0	27.0	17.0	16.70	53.30	30.00	1.23	1.01	
118 119	41	25 23 24 22	956 704	525 3	301 20 376 24	153 7 155	90	92	944	519	297	205	151	90	91	30	40		70 80	0.70-0.90		MH	68.8 52.0	98.0 82.0	82.0 71.0	16.0 11.0	0.00	16.50 15.90	83.50 84.10	2.90	2.30	<u> </u>
120	39	21 25	1095	436 2	255 17	3 144	117	103	1112	443	259	176	146	119	105	5	55		60	0.60-0.80		MH	63.6	97.0	76.0	21.0	0.00	2.80	97.20	2.10	1.60	
121	43	19 15 10 15	483	274 1	174 13	9 99	85	73	454	257	163	131	93	80	69	15	55		70	1.2	A-7-5	MH	8.1	58.0	30.5	27.5	0.00	33.50	66.50	4.30	4.00	l
122	43	18 15	106	81	55 43	3 32	24	21	99	76	52	40	30	22	20	16	47		63	1.2	A-7-5	MH	14.9	57.0	27.4	29.6	0.00	21.20	78.80	4.90	4.30	
124	43	18 15	519	430 3	345 28	229	176	145	481	398	319	260	212	163	134	16	47		63	1.2	A-7-5	ML	17.0	57.0	33.1	23.9	0.00	29.90	70.10	4.40	3.90	l
125	43	17 <u>15</u> 17 16	447	239 1	147 9: 126 55	<u> </u>	32	26	422	222	136	52	44	38	25	16	24		40	1.2	A-7-5	MH	41.4 32.2	53.0	44.3 33.3	30.7 19.7	0.00	28.90	92.70 71.10	4.40	4.20	
127	43	18 15	203	141	88 62	2 50	33	25	191	132	83	58	47	31	23	16	24		40	1.2	A-7-5	MH	35.1	61.0	34.9	26.1	3.10	12.90	84.00	4.30	3.90	
128	43	17 15 30 26	311 247	162 181 1	70 42 136 94	2 <u>28</u> 564	15 61	11 40	291 228	152 167	66 126	39 88	26 59	<u>14</u> 56	10 37	16 30	24 60		40 90	1.2 0.82-1.50	A-7-5	MH MH	28.5 22.2	51.0 54.0	30.3 33.3	20.7	0.00	42.10 6.90	57.90 92.00	4.50 7.30	4.40	t
130	43	30 26	394	241 1	105 37	7 15	10	6	369	226	98	35	14	9	6	38	62		100	0.70-1.50	A-6	CL	15.3	40.3	14.7	25.6	0.00	24.00	76.00	5.70	1.80	
131	43	27 23	440	275 1	153 10	9 58	40	31	408	255	142	101	54	37	29	18	97		115	1.10-1.50	A-6	SC	12.3	37.4	12.9	24.5	3.30	55.30	41.40	4.90	1.90	
133	44	<u>28</u> 25	229	139	<u>60</u> 55	, <u>33</u> 5 <u>38</u>	33	11	211	128	55	51	35	30	10	17	71		88	1.17-1.50	A-7-0	CL	13.4	26.5	16.0	10.5	2.90	25.90	71.20	5.50	3.30	
134	44	28 26	205	187 1	153 11	5 83	78	61	187	170	139	105	76	71	56	33	117		150	0.96-1.50	A-6	CL	19.3	32.3	15.5	16.8	0.00	36.10	63.90	4.80	1.00	l
135 136	44	29 27 31 27	203	172 1 135	122 82 99 62	2 48 2 44	44	32 24	185 138	157 123	111 90	75 56	44	40	29 22	36 25	60 125		96 150	0.75-1.22	A-7-6 A-4	CL MI	12.5 11.8	41.4	19.4 27.1	22.0 10.2	7.50	18.30 13.60	74.20	18.50 11.60	1.10 0.90	<u> </u>
137	44	31 28	364	224 1	125 78	8 56	45	33	335	206	115	72	51	41	30	38	82		120	0.85-150	A-7-6	CL	19.4	42.4	21.8	20.6	0.00	15.20	84.80	2.30	1.20	
138	44	31 29 31 20	131	104	78 55	5 40	23	7	120	95	71	50	37	21	6 17	28	34		62	0.57-0.90 0 0.90-1.50	A-7-6	CH	17.2	56.2	23.6	32.6	1.10	18.10	80.80	4.70	2.30	
139	44	31 29	561	409 2	233 12	0 90	53	35	522	380	217	112	84	49	33	31	37		68	0.8-1.50	A-7-6	CL	19.3	37.2	22.5	14.7	0.00	14.50	85.50	7.80	1.30	
141	44	31 29	427	326 2	206 10	3 74	60	40	392	299	189	94	68	55	37	16	62		78	0.9-1.50	A-7-6	СН	18.2	55.5	21.5	34.0	0.00	6.50	93.50	7.68	2.20	
142	44 43	32 <u>29</u> 31 29	637	445 2	234 13	5 82	66	48 37	591	413	217	125	76	61	34	15	83	+ +	98	1.20-1.50	А-7-б А-4	ML	20.1	35.8	28.0	7.8	0.00	25.20	75.80	4.90	2.90	
144	41	31 30	194	70	43 42	1 29	27	18	191	69	42	40	29	27	18	13	137		150	0.81-1.50	A-7-6	СН	26.4	52.3	25.6	26.7	0.00	6.20	93.80	5.70	2.10	<u> </u>
145 146	44	31 29 31 28	367 805	275 1 458 2	179 11 230 12	2 75	74 51	53 29	336 747	252 425	164 213	107 113	76	68 47	49 27	14	66 48		80 60	0.70-1.50	A-7-6	CH	25.2 7.7	58.8 29.8	29.2 17.0	29.7 12.8	0.00	5.60 53.10	94.40 39.60	4.60	1.50	t
147	44	32 29	237	146	72 52	2 32	23	13	215	133	65	47	29	21	12	22	128		150	0.52-0.80	A-6	SC	11.1	33.3	18.8	14.5	25.10	35.00	39.90	8.90	2.10	
148	44	32 28	471	303 1	173 <u>11</u>	.1 75	68	48	432	278	159	102	69	62	44	21	59		80	0.68-1.50	A-7-6	CH	27.7	67.6	23.8	43.8	0.00	3.90	96.10	3.10	1.10	
149	43	31 29	225	129	56 47	+ <u>26</u> 7 34	25	19	208	196	52	44	31	23	18	13	74		85	0.85-1.50	А-6 А-6	CL	11.5	37.7	17.3	20.4	0.00	29.10	70.90	5.70	3.20	
151	44	32 29	513	326 1	176 95	5 77	60	44	471	299	161	87	71	55	40	14	71		85	0.83-1.50	A-6	CL	15.0	40.3	12.1	28.2	3.50	37.40	59.10	6.20	1.60	
152 153	44	32 30 32 29	412 576	293 1 423 2	168 80 261 16	46 1 120	34 107	25 68	379 538	269 395	154 244	74 150	42	31 100	23 64	20	55 127		75 150	0.43-1.12	A-6 A-4	CL MI	17.2 26.7	34.9 61.6	19.2 19.7	15.7 41.9	0.50	24.80 6.30	74.70 93.70	8.30 3.70	4.30	<u> </u>
154	43	32 29	578	377 2	214 12	.8 78	64	44	533	347	197	118	72	59	41	13	137		150	1.20-1.50	A-6	CL	19.2	35.3	18.7	16.6	0.00	27.50	72.50	8.70	4.60	
155	44	31 29 32 20	434	338 2	$\frac{14}{220}$	6 101	92	67	399 492	311	205	134	93 05	85	62 02	10	36		46	0.90-1.50	A-6	CL	19.4	38.8	15.3	23.6	0.00	35.30	64.70 57.10	4.40	2.30	
157	44	33 29	405	262 1	149 10	3 69	65	49	375	243	138	95	64	60	45	15	40		55	0.88-1.50	<u>A-7</u> -6	CH	23.7	52.9	19.8	33.1	7.70	20.90	71.40	2.80	1.00	
158	43	32 28	363	271 1	160 10	2 76	72	52	335	250	148	94	70	67	48	13	75		88	0.85-1.50	A-7-6	СН	31.7	70.7	28.3	42.4	0.00	1.00	99.00	5.70	1.50	

									D	EFLECTOM	IETRÍA															C	GEOTECNIA						
			Deflex	iones: Dato	os Obtenio	dos en Cam	00											Espesores de	structura														
Punto		Temperatura			Defle	exiones Me	didas (µm)			-	D	eflexiones	Corregida	s por Carg	a (μm)	ŀ	Cana			Esposor		Clasificación Suelo	subrasante		Limite	s de Atterk	berg (%)	Gran	ulometría (%))	CBR, Muest	ra inalterada	CBR, muestra compactada en
	Carga	Pav. Aire	d _o	d1	d2	d₃	d4	d₅	d ₆	d _{oc}	d _{1c}	d _{2c}	d _{3c}	d _{4c}	d _{5c}	d _{6c}	Asfáltica	MG-1	MG-2	Total	Profundidad exploración (m)			Humedad Natural (%)									laboratorio
#	kN	°C °C	0 cm	30 cm	60 cm	90 cm	120 cm	150 cm	180 cm	0 cm	30 cm	60 cm	90 cm	120 cm	150 cm	180 cm	cm	cm	cm	cm		AASTHO	USCS	•	ш	LP	IP	Gravas	Arenas	Finos	Humedad	inmersión	Inmersión
159	42	32 29	1224	709	371	211	137	110	76	1160	672	352	200	130	104	72	14	71		85	1.15-1.50	A-7-6	CL	22.1	40.8	16.1	24.7	0.00	25.80	74.20	natural 3.70	1.40	
160	44	33 29	346	244	151	101	70	64	51	317	223	138	92	64	59	47	14	101		115	0.96-1.50	A-7-5	CH	36.1	95.1	32.2	62.9	0.00	5.80	94.20	3.50	1.40	
161	43	33 <u>29</u> 32 29	313	175	97	<u>48</u> 56	44	33	25	262	189	97	45 52	41 42	30	23	18	132		120	0.97-1.50	A-6 A-4	ML	24.2	42.4	20.2	20.1	0.70	40.40	58.90	3.50	2.20	
163	43	32 29	203	157	106	67	65	42	32	188	145	98	62	60	39	30	17	133		150	0.90-1.50	A-7-6	СН	39.4	68.2	23.4	44.8	0.00	5.10	94.90	2.50	1.00	
164 165	42	33 30 32 26	421	260	135 240	64 198	33 106	33 93	30	397 244	245	127 222	60 183	31 98	31 86	28	20	70 67	++	90 92	1.18-1.50	A-2-4 A-7-6	SC-SM CH	12.5 31.7	27.7 60.1	21.9 21.3	5.9 38.8	4.80	61.40 4.70	33.80 95.30	7.30	4.20	
166	43	33 28	160	140	134	110	82	74	38	150	131	126	103	77	69	36	25	85		110	1.10-1.50	A-6	SC	15.6	33.1	16.1	17.1	0.60	54.70	44.70	6.30	2.90	
167 168	44	<u>31 29</u> 27 26	210	137 93	83	56	41	36	25	193	126 86	76 65	51	38	33	23	15 21	135		150 47	0.80-1.50	A-6	CL	14.1	28.0	14.4	13.6 11.2	0.00	27.40	72.60 59.80	12.30	3.40	<u> </u>
169	43	28 25	277	96	69	47	34	23	13	259	90	65	44	32	22	10	20	35		55	1.10-1.50	A-6	CL	16.0	29.2	13.5	15.6	0.00	39.80	60.20	6.90	6.60	
170	43	27 23	115	85	74 61	55	48	43	28	106	79	69 56	51	44	40	26	35	20		55	1.03-1.50	A-6	CL	19.1	29.5	16.6	12.9	1.40	15.80	82.80	4.60	2.00	
171	43	27 24	68	52	45	37	25	21	17	62	47	41	34	23	20	10	35	20		55	1.10-1.50	A-6	SC	13.8	27.5	11.2	16.2	0.00	50.70	49.30	8.20	5.60	
173	44	27 24	182	124	116	87	67	55	28	167	114	106	80	61	50	26	35	20		55	0.90-1.50	A-6	SC	10.3	25.9	13.7	12.2	0.00	60.50	39.50	15.70	2.40	
174	44	28 26 28 26	143	95 81	77	67	56	42	37	99	87	65	65	51 47	38	34	35	20		55	0.79-1.50	A-6 A-6	CL	16.6	29.7 31.6	15.4	14.3	0.00	1.10	98.90 87.20	4.90 9.30	4.50	<u> </u>
176	43	16 12	185	92	62	36	28	21	17	172	86	58	34	26	20	16	23	77		100	1.1	A-7-5	MH	23.6	63.0	40.1	22.9	5.60	28.10	66.30	8.60	7.10	
177 178	43 43	13 10 14 12	145 341	112	83	63 82	44 64	35 54	29 47	135 318	104	77 104	59 76	41 60	33 50	27 44	25 15	75 32	+ +	100 47	1.2	A-7-5 A-7-5	MH	22.1 30.4	57.0 60.0	35.7 41.8	21.3 18.2	11.90 0.00	21.50	66.60 79.30	6.90 2.80	2.30	<u> </u>
179	43	13 11	308	244	166	106	94	78	59	288	228	155	99	88	73	55	15	32		47	1.2	A-7-5	MH	30.0	60.0	39.6	20.4	0.00	19.10	80.90	2.80	2.30	
180	43	14 13 12 13	149	124	91	56	47	42	35	138	115	84	52	43	39	32	22	32		54 54	1.2	A-7-5	MH	28.1	60.0	40.9	19.1	0.00	21.10	78.90	2.50	2.40	
181	43	11 10	151	120	90	64	44	40	30	141	100	84	60	41	37	28	16	32		48	1.2	A-7-0	CL	22.2	39.0	21.2	14.2	7.30	29.90	62.80	3.50	3.20	
183	43	13 12	728	403	184	60	56	25	16	677	375	171	56	52	23	15	15	27		42	1.2	A-7-6	MH	30.9	43.0	27.5	15.5	9.40	46.90	43.70	5.20	4.50	
184	43	26 18	569	367	212	132	82	74	61	539	348	201	125	42 78	70	58	19	40		50	0.70-0.85	A-6	CL	21.6	38.0	19.8	20.0	0.00	5.05	94.95	4.60	3.50	
186	37	16 14	1322	631	202	94	77	67	40	1441	688	220	102	84	73	44	8	53		61	0.70-1.50	A-6	CL	20.0	39.0	13.0	26.0	0.00	44.23	55.77	5.80	1.70	
187	40	15 14	866	432	170	96	75	61	51	866	432	170	96	75	61	51	10	11	_	20	0.50-1.50	A-4	ML	15.0	22.0	12.0	10.0	0.00	9.68	90.32	5.40	0.20	
188	39	13 15	546	358	179	141	71	57	34	556	364	182	144	72	58	35	12	36	+ +	48	0.53-1.40	A-6 A-7-6	CL	25.0	43.0	13.0	24.0	0.00	11.44	98.82	3.80	0.30	
190	39	15 14	733	411	171	96	74	44	36	746	418	174	98	75	45	37	11	36		47	0.40-0.55	A-7-6	CL	17.0	63.0	19.0	44.0	0.00	0.73	99.27	6.00	1.10	
191 192	42	14 16 14 18	669 1195	434	220	106	56 68	42 53	35	645	418 601	212	102	54 68	40 53	35	10	32		41 49	0.60-1.45	A-7-6 A-7-6	CL	29.0 37.0	49.0 55.0	24.0	25.0 31.0	0.00	2.29	97.71 98.29	2.00	1.80	
193	41	14 19	927	625	318	165	107	82	50	898	605	308	160	104	79	48	13	38		50	0.56-1.10	A-7-6	СН	25.0	54.0	20.0	34.0	0.00	3.70	96.30	2.30	1.70	
194 195	39 40	<u>14 15</u> 14 16	957 836	550 502	203	48	38 40	33	30	982 842	564 506	208	49 74	39 40	34	31	7	30	_	37 45	1.20-1.50	A-7-5	CL	15.0	64.0 38.0	32.0 15.0	32.0	0.00	7.77	92.23 76.44	4.80	1.70	<u> </u>
196	39	15 13	1433	753	200	65	51	44	28	1462	768	204	66	52	45	29	8	42		49	0.40-0.70	A-7-6	CL	20.0	42.0	17.0	25.0	0.00	3.85	96.15	2.90	2.20	
197	43	14 17	700	509	281	125	51	46	37	659	479	264	118	48	43	35	11	28	_	39	0.45-0.80	A-7-6	CL	19.0	48.0	17.0	31.0	0.00	3.17	96.83	2.80	2.20	
198	38	15 16	1205	704	208	87	72	62	50	1282	709	239	93	77	66	53	8	30		40	0.60-1.40	A-7-6	CL	28.0	43.0 52.0	21.0	31.0	0.00	4.48	95.52	1.70	1.50	
200	40	14 18	495	267	133	89	68	61	52	493	266	132	89	68	61	52	4	43		47	0.50-1.40	A-6	CL	20.0	37.0	16.0	21.0	0.00	0.79	99.21	7.20	5.10	
201	40	14 17 13 13	568	399	249	105	105	78	43	568	399	249	105	105	78	43	21	17		38	1.15-1.40	A-7-6 A-4	CL-ML	9.0	22.0	17.0	5.0	0.00	6.34 13.74	86.26	3.20	1.60	
203	40	14 13	532	334	164	88	63	55	31	529	332	163	88	63	55	31	8	40		48	0.56-1.40	A-7-6	CL	12.0	71.0	15.0	56.0	0.00	4.65	95.35	5.60	2.50	
204	39	13 15	1133	690	297	133	78	66	52	1150	701	302	135	79	67	53	7	69		76	0.86-1.10	A-7-6	CL	28.0	46.0	19.0	27.0	0.00	9.96	90.04	3.60	1.40	
205	39	15 17	858	478	201	105	77	67	48	871	485	204	107	78	68	49	5	85		90	0.70-0.85	A-7-6	CL-IVIL	25.5	66.0	21.0	45.0	0.45	7.97	91.58	3.60	2.96	
207	39	15 16	1007	447	80	55	44	33	26	1033	458	82	56	45	34	27	7	48		54	0.80-1.50	A-6	CL	19.8	36.0	18.0	18.0	0.00	11.58	88.42	7.60	4.68	
208	43	16 14 16 14	164	118	76	69	29	28	21	151	109	70	63	48	26	32 19	26 25	30		55	1.00-1.50	A-6 A-4	ML	17.5	33.3	11.8	21.5	0.60	4.79	94.61 86.57	3.15 10.60	1.19	<u> </u>
210	38	25 25	153	106	68	46	33	26	20	161	111	71	48	35	27	21	17	62		79	1.00-1.50	A-7-6	СН	25.4	60.0	21.0	39.0	2.05	36.02	61.93	9.10	0.60	
211 212	38 38	24 25 24 23	211 174	112 109	56 59	35	24 26	19 22	15 19	220 182	117 114	58 62	37 39	25 27	20	16 20	16 15	59 75	+ +	76 90	1.10-1.50 0.90-1.50	A-7-6 A-7-5	CH MH	35.7 33.2	53.0 81.0	24.0 32.0	29.0 49.0	0.15 2.48	27.78 35.04	72.07 62.48	4.20 5.03	0.40	1
213	38	26 27	229	103	45	30	24	20	16	244	110	48	32	26	21	17	10	60		70	0.6-1.50	A-7-6	SC	17.3	56.0	17.0	39.0	13.80	44.62	41.58	8.00	2.20	
214	38 40	26 26 20 0	339 302	195 220	102	69 90	53 66	43 51	34 44	358	206	108 147	73 90	56 66	45	36	10 19	60 51	+	70	0.5-1.50	A-7-6 Δ-6	CL	21.4	48.0	21.0	27.0	10.06	34.64 29 30	55.30 69 31	9.40	2.90	<u> </u>
215	40	20 0	382	296	203	126	93	75	62	382	296	203	126	93	75	62	12	58		70	0.60-1.60	A-4	CL-ML	16.3	22.0	20.0	2.0	0.02	20.69	79.29	4.60	3.10	
217	40	20 0	434	328	222	133	95	70	59	434	328	222	133	95	70	59	12	58		70	1.10-1.50	A-6	CL-ML	16.0	31.0	20.0	11.0	0.12	30.58	69.30	4.20	2.60	
218	40	20 0	319	272	184	94 116	83	63	54	319	272	184	116	83	63	54	12	58		70	0.80-1.45	А-7-6 А-б	CL	16.5	38.0	16.0	22.0	0.12	28.11 15.14	84.86	8.60	0.50	
220	40	20 0	344	232	144	89	64	50	44	344	232	144	89	64	50	44	14	56		70	0.80-1.50	A-6	CL	13.7	37.0	14.0	23.0	4.88	22.59	72.53	7.60	1.00	
221	40 39	20 0 34 29	380	197	93	60	46	45	39	395	202	97	62	57 48	45	39	20	45		65	0.90-1.50	А-6 А-6	CL	13.9	36.0	14.0	22.0	2.41	18.37	79.22 80.59	2.90 4.50	2.10	<u> </u>
223	41	23 14	593	332	160	110	90	55	53	583	326	157	108	88	54	52	8	22		30	0.90-1.10	A-7	CL-ML	27.9	49.1	23.9	25.2	0.00	10.31	89.69	2.71	2.30	
224 225	41	28 18 25 16	382 1045	281 601	174 169	110 63	68 55	46	32 18	370	272 592	169 167	107 62	66 54	45	31 18	17 12	28	+ +	45 45	0.90-1.40	A-1-b A-6	CL	22.5 16.7	33.9	20.1	13.8	3.92 0.93	22.62 37.45	73.46 61.62	4.43 7.40	1.60 6.77	<u> </u>
226	42	24 15	343	244	160	105	64	47	34	331	235	154	101	62	45	33	21	49		70	0.90-1.10	A-6	CL	16.8	30.1	14.3	15.9	0.00	23.60	76.40	3.80	1.48	
227	41 41	23 14 24 16	741 81/	503 551	246	141	88	66 76	50 54	719	488	239	137	85 107	64	49 52	22	18	+	40 60	0.60-0.80	A-6	CL	12.0	24.6 23.1	14.0	10.6 8 9	0.00	21.07	78.93 92.45	3.10	2.50	
229	42	25 17	779	487	244	134	83	64	50	749	468	235	129	80	62	48	16	24		40	0.85-1.00	A-6	CL	17.2	25.0	12.4	12.6	5.94	45.45	48.61	4.50	4.06	
230	41	25 17	818	459	208	116	70	56	46	806	452	205	114	69	55	45	5	24		29	0.85-1.00	A-6	CL	18.7	37.1	14.7	22.4	5.82	29.86	64.32	7.10	1.01	
231	41 40	26 17 36 20	902 683	489	217	100	46	35 65	48	686	491	210	97	44 102	<u>34</u> 65	48	16	38	+	45 50	1.00-1.20	A-6 A-7	CL	32.8	33.6 67.3	17.6 29.7	16.0 37.6	0.76	12.69	86.55 84.71	2.20	2.30	<u> </u>
233	39	34 19	806	471	235	118	54	28	22	833	487	243	122	56	29	23	21	25		46	0.8-1.00	A-7	CL	26.2	44.3	17.4	26.9	0.00	19.51	80.49	1.30	1.10	
234	42 42	0 19 0 22	427 456	164 190	55 89	34 58	27 42	20	16 23	405	155 181	52 85	32 55	26 40	19 30	15 22		90	+ +	90 90	1.2 - 1.5 0.85 - 1.5	A-7-6	CL	15.8 12.7	42.9	20.0	22.9 9.8	1.20 1.50	1.90 1.90	96.90 96.60	6.40 10.40	3.30 6.30	ł
236	42	0 21	459	198	71	38	26	20	15	436	188	67	36	25	19	14		90		90	1.3 - 1.5	A-6	CL	12.7	34.0	17.4	16.6	1.40	1.30	97.30	8.60	2.90	
237	41	23 19	419	250	130	84	67	54	45	414	247	128	83	66	53	44	10	65		75	0.75-1.20	A-2-4	SC	10.7	29.7	21.5	8.2	17.70	62.60	19.70	12.70	8.70	

									D	EFLECTOM	ETRÍA															C	GEOTECNIA						
			Deflex	iones: Dato	os Obtenic	dos en Cam	ро											Espesores de l	structura														
Punto		Temperatura			Defle	exiones Me	didas (um)				D	eflexiones	Corregidas	s por Carga	(μm)	H						Clasificación Suelo s	subrasante		Limite	s de Atterk	perg (%)	Gran	ulometría (%))	CBR, Mues	stra inalterada	CBR, muestra compactada en
	Carga			1													Capa Asfáltica	MG-1	MG-2	Espesor Total	Profundidad exploración (m)			Humedad Natural (%)									laboratorio
		Pav. Aire	d ₀	d ₁	d ₂	d ₃	d ₄	d ₅	d ₆	d _{0c}	d _{1c}	d _{2c}	d _{3c}	d _{4c}	d _{5c}	d _{6c}							-	indianan (70)									
#	kN	≌C °C	0 cm	30 cm	60 cm	90 cm	120 cm	150 cm	180 cm	0 cm	30 cm	60 cm	90 cm	120 cm	150 cm	180 cm	cm	cm	cm	cm		AASTHO	USCS		LL	LP	IP	Gravas	Arenas	Finos	Humedad natural	inmersión	Inmersión
238	40	28 21	554	307	158	102	80	63	54	558	309	159	103	81	63	54	10	50		60	0.60-1.20	A-7-5	MH	10.9	59.7	38.8	20.9	1.20	26.50	72.30	10.00	7.00	
239	40	29 20 29 21	759	459	258	115	81 110	84	45 62	759	459	174 258	115	81 110	84	45 62	7	43		50	0.50-1.50	A-7-5 A-6	SIM	25.3	30.9	37.9	14.5	1.50	55.60	44.10	5.90	4.30	
241	40	27 20	918	580	332	202	137	95	75	930	587	336	205	139	96	76	10	40		50	0.50-1.50	A-2-4	SM	19.9	34.7	24.7	10.0	1.40	72.00	26.60	8.70	5.40	
242	40	28 20	161	104	61 78	40	31	25	19	161	104	61 78	40 48	31	25	19	20	75		95	0.70-1.00	A-4 A-2-7	SM	20.9	31.4 42.9	23.2 31.7	8.2	9.90	45.50 60.90	44.60 27.70	9.50	4.90	
244	40	21 15	730	429	220	132	93	76	63	734	431	221	133	93	76	63	6	89		95	0.95-1.50	A-7-5	MH	74.8	112.2	71.4	40.8	0.10	29.20	70.70	4.00	3.00	
245	41	26 23 27 21	189 84	103 64	60 53	41	31	24	18 23	186 82	101 62	59 52	40	30 32	24	18	<u>19</u> 19	41		60 60	1.10-1.50	A-7-6	CL	16.3 16.5	48.9	25.9 23.8	23.0	8.80	17.70	73.50 84.00	4.93	4.14	
247	41	26 23	130	82	47	31	14	13	9	127	80	46	30	14	13	9	18	45		63	0.95-1.50	A-6	CL	11.9	31.7	18.8	12.9	22.20	10.90	66.90	6.21	5.09	
248	41	26 23	186	109	70	49	37	30	26	181	106	68 113	48	36	29	25	18	45		63	1.10-1.50	A-7-6	CL-MI	17.4	41.1	27.0	14.1	15.80	9.80	74.40	6.02	3.73	
249	42	23 20 23 19	96	62	42	32	24	20	13	92	59	40	31	23	19	16	20	50		70	0.80-1.10	A-4 A-4	CL-IVIL CL-ML	12.7	30.0	24.4	9.0	16.00	12.70	71.30	5.98	4.00	
251	42	23 19	97	61	45	37	29	22	20	93	58	43	35	28	21	19	20	50		70	1.06-1.50	A-7-6	CH	24.8	51.2	22.7	28.5	6.90	17.80	75.30	4.87	3.31	
252	41 42	23 19 23 19	79	55	45	37	25	24	13	76	53	43	36	24	23	13	20	50		70	1.20-1.50	А-7-6 А-4	CL-IVIL CL-ML	22.0	32.2	25.8	6.2	3.00	25.60	71.30	7.84	5.72	
254	41	22 19	121	92	75	61	48	41	33	117	89	72	59	46	40	32	20	50		70	0.75-1.50	A-4	ML	18.3	35.6	29.0	6.6	20.20	14.40	65.40	8.61	6.37	
255 256	41	22 18 22 18	192 124	147	114 60	<u>83</u> 48	60 37	51 31	42 24	187 118	143 73	111 57	81 46	58 35	50 30	41 23	20	50 50		70	0.75-1.50	A-7-5 A-7-6	MH-CH CL-MI	31.5 39.2	50.9 42.2	30.4 23.4	20.5 18.8	2.70	9.00 1.30	88.30 97.90	4.51	2.75	
257	41	22 17	100	65	45	31	19	14	11	97	63	44	30	18	14	11	25	45		70	0.55-1.10	A-4	CL-ML	17.2	27.7	20.7	7.0	16.60	23.50	59.90	5.32	4.63	
258	41	20 16	200	125	64	38	23	17	12	194	121	62 113	37 87	22 62	16	12	40	30		70 62	0.80-1.50	A-6	CL	16.8	30.3	18.4	11.9	3.10	28.00	68.90 80.20	7.96	6.69	
260	41 40	24 21	209	143	80	49	31	23	18	207	143	79	49	31	23	18	19	43		62	0.70-1.50	A-7-6	CL	18.7	29.6	17.5	12.1	12.80	14.30	72.90	4.52	3.52	
261	41	20 13	166	127	90	62	43	31	23	161	123	87	60	42	30	22	19	43		62	0.80-1.50	A-6	CL	18.4	36.6	17.3	19.3	17.40	15.60	67.00	4.67	4.43	25.00
262	39	16 15	665	332	114	52	35	20	15	727	363	125	45 57	36	22	16	22	39		61	0.16-0.80	A-1-0 A-2-4	GM	9.8	21.8	14.4	7.4	48.80	27.90	16.70		++	11.00
264	40	21 18	280	182	92	50	33	23	21	279	182	92	50	33	23	21	18	48		66	0.70-1.50	A-4	CL	14.2	27.1	17.9	9.2	14.40	14.70	70.90	4.94	4.20	
265 266	41	<u>21 18</u> 15 15	215	159 84	100 52	67	46	36	30 11	211	156 81	98 50	66 32	45 20	35 13	29 11	<u>18</u> 18	48		66 66	0.70-1.50	A-6 A-4	CL-ML CL-MI	20.6	38.0 30.8	22.3	15.7 8.6	16.30 15.30	15.30 14.80	68.40 69.90	5.30 5.95	3.74	
267	38	23 17	184	96	65	49	37	29	24	192	100	68	51	39	30	25	18	48		66	0.27-1.25	A-1-a	GM	6.1	NP	NP	NP	65.30	25.70	9.00	0.00		30.00
268	41	20 14 18 17	163	127	92 193	65	47	37 51	31	161	125 431	91 189	64 117	46	36	31	18	48		66 120	0.85-1.50	A-4	CL-ML	19.0 17.2	26.9	20.1	6.8	12.20	14.80	73.00	4.52	3.62	
270	41	18 16	499	253	82	42	31	24	19	482	244	79	41	30	23	18	15	20		35	0.35-1.50		CL-ML	24.1	42.1	25.7	16.4	0.00	0.00	0.00	9.96	6.46	
271	42	18 17	194	85	62	46	32	23	13	187	82	60	44	31	22	13	13	20		33	0,30 - 1,30		CL ML OI	9.8	35.6	19.8	15.7	0.00	0.00	0.00	21.15	4.92	
272	41	16 13	587	323	147	88	56	41	30	575	317	144	86	55	40	29	14	25		39	0,90 - 1,30		SP-SM	6.9	NP	NP	NP	27.40	64.11	8.49	26.15	8.17	
274	42	12 9	266	171	95	57	38	31	26	253	163	90	54	36	30	25	15	25		40	0,42 - 1,00		SM ML OL	5.8	NP	NP	NP	0.00	0.00	0.00	18.29	3.96	
275	39	23 21 24 21	832	429	188	102	75	57	49	856	441	193	105	77	59	50	15	79		95	0.95-1.50	A-6	CL	17.5	37.4	16.0	22.0	0.00	12.20	87.80	5.01	4.84	
277	39	25 21	679	320	132	70	53	39	31	700	330	136	72	55	40	32	24	70		94	1.10-1.50	A-7-6	CL	11.6	49.0	25.0	24.0	0.00	20.70	79.30	3.26	3.06	
278	39	24 21 24 21	652	334	124	68	47	37	30 29	674	345	128	68 70	49	38	31 30	27	64		91 91	1.10-1.50	A-6 A-7-6	CL	10.2	46.0	23.0	23.0	4.10	46.10	52.50	7.04 5.87	5.27	
280	39	24 19	483	224	103	62	48	37	32	498	231	106	64	49	38	33	23	68		91	0.90-1.50	A-7-6	CL	23.8	48.0	25.0	23.0	0.00	2.20	97.80	4.81	4.52	
281	39 39	26 18 26 20	481	223	96 129	54 66	41	32	26 28	496 663	230 289	99 131	56 67	42 45	33 35	27 28	24	70		94 95	0.98-1.50	A-6 A-7-6	CL CH	12.7 21.0	30.0 60.0	14.0 25.0	16.0 35.0	0.00	18.50 18.50	81.50 81.50	11.28 7.43	7.03	
283	39	28 20	658	270	110	61	41	30	23	680	279	114	63	42	31	24	21	85		106	1.20-1.50	A-6	SC	16.3	30.0	19.0	11.0	12.70	44.10	43.20			22.70
284	39	16 15 20 15	560 379	313	149 143	83	57	44	36	580	324	154 148	86 81	59 58	46	37	20	82		102 99	1.14-1.50	A-4	SM	26.5	40.0	33.0	7.0	23.30	38.40	38.30 42.70			19.10
286	39	26 21	901	373	137	70	49	39	32	922	382	140	72	50	40	33	17	81		98	1.00-1.50	A-2-6	SC	17.2	40.0	25.0	15.0	18.20	49.40	32.40			18.20
287	39	28 21	497	239	110	64	46	36	30	516	248	114	66	48	37	31	21	81		102	1.00-1.55	A-6	SC	11.8	25.0	13.0	12.0	5.50	48.50	46.00	2 5 9	2.00	28.70
289	33	16 16	603	331	148	83	58	42	33	628	345	154	86	60	43	34	22	92		114	1.00-1.50	A-6	CL	16.8	34.0	17.0	17.0	0.00	42.50	57.50	3.19	2.73	
290	39	13 14	454	282	151	91	66	50	38	464	288	154	93	68	51	39	26	84		110	1.00-1.50	A-7-6	CL	13.9	46.0	23.0	23.0	8.10	28.50	63.40	4.21	3.98	
291	50	20 20	1409	754	230	106	72	50	42 52	1122	600	147	85	54	40	41	19	63		87	0.871.50	A-7-5	СН	30.4	63.9	35.8	31.7	0.00	13.30	98.90 86.60	4.31	2.09	
293	49	20 20	1096	580	210	104	70	54	46	896	474	172	85	57	44	38	18	59		77	0.77-1.50	A-7-5	СН	23.3	61.7	31.3	30.4	3.40	8.90	87.70	2.63	1.47	
294	49 52	20 20	451	530	178	102 55	43	46 38	36	3/1 797	406	147	84 42	54 33	38 29	30 26	13	68 57		81 68	0.81-1.50	A-7-5 A-7-5	СН	26.2	69.2 51.3	36.6 28.9	32.6	0.00	13.00	87.00 87.00	2.91	1.62	
296	52	20 20	876	564	249	94	49	46	44	670	432	191	72	38	35	34	11	79		90	0.90-1.20	A-7-5	СН	21.5	52.1	30.7	21.4	0.70	13.30	86.00	4.16	2.12	
297 298	49	20 20	1125	<u>564</u>	155 173	62	60 63	52	44	909	456	125 142	50 59	49 52	42	36	12	67		79 39	0.79-1.37	A-7-5	СН	17.6 25.5	55.1 52.0	30.3	24.8	0.70	8.30 7.00	91.00 93.00	4.60	2.34	
299	49	20 20	1505	900	320	107	72	62	54	1221	730	260	87	58	50	44	11	46		57	0.57-1.50	A-7-5	СН	54.0	50.1	28.1	22.0	0.00	9.00	91.00	3.93	2.48	
300	49	20 20	1169	512	166	70	54	45	40	957	419	136	57	44	37	33	7	44		51	0.51-1.50	A-7-5	СН	26.9	55.2	30.2	25.0	0.00	17.00	83.00	4.81	3.28	
302	48	20 20	1101	568	189	68	46	43	38	894	417	192	55	37	35	31	7	50		57	0.57-1.50	A-7-5	СН	23.3	53.2	30.1	23.1	0.00	7.40	92.60	3.48	1.19	
303	49	20 20	1030	618	298	144	84	60	52	848	509	245	119	69	49	43	12	25		37	0.37-1.50	A-7-5	СН	28.1	56.7	37.6	19.1	0.00	1.10	98.90	3.99	2.13	
304	39	24 27 30 32	424	225	88	41	43 25	34 15	28 11	430	201	89	63 42	44 25	35 15	29 11	12	69 87	+	100	1.70-1.90		MH	22.5	64.9 83.5	38.9 41.6	26.0 41.9	0.00	0.00	0.00	6.75 4.98	3.90	
306	39	29 30	601	343	123	67	44	35	30	616	352	126	69	45	36	31	15	85		100	1.80-2.00		CL	40.7	30.0	19.8	10.2	0.00	0.00	0.00	6.17	0.74	
307 308	39 २०	21 25 21 20	280 279	180	87 103	44 61	26 42	17	13 29	286	184	89 106	45 63	27 43	17	13 30	14 15	86 85	+	100	1.50-1.75		ML	37.5 29 9	48.9 65 3	29.6 28.7	19.3 36.6	0.00	0.00	0.00	5.14 4 13	4.51	
309	40	23 24	92	72	58	50	42	35	30	93	73	59	51	42	35	30	17	83		100	1.50-1.80		MH	39.8	74.1	40.9	33.2	0.00	0.00	0.00	6.58	3.33	
310	39	23 23	78	67	57	46	39	31	26	79	68	58	47	40	31	26	15	85		100	1.60-1.85		MH	24.9	84.6	42.7	41.9	0.00	0.00	0.00	3.63	2.53	
312	40	<u>24</u> <u>22</u> <u>25</u> <u>26</u>	144	92	69	55	47	39	35	143	91	68	59	47	39	35	28	71		100	0.70-1.70		MH	19.4	86.3	40.7	45.6	0.00	0.00	0.00	9.21	5.95	
313	40	25 27	103	65	48	38	29	24	16	103	65	48	38	29	24	16	15	85		100	1.20-1.50		ML	38.1	49.5	30.9	18.6	0.00	0.00	0.00	5.87	3.13	
314 315	40	28 29 28 32	54	38 85	30 53	38	30	23	20	54 118	38 86	30 53	27 38	30	23	20	29	88		100	1.50-1.75		MH	26.0 17.3	80.0 85.2	39.6 42.0	40.4 43.2	0.00	0.00	0.00	6.42 18.20	5.24	
316	41	14 14	336	264	178	120	85	64	51	329	258	174	117	83	63	50	8	93		102	0.80-1.00		MH	49.4	79.2	59.1	20.1	0.00	0.00	0.00	3.17	2.93	
317	39	13 14	865	489	253	155	104	72	54	878	496	257	157	106	73	55	4	92		96	1.00-1.30		MH	49.4	79.2	59.1	20.1	0.00	0.00	0.00	3.17	3.04	

									DI	EFLECTOM	ETRÍA															G	EOTECNIA						
			Deflex	iones: Dato	os Obtenio	dos en Cam	ро											Espesores de E	structura														
Punto	Carga	Temperatura			Defl	exiones Me	didas (μm)			-	D)eflexiones	Corregida	s por Carg	a (μm)	F	Сара	MG-1	MG-2	Espesor	Profundidad	Clasificación Suelo s	subrasante	Humedad	Limite	de Atterb	erg (%)	Gran	nulometría (%))	CBR, Mues	tra inalterada	CBR, muestra compactada en
	Carga	Pav. Aire	d _o	d1	d ₂	d₃	d ₄	d ₅	d ₆	d _{oc}	d _{1c}	d _{2c}	d _{3c}	d _{4c}	d _{5c}	d _{6c}	Asfáltica	WIG-1		Total	exploración (m)			Natural (%)									laboratorio
#	kN	≌C °C	0 cm	30 cm	60 cm	90 cm	120 cm	150 cm	180 cm	0 cm	30 cm	60 cm	90 cm	120 cm	150 cm	180 cm	cm	cm	cm	cm		AASTHO	USCS		ш	LP	IP	Gravas	Arenas	Finos	Humedad natural	inmersión	Inmersión
318 319	39 38	12 15 20 16	1422 819	620 403	210	95 110	55 81	37 63	29 53	1466 853	639 420	216	98 115	57 84	38 66	30 55	6	91 88		97 95	0.60-1.50		MH	20.8 35.0	62.5 71.0	43.2 48.0	19.3 23.0	0.00	0.00	0.00	6.15 5.56	2.88	
320	39	15 18	510	251	84	33	18	12	9	527	259	87	34	19	12	9	8	98		106	0.70-1.50		MH	36.1	71.3	46.9	24.4	0.00	0.00	0.00	5.23	1.66	
321	40	31	319	172	85	47	30	21	17	319	172	85	47	30	21	17	17	50		67	0.67-1.50	A-6	CL	20.6	29.4	17.2	12.2	0.00	35.55	64.45	7.99		
322	40	32 40	358	194	96	49 55	36	28	19	358	194	96	49 55	36	28	19	11	65	+ +	76	0.76-1.50	А-6 А-4	CL	21.3	29.0	17.4	9.8	3.76 0.09	32.53	63.71 85.75	10.69	++	
324	41	29 20	240	166	107	71	47	33	26	235	163	105	70	46	32	25	30	70		100	1.00-1.50	A-6	CL-ML	18.7	34.5	23.7	10.8	8.20	20.20	71.60	5.21	4.74	
325	43	29 21	230	178	130	93	68	50	40	215	166	121	87	64	47	37	25	65		90	0.95-1.20	A-4	ML	7.3	48.0	25.0	22.0	17.80	19.00	63.20	5.98	4.54	
326	41 42	29 21 28 21	316	245	150	93	63	44	34	311	236	109	89	61	42	33	14	56		70	1.10-1.50	A-7-6	CL-IVIL CL	16.5	48.9	23.9	23.0	2.00	17.70	84.00	4.93	3.28	
328	41	29 19	335	194	116	74	48	34	30	326	189	113	72	47	33	29	12	63		75	0.95-1.50	A-6	CL	11.9	31.7	18.8	12.9	22.20	10.90	66.90	6.21	5.09	
329	43	28 20 31 21	376	239	132	94	69	52	46	353	224	124 93	88	65 26	49	43	13	97	+ +	110	1.10-1.50	A-7-6	CL-ML	17.4	41.1	27.0	14.0	15.80	9.80	74.40 63.80	6.02	3.73	
331	43	30 21	343	199	131	88	65	50	41	348	191	126	84	62	48	39	30	50	+ +	80	0.80-1.10	A-4 A-4	CL-IVIL CL-ML	12.7	30.0	24.4	9.0	16.00	12.70	71.30	5.98	4.00	
332	43	27 18	349	254	147	88	57	41	33	328	239	138	83	54	39	31	20	35		55	1.06-1.50	A-7-6	СН	24.8	51.2	22.7	28.5	6.90	17.80	75.30	4.87	3.31	
333	42	28 26 36 29	387	<u>267</u> 91	196 46	<u>136</u> 29	98	71	56 12	369	254 86	187 43	130 27	93 17	68	53	22	78	+ +	100 85	1.00-1.30	Α-7-6 Δ-7-5	CL-ML MH	15.2 44.8	40.6 89.1	25.8 54 9	14.7 34.2	12.00 32.80	25.60 18 30	62.40 48.90	4.76	3.62	
335	42	28 20	229	157	119	87	62	46	39	216	148	112	82	58	43	37	35	15		50	0.50-1.00	A-4	CL-ML	12.4	30.9	22.9	8.0	21.10	9.20	69.70	5.19	3.94	
336	42	27 22	280	206	139	100	83	70	62	269	198	133	96	80	67	59	20	55		75	0.75-1.50	A-4	ML	18.3	35.6	29.0	6.6	20.20	14.40	65.40	8.61	6.37	
337	41 42	25 18 27 17	243	172	164	93	70	59	45	232	164	159	89	67	57	38	25	50	+ +	75	0.75-1.50	A-7-5 A-7-6	CL-ML	31.5	42.2	30.4 23.4	20.5	0.80	9.00	88.30 97.90	4.51	3.71	
339	43	24 21	297	232	153	98	66	50	42	280	218	144	92	62	47	40	20	35		55	0.55-1.10	A-4	CL-ML	17.2	27.7	20.8	7.0	16.60	23.50	59.90	5.32	4.63	
340	42	31 22	373	218	115	65	44	30	25	360	210	111	63	42	29	24	30	50		80	0.80-1.50	A-6	CL	16.8	30.3	18.4	11.9	3.10	28.00	68.90	7.96	6.69	
341	42	28 18	271	157	91	58	42	32	22	239	151	90	55	40	31	25	17	33	+ +	50	0.80-1.50	A-6	CL	18.4	36.6	17.3	19.3	12.80	14.50	67.00	4.52	4.43	
343	43	30 19	354	265	170	104	60	36	23	332	249	160	98	56	34	22	18	42		60	0.75-1.50	A-7-5	MH	32.2	88.3	55.5	32.8	24.40	8.80	66.80	6.02	4.01	
344	41	<u>31 24</u> 33 21	358	214	105	<u> </u>	<u>35</u>	24	23	348	208	102 95	55 65	34 46	23	22 30	18	<u>22</u> 52		40	0.70-1.50	A-4	CL-MI	14.2	27.1	17.9	9.2	14.40 16.30	14.70 15.30	70.90 68.40	4.94	4.20	
346	43	23 14	251	190	137	100	85	69	59	236	178	129	94	80	65	55	16	69		85	0.85-1.50	A-4	CL-ML	19.0	26.9	20.1	6.9	12.20	14.80	73.00	4.52	3.62	
347	45	26 23	162	110	66	42	28	20	18	144	98	59	37	25	18	16	10	64		74	1	A-4(5)	CL-ML	16.0	22.0	16.0	6.0	0.00	0.00	0.00	3.40		
348	44	26 22 26 23	279	195	113	64	49 36	23	30 19	254	178	103	64 58	45 33	21	17	14	22		35	0.4	A-7-6(9) A-4(5)	CL ML	17.5	47.0	24.0	3.0	0.00	0.00	0.00	3.80 5.10	++	
350	44	26 23	281	169	89	54	38	30	25	257	155	81	49	35	27	23	14	60		74	0.8	A-4(3)	ML	19.8	22.0	18.0	4.0	0.00	0.00	0.00	3.70		
351	43	29 27	439	268	121	59	35	22	19	409	250	113	55 24	33	21	18	8	19		27	0.4	A-4(5)	ML	8.9	20.0	24.0	15.0	0.00	0.00	0.00	5.40	++	
353	43	31 24	405	265	152	96	62	45	35	380	249	143	90	58	42	33	19	21		40	0.4	A-7-6(13)	CL	31.5	45.4	24.0	19.0	0.00	0.00	0.00	5.60		
354	44	29 24	195	139	83	48	29	22	15	179	128	76	44	27	20	14	13	47		60	0.7	A-6(8)	CL	26.5	38.7	24.7	14.0	0.00	0.00	0.00	5.30		
355	44	34 31 33 29	326	211	97	<u> </u>	<u> </u>	40	17 31	301	159 195	89 120	52 79	31 52	37	16 29	23	<u>67</u> 55	+ +	90 80	0.9	A-6(11) A-2-4(0)	CL SM	23.0	39.8 NP	20.1 NP	19.7 NP	0.00	0.00	0.00	4.50	++	
357	45	27 24	203	135	86	57	39	28	21	180	120	76	51	35	25	19	25	49		74	0.8	A-4(8)	ML	25.1				0.00	0.00	0.00	2.60		
358	42	27 23	217	150	88	52	34	23	17	207	143	84	49	32	22	16	16	140 52		156	1.5	A-4(8)	CL	14.6	25.6	18.3	7.3	0.00	0.00	0.00	5.20	++	
360	44	25 22	142	104	80	57	40	37	24	125	89	71	50	41	33	24	17	72	+ +	89	0.9	A-7-6(13)	CL	21.5	48.6	27.4	21.3	0.00	0.00	0.00	7.78	++	
361	44	27 23	299	161	66	33	22	19	16	274	148	61	30	20	17	15	5	95		100	1	A-6(7)	CL	16.0	31.7	17.1	14.5	0.00	0.00	0.00	8.33		
362 363	37	27 23 27 21	200	200	82	53	32	21	16 17	401	214 126	88	57 47	34 29	22	17	<u>19</u> 18	42	+ +	100 60	0.6	A-3(0) A-6(4)	SP-SM CL	6.5 11.0	NP 31.2	NP 17.8	NP 13.5	0.00	0.00	0.00	5.39	++	
364	45	26 21	179	132	85	56	38	27	22	158	117	75	49	34	24	19	14	46		60	0.6	A-6(8)	CL	20.0	34.2	17.5	16.6	0.00	0.00	0.00	6.39		
365	45	26 21	156	118	82	57	41	31	24	139	105	73	51	36	28	21	14	82		96	1	A-7-6(12)	CL	20.6	46.9	20.8	26.1	0.00	0.00	0.00	6.94 5.17	++	
367	42	26 22	240	124	115	74	52	40	29	234	166	100	65	45	35	25	17	104	+ +	120	1.2	A-0(8) A-2-4(0)	SM	16.2	18.3	19.3	3.9	0.00	0.00	0.00	11.83	++	
368	44	32 27	278	164	85	47	32	24	21	252	148	77	43	29	22	19	21	91		112	1.2	A-7-6(15)	MH	29.5	52.1	29.7	22.5	0.00	0.00	0.00	3.28		
369	44	32 27 23 22	318 281	196	134	79	50	33 44	36	290	194	122	75	46 57	30 43	36	10	91		112	1.2 0.75-0.95	A-4(3) A-7-6	CL	18.5 23.4	32.6 44.0	22.4 23.4	20.6	0.00	7.20	0.00 92.80	2.83	1.40	
371	40	29 27	342	205	104	65	40	32	27	342	205	104	65	40	32	27	16	44		60	0.60-1.50	A-7-6	CL	17.3	45.0	15.1	29.8	11.60	33.10	55.30	6.69	4.72	
372	39	32 27 32 27	618	371	160	79	47	38	31	634	381	164	81 68	48	39	32	15	45	+ +	60 80	0.60-1.50	A-7-6	CL	19.3	46.5	14.5	32.0	13.00	34.80	52.20	7.67	4.74	
373	39	32 27	456	288	139	63	35	27	24	468	295	143	65	36	28	23	12	48		60	0.95-1.20	A-1-b	SP	18.2	NP	NP	NP	1.00	95.10	3.90	7.33	5.52	
375	37	32 27	967	521	194	87	56	45	37	1045	563	210	94	61	49	40	14	86		100	1.00-1.50	A-7-6	CL	16.9	45.4	14.3	31.1	13.40	34.80	51.80	6.39	5.22	
376	40 39	32 27 31 27	689 800	298 346	95	45	41	37	32 19	689 821	298 355	95 107	45 38	41 24	23	32 19	15 15	40 55		55 70	0.55-1.50	A-7-6 A-7-6	CL	19.1 16.8	43.5	14.5 14.5	28.9	12.70 12.80	35.30 34.90	52.00 52.30	6.19 6.70	4.35	
378	41	35 27	647	296	212	163	109	88	73	631	289	207	159	106	86	71	18	12		30	0.50-1.50	A-7-6	CH	36.8	80.9	21.2	59.6	0.00	2.00	98.00	5.35	2.90	
379	40	32 22	352	174	53	38	27	19	15	354	175	53	38	27	19	15	10	50		60	1.5	A-6	GC	10.4	34.5	15.5	19.0	34.00	29.00	37.00		++	22.00
381	39	26 22	354	203	106	54	35	24	13	364	209	109	56	36	25	13	10	50		60	0.50-1.50	A-2-0 A-6	SC	13.7	29.1	11.7	17.4	18.70	34.00	47.30		<u>+</u> +	30.82
382	40	34 22	284	168	93	59	43	32	27	286	169	94	59	43	32	27	10	50		60	0.75-1.50	A-2-6	GC	10.5	30.6	14.8	15.8	53.80	25.00	21.20		\downarrow	41.99
383	40	33 21 32 22	273	120 118	48	37 46	21	14 25	9 13	276	121	48	37 46	21 32	<u>14</u> 25	9	10	50	+	60	0.80-1.50	A-2-6 Δ-2-6	GC	5.7 9.0	29.5 31.8	15.2 15.6	14.3 16.2	49.90 23.50	32.40 56.10	17.70 20.40		++	37.54
385	39	31 21	404	184	89	61	42	37	25	411	187	91	62	43	38	25	10	50		60	0.70-1.50	A-2-6	GC	8.5	33.5	16.3	17.2	37.90	29.00	33.10			34.73
386	40	29 23	350	166	56	34	25	17	11	351	166	56	34	25	17	11	10	50		60	0.60-1.46	A-2-6	GC	5.9	31.4	13.9	17.5	40.80	38.50	20.70		+	19.22
387	40	32 25 31 24	401	224	44 99	48	24	16	8 12	402	225	99	29 48	24	16	8 12	10	50		60	0.60-1.50	А-2-б А-2-4	GC	9.3 5.1	28.7	13.7	9.6	34.80 47.20	30.60	28.60 19.10		++	<u> </u>
389	40	30 22	311	117	58	41	31	23	12	314	118	59	41	31	23	12	10	50		60	0.43-1.47	A-2-6	GC	5.4	32.5	15.0	17.5	62.70	22.80	14.50			52.00
390 201	40	29 24 31 24	91	58	42	36	26	19	10	90	57	42	36	26	19	10	10	50		60	0.25-1.38	A-2-6	GC	5.6 9.7	29.0	15.8	13.2	60.50	19.70	19.80		++	46.04
392	40	35 28	509	265	127	68	41	27	12	506	264	126	68	41	23	18	10	50		60	0.73-1.10	A-2-4	GC	7.1	25.2	17.3	7.9	44.90	34.60	20.50		<u>+</u> +	31.63
393	40	35 26	200	99	49	24	14	10	6	201	99	49	24	14	10	6	10	50		60	0.68-1.00	A-2-6	GC	6.0	32.9	16.2	16.7	45.30	28.70	26.00			61.53
394 395	39 41	30 25 35 29	274	152	44 86	47	20	14	10	269	149	45 84	28 46	20	14	10	10	50		60	0.64-1.20	A-2-6 A-2-4	GC	9.8 4.5	24.4	15.8 15.0	9.4	39.40 56.60	32.70	12.80		++	<u>45.26</u> 44.11
396	40	34 26	238	150	86	54	35	26	14	238	150	86	54	35	26	14	10	50		60	0.73-1.10	A-2-6	GC	4.5	29.3	14.0	15.3	47.20	40.70	12.10			30.56
397	40	34 27	417	235	125	59	30	19	10	417	235	125	59	30	19	10	10	50		60	0.90-1.50	A-2-6	GC	10.3	28.0	15.5	12.5	39.20	32.10	28.70			38.07

									D	EFLECTOM	ETRÍA															GEOTECNIA						
			Deflexi	ones: Dato	os Obtenio	dos en Cam	ро											Espesores de	Estructura													
Punto		Temperatura			Defle	exiones Me	edidas (µm)				D	eflexiones	Corregidas	s por Carga	a (μm)		Capa			Espesor	Destundidad	Clasificación Suelo s	subrasante		Limites de Atte	rberg (%)	Gr	anulometría (%)	CBR, Muest	ra inalterada	CBR, muestra compactada en
	Carga	Pav. Aire	d _o	d1	d ₂	d₃	d ₄	d₅	d ₆	d _{oc}	d _{1c}	d _{2c}	d _{3c}	d _{4c}	d _{5c}	d _{6c}	Asfáltica	MG-1	MG-2	Total	exploración (m)			Natural (%)								laboratorio
#	kN	≌C °C	0 cm	30 cm	60 cm	90 cm	120 cm	150 cm	180 cm	0 cm	30 cm	60 cm	90 cm	120 cm	150 cm	180 cm	cm	cm	cm	cm		AASTHO	USCS		LL LP	IP	Gravas	Arenas	Finos	Humedad	inmersión	Inmersión
398	40	35 28	310	174	80	49	39	21	14	308	173	80	49	39	21	14	10	50		60	0.76-1.50	A-2-6	SC	6.6	38.1 16.8	21.3	36.30	49.40	14.30			43.40
399	41	34 27	305	178	100	55	34	23	11	300	175	98	54	33	23	11	10	50		60 60	0.40-1.50	A-2-4	GC	7.2	21.8 14.7	7.1	49.90	35.40	14.70		 	44.69
400	40	34 28	234	101	50	36	28	18	10	231	100	49	35	28	18	10	10	50		60	0.70-1.10	A-2-0 A-1a	GP-GC	3.6	NP NP	15.7 NP	63.50	27.90	8.60		<u> </u>	73.69
402	41	29 26	385	225	115	61	38	27	13	380	222	114	60	38	27	13	10	50		60	0.90-1.50	A-2-6	GC	6.4	33.0 16.1	16.9	48.70	29.70	21.60			39.11
403	39	32 26	226	128	58	38	28	19	12	232	131	59	39	29	19	12	10	50		60	1.20-1.50	A-2-4	GC	4.5	24.4 15.0	9.4	57.00	30.00	13.00			40.83
404	40	31 28	298	98	42	36	25	18	9	296	97	42	36	25	18	9	10	50		60	0.60-1.50	A-2-6	GP-GC	4.8	31.7 17.2	14.5	66.60	23.50	9.90		 	62.17
405	40	33 26	238	91 159	44 69	<u> </u>	26	22	13	236	90	44 69	31 41	26	22	13	10	50		60 60	0.95-1.50	Α-6 Δ_7_5	SC SC	95	<u> </u>	20.0	27.80	29.80	42.40		├ ───┼─	25.08
400	40	20 13	111	59	49	32	24	17	9	109	58	48	31	20	17	9	10	50		60	0.60-1.50	A-1a	GP-GC	1.9	NP NP	NP	60.90	31.60	7.50		<u> </u>	49.04
408	40	19 12	99	52	36	26	17	14	8	99	52	36	26	17	14	8	10	50		60	0.73-1.50	A-2-6	GC	3.4	28.4 13.7	14.7	67.10	19.00	13.90			42.00
409	40	19 13	271	134	67	39	24	18	12	271	134	67	39	24	18	12	10	50		60	0.73-1.50	1.0.0	CH	24.9	61.2 25.8	35.4	5.80	24.80	69.40	5.60	 	10.01
410	40	19 13 21 14	311	199	116 51	37	46	18	20	315	84	51	/3 37	4/	18	20	10	50		60 60	0.28-1.50	Α-2-6	GC GP-GC	3.8	35./ 15./ 27.4 16.1	20.0	58.10	20.50	21.40		├ ───┼	40.81
412	39	21 14	243	150	76	38	29	20	12	247	153	77	39	30	20	12	10	50		60	0.53-1.40	A-2-6	GC	6.2	31.4 15.2	16.2	50.50	34.10	15.40			56.97
413	40	19 15	139	95	53	33	23	17	13	139	95	53	33	23	17	13	10	50		60	0.57-1.37	A-1b	SC	4.7	NP NP	NP	33.20	47.80	19.00			57.33
414	39	20 16	148	94	52	35	22	15	11	150	95	53	36	22	15	11	10	50		60	0.70-1.50	A-6	SC	7.0	27.6 14.9	12.7	8.90	52.00	39.10		 	40.87
415	39	31 <u>26</u> 21 17	629	328	153	88	59	37	10	647	337	64 157	43 90	35 61	38	10	10	50		60 60	0.65-1.50	Α-2-6	GC	8.1	27.7 13.9	13.8	31.20 52.20	36.70	32.10		├ ───┼	26.82
417	40	21 18	134	105	48	33	24	14	11	133	104	48	33	24	14	10	10	50		60	0.41-1.00	A-2-6	GC	4.9	25.4 13.3	12.1	39.20	32.10	28.70			22.87
418	40	21 17	128	72	46	31	21	15	9	129	73	46	31	21	15	9	10	50		60	0.40-1.30	A-1a	GP-GC	2.9	NP NP	NP	69.80	25.00	5.20			42.00
419	40	21 18	95	58	47	38	27	18	10	96	59	48	38	27	18	10	10	50		60	0.56-1.35	A-2-4	GC	3.2	24.3 15.4	8.9	48.20	36.90	14.90		 	31.01
420	41	23 19 31 28	247	98	59	35	26	18	11	243	98	58	34	26	20	11	10	50		60 60	0.30-0.84	A-2-6	GC	6.5 5.7	28.4 14.0 24.1 12.7	14.4	41.70	32.80	25.50		├ ───┼	<u> </u>
422	40	31 23	239	130	67	46	39	25	16	240	131	67	46	39	25	16	10	50		60	0.65-1.50	A-7-5	SC	5.5	30.2 16.4	13.8	20.30	44.00	35.70			14.89
423	40	25 24	271	116	75	43	28	21	11	271	116	75	43	28	21	11	10	50		60	0.37-1.45	A-6	SC	4.7	36.2 18.1	18.1	22.20	31.90	45.90			14.72
424	40	24 23	278	169	97	55	31	17	9	278	169	97	55	31	17	9	10	50		60	0.38-1.38	A-1b	SP-SC	2.6	NP NP	NP 12.2	32.10	57.50	10.40		 	28.79
425	41	25 22	102	68	49	28	21	17	10	101	67	48	30	21	17	10	10	50		60	0.27-1.25	A-2-6 A-2-4	SC	2.5	26.5 14.3 22.7 13.1	9.6	37.70	34.10	24.00		<u>├</u>	44 24
427	40	26 25	140	95	61	44	29	20	16	140	95	61	44	29	20	16	10	50		60	0.48-1.43	A-2-6	GC	5.2	25.6 13.5	12.1	46.50	28.90	24.60			27.01
428	40	27 27	118	73	44	33	25	17	6	117	72	44	33	25	17	6	10	50		60	0.63-1.50	A-2-6	SC	5.3	26.2 13.0	13.2	18.40	51.00	30.60			36.80
429	41	27 24	217	109	46	26	19	15	11	213	107	45	25	19	15	11	10	50		60	0.57-1.50	A-6	SC	6.6	26.9 13.6	13.3	22.80	38.00	39.20		┢────┤	30.50
430	40	<u> </u>	416	89 160	43	73	<u> </u>	45	25	387	89 148	43	33 68	20 51	42	23	20	50		60 70	0.45-1.47	Δ-7-5	GP-GC MH	2.9	20.3 14.3 51.7 34.5	6.0	0.00	31.40	0.00	5 40	3.80	31.44
432	41	17 17	322	182	142	81	73	73	51	314	177	139	79	72	71	50	20	50		70	1	A-2-4	GC	7.3	22.2 15.2	7.0	45.10	37.20	17.70	5.10	5.00	15.91
433	37	17 17	340	217	142	82	75	56	40	368	234	153	88	81	61	43	20	50		70	1	A-2-4	GC	5.5	31.8 21.6	10.2	59.60	25.40	15.00			52.30
434	40	17 17	429	287	183	87	65	51	39	429	287	183	87	65	51	39	20	50		70	1	A-2-6	GC	11.8	29.4 21.6	7.9	52.10	22.10	25.80		├ ───┼	31.56
435	39	17 17	468	221	141	122	85	48 66	28	480	211	135	125	58 87	68	29	<u> </u>	45	_	70	1.10-1.70	A-2-4 A-4	CI-MI	11.8	29.4 21.6 21.9 15.8	6.1	0.00	1.40	25.80 98.60	9.40	4.30	31.50
437	39	21 16	536	277	110	64	46	35	22	550	284	113	66	47	36	23	25	45		70	1.7	A-7-5	CH	36.4	59.3 30.0	29.3	0.00	0.10	99.90	5.40	3.60	
438	42	18 14	482	269	181	124	89	68	59	459	256	172	118	85	65	56	22	48		70	0.95-1.50	A-7-6	СН	49.8	100.0 23.4	76.6	0.00	2.40	97.60	1.28	0.58	
439	42	19 27	232	176	123 51	81	76	43	35	219	166	116	76	72	41	33	21	89		110	1.1-1.5	A-2-6	SC	33.7	32.0 17.0	15.0	32.60	59.70	7.70	1.09	0.38	
440	43	23 17	232	118	89	72	52	38	25	220	112	85	68	49	36	24	20	40		60	0.6-1.5	A-7-0	CL	13.5	36.0 19.0	17.0	8.00	29.50	62.50	5.31	4.50	
442	42	22 19	233	143	99	81	55	39	24	224	137	95	78	53	37	23	24	36		60	0.9-1.5	A-6	CL	11.1	23.0 10.0	13.0	4.50	43.20	52.30	11.57	7.31	
443	42	27 23	338	226	154	75	68	53	39	325	217	148	72	65	51	38	32	38		70	0.7-1.5	A-6	CL	21.5	35.0 17.0	18.0	7.50	10.30	82.20	6.26	3.41	
444	41	30 22	382	253	129	88	71	55	44	370	245	125	85	69 186	53	43	19	51	_	70	0.7-1.5	A-7-6	ML	25.3	47.0 27.0	20.0	5.40	11.50	83.10 58.70	5.79	1.72	
445	42	23 18	243	177	120	82	48	37	29	228	166	112	77	45	35	27	28	88		110	1.1-1.5	A-6	CL-ML	17.4	27.0 16.0	11.0	12.80	32.10	55.10	3.65	0.64	
447	43	20 17	172	126	100	77	64	50	41	161	118	94	72	60	47	38	33	87		120	1.2-1.5	A-7-6	СН	23.2	52.0 26.0	26.0	6.40	5.70	87.90	7.00	2.38	
448	41	27 26	632	363	179	133	88	68	43	611	351	173	129	85	66	42	14	46		60	0.6-1.5	A-7-5	MH	24.8	69.0 31.0	38.0	0.00	0.00	0.00	4.07	1.17	
449	42	26 24	395	264	154	105	81	66	43	378	253	147	100	78 54	63	41	12 0	38		50	0.5-1.5	A-7-6	MH CH	30.4	57.0 27.0	30.0	1.70	1.90	96.40	3.71	1.57	
451	41	32 26	427	192	105	75	50	35	27	430	189	103	74	49	34	27	8	52		60	0.6-1.5	A-7-6	CH-MH	29.8	50.0 29.0	21.0	8.20	37.30	54.50	3.48	0.93	
452	42	33 30	186	90	44	36	31	20	15	179	87	42	35	30	19	14	8	62		70	0.7-1.4	A-6	CL	21.5	40.0 20.0	20.0	12.40	13.90	73.70	4.94	3.17	
453	42	30 26	355	197	96	69	40	33	27	336	186	91	65	38	31	26	18	72		90	0.9-1.5	A-6	CL	19.2	29.0 14.0	15.0	72.50	16.70	72.50	13.43	1.90	
454	42 42	24 20 22 19	200	114	67 69	44	37 ⊿२	27	23	190 252	108	64	42	<u>35</u> ⊿1	26	22	17	43		60 60	0.6-1.5	Α-2-6		31.0 22 g	<u> </u>	12.0	43.60	53.90 18.20	2.50 78.50	6.74 २.४२	2.82	
456	42	24 20	195	107	55	28	19	12	9	186	102	53	27	18	11	9	13	137		150	0.3-1.3	A-1-a	SW-SP	8.8	NP NP	NP	11.00	49.50	39.50	5.75		23.10
457	42	24 21	150	77	35	26	19	15	8	143	74	33	25	18	14	8	17	48		65	0.65-1.2	A-1-a	GM		NP NP	NP	56.30	32.50	11.20			62.20
458	42	27 19	392	250	124	74	44	31	22	376	240	119	71	42	30	21	15	135		150	0.15-1.5	A-1-a	GM		NP NP	NP	56.70	29.40	13.90			25.00
459	43	16 11	264	118	84 126	89	41	34	23	245	109	/8 117	47 83	38 45	31	19	27	93		70 120	1 2-1 5	Δ-2-7	GIVI	30.5	44.0 27.0	17.0	48.90	34.40 49.10	48.60	3.05	1 50	29.80
461	43	<u>14</u> 9	265	174	86	50	25	19	12	246	161	80	46	23	18	11	25	85		110	1.1-1.5	A-6	CL	19.1	27.0 14.0	13.0	5.60	15.90	78.50	9.43	1.69	
462	43	13 9	332	135	47	38	29	19	12	310	126	44	35	27	18	11	25	45		70	0.7-1.5	A-2-6	SC	29.7	36.0 21.0	15.0	5.20	50.60	44.20	3.64	2.09	
463	44	14 7	109	95	75	56	47	43	35	99	86	68	51	43	39	32	40	80		120	1.2-1.5	A-6	CL	15.4	35.0 16.0	19.0	5.70	12.70	81.60	5.01	1.78	E3.00
465	44	17 <u>12</u> 19 14	319	214	129	52	38	23	13	297	200	120	48	35	21	10	30	80		40	1.1-1.5	A-1-a A-6	CL	18.3	31.0 17.0	14.0	7.10	27.60	65.30	8.02	5.21	52.80
466	44	14 9	170	124	87	60	43	37	33	156	114	80	55	39	34	30	30	80		110	1.1-1.5	A-6	CL	15.3	26.0 15.0	11.0	17.40	19.00	63.60	5.53	3.15	
467	43	21 17	142	87	51	38	28	20	14	133	81	48	36	26	19	13	40	30		70	0.4-1.5	A-1-b	SM	8.2	NP NP	NP	36.80	37.90	25.30		ļ	14.70
468	43	22 18 18 14	135	68	33	24	18	13	9	125	63	30	22 2E	17	12	8	27	43		70	0.27-0.7	A-1-b	GM		NP NP	NP	42.60	40.40	17.00		├ ─── ├	32.10
409	44	22 18	319	190	108	67	51	38	21	298	178	101	63	48	36	20	20	60		80	0.2-0.4	A-1-0 A-1-a	GP-GM		NP NP	NP	63.80	27.00	9.20		<u>├</u>	37.80
471	43	21 15	219	123	63	48	41	32	26	206	116	59	45	39	30	24	9	101		110	1.1-1.5	A-6	CL	19.1	29.0 14.0	15.0	1.90	8.10	90.00	4.74	1.55	
472	43	21 19	241	140	85	44	38	30	27	225	131	79	41	36	28	25	10	60		70	0.7-1.4	A-6	CL	14.5	30.0 15.0	15.0	17.10	25.40	57.50	4.36	2.60	
473 474	43 42	21 18 24 10	253	134	84 64	52	<u>37</u> ⊿1	32 २x	27	236	125 96	78 61	48	34	30	25	23	57		80 60	0.8-1.5	Α-6 Δ-1-2	CL SM	15.7 7 २	27.0 13.0 NP ND	14.0 NP	5.40 29.00	18.90 47.60	/5.70 13.40	4.22	2.22	29.00
475	42	24 20	180	84	70	58	37	31	23	170	79	66	55	35	29	22	10	80		90	1-1.5	A-6	CL	18.9	29.0 18.0	11.0	7.20	12.00	80.80	4.14	2.23	23.00
476	43	20 17	147	85	79	65	56	43	37	138	80	74	61	52	40	35	33	47		80	0.8-1.5	A-6	CL	23.5	39.0 18.0	21.0	0.00	37.20	62.80	3.60	1.12	
477	43	19 14	117	71	43	33	28	17	10	110	67	40	31	26	16	9	16	84		100	1-1.3	A-6	CL	20.6	29.0 18.0	11.0	5.90	30.50	63.60	3.51	1.38	

										DI	EFLECTOM	ETRÍA															G	EOTECNIA						
				Deflexio	ones: Dato	os Obtenid	los en Camp	00					oflevieres	Comodido		(Espesores de E	structura														CBR muestra
Punto	Carga	Temp	eratura			Defle	exiones Me	didas (µm)				U	reflexiones	Corregidas	s por Carga	(μm)		Сара	MG-1	MG-2	Espesor	Profundidad	Clasificación Suelo su	ubrasante	Humedad	Limite	s de Atterb	erg (%)	Gr	anulometría (%)	CBR, Mues	tra inalterada	compactada en
	Carga	Pav.	Aire	d _o	d1	d ₂	d₃	d4	d₅	d ₆	d _{oc}	d _{1c}	d _{2c}	d _{3c}	d _{4c}	d _{5c}	d _{6c}	Asfáltica	WIG-1	MG-2	Total	exploración (m)			Natural (%)									
#	kN	°C	°C	0 cm	30 cm	60 cm	90 cm	120 cm	150 cm	180 cm	0 cm	30 cm	60 cm	90 cm	120 cm	150 cm	180 cm	cm	cm	cm	cm		AASTHO	USCS		ш	LP	IP	Gravas	Arenas	Finos	Humedad natural	inmersión	Inmersión
478	42	18	13	114	87	64	45	30	29	21	109	83	61	43	29	28	20	15	95		110	1.1-1.5	A-6	CL	14.7	37.0	18.0	19.0	0.00	0.00	100.00	8.69	3.62	
479	42	19	14	191	138	93	50	45	34	28	181	131	88	47	43	32	27	40	30		70	0.7-1.5	A-7-6	CL	12.0	44.0	22.0	22.0	0.40	8.90	90.70	10.26	2.43	
480	43	19	14	89	51	39	31	26	17	15	83	47	36	29	24	16	14	27	43		70	0.27-1.5	A-1-a	GM		NP	NP	NP	44.40	39.50	16.10		· /	21.60
481	42	22	18	118	91	74	62	56	47	29	113	88	71	60	54	45	28	7	93		100	1-1.5	A-2-6	SC	12.3	25.0	13.0	12.0	14.20	44.80	41.00	6.59	1.95	
482	42	23	18	142	93	63	44	35	26	17	136	89	60	42	34	25	16	20	70		90	0.9-1.5	A-6	CL	15.9	29.0	17.0	12.0	63.00	20.90	72.80	9.57	2.97	
483	41.5	21	16	213	169	85	78	63	28	21	205	163	82	75	61	27	20	25	45		70	0.7-1.5	A-6	CL	22.5	35.0	19.0	16.0	16.50	18.00	65.60	3.74	2.10	
484	41.8	20	16	135	92	70	47	39	30	20	129	88	67	45	37	29	19	25	45		70	0.7-1.5	A-6	CL	19.6	29.0	16.0	13.0	10.30	30.00	59.70	7.73	2.38	
485	42.7	21	17	114	71	49	31	24	16	11	107	67	46	29	22	15	10	25	55		80	0.8-1.5	A-1-a	GM		NP	NP	NP	56.00	19.20	24.80		<u> </u>	37.00
486	42.5	22	20	1511	93	62	47	35	34	19	1422	88	58	44	33	32	18	25	45		70	0.25-1.5	A-1-a	GM		NP	NP	NP	64.30	23.50	12.20		<u> </u>	41.00
487	42.4	22	18	151	79	45	41	32	23	14	142	75	42	39	30	22	13	22	18		40	0.4-0.9	A-1-a	GM		NP	NP	NP	53.40	22.50	24.10		!	37.90
488	41.8	22	18	167	134	95	83	37	29	23	160	128	91	79	35	28	22	23	67		90	0.9-1.5	A-6	CL	22.8	40.0	21.0	19.0	1.90	16.50	81.60	6.91	2.97	
489	41.4	21	16	122	88	65	43	32	23	13	118	85	63	42	31	22	13	23	67		90	0.9-1.5	A-6	CL	19.8	34.0	17.0	17.0	22.00	12.60	85.20	10.69	2.64	
490	41	20	17	147	58	49	31	25	19	15	143	57	48	30	24	19	15	30	60		90	0.9-1.5	A-6	CL	18.3	33.0	19.0	14.0	3.20	12.70	84.10	4.93	1.94	
491	41.9	21	17	119	82	58	41	34	28	23	114	78	55	39	32	27	22	20	50		70	0.7-1.5	A-7-6	CL	21.3	46.0	21.0	25.0	1.50	4.90	93.60	3.74	2.43	
492	41.7	21	13	124	89	68	45	40	33	21	119	85	65	43	38	32	20	40	50		90	0.9-1.5	A-7-6	CL	18.6	48.0	20.0	28.0	5.00	14.50	80.50	6.61	3.37	
493	41.3	23	18	245	131	95	56	45	38	37	237	127	92	54	44	37	36	30	60		90	0.9-1.5	A-4	ML	19.7				9.60	38.10	52.30	3.89	0.97	
494	40.7	22	18	285	149	90	74	65	28	11	280	146	88	73	64	28	11	30	20		50	0.5-1.5	A-3	SM	9.3	NP	NP	NP	4.70	81.80	13.50		/	17.20
495	42.1	30	28	105	39	33	24	15	10	9	100	37	31	23	14	10	9	30	40		70	0.3-0.8	A-1-a	GM		NP	NP	NP	52.50	29.70	17.80		/	35.20
496	42.7	30	28	64	34	28	23	18	14	11	60	32	26	22	17	13	10	30	40		70	0.3-1.3	A-1-a	GM		NP	NP	NP	61.40	25.00	13.60			47.70
497	42.3	26	22	142	106	71	62	44	37	28	134	100	67	59	42	35	26	40	30		70	0.4-1.5	A-1-a	GM		NP	NP	NP	50.40	35.70	13.90		/	35.30
498	42.8	24	21	112	68	48	36	29	22	14	105	64	45	34	27	21	13	30	40		70	0.3-1.5	A-1-a	SM	7.6	NP	NP	NP	39.70	44.30	16.00		/	49.90
499	41.3	27	25	291	173	92	58	42	34	29	282	168	89	56	41	33	28	30	40		70	0.3-1.3	A-1-b	GM		NP	NP	NP	35.30	32.10	32.60		/	50.90
500	42.2	29	24	184	79	62	39	32	28	23	174	75	59	37	30	27	22	20	70		90	0.9-1.5	A-1-a	GP-GM		NP	NP	NP	46.70	41.90	11.40		/	27.30
501	41.6	29	26	254	110	58	40	35	29	21	244	106	56	38	34	28	20	25	45		70	0.7-1.5	A-1-b	SM	8.7	NP	NP	NP	14.60	72.70	12.70		/	18.80

ANEXO 2. CERTIFICADOS DE CALIBRACIÓN DEFLECTÓMETRO DE IMPACTO

Calibration Certificate

The Falling Weight Deflectometer (FWD) with serial number FV832, manufactured by KUAB Konsult & Utveckling AB in Sweden, was in October 2011 calibrated by KUAB's personnel.

After the calibration the FWD FV832 measures with the same accuracy as a new KUAB FWD, and meets all relevant standards, including but not limited to ASTM standard D4694.

Rättvik 2011 10 07 KUAB Konsult & Utveckling AB

Olle Tholén

KUAB Konsult & Utveckling AB Box 10, 795 21 RÄTTVIK, Sweden Tel. int. +46 248 130 24 Fax int. +46 248 137 54 e-mail: all@kuab.se

Postal address

Box 10 S-795 21 Rättvik Sweden Telephone Nat 0248 13024 Int +46 248 13024 e-mail/Telefax

all@kuab.se +46 248 13754 Visiting address

Faluvägen 6 S-795 35 Rättvik Sweden

Calibration Certificate

The Falling Weight Deflectometer (FWD) with serial number FV071, manufactured by KUAB Konsult & Utveckling AB in Sweden, was in October 2011 calibrated by KUAB's personnel.

After the calibration the FWD FV071 measures with the same accuracy as a new KUAB FWD, and meets all relevant standard, including but not limited to ASTM standard D4694.

Rättvik 2011 10 07 KUAB Konsult & Utveckling AB

Olle Tholén

KUAB Konsult & Utveckling AB

Box 10, 795 21 RÄTTVIK, Sweden Tel. int. +46 248 130 24 Fax int. +46 248 137 54 e-mail: all@kuab.se

Postal address

Box 10 S-795 21 Rättvik Sweden Telephone Nat 0248 13024 Int +46 248 13024 e-mail/Telefax

all@kuab.se +46 248 13754 Visiting address

Faluvägen 6 S-795 35 Rättvik Sweden

Calibration certificate

The Falling Weight Deflectometer (FWD) with serial number FV832, manufactured by KUAB Konsult & Utveckling AB in Sweden, was in March 2013 calibrated by KUAB's personnel. The load and deflection sensors of FWD FV832 measures with the same accuracy as a new KUAB FWD, and meets all relevant standards, including but not limited to ASTM standard D4694.

Bogota 2013 03 17 KUAB Konsult & Utveckling AB

g

Olle Tholén President of KUAB, Dr Techn

Postal address Box 10 S-795 21 Rättvik Sweden

Telephone Nat 0248 13024 Int +46 248 13024

e-mail/Telefax all@kuab.se +46 248 13754

Visiting address Faluvägen 6 S-795 35 Rättvik Sweden

Calibration certificate

į.

The Falling Weight Deflectometer (FWD) with serial number FV832, manufactured by KUAB Konsult & Utveckling AB in Sweden, was in February 2014 calibrated by KUAB's personnel. The load and deflection sensors of FWD FV832 measures with the same accuracy as a new KUAB FWD, and meets all relevant standards, including but not limited to ASTM standard D4694.

Bogota 2014 04 15 KUAB Konsult & Utveckling AB

Anna Tholén

KUAB Konsult & Utveckling AB Box 10, 795 21 RÄTTVIK, Sweden Tel. int. +46 248 130 24 Fax int. +46 248 137 54 e-mail: all@kuab.se

Postal address

i

į.

Box 10 S-795 21 Rättvik Sweden į

e-mail/Telefax

all@kuab.se +46 248 13754 Faluvägen 6 S-795 35 Rättvik Sweden

Calibration Certificate

The Falling Weight Deflectometer (FWD) with serial number FV832, manufactured by KUAB Konsult & Utveckling AB in Sweden, was in February 2015 calibrated by KUAB's personnel.

After the calibration the FWD FV832 measures with the same accuracy as a new KUAB FWD, and meets all relevant standard, including but not limited to ASTM standard D4694.

2015 08 27 KUAB Konsult & Utveckling AB

Olle Tholén

Date of Calibration:

31-mar-2018

Calibration Center: Calibration Center Operator: GeoSense SAS MIGUEL SAUMETT

Signature

FWD Owner: FWD Manufacturer FWD Model: FWD Serial Number FWD Operator: ITINERIS_FWD50 KUAB model FWD50 FV832 LUIS MIGUEL BELEÑO

Reference Load Cell: Reference Accelerometer: WinFWDCal Software:

HS009 SN 24066 Version 2.2.12

LOAD CELL CALIBRATION

Serial	Initial Gain	Reference	ce Gains	Average Gain	Final Gain
Number		1	2		
329010	1.000	0.987	0.994	0.990	0.990

DEFLECTION SENSOR CALIBRATION

Serial	Initial	Referen	ce Gains	Relative	Gains	Final
Number	Gain	1	2	1	2	Gain
9101	0.999	1.030	1.030	1.033	1.036	1.034
9102	0.994	1.016	1.016	0.992	0.996	0.994
9103	1.009	1.042	1.042	1.041	1.047	1.044
9104	1.004	0.999	0.999	1.001	1.000	1.000
9105	0.997	0.969	0.969	0.967	0.962	0.965
9106	0.996	0.996	0.996	1.006	1.002	1.004
9107	1.004	0.947	0.947	0.959	0.955	0.957

Messages:

Load Cell: All data checks passed Sensor Reference Calibration: Reference Calibrations Accepted. Reference Trial Acceptance Criteria Met. Sensor Relative Calibration: Sensor Calibration Completed! Final Acceptance Critera are met for all sensors.

Date of Calibration:

05-abr-2019

Calibration Center: Calibration Center Operator: GeoSense SAS MIGUEL SAUMETT

NIT. 900.392.689-1

FWD Owner: FWD Manufacturer FWD Model: FWD Serial Number FWD Operator: ITINERIS_FWD50 KUAB FWD50 FV832 LUIS MIGUEL BELEÑO

Reference Load Cell: Reference Accelerometer: WinFWDCal Software: HS009 SN 24066 Version 2.2.12

LOAD CELL CALIBRATION

Serial	Initial Gain	Referen	nce Gains	5	Average Gain	Final Gain
Number		1	2	3		
329010	0.990	0.977	0.977	0.977	0.977	0.977

DEFLECTION SENSOR CALIBRATION

Serial	Initial	Referen	ce Gains	Relative	Gains	Final
Number	Gain	1	2	1	2	Gain
9101	1.067	1.074	1.074	1.076	1.058	1.067
9102	1.011	1.019	1.019	1.002	1.021	1.011
9103	1.038	1.031	1.031	1.039	1.036	1.038
9104	1.017	1.027	1.027	1.012	1.021	1.017
9105	1.016	1.050	1.050	1.020	1.012	1.016
9106	1.040	1.063	1.063	1.031	1.048	1.039
9107	0.830	0.771	0.771	0.837	0.824	0.830

Messages: Load Cell: All data checks passed Sensor Reference Calibration: Reference Calibrations Accepted. Reference Trial Acceptance Criteria Met.

Sensor Relative Calibration:

Sensor Calibration Completed!

Final Acceptance Critera are met for all sensors.

Calibration Certificate

The Heavy Weight Deflectometer (HWD) with serial number FV943, manufactured by KUAB Konsult & Utveckling AB in Sweden, was in February 2015 calibrated by KUAB's personnel.

After the calibration the FWD FV943 measures with the same accuracy as a new KUAB HWD, and meets all relevant standard, including but not limited to ASTM standard D4694.

2015 08 27 KUAB Konsult & Utveckling AB

Olle Tholén

k

Calibration Certificate

The Heavy Weight Deflectometer (HWD) with serial number FV943, manufactured by KUAB Konsult & Utveckling AB in Sweden, was in February 2016 calibrated by KUAB's personnel.

After the calibration the FWD FV943 measures with the same accuracy as a new KUAB HWD, and meets all relevant standard, including but not limited to ASTM standard D4694.

2016 02 27 KUAB Konsult & Utveckling AB

alle pe

Olle Tholén

KUAB Konsult & Utveckling AB Box 10, 795 21 RÄTTVIK, Sweden Tel. int. +46 248 130 24 Fax int. +46 248 137 54 e-mail: all@kuab.se

Sweden

all@kuab.se +46 248 13754

Sweden

S

FWD Calibration

Date of Calibration:

17-mar-2017

Calibration Center: Calibration Center Operator: GeoSense SAS MIGUEL SAUMETT

Signature

FWD Owner: FWD Manufacturer FWD Model: FWD Serial Number FWD Operator: ITINERIS_FWD_FV943 KUAB model 240 type endswitches FV943 LUIS MIGUEL BELEÑO

Reference Load Cell: Reference Accelerometer: WinFWDCal Software: HS009 SN 24066 Version 2.2.12

LOAD CELL CALIBRATION

Serial	Initial Gain	Referen	ce Gains	Average Gain	Final Gain
Number		1	2		
329010	1.000	1.000	1.000	1.000	1.000

Messages: Load Cell: All data checks passed

KUAB STATIC SEISMOMETER CALIBRATION OUTPUT FILE

Data: 05/02/2017

Date. 05/05/2	017								
Time: 10:13:1	16 p.m.								
A/D converte	r bit valu	e: N/A	mV/b	i t					
Calibration fa	ctor for	seism	omete	er ()	= 0.485	448 µ	m/mV	
Calibration fa	ctor for	seism	omete	er 1	l	= 0.466	483 µ	m/mV	
Calibration fa	ctor for	seism	omete	er 2	2	= 0.477	856 µ	m/mV	
Calibration fa	ctor for	seism	omete	er 3	3	= 0.479	438 µ	m/mV	
Calibration fa	ctor for	seism	omete	er 4	ł	= 0.484	411 µ	m/mV	
Calibration fa	ctor for	seism	omete	er 5	5	= 0.473	603 µ	m/mV	
Calibration fa	ctor for	seism	omete	er 6	5	= 0.477	645 µ	m/mV	
Calibration fa	ctor for	seism	omete	er 7	7	= 0.485	639 µ	m/mV	
Calibration fa	ctor for	seism	omete	er 8	3	= 0.474	229 µ	m/mV	
	D0	D1	D2	D3	D4	D5	D6	D7	D8
	SO	S 1	S 2	S 3	S 4	S5	S 6	S 7	S 8
Voltage	at 3.3-3	183 -9	5 -354	5 478	3 - 24	64 -2640	-2902	2 - 2675	-2385

Voltage at 3.5 -2665 -92 -3031 477 -1944 -2115 -2378 -2163 -1859

 Position
 5.25
 0
 5.25
 0
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5

Voltage at 3.25 -2155 -82 -3553 471 -2473 -2651 -2912 -2686 -2394 Voltage at 3.75 -2156 -82 -2508 476 -1432 -1588 -1862 -1653 -1335 -1045 0 -1196 0 -690 -748 -884 -799 -630 -802 Voltage at 4.25 -2156 -82 -1457 472 -391 -517 -616 -270 -1045 0 -695 0 -188 -243 -380 -298 -128 Voltage at 4.75 -2157 -80 -402 466 649 552 260 426 795 -1045 0 -192 0 313 260 123 206 375 Voltage at 5.25 -1201 -82 653 476 1688 1615 1314 1464 1853 -582 0 312 0 814 760 624 708 875 Voltage -1201 -81 2673 2369 2496 2910 -582 814 0 1810 1258 1124 1207 1374 at 5.75 1706 478 3756 0 Voltage at 6.25 -1202 -76 2752 475 3756 3724 3419 3529 3957 -582 0 1312 0 1811 1753 1623 1706 1868 Voltage 473 5785 4761 4459 4546 4995 -582 1806 0 2789 2241 2116 2198 2358 at 6.75 -1202 -80 3788 0 Voltage at 7.25 -1202 -79 4812 475 5786 5780 5483 5554 6020 -582 0 2295 0 2789 2721 2602 2685 2842

Calibration factor for seismometer 0 = 0.483384Calibration factor for seismometer 2 = 0.476913Calibration factor for seismometer 4 = 0.481170Calibration factor for seismometer 5 = 0.470699Calibration factor for seismometer 6 = 0.474586Calibration factor for seismometer 7 = 0.483371Calibration factor for seismometer 8 = 0.472056

After the calibration the FWD FV943 measures with the same accuracy as a new KUAB HWD, and meets all relevant standard, including but not limited to ASTM standard D4694.

FWD Calibration

Date of Calibration:

2-abril-2018

Calibration Center: Calibration Center Operator: GeoSense SAS MIGUEL SAUMETT

Signature

FWD Owner: FWD Manufacturer FWD Model: FWD Serial Number FWD Operator: ITINERIS_FWD_FV943 KUAB model 240 type endswitches FV943 YEISON SUAZA JAQUE

Reference Load Cell: Reference Accelerometer: WinFWDCal Software: HS009 SN 24066 Version 2.2.12

LOAD CELL CALIBRATION

Serial	Initial Gain	Referen	ce Gains	Average Gain	Final Gain
Number		1	2		
329010	1.000	1.000	1.000	1.000	1.000

Messages: Load Cell: All data checks passed

KUAB STATIC SEISMOMETER CALIBRATION OUTPUT FILE

Data: 02/04/2019

Date: $02/04$	/20	10											
Time: 11:23	3:20) a.1	n.										
A/D conver	ter	bit	valu e	: N/A	mV/bi	t							
Calibration	fac	tor	for	seism	ometer	r C)	= ().465	448	µm/mV	r	
Calibration	fac	tor	for	seism	ometer	r 1		= ().456	483	µm/mV	r	
Calibration	fac	tor	for	seism	ometer	r 2	2	= (0.467	856	µm/mV	r	
Calibration	fac	tor	for	seism	ometer	r 3	;	= ().459	438	µm/mV	r	
Calibration	fac	tor	for	seism	ometer	r 4		= ().464	411	µm/mV	r	
Calibration	fac	tor	for	seism	ometer	r 5	i	= ().453	603	µm/mV	7	
Calibration	fac	tor	for	seism	ometer	r e	; ;	= ().467	645	µm/mV	7	
Calibration	fac	tor	for	seism	ometer	r 7	'	= ().465	639	µm/mV	7	
Calibration	fac	tor	for	seism	ometer	r 8	5	= ().454	229	µm/mV	τ	
			D0	D1	D2	D3	D4		D5	D6	D7	D8	
			S 0	S 1	S 2	S 3	S4		S5	S6	S 7	S 8	
Voltage		at .	3.3 -31	83 -9	5 -3545	5 478	-24	64 -	2640	-290)2 -2675	-2385	
Voltage	at	3.5	-2665	-92	-3031	477	-19	944	-2	115	-2378 -	2163 -1	859

 Position
 5.25
 0
 5.25
 0
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5.25
 5

Voltage at 3.25 -2155 -82 -3553 471 -2473 -2651 -2912 -2686 -2394 Voltage at 3.75 -2156 -82 -2508 476 -1432 -1588 -1862 -1653 -1335 -1045 0 -1196 0 -690 -748 -884 -799 -630 -802 Voltage at 4.25 -2156 -82 -1457 472 -391 -517 -616 -270 -1045 0 -695 0 -188 -243 -380 -298 -128 Voltage at 4.75 -2157 -80 -402 466 649 552 260 426 795 -1045 0 -192 0 313 260 123 206 375 Voltage at 5.25 -1201 -82 653 476 1688 1615 1314 1464 1853 -582 0 312 0 814 760 624 708 875 Voltage -1201 -81 2673 2369 2496 2910 -582 814 0 1810 1258 1124 1207 1374 at 5.75 1706 478 3756 0 Voltage at 6.25 -1202 -76 2752 475 3756 3724 3419 3529 3957 -582 0 1312 0 1811 1753 1623 1706 1868 Voltage 473 5785 4761 4459 4546 4995 -582 1806 0 2789 2241 2116 2198 2358 at 6.75 -1202 -80 3788 0 Voltage at 7.25 -1202 -79 4812 475 5786 5780 5483 5554 6020 -582 0 2295 0 2789 2721 2602 2685 2842

Calibration factor for seismometer 0 = 0.483384Calibration factor for seismometer 2 = 0.476913Calibration factor for seismometer 4 = 0.481170Calibration factor for seismometer 5 = 0.470699Calibration factor for seismometer 6 = 0.474586Calibration factor for seismometer 7 = 0.483371Calibration factor for seismometer 8 = 0.472056

After the calibration the FWD FV943 measures with the same accuracy as a new KUAB HWD, and meets all relevant standard, including but not limited to ASTM standard D4694.

Date of Calibration:

23-abr-2019

Calibration Center: Calibration Center Operator: GeoSense SAS MIGUEL SAUMETT

Signature

FWD Owner: FWD Manufacturer FWD Model: FWD Serial Number FWD Operator: PAVINFRA_HWD240 KUAB model HWD-240 FV943 LUIS MIGUEL BELEÑO

Reference Load Cell: Reference Accelerometer: WinFWDCal Software: HS009 SN 24066 Version 2.2.12

LOAD CELL CALIBRATION

Serial	Initial Gain	Referen	ce Gains		Average Gain	Final Gain
Number		1	2	3		
329010	1.000	1.003	1.007	1.009	1.006	1.006

DEFLECTION SENSOR CALIBRATION

Serial	Initial	Referen	ce Gains			Relative	Gains	Final
Number	Gain	1	2	3	4	1	2	Gain
9201	0.973	0.949	0.951	0.946	0.946	0.974	0.972	0.973
9202	0.972	0.938	0.934	0.937	0.938	0.972	0.973	0.972
9203	0.951	0.924	0.928	0.930	0.927	0.949	0.953	0.951
9204	0.874	0.858	0.851	0.856	0.853	0.875	0.873	0.874
9205	0.966	0.965	0.965	0.957	0.959	0.964	0.968	0.966
9206	0.466	0.463	0.457	0.456	0.455	0.467	0.464	0.466
9207	0.975	0.940	0.942	0.948	0.944	0.975	0.976	0.975

Messages: Load Cell: All data checks passed Sensor Reference Calibration: Reference Calibrations Accepted. Reference Trial Acceptance Criteria Met. Sensor Relative Calibration:

Final Acceptance Critera are met for all sensors.

ANEXO 3 MÓDULOS DE LA SUBRASANTE DETERMINADOS A PARTIR DE LA DEFLECTOMETRÍA

				Deflexi	ones: Dato	os Obtenid	os en Camp	00				[Deflexiones	Corregida	s por Carga ((μm)			Espesores de Es	structura		Parámetros Est AASH	tructurales ГО	Cálculo	de Módulos Método	Directo			
Punto	Carga	Temp	eratura			Defle	exiones Me	didas (µm)										Capa Asfáltica	MG-1	MG-2	Espesor Total	Mr	Mr		Hogg		Verificación r, N	etodología AA	SHTO
#	kN	Pav. ≌C	Aire °C	d _o 0 cm	d ₁ 30 cm	d ₂ 60 cm	d ₃ 90 cm	d₄ 120 cm	d₅ 150 cm	d ₆ 180 cm	d _{oc} 0 cm	d _{1c} 30 cm	d _{2c} 60 cm	d _{3c} 90 cm	d _{4c} 120 cm	d _{5c} 150 cm	d _{6c} 180 cm	cm	cm	cm	cm	(Kg/cm ^²)	MPa	SR (MPa)	Deflexiónn (Dr/D0 = 0.5)	Sensor Dr (cm)	Sensor empleado	r	Cumple?
1	39	25	25	785	467	182	85	55	43	37	797	474	185	86	56	44	38	15	35		50	978	96	67	375	60	(cm) 60	46	Si
2	40	25	25	530	260	56	22	14	10	8	531	261	56	22	14	10	8	18	20		38	2901	285	118	247	30	60	27	Si
3	39	27	27	605 310	411	155	84	49	32	22	621	422	159	86 69	50	33	23	14	22		36	1138	112	82	287	60	60	37	Si
5	41	26	21	343	208	123	147	118	101	81	338	253	119	145	45 116	100	80	20	45		66	780	77	71	145	90	90 120	99	Si
6	41	14	14	303	247	201	154	116	92	72	294	240	195	150	113	89	70	28	69		97	813	80	66	169	120	150	127	Si
7	41	16	15	286	238	200	157	127	105	84	280	233	196	154	125	103	82	29	65		94	703	69	62	155	120	150	138	Si
8	41	25	20	282	222	172	122	83	60	45	277	218	169	120	82	59	44	23	50		73	1104	108	85	127	90	120	100	Si
9	41	21	21	147	107	77	49	32	21	13	144	105	75	48	31	21	13	23	50	_	73	2919	286	200	70	90	120	83	Si
10	39 40	32 29	31 29	184 253	120	60	30	34 18	26 13	19	255	122	80 60	53 30	35 18	26 13	19	25	90		115	2784	273 493	246	76 108	<u> </u>	150	86	Si
12	40	25	27	136	59	34	21	15	12	10	137	60	34	21	15	12	10	12	85		97	5745	564	516	64	30	90	85	Si
13	40	27	26	161	73	41	23	16	12	8	162	73	41	23	16	12	8	20	70		90	5246	515	419	72	30	90	78	Si
14	40	27	27	163	92	55	29	15	13	11	164	92	55	29	15	13	11	17	56		73	4160	408	262	75	60	90	70	Si
15	40	27	26	192	93	50	30	19	16	13	192	93	50	30	19	16	13	15	88		103	4762	467	330	89	30	120	85	Si
16	40	26	27	129	73	49	31	19	12	8	130	73	49	31	19	12	8	14	90	_	104	4762	467	303	61	60	120	100	Si
17	41	27	26	238	145	90 52	30	38	27 19	20	235	143	89 52	30	38	27 19	20	16	54		70	2381	234	289	107	30	90	57	Si
19	40	29	25	277	134	68	44	35	31	27	278	135	68	44	35	31	27	23	130		153	2234	219	228	120	30	180	148	Si
20	40	31	29	362	146	51	24	15	13	12	365	147	51	24	15	13	12	18	90		108	5027	493	206	158	30	90	71	Si
21	40	27	26	148	56	28	19	15	13	11	148	56	28	19	15	13	11	18	120		138	6032	592	532	67	30	120	115	Si
22	40	30	25	225	112	62	36	24	19	17	227	113	62	36	24	19	17	19	45		64	3351	329	272	99	30	90	60	Si
23	40	30	25	232	123	63	34	23	19	16	231	123	63	34	23	19	16	11	100		<u> </u>	3934	386	212	106	60	120	92	Si
24	40	30 24	26	248 195	103	56	35	24	20	10	248	103	56	35	24	20	10	18	41		59 120	3447 4309		204	92	60	90	101	Si
26	40	25	20	265	142	79	53	39	35	28	267	143	80	53	39	35	28	12	56		68	2276	223	174	127	60	90	67	Si
27	40	25	27	190	79	37	21	14	12	10	190	79	37	21	14	12	10	19	62		81	5745	564	384	88	30	90	63	Si
28	40	26	26	234	106	56	31	22	17	13	236	107	57	31	22	17	13	18	49		67	3892	382	287	110	30	90	56	Si
29	40	27	26	196	97	50	30	22	19	16	196	97	50	30	22	19	16	17	57		74	4022	395	316	89	30	90	66	Si
30	40	27	27	247	131	77	51	38	31	27	248	131	77	51	38	31	27	18	64		82 67	2366	232	182	113	60	90	82	Si
32	40	24	26	177	100	50	24	18	15	12	177	100	43 50	24	18	15	13	14	70		84	4468	438	271	87	60	90	73	Si
33	40	25	26	299	144	53	21	12	9	6	296	143	52	21	12	9	6	13	78		91	5745	564	215	140	30	90	60	Si
34	41	23	26	171	97	48	27	18	14	11	168	95	47	27	18	14	11	17	48		65	4468	438	286	81	60	90	59	Si
35	41	28	24	326	209	126	79	53	41	34	321	206	124	78	52	40	33	13	59		71	1388	136	121	149	60	90	81	Si
36	40	25	23	168	112	79	60	46	39	32	166	111	78	59	46	39	32	12	52		64	2045	201	197	80	60	90	83	Si
37	40	24	23	247	133	107	95	68	58 54	48	246	133	107	83 95	68	58	48 46	25	49		66	1194	117	124	91	90	120	99	Si
39	41	25	23	250	146	70	29	10	7	4	247	144	69	29	10	7	4	29	41		70	4160	408	195	112	60	90	57	Si
40	40	25	23	290	197	117	65	37	24	19	287	195	116	64	37	24	19	25	45		70	1885	185	131	131	60	90	74	Si
41	40	20	18	295	182	125	93	72	63	55	292	180	124	92	71	62	54	19	68		88	1274	125	123	146	60	120	102	Si
42	40	21	19	251	144	84	50	37	31	28	252	144	84	50	37	31	28	22	61		82	2166	212	171	125	60	90	82	Si
43	40	20	17	181	1/8	51	74	20	46	40	249	176	50	73	20	46	40	21	58		79 81	3734	366	141	83	60	90	91	Si
45	41	18	17	254	149	84	51	37	32	28	250	147	83	50	36	32	28	28	57	+ +	85	2166	212	174	132	60	90	82	Si
46	40	17	18	182	101	69	55	42	40	35	180	100	68	54	42	40	35	21	60		80	1934	190	219	95	60	120	95	Si
47	40	16	17	370	188	106	77	56	47	40	368	187	105	77	56	47	40	21	44		65	1406	138	129	196	60	90	66	Si
48	40	19	17	262	163	86	52	35	27	21	260	162	85	52	35	27	21	20	46		66	2083	204	168	132	60	90	67	Si
49 50	40 40	18 19	17	102	104	61 84	43	34 ⊿∩	30	25	1/5	103	6U 84	43 56	34 40	30	25	18 10	6Z 53	+ +	8U 71	2518 103 <i>1</i>	247 190	241	90 90	60 60	90	80 84	SI Si
51	41	19	17	220	123	66	40	26	23	20	217	124	65	40	26	23	20	19	65		84	2707	266	213	111	60	90	80	Si
52	41	18	17	223	141	85	50	32	26	20	217	137	83	49	31	25	19	20	86		106	2620	257	181	112	60	120	100	Si
53	41	18	17	152	101	65	44	31	26	20	149	99	64	43	30	25	20	19	66		85	2707	266	242	77	60	120	94	Si
54	40	18	17	148	92	61	42	33	26	25	147	91	60	42	33	26	25	19	72		91	2461	241	252	75	60	120	105	Si
55	41	18	17	125	86 61	64 E2	45	32	28	25	122	84 60	62	44	31	27	24	19	71	+	89	2620	257	224	62	90	120	109	SI Ci
57	40	19	18	102	71	59	45	39	33	28	101	70	58	43	39	33	28	20	74	+	93	1969	193	230	49 51	90	150	142	Si
58	40	20	19	69	51	37	28	21	18	16	68	50	37	28	21	18	16	25	56		81	3868	379	364	34	90	120	111	Si
59	40	20	19	94	60	47	38	30	28	27	94	60	47	38	30	28	27	19	32		51	2850	280	267	47	90	90	78	Si
60	40	24	21	363	197	106	57	30	19	12	365	198	107	57	30	19	12	25	60		85	1900	186	129	170	60	90	79	Si
61	41	20	19	109	69	50	41	31	25	20	108	68	49	40	31	25	20	24	65		88	2620	257	312	54	60	120	116	Si
62	40 //1	21	20	147	90 710	250	36	22	15 50	13	147	90	262	36	22	15	13 //c	24	63	+	87 כד	3692	362	271	12	<u>60</u>	120	50	SI Ci
64	41	16	15	929	446	166	99	70	57	51	902	433	161	88	68	55	50	14	59		73	1009	99	45 71	472	30	60	59	Si
65	41	14	13	400	339	270	208	156	121	97	391	332	264	203	153	118	95	17	59		76	531	52	49	214	120	120	114	Si
66	41	14	13	379	312	248	199	154	124	105	370	304	242	194	150	121	102	17	46		63	603	59	50	201	120	120	95	Si
67	41	14	14	396	309	236	184	149	120	102	385	301	230	179	145	117	99	16	39		55	674	66	57	208	90	90	80	Si
68	41	16	14	368	302	205	136	96	75	67	358	294	200	132	93	73	65	17	68		85	873	86	75	190	90	120	104	Si
69	41	22	ΔT	53Z	470	328	201	191	145	171	522	401	351	250	101	142	113	1/	51		δσ	434	43	40	200	90	120	100	21

				Deflexiones: Datos Obtenidos en Campo								D	eflexiones	Corregida	s por Carga	(μm)		I	Espesores de Est	ructura		Parámetros Es AASH	structurales ITO	Cálcul	o de Módulos Método D	Directo			
Punto	Carga	Tempe	eratura		4	Defle	exiones Med	didas (µm)	-	4	4	4	4	4	4		-	Capa Asfáltica	MG-1	MG-2	Espesor Total	Mr	Mr		Hogg		Verificación r, N	letodología A	ASHTO
#	kN	Pav. ≌C	Aire °C	d _o 0 cm	d ₁ 30 cm	d ₂ 60 cm	d ₃ 90 cm	d ₄ 120 cm	d₅ 150 cm	d ₆ 180 cm	a _{oc} 0 cm	d _{1c} 30 cm	d _{2c} 60 cm	d _{3c} 90 cm	d _{4c} 120 cm	a _{5c} 150 cm	d _{6c} 180 cm	cm	ст	cm	cm	(Kg/cm ^²)	МРа	SR (MPa)	Deflexiónn (Dr/D0 = 0.5)	Sensor Dr (cm)	Sensor empleado	r	Cumple?
70	40	20	20	1054	662 546	298	193	150	131	113	1057	664 539	299	193 219	150	131	113 118	14	46		60 73	561	55	45	529	60	90	59 85	Si
72	41	22	19	934	576	325	223	174	142	119	920	567	320	220	171	140	117	16	64		80	548	54	46	449	60	90	83	Si
73	43	19 18	<u>18</u> 18	354 463	298 383	236 291	182 210	145 157	118 125	106 103	326 451	275 373	218 283	168 204	134 153	109 122	98 100	13 19	53 53		66 72	606 531	59	57	166 234	120 90	120 120	109 104	Si Si
75	41	18	19	400	318	240	173	129	103	88	391	311	235	169	126	101	86	18	55		73	645	63	61	201	90	120	103	Si
76	41 41	17	19	439	383	279	201	140	112	93 104	430	375	274	200	137	110	91 102	20	63		83	545	58	52	236	90	120	103	Si
78	41	21	19	314	255	187	140	105	85	74	305	248	182	136	102	83	72	24	61		85	872	86	75	151	90	150	116	Si
80	41 41	19	19	490	389	282	174	130	94	84	482	382	239	197	147	92	82	17	53		69	602	54	60	239	90	120	99 101	Si
81	42	12	14	387	320	243	176	135	107	90	373	308	234	170	130	103	87	17	47		64	625	61	60	208	90	120	93	Si
82	42	12	14	1042	663	367	245	148	119	98 113	1032	656	363	243	143	136	94 112	18	49	67	134	478	47	40	568	60	120	108	Si
84	39	14	13	2776	1805	730	382	260	185	145	2833	1842	745	390	265	189	148	14	56	70	140	306	30	18	1526	60	120	111	Si
85	41 41	14	14	858	627	310	257	154	116	95 116	841	443 615	305	207	151	114	93 114	13	60	70	120	529	50	48 40	442	60	180	141	Si
87	40	14	14	796	628	420	271	183	133	112	788	622	416	268	181	132	111	20	30	50	100	449	44	36	437	90	120	112	Si
88 89	41 41	14	14	674	466	353	252	184	134	107	661	454	344	245	179	130	98	12	48 24	40	80	521	51	42	359	90	120	93	Si
90	40	14	13	1165	889	572	358	223	157	126	1171	893	575	360	224	158	127	15	55	70	140	411	40	27	633	60	150	137	Si
91	41 40	14	14	1205	783	473	296	202	94 147	125	1208	785	474	297	203	147	125	13	58	70	140	442	43	32	642	60	150	133	Si
93	40	12	14	1537	962	512	291	185	134	111	1541	964	513	292	185	134	111	11	59	70	140	540	53	28	831	60	150	112	Si
94	40	12	14	304	256	187	138	96	77	64	290	244	498 178	131	91	73	61	8	90	40	98	992	97	78	148	90	150	125	Si
96	40	20	21	1153	598	284	170	118	99	79	1147	595	283	169	117	99	79	10	45		55	574	56	45	574	60	60	52	Si
97	40	17	19	495	335	267	145	94	69	57	463	360	200	136	88	64	53	12 19	46 51		58 70	796	78	70	243	60	90	82	Si
99	42	18	15	975	660	338	163	85	53	43	926	627	321	155	81	50	41	19	43		62	699	69	45	475	60	90	58	Si
100	42	23	19	463 652	510	245	153	97 110	85	49 72	628	492	253	158	100	82	69	11 14	39		46	642	63	60	315	60	60	57	Si
102	39	19	18	757	483	240	127	82	60	51	769	490	244	129	83	61	52	9	51		60	839	82	58	386	60	90	57	Si
103	41	20 17	<u>17</u> 18	683 585	438 316	207 105	97 40	54 28	40	35 24	675 545	433 295	204 98	96 37	53 26	40	35 22	14 18	50 38		64 56	1128 1658	111	68	286	60	90 60	57 46	Si
105	43	18	16	636	395	250	151	97	66	53	590	367	232	140	90	61	49	16	54		70	774	76	65	305	60	90	75	Si
106 107	39 40	56 58	<u> </u>	123 158	70 102	51 84	<u>32</u> 57	21 39	15 30	11 20	126 160	72 103	52 85	33 58	22 39	15 30	11 20	32 21	<u>38</u> 49		70 70	4113 2083	403	290 170	<u> </u>	60 90	120 120	97 114	Si Si
108	39	55	40	139	95	84	61	48	38	31	142	97	86	62	49	39	32	20	50		70	1666	163	164	46	90	150	134	Si
109 110	40	19 21	<u> </u>	360 274	219 171	113 85	43	41 25	31 19	23 15	359 271	218 169	113 84	43 45	41 25	31 19	23 15	8	20	25 25	53 53	1602 2154	157 211	125 167	181	60 60	60 60	54 54	Si Si
111	40	22	18	523	310	139	61	43	33	26	522	309	139	61	43	33	26	8	20	25	53	1302	128	95	258	60	60	50	Si
<u>112</u> 113	40 40	34 32	<u> </u>	367 258	149 160	70 85	49 69	27 41	14 22	9 12	371 257	<u>151</u> 160	71 85	49 69	27 41	14 22	9 12	9	20	25 25	54 54	2549 1749	250 172	201 169	168 118	<u> </u>	60 90	46 64	Si Si
114	40	19	16	1528	720	125	36	30	22	18	1540	725	126	36	30	22	18	6	35		41	1289	126	42	773	30	60	26	Si
115 116	41 41	18 18	16 15	1196 1397	427 615	106 234	42 93	28 44	23 27	19 12	1167 1366	417 601	103 229	41 91	27 43	22 26	19 12	6 6	<u>35</u> 35		41 41	1577 709	155 70	71 51	589 690	30 30	60 60	27 34	Si Si
117	41	18	15	1319	661	284	143	93	62	45	1277	640	275	138	90	60	44	6	35		41	658	65	44	645	60	60	36	Si
118 119	41 40	25 24	23	956 704	525 509	301 376	208	153 155	113 90	92 74	944 704	519 509	297 376	205	151 155	112 90	91 74	30 10	40 70		70 80	528 524	52 51	48	422 341	60 90	90 120	77 96	Si
120	39	21	25	1095	436	255	173	144	117	103	1112	443	259	176	146	119	105	5	55		60	627	62	68	554	30	60	55	Si
121	43	19 19	15 15	483	274	174 198	139	99 149	85 130	/3 121	454 237	<u>257</u> 193	163	131	93 139	80	69 113	15 16	55 47		70 63	<u>827</u> 537	<u>81</u> 53	90 46	120	60 180	90 150	83 140	Si Si
123	43	18	15	106	81	55	43	32	24	21	99	76	52	40	30	22	20	16	47		63	2707	266	251	51	90	90	89	Si
124	43	18	15	312	430 239	345	93	57	41	32	481 290	222	136	86	53	38	30	16	24		40	383	38	113	151	60	60	55	Si
126	42	17	16	447	242	126	55	47	32	26	422	228	119	52	44	30	25	16	24		40	1365	134	114	219	60	60	42	Si
127	43	18	15	311	141	88 70	42	28	33 15	11	291	132	83 66	58 39	47 26	31 14	23 10	16	24 24		40	2461	241	186	98 151	60 60	60 60	53 38	Si Si
129	43	30	26	247	181	136	95	64	61	40	228	167	126	88	59	56	37	30	60		90	1160	114	114	92	90	150	134	Si
130	43	30 27	26	394 440	241 275	105	37	58	40	6 31	369 408	226	98 142	35 101	54	37	6 29	38 18	<u>62</u> 97		100	3094 1676	304 164	134	142	60 60	90 120	82 106	Si Si
132	44	28	25	101	61	54	47	33	25	15	92	55	49	43	30	23	14	38	112		150	3868	379	241	37	90	180	185	No
133	43	28	26	205	139	153	55 115	38 83	78	61	187	128	139	51 105	35 76	<u> </u>	56	33	/1 117		<u>88</u> 150	967	95	100	95	60 120	120	95 244	SI No
135	44	29	27	203	172	122	82	48	44	32	185	157	111	75	44	40	29	36	60		96	1624	159	135	73	90	150	134	Si
136	44	31 31	27	364	135 224	99 125	62 78	44 56	<u>32</u> 45	33	335	206	90 115	72	40 51	41	30	25 38	82		120	2461 1585	155	179	57 125	90 60	180	187	NO Si
138	44	31	29	131	104	78	55	40	23	7	120	95	71	50	37	21	6	28	34		62	2195	215	202	48	90	120	102	Si

					Deflexiones: Datos Obtenidos en Campo								۵	Deflexiones	Corregidas	s por Carga	(μm)			Espesores de Es	structura		Parámetros Es AASH	tructurales TO	Cálculo	de Módulos Método	Directo			
Punto	Ca	arga	Tempe Pav	ratura Aire	da	d.	Defle de	exiones Mea	didas (µm) d.	d-	d.	da	d.	d.	da	d.	d-	d.	Capa Asfáltica	MG-1	MG-2	Espesor Total	Mr	Mr	SR	Hogg		Verificación r, M	etodología A <i>l</i>	ASHTO
#		<n< td=""><td>ºC</td><td>°C</td><td>0 cm</td><td>30 cm</td><td>60 cm</td><td>90 cm</td><td>u₄ 120 cm</td><td>150 cm</td><td>180 cm</td><td>0 cm</td><td>30 cm</td><td>60 cm</td><td>90 cm</td><td>120 cm</td><td>150 cm</td><td>ч_{ьс} 180 ст</td><td>cm</td><td>cm</td><td>cm</td><td>cm</td><td>(Kg/cm^²)</td><td>MPa</td><td>(MPa)</td><td>Deflexiónn (Dr/D0 = 0.5)</td><td>Sensor Dr (cm)</td><td>Sensor empleado (cm)</td><td>r</td><td>Cumple?</td></n<>	ºC	°C	0 cm	30 cm	60 cm	90 cm	u₄ 120 cm	150 cm	180 cm	0 cm	30 cm	60 cm	90 cm	120 cm	150 cm	ч _{ьс} 180 ст	cm	cm	cm	cm	(Kg/cm ^²)	MPa	(MPa)	Deflexiónn (Dr/D0 = 0.5)	Sensor Dr (cm)	Sensor empleado (cm)	r	Cumple?
139		44	31	29	437	289	155	70	34	31	19	402	266	143	64	31	29	17	33	117		150	2241	220	103	156	60	150	132	Si
140		43	31	29	561	409	233	120	90 74	53 60	35	522	380	217	112 94	84 68	49	33	31	37		68 78	967 1152	95 112	70	205	60	90	79 80	Si
141		44	32	29	185	156	111	81	59	55	40	169	143	102	74	54	50	44	24	51		75	1504	113	138	69	90	120	118	Si
143		43	31	29	637	445	234	135	82	66	37	591	413	217	125	76	61	34	15	83		98	1069	105	68	261	60	120	95	Si
144		41 44	31	30 29	194 367	<u>70</u> 275	43	41	29 83	27 74	<u>18</u> 53	191 336	69 252	42	40	29 76	27 68	18 49	13	<u>137</u> 66		150 80	3008	295 105	429 94	86 150	<u> </u>	180	148	Si
145		43	31	28	805	458	230	122	75	51	29	747	425	213	113	70	47	27	12	48		60	1068	105	64	338	60	90	55	Si
147		44	32	29	237	146	72	52	32	23	13	215	133	65	47	29	21	12	22	128		150	3447	338	213	89	60	150	138	Si
148 149		44 43	32	28	471 345	<u> </u>	173 92	<u>111</u> 54	75 26	68 25	48 19	432 319	278 196	159 85	102 50	69 24	62 23	44 18	21 13	59		80 68	2413	237	93 155	180 143	<u> </u>	120 90	62	Si
150		43	31	29	225	129	56	47	34	25	17	208	119	52	44	31	23	16	11	74		85	2461	241	247	95	60	90	90	Si
151		44	32	29	513	326	176	95	77	60	44	471	299	161	87	71	55	40	14	71		85	1245	122	90	207	60	90	86	Si
152		44	32	29	576	423	261	161	120	<u>34</u>	68	538	395	244	150	<u> </u>	100	64	20	127		150	846	83	63	220	60	180	167	Si
154		43	32	29	578	377	214	128	78	64	44	533	347	197	118	72	59	41	13	137		150	1101	108	75	237	60	150	147	Si
155		44	31	29	434 525	338	223	146	101	92	67	399	311	205	134	93	85	62	10	36		46	808	79 68	72	183	90	90	68	Si
150		43	33	29	405	262	149	103	69	65	49	375	243	138	95	64	60	45	15	40		55	1140	112	107	162	60	90	69	Si
158		43	32	28	363	271	160	102	76	72	52	335	250	148	94	70	67	48	13	75		88	1160	114	104	149	60	120	106	Si
159		42 44	32	29 29	1224 346	709 244	371	211	137 70	<u> </u>	76 51	1160 317	672 223	352 138	200 92	<u>130</u> 64	104 59	72 47	14	71		85 115	541	53 108	40	511	<u> </u>	<u>90</u> 150	84 142	Si Si
161		43	33	29	282	204	105	48	44	21	16	262	189	97	45	41	19	15	26	94		120	3420	335	153	103	60	150	106	Si
162		43	32	29	313	175	97	56	45	33	25	289	162	90	52	42	30	23	18	132		150	2166	212	157	123	60	150	145	Si
163		43 42	32	29 30	203 421	260	106	67	65 33	42 33	32	188 397	145 245	98	62 60	60 31	39 31	30 28	20	133		150 90	2011	1// 197	155	81 164	<u> </u>	180 90	184 82	NO Si
165		43	32	26	264	249	240	198	106	93	76	244	231	222	183	98	86	70	25	67		92	774	76	77	99	120	180	162	Si
166		43	33	28	160	140	134	110	82	74	38	150	131	126	103	77	69	36	25	85		110	1676	164	118	59	180	180	164	Si
167		43	27	29	145	93	70	57	35	25	20	195	86	65	53	32	23	18	21	26		47	2043	200	238	60	60	90	78	Si
169		43	28	25	277	96	69	47	34	23	13	259	90	65	44	32	22	12	20	35		55	2499	245	324	115	30	60	56	Si
170		43 43	27	23	115 110	<u>85</u> 80	74 61	55 61	48	<u>43</u> 21	28	106 102	79 74	<u>69</u> 56	51 56	<u>44</u> 39	40	26 16	35	20		55	<u>1846</u> 2083	181 204	201	45	90	120	110	Si
171		44	27	24	68	52	45	37	25	22	19	62	47	41	34	23	20	10	35	20		55	3934	386	325	26	120	120	96	Si
173		44	27	24	182	124	116	87	67	55	28	167	114	106	80	61	50	26	35	20		55	1483	146	129	70	90	120	95	Si
174		44 43	28	26	143	95 81	77	67	56	42	37	99	87	65	65	47	38	20 34	35	20		55	1593	156	162	53 40	90 150	120	108	Si
176		43	16	12	185	92	62	36	28	21	17	172	86	58	34	26	20	16	23	77		100	3124	306	357	93	30	120	96	Si
177		43	13	10	145	112	83	63	44	35	29	135	104	77	59 76	41	33	27	25	75	_	100	1969	193	175	78	90	150	124	Si
178		43	13	12	308	244	112	106	94	78	59	288	228	155	99	88	73	55	15	32		47	1094	107	98	157	90	90	64	Si
180		43	14	13	149	124	91	56	47	42	35	138	115	84	52	43	39	32	22	32		54	2083	204	192	77	90	90	73	Si
181 182		43 43	12 11	13 10	232 151	180 120	139 90	78 64	77 44	60 40	42 30	214 141	166 112	128 84	72 60	71 41	55 37	39 28	21 16	33		54 48	1504 1805	148 177	134 170	124 80	90 90	90	68 72	Si
182		43	13	12	728	403	184	60	56	25	16	677	375	171	56	52	23	15	15	27		42	950	93	75	370	60	60	40	Si
184		43	11	10	272	182	112	73	45	33	30	255	170	105	68	42	31	28	19	31		50	1547	152	145	148	60	60	57	Si
185		+ <u>z</u> 37	16	14	1322	631	202	94	77	67	40	1441	548 688	201	125	84	70	58 44	8	53		58 61	738	72	45	741	30	60	47	Si
187		40	15	14	866	432	170	96	75	61	51	866	432	170	96	75	61	51	10	11		20	752	74	71	451	30	30	25	Si
188		39	15	15	1120	632	280	141	93	74	47	1146	647	286	144	95	76	48	8	25		33	568	56	45	591	60	60	34	Si
189		39 39	13	15	546 733	<u> </u>	179	96	71	57 44	34 36	556 746	364 418	182	98	72	58 45	35	12	36		48	934	88 92	79	297 389	60	60 60	44	Si Si
191		42	14	16	669	434	220	106	56	42	26	645	418	212	102	54	40	25	10	32		41	766	75	68	337	60	60	46	Si
192		40	14	18	1195	599	247	114	68 107	53	35	1198	601 605	248	114	68	53	35	11	38	_	49	655	64 52	47	630	60	60	43	Si
193		39	14	19	927	550	203	48	38	33	30	982	564	208	49	39	34	48 31	7	30	_	37	781	77	57	508	60	60	34	Si
195		40	14	16	836	502	194	73	40	35	28	842	506	195	74	40	35	28	16	29		45	833	82	64	454	60	60	41	Si
196 197		39 43	15 14	13 17	1433	753 509	200 281	65 125	51 51	44	28	1462 659	768 470	204	66 118	52 ⊿Ջ	45 ⊿3	29 35	8	42 28		49 30	796 615	78 60	46	753	60 60	60 60	37 49	Si Si
<u>197</u>		40	15	18	1306	704	257	74	44	41	35	1316	709	259	75	44	41	35	10	30		40	627	62	44	686	<u> </u>	60	35	Si
199		38	15	16	1205	713	208	87	72	62	50	1282	759	221	93	77	66	53	8	32		40	735	72	48	664	60	60	34	Si
200		40 40	14 14	18	495 642	407	133	89 105	66	61 52	52 39	493 640	406	132	89 105	66	61 52	52 39	4 8	43		47 47	820	80	71	251 332	60 60	60 60	47 50	Si Si
202		40	13	13	568	399	249	159	105	78	43	568	399	249	159	105	78	43	21	17		38	652	64	62	321	60	60	49	Si
203		40	14	13	532	334	164	88	63	55	31	529	332	163	88	63	55	31	8	40		48	997	98	86	276	60	60	51	Si
204		39 43	13 17	15 14	1133 526	690 343	297 179	133 94	78 65	66 45	52 14	1150 493	701	302 168	135 88	79 61	67 42	53 13	7 8	69 34		76 42	802 967	79 95	44	597 251	60 60	90 60	61 48	Si Si
205		39	15	17	858	478	201	105	77	67	48	871	485	204	107	78	68	49	5	85		90	1012	99	61	445	60	90	73	Si
207		39	15	16	1007	447	80	55	44	33	26	1033	458	82	56	45	34	27	7	48		54	1981	194	67	530	30	60	33	Si

				Deflexi	Deflexiones: Datos Obtenidos en Campo							D	eflexiones	Corregidas	s por Carga	(μm)			Espesores de Est	tructura		Parámetros Es AASH	tructurales TO	Cálcul	o de Módulos Método E	Directo			
Punto	Carga	Temp	eratura Aire	d.	d.	Deflexiones Medidas (μm) d ₁ d ₂ d ₃ d ₄ d ₅					d.	d.	d-	d.	d.	d-	d.	Capa Asfáltica	MG-1	MG-2	Espesor Total	Mr	Mr	SB	Hogg		Verificación r, M	etodología A	AASHTO
#	kN	Pav. ≌C	°C	0 cm	30 cm	60 cm	90 cm	u₄ 120 cm	150 cm	180 cm	0 cm	30 cm	60 cm	90 cm	120 cm	u₅c 150 cm	180 cm	cm	cm	cm	cm	(Kg/cm ^²)	МРа	(MPa)	Deflexiónn (Dr/D0 = 0.5)	Sensor Dr (cm)	Sensor empleado	r	Cumple?
208	43	16	14	274	217	142	83	51	49	34	256	203	133	78	48	46	32	26	30		56	1388	136	120	140	90	90	68	Si
209	44	16 25	14 25	164 153	118	76 68	69 46	29	28	21	151	109	70 71	63 48	27	26 27	<u>19</u> 21	25	<u> </u>		55 79	1719	169 228	220	82	60 60	90 120	79 96	Si Si
210	38	23	25	211	112	56	35	24	19	15	220	117	58	37	25	20	16	16	59		76	2927	287	226	105	60	90	72	Si
212	38 38	24 26	23 27	174 229	109 103	59 45	37 30	26	22	19 16	182 244	114 110	62 48	39 32	27 26	23 21	20 17	15 10	<u>75</u> 60		90 70	3008 3770	295 370	235 280	87	<u> </u>	120 90	91 58	Si Si
214	38	26	26	339	195	102	69	53	43	34	358	206	108	73	56	45	36	10	60		70	1483	146	129	171	60	90	73	Si
215	40	20 20	0	302 382	220 296	147 203	90	<u>66</u> 93	51 75	<u> </u>	302 382	220 296	147 203	90 126	66 93	51 75	<u> </u>	19 12	<u>51</u> 58		70 70	1203 859	118 84	104 76	151	60 90	90 90	<u>85</u> 89	Si Si
217	40	20	0	434	328	222	133	95	70	59	434	328	222	133	95	70	59	12	58		70	814	80	70	217	90	90	86	Si
218	40	20	0	319	272	166	94	83	63	<u> </u>	417 319	272	166	94 116	68 83	63	<u> </u>	12	58		70	979	96	<u>91</u> 85	160	90	90	75 91	Si
220	40	20	0	344	232	144	89	64	50	44	344	232	144	89	64	50	44	14	56		70	1217	119	106	172	60	90	79	Si
221	40 39	34	29	380	197	93	60	46	45	39	283 395	202	97	62	48	45	39	20	45		65	1406	138	119	142	60	90	65	Si
223	41	23	14	593	332	160	110	90	55	53	583	326	157	108	88	54	52	8	22		30	1035	102	85	286	60	60	34	Si
224	41 41	28	18	1045	601	174	63	55	22	32 18	1030	592	169	62	54	45 22	18	17	33		45	973	99	62	491	60	60	37	Si
226	42	24	15	343	244	160	105	64	47	34	331	235	154	101	62	45	33	21	49		70	1072	105	100	155	60	90	88	Si
227	41 41	23	14	814	551	313	141	111	76	54	786	532	302	182	107	73	49 52	28	32		60	595	58	50	361	60	90	48 69	Si
229	42	25 25	17	779 818	487 459	244	134	83	64 56	50 46	749 806	468	235	129	80 69	62 55	48	16	24		40	691 792	68 78	60 63	352	<u>60</u>	60 60	47	Si Si
230	41	26	17	902	529	203	100	46	35	24	871	511	210	97	44	34	23	7	38		45	774	76	60	422	60	60	44	Si
232	40	36 34	20	683 806	489 471	283	164 118	101 54	65 28	48	686 833	491 487	284 243	165 122	102 56	65 29	48	16 21	34 25		50 46	656 668	64 66	53	285	60 60	90 60	64 54	Si Si
233	42	0	19	427	164	55	34	27	20	16	405	155	52	32	26	19	15	21	90		90	3384	332	193	202	30	90	63	Si
235	42	0	22 21	456 459	190 198	89 71	58 38	42	32	23 15	433 436	181 188	85 67	55 36	40	30 19	22 14		90 90		90 90	1969 3008	193 295	<u>169</u> 163	217	<u> </u>	90 90	75 64	Si Si
237	41	23	19	419	250	130	84	67	54	45	414	247	128	83	66	53	44	10	65		75	1454	143	109	202	60	90	73	Si
238 239	40 40	28 29	21 20	554 456	307 287	158 174	102 115	<u>80</u> 81	<u>63</u> 59	54 45	558 457	309 288	159 174	103 115	81 81	63 59	<u>54</u> 45	10 7	<u> </u>		60 50	1051 1049	103 103	<u> </u>	262	<u> </u>	90 90	61 57	Si Si
240	40	29	21	759	459	258	160	110	84	62	759	459	258	160	110	84	62	7	43		50	701	69	56	361	60	60	55	Si
241 242	40 40	27 28	20 20	918 161	580 104	332 61	202 40	<u>137</u> 31	95 25	75 19	930 161	587 104	336 61	205 40	139 31	96 25	<u>76</u> 19	10 20	<u>40</u> 50		50 70	539 3016	53 296	44 245	440	<u> </u>	60 90	56 78	Si Si
243	40	26	20	189	125	78	48	33	24	17	189	125	78	48	33	24	17	20	75		95	2742	269	195	86	60	120	99	Si
244	40	21	15 23	730 189	429 103	60	132 41	93 31	24	63 18	734 186	431	59 59	133 40	93 30	76 24	<u>63</u> 18	6 19	<u> </u>		95 60	873 2707	86 266	63 240	85	60 60	120 90	<u>88</u> 67	Si
246	41	27	21	84	64	53	43	33	29	23	82	62	52	42	32	28	22	19	41		60	2538	249	234	37	120	120	107	Si
247	41 41	26	23	130	82 109	47 70	49	37	30	26	127	80 106	46 68	48	36	29	25	18	45		63	2256	221	219	83	60	90	72	Si
249	39	23	20	333	197	111	60	32	21	19	338	200	113	61	32	21	19	18	45		63	1775	174	128	162	60	90	63	Si
250	42	23	19	97	61	42	37	24	20	20	92	58	40	35	23	21	10	20	50		70	2901	285	357	44	60	120	100	Si
252	41	23	19 19	119 79	87 55	58 45	37	25	15	13	115 76	84 53	56 43	36	24	14	13	20	50		70	3008	295	274	55	60	90	88	Si Si
254	41	22	19	121	92	75	61	48	41	33	117	89	72	59	46	40	32	20	50	1	70	1766	173	163	57	120	120	115	Si
255 256	41 42	22 22	18 18	192 124	147 77	114 60	83 48	60	<u>51</u> 31	42 24	187 118	143 73	111 57	81 46	58 35	50 30	<u>41</u> 23	20 20	50 50		70 70	1400 2321	137 228	127 269	91 57	90 60	120 120	101 99	Si Si
257	41	22	17	100	65	45	31	19	14	11	97	63	44	30	18	14	11	25	45		70	3610	354	351	47	60	90	87	Si
258 259	41 41	20 20	16 14	200 186	125 149	64 116	38 89	23 64	17 49	12 39	194 181	121 145	62 113	37 87	22 62	16 48	<u>12</u> 38	40 19	<u> </u>		70 62	2927 1310	287 129	229 118	97 91	<u> </u>	90 120	69 95	Si Si
260	40	24	21	209	143	80	49	31	23	18	207	142	79	49	31	23	18	19	43		62	2210	217	189	98	60	90	71	Si
<u>261</u> <u>2</u> 62	41 39	20	21	137	86	90 57	44	43	31	23	161	88	87 58	45	36	30	22	19	43		<u>62</u> 61	2681	263	261	<u>80</u> 66	60	90	86 76	Si Si
263	37	16	15	665	332	114	52	31	20	15	727	363	125	57	34	22	16	22	39		61	1448	142	84	391	30	60	46	Si
264	40	21	18	280	182	92 100	67	46	36	30	2/9	182	92 <u>98</u>	66	45	35	29	18	48		<u>6</u> 6	1641	161	156	138	60	90	83	Si
266	42	15	15	115	84	52	33	21	14	11	111	81	50	32	20	13	11	18	48		66	3384	332	307	60	60	90	77	Si
267	41	23	14	163	127	92	<u>49</u> 65	47	37	31	192	125	91	64	46	30	31	18	48		66	1766	173	157	80	90	120	91	Si
269	41	18	17	745	441	193	120	73	51	38	729	431	189 79	117	71	50	37	16	104		120	1144	112	69 131	374	60	120	98 29	Si
270	42	18	17	194	85	62	46	32	24	13	187	82	60	44	31	23	13	13	20		33	2707	266	376	95	30	60	39	Si
272	41 41	25 16	21 13	476 587	118 323	89 147	51 88	45	30 41	18 30	466 575	115 317	87 144	50 86	44 55	29 40	18 29	6 14	25 25		31 39	2825 1257	277 123	222 Ջ۹	227	30 60	30 60	24	Si Si
274	42	12	9	266	171	95	57	38	31	26	253	163	90	54	36	30	25	15	25		40	2011	197	163	140	60	60	43	Si
275 276	41 39	25 24	21 21	347 832	148 429	48 188	33 102	22 75	18 57	15 49	342 856	146 441	47 193	33 105	22 77	18 59	15 50	15 16	25 79		40 95	3456 1031	339 101	211 63	161 407	<u> </u>	60 90	32 79	Si Si

				Deflexiones: Datos Obtenidos en Campo								D	eflexiones	: Corregidas	s por Carga (μm)			Espesores de Est	structura		Parámetros Est AASHT	tructurales ГО	Cálculo	de Módulos Método	Directo			
Punto	Carga	Temp	eratura			Deflex	xiones Mee	didas (μm)										Capa Asfáltica	MG-1	MG-2	Espesor Total	Mr	Mr		Hogg		Verificación r, M	etodología AAS	БНТО
	Lat	Pav.	Aire	d ₀	d ₁	d ₂	d ₃	d ₄	d ₅	d ₆	d _{oc}	d _{1c}	d _{2c}	d _{3c}	d _{4c}	d _{5c}	d _{6c}					1	840-	SR (NRD-)	Deflexiónn (Dr/D0 = 0.5)	Sensor Dr (cm)	Sensor empleado		
# 277	39	° 25	21	679	30 cm 320	132	90 cm 70	53	39	31	700	330	136	72	55	40	32	24	70	cm	94	(Kg/cm) 1504	148	(MPa) 93	320	30	(cm) 90	74	Si
278	39	24	21	806	334	124	66	50	37	30	833	345	128	68	52	38	31	27	64		91	1593	156	88	380	30	90	66	Si
279	39	24	21	652	316	130	68	47	35	29	674	327	134	70	49	36	30	26	65		91	1547	152	94	309	30	90	72	Si
280	39	24	19	483 481	224	96	54	48	37	32 26	498	231	99	56	49 42	38	33 27	23	68 70		91	1692	190	133	233	30	90	78	Si
282	39	26	20	651	284	129	66	44	34	28	663	289	131	67	45	35	28	24	73		95	1616	159	106	302	30	90	75	Si
283	39	28	20	658	270	110	61	41	30	23	680	279	114	63	42	31	24	21	85		106	1915	188	109	300	30	90	78	Si
284	39	16	15	560	313	149	83	57	44	36	580	324	154	86	59	46	37	20	82		102	1403	138	86	310	60	90	84	Si
285	39	20	15	379	255	143	78	56	44	38	392	264	148	81	58	45	39	26	73		99	1560	153	101	197	60	120	93	Si
286	39	26	21	901	373	137	70	49	39	32	922 516	382	140	72 66	50	40	33	21	81		98	1676	164	80	426	30	90	67	Si
287	39	16	16	497	239	127	73	40 54	42	34	451	254	130	75	<u> </u>	43	35	21	86		102	1477	145	105	228	60	120	94	Si
289	38	16	16	603	331	148	83	58	42	33	628	345	154	86	60	44	34	22	92		114	1354	133	83	338	60	120	91	Si
290	39	13	14	454	282	151	91	66	50	38	464	288	154	93	68	51	39	26	84		110	1194	117	93	272	60	120	100	Si
291	50	20	20	501	336	184	106	68	50	42	401	269	147	85	54	40	34	21	66		87	1208	118	101	201	60	30	10	Si
292	50	20	20	1409	754	230	106	72	56	52	1122 806	600	183	84	57	45	41	19	63		82	1289	126	56	561	60	90	56	Si
293	49	20	20	451	310	178	104	66	46	36	371	255	147	84	54	38	30	13	68		81	1274	125	103	186	60	30	10	Si
295	52	20	20	1040	530	161	55	43	38	34	797	406	123	42	33	29	26	11	57		68	1321	130	81	399	60	60	53	Si
296	52	20	20	876	564	249	94	49	46	44	670	432	191	72	38	35	34	11	79		90	752	74	71	335	60	30	10	Si
297	49	20	20	1125	564	155	62	60	52	44	909	456	125	50	49	42	36	12	67		79	1300	127	75	455	60	60	58	Si
298	49	20	20	1185	658	173	107	63	51 62	44 54	972	<u>540</u> 730	142	59 87	52	42	36	13	26		57	<u> </u>	<u> </u>	68	486	<u> </u>	60 60	51	Si
300	49	20	20	1169	512	166	70	54	45	40	957	419	136	57	44	37	33	7	40		51	775	76	73	478	30	30	10	Si
301	48	20	20	714	502	231	96	58	45	43	594	417	192	80	48	37	36	14	16		30	846	83	74	297	60	60	38	Si
302	49	20	20	1101	568	189	68	46	43	38	894	461	154	55	37	35	31	7	50		57	1055	103	69	447	60	60	47	Si
303	49	20	20	1030	618	298	144	84	60	52	848	509	245	119	69	49	43	12	25		37	663	65	56	424	60	60	41	Si
304	39	24	27	316	197	99	62	43	34	28	322	201	101	63	44	35	29	12	69		81	1719	169	140	155	<u> </u>	90	81	Si
306	39	29	30	601	343	123	67	44	35	30	430 616	352	126	69	45	36	31	15	85		100	1569	154	92	278	60	90	82	Si
307	39	21	25	280	180	87	44	26	17	13	286	184	89	45	27	17	13	14	86		100	2407	236	158	142	60	90	90	Si
308	39	21	20	279	194	103	61	42	34	29	287	199	106	63	43	35	30	15	85		100	1889	185	140	142	60	120	99	Si
309	40	23	24	92	72	58	50	42	35	30	93	73	59	51	42	35	30	17	83	_	100	1805	177	181	45	120	180	168	Si
310	39	23	23	78 79	67	57 48	46	39	31 21	26	79 81	68	58 79	47	40 28	31	26 17	25	85 71		96	2083	204	263	38	90	180	169	Si
312	40	24	26	144	92	69	55	47	39	35	143	91	68	54	47	39	35	28	72		100	1666	163	225	64	60	150	135	Si
313	40	25	27	103	65	48	38	29	24	16	103	65	48	38	29	24	16	15	85		100	2707	266	320	49	60	150	133	Si
314	40	28	29	54	38	30	27	22	19	17	54	38	30	27	22	19	17	12	88		100	3185	312	342	25	120	180	167	Si
315	40	28	32	117	85	53 179	38	30	23	20	118	86	53	38	30	23	20	29	71		100	2825	277	288	50	60	150	130	Si
310	41 39	14	14	865	264 489	253	120	85 104	64 72	51	329 878	<u> </u>	257	117	106	73	50	8	93		96	690	68	53	450	<u> </u>	90	90	Si Si
318	39	12	15	1422	620	210	95	55	37	29	1466	639	216	98	57	38	30	6	91		97	1105	108	48	762	30	90	62	Si
319	38	20	16	819	403	181	110	81	63	53	853	420	189	115	84	66	55	7	88		95	942	92	73	427	30	90	80	Si
320	39	15	18	510	251	84	33	18	12	9	527	259	87	34	19	12	9	8	98		106	3185	312	118	273	30	90	67	Si
321	40	31		319 358	1/2	85 86	47 79	30	21 28	1/ 21	319	1/2	85 86	47 49	30	21 28	21	1/	50	+	67 76	2304	226	156	139	60 60	90	68	SI Si
323	40	40		330	193	96	55	35	23	19	330	193	96	55	35	23	19	15	60		75	1969	193	143	133	60	90	76	Si
324	41	29	20	240	166	107	71	47	33	26	235	163	105	70	46	32	25	30	70		100	1766	173	147	97	60	120	119	Si
325	43	29	21	230	178	130	93	68	50	40	215	166	121	87	64	47	37	25	65		90	1382	136	116	91	90	150	124	Si
326	41	29	21	316	198	111	67	45	32	26	311	195	109	66	44 61	32	26	23	87		110	1846	181	134	134	60	120	112	Si
328	42	28	19	335	194	116	74	48	34	30	326	189	113	72	47	33	29	14	63		75	1504	148	129	172	60	90	82	Si
329	43	28	20	376	239	132	94	69	52	46	353	224	124	88	65	49	43	13	97		110	1326	130	118	163	60	150	118	Si
330	43	31	21	370	224	99	48	28	18	16	348	211	93	45	26	17	15	18	112		130	3124	306	142	150	60	120	103	Si
331	42	30	21	343	199	131	88	65	50	41	329	191	126	84	62	48	39	30	50	+	80	1310	129	119	133	60	120	97	Si
332	43	27	26	349 287	254 267	14/	88 126	5/ QR	41 71	55	328	239	138	83 120	54 02	39 68	31 52	20	35 79	+	55 100	1305 956	128 Q/	110 75	148	<u>60</u>	90 150	ט/ 124	SI Si
334	42	36	29	168	91	46	29	18	13	12	158	86	43	27	17	12	11	15	70		85	4011	393	308	66	60	90	85	Si
335	42	28	20	229	157	119	87	62	46	39	216	148	112	82	58	43	37	35	15		50	1321	130	121	88	90	90	83	Si
336	42	27	22	280	206	139	100	83	70	62	269	198	133	96	80	67	59	20	55		75	1015	100	115	121	60	120	108	Si
337	41	25	18	311	234	164	115	83	59	45	302	227	159	112	81	57	44	25	50	+	75	1003	98	89	137	90	120	102	Si
538 220	42 42	27	1/ 21	243 297	1/2 222	127	93 QR	70	52 50	40 42	232 280	104 218	121	89 92	67 67	50 ⊿7	38 40	23 20	52 25	+	/5 55	1177	119	112	103 121	90	12U 90	76	Si
340	42	31	22	373	218	115	65	44	30	25	360	210	111	63	42	29	24	30	50		80	1719	169	126	142	60	90	84	Si
341	42	26	20	271	168	91	54	36	25	22	259	161	87	52	34	24	21	17	53		70	2083	204	166	120	60	90	73	Si
342	42	28	18	250	157	94	58	42	32	26	239	150	90	55	40	31	25	17	33		50	1969	193	166	108	60	90	60	Si
343	43 //1	30	19 24	354 358	265 217	1/0	104	60 25	36 24	23	332	249	160	98 55	56 24	34 22	22	18	42	+	60 40	1105	108	<u>96</u> 135	145 150	60 60	90	/9 47	SI Si
345	44	33	21	243	164	103	71	50	40	33	223	150	95	65	46	37	30	18	52		70	1766	173	161	94	60	120	88	Si

				Deflexiones: Datos Obtenidos en Campo								[Deflexiones	Corregida	s por Carga	(μm)			Espesores de Es	structura		Parámetros Est AASH1	tructurales ГО	Cálculo	de Módulos Método	Directo			
Punto	Carga	Temp	eratura			Defle	exiones Me	didas (µm)					1	1		_		Capa Asfáltica	MG-1	MG-2	Espesor Total	Mr	Mr		Hogg		Verificación r, N	etodología AAS	бнто
#		Pav.	Aire	d ₀	d ₁	d ₂	d ₃	d ₄	d ₅	d ₆	d _{oc}	d _{1c}	d _{2c}	d _{3c}	d _{4c}	d _{5c}	d _{6c}		cm	cm	cm	(Va. law ²)	MPa	SR (MRa)	Deflexiónn (Dr/D0 = 0.5)	Sensor Dr (cm)	Sensor empleado	r (Cumplo2
# 346	43	23	14	251	190	137	100	85	69	59	236	178	129	90 cm 94	80	65	55	16	69	cm	85	(Kg/cm) 1000	98	(MPa) 107	113	90	(cm) 150	124	Si
347	45	26	23	279	110	113	70	49	37	30	144 254	98 178	103	64	45	18 34	27	10	83		97	1805	177	147	119	60	90 120	105	Si
349	44	26	23	286	197	115	64	36	23	19	261	180	105	58	33	21	17	13	22		35	1547	152	144	123	60	60	49	Si
350	44	20	23	439	268	121	54	38	22	19	409	250	113	49 55	35	27	18	8	19		27	1438	141	174	194	60	60	33	Si
352	44	33	31	244	143	72	37	22	16	13	222	130	65	34	20	15	12	14	116		130	4061	398	211	97	60	120	110	Si
353	43	29	24	405	139	83	48	29	45 22	35 15	380 179	128	76	90 44	27	20	33 14	19	47		40 60	2461	241	200	82	60	90	71	Si
355	44	34	31	262	173	97	57	34	25	17	241	159	89	52	31	23	16	23	67		90	2620	257	167	96	60	120	92	Si
356 357	43 45	33 27	29 24	326 203	211 135	130 86	<u>85</u> 57	56 39	40	31 21	301 180	195 120	120 76	79 51	52 35	37	29 19	25 25	55 49		80 74	<u> </u>	171 228	126 200	120 79	<u> </u>	120 120	89 88	Si Si
358	42	27	23	217	150	88	52	34	23	17	207	143	84	49	32	22	16	16	140		156	2953	290	181	95	60	150	148	Si
359	44	31	26	226	164	107	70 57	46	32	24	203	148	96	63 50	41	29	22	23	53		76	1981	194	160	85	60	120	94	Si
361	43	27	23	299	161	66	33	22	19	16	274	148	61	30	20	17	15	5	95		100	3610	354	200	133	60	90	79	Si
362	37	27	23	375	200	82	53	32	21	16	401	214	88	57	34	22	17	19	81		100	2117	208	137	181	60	90	86	Si
363	45 45	27	21	200	142 132	84	53	33	23	17 22	177	126 117	75	47	34	20	15 19	18 14	42		60 60	2304	226	204	81 74	<u> </u>	90 90	74 78	Si Si
365	45	26	21	156	118	82	57	41	31	24	139	105	73	51	36	28	21	14	82		96	2321	228	195	65	90	150	121	Si
366 367	42	26	22	246	124	45	29	20	16	15	234	118	43	28	19	15	14 25	17	63 104		80	3868	379	257	108	60	90 150	67	Si
368	40	32	27	278	164	85	47	32	24	23	252	148	77	43	29	22	19	21	91		112	2801	275	182	105	60	120	120	Si
369	44	32	27	318	229	134	79	50	33	27	290	209	122	72	46	30	25	21	91		112	1766	173	125	121	60	120	120	Si
370	41 40	23	22	342	205	116	65	40	32	27	342	205	115	65	40	43 32	27	10	44		60	1666	148	133	136	60	90	63	Si
372	39	32	27	618	371	160	79	47	38	31	634	381	164	81	48	39	32	15	45		60	1337	131	80	277	60	90	54	Si
373	38	32	27	905 456	491	172	65	37	28	24	953 468	517 295	181	68 65	39 36	29	25	20	60 48		80 60	1593 1856	156 182	62 98	400	<u> </u>	90 90	57	Si
375	37	32	27	967	521	194	87	56	45	37	1045	563	210	94	61	49	40	14	86		100	1152	113	55	461	60	90	76	Si
376	40	32	27	689 800	298	95	45	41	37	32	689 821	298	95	45	41	37	32	15	40		55	1710	168	103	301	30	60	44 52	Si
378	41	35	27	647	296	212	163	109	88	73	631	289	207	159	106	86	71	18	12		30	785	77	107	260	30	60	43	Si
379	40	32	22	352	174	53	38	27	19	15	354	175	53	38	27	19	15	10	50		60	3415	335	175	161	30	60	46	Si
380	39	26	22	354	203	106	<u> </u>	35	24	9 13	364	209	109	<u> </u>	36	25	9 13	10	50		60	2154	211	127	174	<u> </u>	90	54	Si
382	40	34	22	284	168	93	59	43	32	27	286	169	94	59	43	32	27	10	50		60	2045	201	153	129	60	90	63	Si
<u>383</u> 384	40	33	21 22	273 193	120 118	48	37 46	21	<u>14</u> 25	9 13	276 195	121 119	48	37 46	21	<u>14</u> 25	9 13	10	50		60 60	3770	370 257	254	125 89	<u> </u>	60 90	49 66	Si Si
385	39	31	21	404	184	89	61	42	37	25	411	187	91	62	43	38	25	10	50		60	1989	195	164	189	30	60	54	Si
386	40	29	23	350	166	56	34	25	17	11 °	351	166	56	34	25	17	11 °	10	50		60 60	3232	317	185	164	30	60 60	47	Si
388	40	31	23	401	224	99	48	24	10	12	402	225	99	48	24	10	12	10	50		60	1828	179	129	185	60	60	56	Si
389	40	30	22	311	117	58	41	31	23	12	314	118	59	41	31	23	12	10	50		60	3067	301	252	145	30	60	50	Si
390	40	31	24	250	58 104	64	47	32	23	10	249	103	64	47	32	23	10	10	50	+	60	2828	277	294	42	30	90 60	85 57	Si
392	40	35	28	509	265	127	68	41	27	18	506	264	126	68	41	27	18	10	50	1 1	60	1436	141	102	226	60	60	57	Si
393 394	40 39	35 30	26 25	200 95	99 65	49 44	24 28	14 20	10 14	6 10	201 96	99 66	49 45	24 28	14 20	10 14	6 10	10 10	50 50	+	60 60	3693 4309	362 423	308 344	90 45	<u> </u>	60 90	57 73	Si Si
395	41	35	29	274	152	86	47	26	16	10	269	149	84	46	25	16	10	10	50		60	2623	257	167	120	60	90	58	Si
396 307	40	34	26 27	238	150 225	86	54	35	26	14	238 //17	150 225	86	54 50	35	26	14	10	50	+	60 60	2234	219	172	107	<u>60</u>	90	65 53	Si
398	40	35	28	310	174	80	49	39	21	14	308	173	80	49	39	21	14	10	50		60	2462	242	164	138	60	90	56	Si
399	41	34	27	305	178	100	55	34	23	11	300	175	98	54	33	23	11	10	50		60	2234	219	146	135	60	90	59	Si
400	40	34 34	28	254	101	50	39	28	18	16	230	100	49	39	28	18	16	10	50	+	60	3290 3693	323	<u>302</u> 281	113	<u> </u>	60	54	Si Si
402	41	29	26	385	225	115	61	38	27	13	380	222	114	60	38	27	13	10	50		60	2011	197	122	177	60	90	55	Si
403	39 40	32 31	26 28	226 298	128 98	58 42	38	28	19 18	<u>12</u> 9	232 296	131 97	59 42	39 36	29 25	19 18	<u>12</u> 9	10	50 50	+	60 60	3067 4309	301 423	219 295	106 136	<u> </u>	60 60	57 45	Si Si
405	40	33	26	238	91	44	31	26	22	13	236	90	44	31	26	22	13	10	50		60	4113	403	332	107	30	60	50	Si
406	40	31	26	357	159	69	41	28	20	12	357	159	69	41	28	20	12	10	50	+	60	2623	257	194	164	30	60	51	Si
407	40	19	12	99	52	36	26	17	14	8	99	52	36	26	17	14	8	10	50		60	4640	455	409	50	60	90	66	Si
409	40	19	13	271	134	67	39	24	18	12	271	134	67	39	24	18	12	10	50		60	2425	238	229	137	30	60	57	Si
410	40	21	13	146	82	51	37	28	33 18	13	145	84	51	37	28	33 18	13	10	50	+	60	3261	320	289	72	60	90	66	Si
412	39	21	14	243	150	76	38	29	20	12	247	153	77	39	30	20	12	10	50		60	3094	303	182	123	60	90	53	Si
413	40 39	20	15	139	95 94	53	33	23	17	13	139	95 95	53	33	23	17	13	10	50	+	60 60	3656 3351	359	283 277	70 75	60 60	90 90	63 64	SI Si

				Deflexiones: Datos Obtenidos en Campo							[Deflexiones	: Corregida	s por Carga	(μm)			Espesores de Es	structura		Parámetros Est AASH1	tructurales ГО	Cálculo	de Módulos Método	Directo				
Punto	Carga	Temp	eratura			Defle	exiones Me	didas (µm)										Capa Asfáltica	MG-1	MG-2	Espesor Total	Mr	Mr		Hogg		Verificación r, M	etodología AAS	бнто
		Pav.	Aire	d _o	d ₁	d ₂	d ₃	d ₄	d₅	d ₆	d _{oc}	d _{1c}	d _{2c}	d _{3c}	d _{4c}	d _{5c}	d _{6c}					2.		SR	Deflexiónn (Dr/D0 = 0.5)	Sensor Dr (cm)	Sensor empleado		
# 415	KN 41	≌C 31	26	0 cm 165	30 cm 105	60 cm 66	90 cm 44	120 cm 36	150 cm 27	180 cm 22	0 cm 161	30 cm 102	60 cm 64	90 cm 43	120 cm 35	150 cm 26	180 cm 21	cm 10	cm 50	cm	cm 60	(Kg/cm) 2806	мРа 275	(MPa) 235	74	60	(cm) 90	r C	Si
416	39	21	17	629	328	153	88	59	37	10	647	337	157	90	61	38	10	10	50		60	1153	113	81	321	60	60	54	Si
417	40	21	18	134	72	48	33	24	14	9	133	104 73	48	33	24	14	9	10	50		60	3656	359	309	66	<u> </u>	90	65	Si
419	40	21	18	95	58	47	38	27	18	10	96	59	48	38	27	18	10	10	50		60	3175	311	322	48	60	90	82	Si
420	41	23	19	247	136	59	35	26	20	11	243	134	58	34	26	20	11	10	50		60	3120	306	217	119	60	60	54	Si
421	40	31	28	214	98 130	<u>51</u> 67	34	23	18 25	12	213	98 131	51 67	34	23	18	12 16	<u> </u>	50		60 60	3549	348	316	98 110	<u> </u>	60 90	55 60	Si Si
423	40	25	23	271	116	75	43	28	21	10	271	116	75	43	28	21	10	10	50		60	2806	275	265	130	30	90	54	Si
424	40	24	23	278	169	97	55	31	17	9	278	169	97	55	31	17	9	10	50		60	2194	215	151	135	60	90	59	Si
425	41	25	22	102	72	49	30	21	17	10	101	71	48	30	21	17	10	10	50	+	60 60	4022	395	317	48	60	90	72	Si
426	40	25	24	104	95	61	44	21	20	12	103	95	43 61	44	21	20	12	10	50		60	2742	269	253	67	60	90	74	Si
428	40	27	27	118	73	44	33	25	17	6	117	72	44	33	25	17	6	10	50		60	3656	359	342	55	60	90	71	Si
429	41	27	24	217	109	46	26	19	15	11	213	107	45	25	19	15	11	10	50		60	4022	395	263	101	60	60	52	Si
430	40	33	29	167	89 160	43	33	20	17	<u>11</u> 25	167	89 148	43	33	20	17	11	10	50		60 70	3656	359	304	75	60	90	61	Si
431	45	17	17	322	182	142	81	73	73	51	314	177	139	79	72	71	<u> </u>	20	50	+	70	1527	150	111	165	<u> </u>	90	73	Si
433	37	17	17	340	217	142	82	75	56	40	368	234	153	88	81	61	43	20	50		70	1371	134	99	193	60	90	71	Si
434	40	17	17	429	287	183	87	65	51	39	429	287	183	87	65	51	39	20	50		70	1387	136	84	225	60	90	67	Si
435	42	17	17	399	221	141	82	61 85	48	31	380	211	135	78 125	58 87	45 68	30	20	50 45		70	<u> </u>	<u> </u>	109	200	<u> </u>	90	67 84	Si
437	39	21	16	536	277	110	64	46	35	22	550	284	113	66	47	36	23	25	45		70	1641	161	104	269	60	90	58	Si
438	42	18	14	482	269	181	124	89	68	59	459	256	172	118	85	65	56	22	48		70	918	90	86	238	60	90	78	Si
439	42	19	27	232	176	123	81	76	43	35	219	166	116	76	72	41	33	21	89		110	1766	173	127	111	90	150	122	Si
440	43	23	18	232	63 118	89	33	52	38	25	94 220	58	47	68	23 49	18	24	21	<u>89</u> 40		60	3610	354	311	45	<u> </u>	90	78	Si
442	42	22	19	232	143	99	81	55	39	24	220	137	95	78	53	37	23	24	36		60	1388	136	161	105	60	90	82	Si
443	42	27	23	338	226	154	75	68	53	39	325	217	148	72	65	51	38	32	38		70	1504	148	104	138	60	90	80	Si
444	41	30	22	382	253	129	88	71	55	44	370	245	125	85	69	53	43	19	51		70	1274	125	116	161	60	90	80	Si
445	42	27	18	243	177	120	82	48	37	29	228	300 166	112	77	45	35	27	28	42 88		110	464 1856	182	136	108	60	150	133	Si
447	43	20	17	172	126	100	77	64	50	41	161	118	94	72	60	47	38	33	87		120	1425	140	142	81	90	180	166	Si
448	41	27	26	632	363	179	133	88	68	43	611	351	173	129	85	66	42	14	46		60	839	82	78	283	60	90	66	Si
449	42	26	24	395	264	154	105	<u>81</u> 55	66 48	43	378	253	147	100	78	63	41	<u> </u>	38		50	1083	106	102	179	<u> </u>	90	<u>62</u> 50	Si
451	41	32	24	427	192	105	75	50	35	27	421	189	103	74	49	34	27	8	52		60	1577	155	163	195	30	60	58	Si
452	42	33	30	186	90	44	36	31	20	15	179	87	42	35	30	19	14	8	62		70	3094	304	354	83	30	90	72	Si
453	42	30	26	355	197	96	69	40	33	27	336	186	91	65	38	31	26	18	72		90	2137	210	147	147	60	120	84	Si
454	42	24	18	263	114	69	56	43	32	25	253	108	66	54	41	31	22	16	43		60	2873	282	198	123	60	60	59	Si
456	42	24	20	195	107	55	28	19	12	9	186	102	53	27	18	11	9	13	137		150	6581	646	258	89	60	150	109	Si
457	42	24	21	150	77	35	26	19	15	8	143	74	33	25	18	14	8	17	48	+	65	4826	473	373	68	60	90	61	Si
458 459	42 43	27 16	19	392	250 118	84	/4 51	44 41	31	22	376	240 109	78	/1 47	42	30	21 21	19	51	+	70	2413	237	119	1/3 89	60 60	150 90	76	Si
460	43	13	10	264	175	126	89	49	35	20	245	162	117	83	45	32	19	27	93		120	2011	197	131	144	60	120	114	Si
461	43	14	9	265	174	86	50	25	19	12	246	161	80	46	23	18	11	25	85		110	3531	346	179	140	60	120	86	Si
462	43	13	9	332	135	47	38	29	19	12	310	126	44 68	35 ⊑1	27	18	11 22	25	45	+	70	4113	403	241	180	30	60 180	48	Si
463	44	17	12	136	95	53	26	20	16	11	125	84	49	24	18	15	10	20	20	+	40	3693	362	309	66	60	60	47	Si
465	43	19	14	319	214	129	52	38	23	13	297	200	120	48	35	21	12	30	80		110	2321	228	126	152	60	120	97	Si
466	44	14	9	170	124	87	60	43	37	33	156	114	80	55	39	34	30	30	80	+	110	1911	187	178	91	90	150	129	Si
467	43	21 22	17	142	87 68	51 33	38 24	28	13	9	133	81 63	48 30	36 22	26 17	19	13	40	30 43	+	70	<u> </u>	329 538	<u> </u>	60 60	60 60	90	78 65	SI Si
469	44	18	14	99	66	48	38	32	23	14	90	60	44	35	29	21	13	20	20		40	4113	403	351	47	60	60	53	Si
470	43	22	18	319	190	108	67	51	38	21	298	178	101	63	48	36	20	20	60		80	1915	188	143	144	60	90	79	Si
471	43	21	15	219	123	63 95	48	41	32	26 27	206	116	59	45	39	30	24 25	9	101	+	110	2083	204	230	102	<u>60</u>	120	118 68	Si
472	43	21	19	253	134	84	52	30	32	27	225	125	79	41	34	30	25	23	57	+	80	2256	239	184	112	60	90	81	Si
474	42	24	19	236	101	64	53	41	38	34	225	96	61	50	39	36	32	20	40		60	2413	237	320	106	30	90	63	Si
475	42	24	20	180	84	70	58	37	31	23	170	79	66	55	35	29	22	10	80	+	90	2321	228	388	82	30	120	103	Si
4/6	43 43	20 19	1/	14/	85 71	/9 	65	56 28	43	37 10	138	80 67	/4 40	61 31	26	40	35 9	<u>33</u> 16	4/ 84	+	80 100	1624 3124	306	168 366	69 56	<u>90</u> 60	150 120	119	Si
478	42	18	13	114	87	64	45	30	29	21	109	83	61	43	29	28	20	15	95		110	2321	228	233	56	90	150	146	Si
479	42	19	14	191	138	93	50	45	34	28	181	131	88	47	43	32	27	40	30		70	2304	226	174	94	60	90	78	Si
480	43	19 22	14	89 110	51 01	39	31	26	17	15	83	47 90	36	29	24 E4	16	14 29	<u>27</u> ح	43 02	+	70	3770	370	425	42	60	120	90	Si
481	42	22	18	142	91	63	44	35	26	17	136	89	60	42	34	25	28 16	20	70	+	90	2154	234	255	65	60	120	113	Si
483	41.5	21	16	213	169	85	78	63	28	21	205	163	82	75	61	27	20	25	45	1 1	70	1331	131	184	101	60	120	98	Si

Punto	Deflexiones: Datos Obtenidos en Campo										Deflexiones Corregidas por Carga (μm)							Espesores de Estructura				Parámetros Estructurales AASHTO		Cálculo de Módulos Método Directo					
	Carga	Temp	eratura	Deflexiones Medidas (µm)														Сара	MG-1	MG-2	Espesor	Mr	Mr	Hogg		Verificación r, Metodología AASHTO			
		Pav. Aire		d _o	d1	d ₂	d ₃	d4	d₅	d ₆	d _{oc}	d _{1c}	d _{2c}	d _{3c}	d_{4c}	d _{5c}	d _{6c}	Asfáltica	MG-1	WIG-2	Total		1011	SR	Deflexiónn (D <u>r/D0</u>				
#	kN	₽C	°C	0 cm	30 cm	60 cm	90 cm	120 cm	150 cm	180 cm	0 cm	30 cm	60 cm	90 cm	120 cm	150 cm	180 cm	cm	cm	cm	cm	(Kg/cm ^²)	MPa	(MPa)	= 0.5)	Sensor Dr (cm)	Sensor empleado (cm)	r Cu	mple?
484	41.8	20	16	135	92	70	47	39	30	20	129	88	67	45	37	29	19	25	45		70	2195	215	216	65	90	120	95	Si
485	42.7	21	17	114	71	49	31	24	16	11	107	67	46	29	22	15	10	25	55		80	4113	403	335	52	60	120	88	Si
486	42.5	22	20	1511	93	62	47	35	34	19	1422	88	58	44	33	32	18	25	45		70	3120	306	129	684	30	60	33	Si
487	42.4	22	18	151	79	45	41	32	23	14	142	75	42	39	30	22	13	22	18		40	4309	423	326	69	60	60	42	Si
488	41.8	22	18	167	134	95	83	37	29	23	160	128	91	79	35	28	22	23	67		90	2321	228	129	77	90	120	106	Si
489	41.4	21	16	122	88	65	43	32	23	13	118	85	63	42	31	22	13	23	67		90	2620	257	235	58	90	120	114	Si
490	41	20	17	147	58	49	31	25	19	15	143	57	48	30	24	19	15	30	60		90	3384	332	533	72	30	120	93	Si
491	41.9	21	17	119	82	58	41	34	28	23	114	78	55	39	32	27	22	20	50		70	2538	249	277	56	60	120	95	Si
492	41.7	21	13	124	89	68	45	40	33	21	119	85	65	43	38	32	20	40	50		90	2031	199	228	58	90	150	129	Si
493	41.3	23	18	245	131	95	56	45	38	37	237	127	92	54	44	37	36	30	60		90	1846	181	163	111	60	120	100	Si
494	40.7	22	18	285	149	90	74	65	28	11	280	146	88	73	64	28	11	30	20		50	2057	202	160	134	60	60	52	Si
495	42.1	30	28	105	39	33	24	15	10	9	100	37	31	23	14	10	9	30	40		70	5246	515	802	40	30	90	79	Si
496	42.7	30	28	64	34	28	23	18	14	11	60	32	26	22	17	13	10	30	40		70	5323	522	586	24	60	120	100	Si
497	42.3	26	22	142	106	71	62	44	37	28	134	100	67	59	42	35	26	40	30		70	2154	211	175	56	90	120	103	Si
498	42.8	24	21	112	68	48	36	29	22	14	105	64	45	34	27	21	13	30	40		70	3351	329	343	48	60	120	90	Si
499	41.3	27	25	291	173	92	58	42	34	29	282	168	89	56	41	33	28	30	40		70	2154	211	159	121	60	90	72	Si
500	42.2	29	24	184	79	62	39	32	28	23	174	75	59	37	30	27	22	20	70		90	3016	296	411	76	30	120	95	Si
501	41.6	29	26	254	110	58	40	35	29	21	244	106	56	- 38	34	28	20	25	45		70	3175	311	291	103	30	90	65	Si

ANEXO 4. CORRELACIONES CBR, DEFLEXIONES VERSUS PARÁMETROS DEL SUELO

1 Análisis correlación CBR, deflexión, MR versus propiedades de suelo

1.1 Suelos finos: CBR muestra inalterada humedad natural

HN: humedad natural IP: índice de plasticidad LP: Limite plástico P200: pasa 200 wPI: Pasa 200, índice de plasticidad

El signo negativo indica que existe una correlación negativa entre las dos variables, mientras los valores de una incrementan los de la otra variable disminuyen.

Tabla 1. Valores de coeficiente de correlación, suelos finos

	HN	IP	LP	P200	wPI
CBR Wn	0.36	-0.096	-0.096	-0.079	-0.099
Correlación	Baja	Muy baja	Muy baja	Muy baja	Muy baja
MR	-0.26	-0.10	-0.064	-0.12	-0.095

	HN	IP	LP	P200	wPI
Correlación	Baja	Muy baja	Muy baja	Muy baja	Muy baja
dr*r	0.44	0.002	0.16	0.11	0.077
Correlación	Moderada	Muy baja	Muy baja	Muy baja	Muy baja

1.2 Suelos arenosos: CBR muestra inalterada humedad natural

HN: humedad natural IP: índice de plasticidad LP: Limite plástico

Tabla 2. Valores de coeficiente de correlación, arenas CBR Wn

	HN	IP	LP
CBR Wn	-0.49	-0.38	-0.14
Correlación	Moderada	Baja	Baja
MR	-0.28	-0.011	-0.36
Correlación	Baja	Muy baja	Baja
dr*r	0.49	0.052	0.46
Correlación	Moderada	Muy baja	Moderada

1.3 Suelos arenosos: CBR muestra compactada en laboratorio, inmersión

HN: humedad natural IP: índice de plasticidad LP: Limite plástico P200: pasa 200

Tabla 3. Valores de coeficiente de correlación, arenas CBR WLab

	HN	IP	LP	P200
CBR WLab	-0.43	-0.085	-0.35	-0.34
Correlación	Moderada	Muy baja	Baja	Baja
MR	-0.40	0.21	-0.39	-0.12
Correlación	Moderada	Baja	Baja	Muy Baja
dr*r	0.33	-0.33	0.29	0.13
Correlación	Baja	Baja	Baja	Muy Baja

1.4 Suelos tipo grava: CBR muestra compactada en laboratorio, inmersión

% finos: porcentaje de finos

% gravas: porcentaje de gravas

	% gravas	% finos	1 / % gravas (gravas 2)	1 / % finos (finos 2)
CBR WLab	0.25	-0.38	-0.26	0.42
Correlación	Baja	Baja	Baja	Moderada
MR	0.11	-0.21	-0.11	0.13
Correlación	Muy baja	Baja	Muy baja	Muy baja
dr*r	-0.11	0.21	0.091	-0.15
Correlación	Muy baja	Muy baja	Muy baja	Muy baja

Tabla 4. Valores de coeficiente de correlación, gravas CBR WLab

ANEXO 5. ANÁLISIS ESTADÍSTICO, MODELO MLG PARÁMETROS MÉTODO DIRECTO

1 Empleando los parámetros obtenidos por el método directo

1.1 Modelos de regresión para suelos finos, CBR muestra inalterada humedad natural

Utilizando los parámetros dr, r₅₀ y humedad natural (HN) para crear los modelos de regresión lineal generalizado, se tiene las siguientes ecuaciones empleando lo betas del modelo:

Ecuación 1

Ecuación 2

Como se puede apreciar, los tres parámetros son significativos dentro de los modelos ya que su p-value es menor a 0.05.

La diferencia entre los R² entre los dos modelos es casi que despreciable, por tanto, su definición será determinada a partir del siguiente análisis de verificación de los modelos planteados.

Figura 1 Gráfica de normalidad de residuos, suelos finos, CBR Wn

 Según la prueba de Shapiro y la prueba de Kolmogorov-Smirnov en los dos modelos, el valor de probabilidad p-value es mayor a 0.05, por lo que se puede indicar que los datos siguen una distribución normal, tal como se muestra en la figura de normalidad de residuos.

Figura 2 Graficas análisis de residuos estandarizados vs valores ajustados, suelos finos CBR Wn

Por otro lado, la Figura 3, presenta las gráficas de residuos estandarizados vs los valores ajustados, de los modelos CBR Wn vs dr*r₅₀*HN y CBR Wn vs dr*r₅₀*HN+wPI para suelos finos, aquí se presenta la dispersión de los residuos y que la variabilidad se mantenga constante a lo largo de todo el dominio, basados en los resultados no se ve síntomas de deficiencia en los modelos, esto descarta el incumplimiento del modelo por heterocedasticidad.

Figura 3 Graficas análisis de residuos vs orden de observación, suelos finos CBR Wn

 También se presenta las gráficas de residuos vs orden de observaciones, se aprecia que los errores no presentan un patrón, están distribuidos de manera aleatoria lo que implica que son independiente.

lag Autocorrelation D-W Statistic p-value	lag Autocorrelation D-W Statistic p-value			
1 0.2658548 1.463901 0.946	1 0.1971276 1.603989 0.962			
Alternative hypothesis: rho != 0	Alternative hypothesis: rho != 0			
Modelo 1	Modelo 2			
Alternative hypothesis: rho != 0	Alternative hypothesis: rho != 0			
Modelo 1	Modelo 2			

Tabla 1. Test Durbin - Watson, suelos finos CBR Wn

• Mediante la prueba de Durbin-Watson, queremos detectar si los residuos de la regresión estimada están auto correlacionados o no. Puesto que el valor p-value es mayor que el nivel de significación (5%), la hipótesis nula no puede ser rechazada, por tanto, se considera que los datos de la muestra son independientes.

Figura 4 Graficas de autocorrelación, suelos finos CBR Wn

 Basados en la Figura 4, los correlogramas para ambos modelos, se omite la primera barra ya que corresponde a la autocorrelación con la misma observación, retraso/lag =0. La mayoría de las líneas a excepción de la segunda, se encuentra entre el intervalo de confianza (95%, líneas azules), indicando una autocorrelación cero, sin embargo, como se presenta una línea fuera del intervalo se indicaría que los residuos no presentan una independencia, que por el análisis de la prueba de Durbin-Watson, analizada anteriormente, si se cumple el supuesto de que los residuos son independientes (no se rechaza la hipótesis nula).

Figura 5 Graficas distancia de Cook, suelos finos CBR Wn

 Como se puede observar en la Figura 5, ninguna de las líneas de distancia Cook superar el umbral de 1.0, llegando a una rango máximo de 0.10, lo que nos indica que no se cuenta con muchos valores atípicos que afectan el modelo de regresión con respecto a las observaciones, lo que nos indica que el modelo predice de forma adecuada la variable CBR con reseco al CBR observado para las dos ecuaciones planteadas.

1.2 Modelos de regresión para suelos arenosos

1.2.1 Correlación CBR inalterado, muestra inalterada humedad natural

Para el caso de los suelos arenosos, se tiene el análisis para el CBR inalterado en condición de humedad natural y CBR compactado en laboratorio. Utilizando los parámetros deflexión (dr), localización del sensor (r_{50}) y humedad natural (HN), se presenta a continuación los modelos planteados:

Ecuación 4

Ecuación 5

Para los dos modelos las variables dr, r_{50} y HN son significativas ya que su p-value es menor de 0.05, según la hipótesis nula planteada, aunque su valor tiene una significancia baja. También se puede observar valores de R² pobre, de 0.27 y 0.28 respectivamente.

La diferencia entre los R² entre los dos modelos es de 0.01, por tanto, su definición será determinada a partir del siguiente análisis de verificación de los modelos planteados, analizado solo para el modelo 2 que vincula la variable dr r_{50} *HN.

A continuación, se ilustra la gráfica de normalidad de los residuos y los resultados del test de Shapiro Wilk y Kolmogorov-Smirnov. En el modelo, el valor de probabilidad p-value es mayor a 0.05, indicando que los datos siguen una distribución normal.

Figura 6 Gráfica de normalidad de residuos, suelos arenosos, CBR Wn

La Figura 7 presenta las gráfica de residuos estandarizados vs los valores ajustados, del modelo CBR Wn vs dr*r₅₀*HN para suelos arenosos, y esta se puede encerrar en una banda horizontal, por tanto, no se ve síntomas de deficiencia en el modelo, esto descarta el incumplimiento del modelo por heterocedasticidad, sin embargo, los datos se concentran más hacia el lado derecho.

Figura 7 Graficas análisis de residuos estandarizados vs valores ajustados, suelos arenosos CBR Wn

Basados en la gráfica de residuos o errores vs orden de observación, se observa que los errores presentan cierto patrón, sin tener un componente aleatorio, lo que implica que pueden ser dependientes (correlacionados).

Figura 8 Graficas análisis de residuos vs orden de observación, suelos arenosos CBR Wn

Mediante la prueba de Durbin-Watson, el valor p-value es menor que el nivel de significación (5%), la hipótesis nula es rechazada, se considera que los datos de la muestra están correlacionados o presentan una dependencia.

T	abla	2. Test D	urbin – Wa	atson,	suel	los aren	osos CBR	Wn
	lag	Autocor	relation	D-W	Stat	tistic	p-value	
	1	0	.2581264		1.4	467951	0.014	
	Alte	ernative	hypothes	sis:	rho	!= 0		

Según el análisis de autocorrelación, todas las líneas se encuentra entre el intervalo de confianza (95%, líneas azules), indicando una autocorrelación cero, sin embargo, según la prueba de Durbin-Watson, los residuos presentan una dependencia.

Figura 9 Graficas de autocorrelación, suelos arenosos CBR Wn

Como se puede observar en la Figura 10 ninguna de las líneas de distancia Cook superar el umbral de 1.0, llegando a un rango máximo de 0.25 aproximadamente, lo que nos indica que no se cuenta con muchos valores atípicos que afectan el modelo de regresión con respecto a las observaciones. Sin embargo, como se mencionó anteriormente, los residuos no presentan una independencia, lo que indicaría que la aproximación de los valores predichos no es válida, ya que se incumple la condición de independencia

Figura 10 Graficas distancia de Cook, suelos arenosos CBR Wn

1.2.2 Correlación CBR compactado en laboratorio, en inmersión

En cuanto al análisis para el CBR de muestras compactadas en laboratorio, en suelos arenosos, este se relacionara con los parámetros de porcentaje de finos, deflexión (dr), localización del sensor (r₅₀) y humedad natural (HN) para crear el modelo de regresión lineal generalizado, al igual que para los demás análisis, se emplea una función de enlace Inversa y con el modelo perteneciente a una familia de distribución Gamma, se obtiene los siguientes resultados:

Empleando los Betas del modelo, se tiene las siguientes ecuaciones:

Para los cuatro modelos planteados el parámetro p-value es menor a 0.05, por lo que las variables empleadas son significativas dentro del modelo. Por otro lado, su coeficiente de determinación, R² son de 0.26, 0.35, 0.38 y 0.28 respectivamente, presentando todos los modelos una correlación pobre.

La diferencia entre los R² entre los modelos 2 y 3, es despreciable, por lo que su definición será determinada a partir del siguiente análisis de verificación del modelo que vincula las variables dr^{*}r₅₀ y dr^{*}r₅₀*HN.

Seguidamente, se ilustra la gráfica de normalidad de los residuos y los resultados del test de Shapiro Wilk y Kolmogorov-Smirnov. En el modelo, el valor de probabilidad p-value es mayor a 0.05, indicando una distribución normal de los datos, con una mejor distribución para el modelo 2.

Figura 11 Gráfica de normalidad de residuos, suelos arenosos, CBR Lab.

Según la gráfica de residuos estandarizados vs los valores ajustados, de los modelos planteados para el CBR Lab para suelos arenosos, y estos se puede encerrar en una banda horizontal, lo que nos indica que no se ve síntomas de deficiencia en el modelo, por el incumplimiento del modelo por heterocedasticidad.

Figura 12 Graficas análisis de residuos estandarizados vs valores ajustados, suelos arenosos CBR Lab

En cuanto a la gráfica de residuos o errores vs orden de observación, se observa que los errores no presentan un patrón, están distribuidos de manera aleatoria lo que implica que son independientes (no correlacionados).

Figura 13 Graficas análisis de residuos vs orden de observación, suelos arenosos CBR Lab

Basados en la prueba de Durbin-Watson, para los dos modelos, el valor de p-value es menor que el nivel de significancia (5%), por tanto, se considera que los datos de la muestra están correlacionados o presentan una dependencia.

Tabla 3. Test Durbin – Watso	on, suelos arenosos CBR Lab
lag Autocorrelation D-W Statistic p-value	lag Autocorrelation D-W Statistic p-value
1 0.407225 1.092923 0	1 0.4518439 1.006054 0
Alternative hypothesis: rho != 0	Alternative hypothesis: rho != 0
Modelo 1	Modelo 2

Adicionalmente, se analiza autocorrelación, a partir del correlograma, los cuales contienen bandas con un intervalo de confianza del 95%, que son representación gráfica de las auto correlaciones de una muestra consigo mismo. Lo que nos indicaría que la aproximación de los valores predichos no es válida, ya que se incumple la condición de independencia.

1.3 Modelos de regresión para suelos tipo grava, CBR compactado en laboratorio en inmersión

Por último, para los suelos tipo grava, se quiere correlacionar el CBR compactado en laboratorio con las variables dr, r_{50} y % de finos:

Empleando los Betas del modelo, se tiene la siguiente ecuación:

$$\frac{1}{f(x)} = 0.0173971 + 0.0007776 * dr * r_{50} * \% finos$$

$$\overset{\text{Coefficients:}}{\underset{\text{(Intercept)} 0.0173971 0.0014166 12.281 < 2e-16 *** \\ \text{`dr*r*\%finos` 0.0007776 0.0001827 4.255 5.57e-05 *** \\ --- \\ \text{signif. codes: } 0 `***` 0.001 `**` 0.01 `*` 0.05 `.` 0.1 `` 1 \\ \text{rsq } (R^2) = 0.23 \\ \text{Ecuación 10} \\ \frac{1}{f(x)} = 0.01070 + 0.000127 * dr * r_{50} + 0.04435 \% finos$$

Coefficients:				
	Estimate Std. Error t value Pr(> t)			
(Intercept)	1.070e-02 2.508e-03 4.266 5.41e-05 ***			
`dr*r`	1.270e-04 4.343e-05 2.925 0.00448 **			
finos	4.435e-02 1.495e-02 2.967 0.00396 **			
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1				
$rsq (R^2) = 0.25$				
Ecuación 11				

Como se puede apreciar, los tres parámetros son significativos dentro del modelo ya que su p-value es menor a 0.05. Por otro lado, su coeficiente de determinación, R² son de 0.23 y 0.25 respectivamente, presentando una correlación pobre.

La definición del modelo será definida a partir del siguiente análisis de verificación estadístico.

Figura 14 Gráfica de normalidad de residuos, suelos tipo grava, CBR Lab.

 La normalidad de los residuos y los resultados del test de Shapiro Wilk y Kolmogorov-Smirnov, indican que los datos siguen una distribución normal.

Figura 15 Graficas análisis de residuos estandarizados vs valores ajustados, suelos tipo grava CBR Lab

 La Figura 15 presenta las gráfica de residuos estandarizados vs los valores ajustados, de los modelos analizados para suelos tipo grava, y estos se pueden encerrar en una banda horizontal, lo que nos indica que no se ve síntomas de deficiencia en el modelo, por el incumplimiento del modelo por heterocedasticidad, como mejor distribución en el modelo 2.

Figura 16 Graficas análisis de residuos vs orden de observación, suelos tipo grava CBR Lab

 Con base en la gráfica de residuos o errores vs orden de observación, se observa que los errores no presentan un patrón, están distribuidos de manera aleatoria lo que implica que son independientes (no correlacionados).

Basados en la prueba de Durbin-Watson, para los dos modelos planteados los valores de p-value son menores que el nivel de significancia (5%), por tanto, se considera que los datos de la muestra están correlacionados o presentan una dependencia, evaluado por el test de Durbin-Watson.

lag Autocorrelation D-W Statistic p-value	lag Autocorrelation D-W Statistic p-value
1 0.3076478 1.350334 0	1 0.3071575 1.350225 0
Alternative hypothesis: rho != 0	Alternative hypothesis: rho != 0

Tabla 4. Test Durbin – Watson, suelos tipo grava CBR Lab