
https://www.revistas.ucn.cl
https://www.revistaproyecciones.cl
https://doi.org/10.22199/issn.0717-6279-2020-05-0075
https://portal.issn.org/resource/ISSN/0717-6279#
https://orcid.org/0000-0002-7191-127X
https://creativecommons.org/licenses/by/4.0/


1222 N. R. Pachón R.

1. Introduction and preliminaries

Many concepts of the general topology have been extended to ideal topolog-
ical spaces, and it is the case that the same concept has several extensions.
The case of continuity is a good example of this fact. Authors such as
Abd El-Monsef, Kaniewski, Özkurt and Çobankaya have studied different
versions of weak continuity, modulo an ideal. In this paper we present two
new forms of continuity for ideal topological spaces, which are not related
to the versions presented by those authors.

An ideal I in a set X is a subset of P(X), the power set of X, such
that: (i) if A ⊆ B ⊆ X and B ∈ I then A ∈ I, and (ii) if A ∈ I and B ∈ I
then A ∪B ∈ I.

Some simple and useful ideals in X are: (i)P(A), where A ⊆ X,
(ii)If (X), the ideal of all finite subsets of X and (iii) Ic (X), the ideal of
all countable subsets of X. If I is an ideal in X and if f : X → Y is a func-
tion, then the set f(I) = {f(I) : I ∈ I} is an ideal in Y [7]. Furthermore,
if J is an ideal in Y and if f : X → Y is an one-one function, then the set
f−1 (J ) =

©
f−1 (J) : J ∈ J

ª
is an ideal in X [7]. An ideal I in X is said

to be admissible if {x} ∈ I, for each x ∈ X.

If (X,τ) is a topological space and I is an ideal in X, then (X,τ ,I)
is called an ideal space. If (X, τ) is a topological space and A ⊆ X then
the closure and the interior of A are denoted by A (or adhτ (A), or adh(A))
and Å (or intτ (A), or int(A)), respectively. The frontier of A is denoted
by Fr(A).

Given an ideal space (X, τ, I) and a set A ⊆ X, we denote by A∗ (I) =
{x ∈ X : U ∩A /∈ I, for every U ∈ τwith x ∈ U}, written simply asA∗ when
there is no chance for confusion. It is clear that A∗ ⊆ A. A Kura-
towski closure operator for a topology τ∗ (I), finer than τ , is defined by
Cl∗ (A) = A ∪ A∗, for all A ⊆ X. When there is no chance for confu-
sion τ∗ (I) is denoted by τ∗. The topology τ∗ has as a base β (τ,I) =
{V \I : V ∈ τ and I ∈ I} [5]. In 1990, D. Jancovic and T. R. Hamlett in-
troduced the notion of I-open sets. If (X, τ, I) is an ideal space and A ⊆ X,
A is said to be I -open [4] if A ⊆ int (A∗). A is said to be I -closed if X\A
is I-open. On the other hand, A is said to be closed- I [10] if A\A ∈ I. If
X\A is closed-I then A is defined to be open-I. It is immediate that A is
open-I if and only if A\ Å ∈ I.

If I is an ideal in X, let I⊗ = P
Ã S
I∈I

I

!
be. If (X,τ ,I) is an ideal

space, the ideal I [10] is the set
n
A ⊆ X : A ⊆ I, for some I ∈ I

o
.
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It is observed that if {Fα}α∈Λ is a locally finite collection of closed-I sets,
then

S
α∈Λ

Fα is closed-I⊗. In fact, since {Fα}α∈Λ is locally finite we have

that
S
α∈Λ

Fα =
S
α∈Λ

Fα, and so
S
α∈Λ

Fα\
S
α∈Λ

Fα =

Ã S
α∈Λ

Fα

!
\
Ã S
α∈Λ

Fα

!
⊆S

α∈Λ

³
Fα\Fα

´
∈ I⊗.

2. C-continuous functions

In 2014 Özkurt defines the J -continuous functions, as an extension of the
continuous functions to the ideal topological spaces. Years later, in 2017,
Çobankaya et al. defines the Jw-continuous functions, as a generalization
of the concept studied by Özkurt. In both cases the considered ideal is
defined in the codomain of the function. Under the same hypothesis, in this
section we define a new and natural extension of the continuous functions
to the ideal topological spaces, which turns out to be independent of the
concepts given by these two authors. Various properties and examples will
be presented.

Recall that if (X, τ) and (Y, β) are topological spaces and J is an ideal
in Y , a function f : (X, τ) → (Y, β,J ) is said to be J -continuous [8] if
for each x ∈ X and each V ∈ β, if f(x) ∈ V then there exists U ∈ τ such
that x ∈ U and f(U)\V ∈ J . A function f : (X, τ) → (Y, β,J ) is said to
be J w−continuous[2] if for each x ∈ X and each V ∈ β, if f(x) ∈ V then
there is a U ∈ τ such that x ∈ U and f(U)\V ∈ J . Evidently J -continuous
→ Jw-continuous.

Definition 2.1 If J is an ideal in Y , a function f : (X, τ) → (Y, β,J ) is
said to be C -continuous if, for each A ⊆ X, f

³
A
´
\f (A) ∈ J .

It is clear that if f is continuous then f is C-continuous, and that f :
(X, τ) → (Y, β) is continuous if and only if f : (X, τ) → (Y, β, {∅}) is C-
continuous. It is easy to see that if g : (X, τ) → (Y, β) is continuous and
h : (Y, β)→ (Z, γ,J ) is C-continuous, then h ◦ g is C-continuous. Also it
is immediate that f : (X, τ) → (Y, β,Jα) is C-continuous, for each α ∈ Λ,
if and only if f : (X, τ)→ (Y, β,J ) is C-continuous, where J =

T
α∈Λ

Jα.

Example 2.2 (1) If U is the usual topology in R, the identity function f :
(R,U)→ (R,P(R),J = P(R)) is C-continuous, but f is not continuous.
(2) If β = {∅,R, {0}} and J = P ({−1, 0, 1}), the function f : (R,U) →
(R, β,J ) defined by
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f (x) =

⎧⎪⎨⎪⎩
1, if x > 0
0, if x = 0
−1, if x < 0

is C-continuous but f is not continuous.
(3) The function f : (R,U) → (R,U ,J = P ({0})) defined by f(x) = [x],
where [x] denotes the integer part of x, is not C-continuous, because if
A = {1− 1/n : n ∈ Z+} then f

³
A
´
\f (A) = {1} /∈ J .

Next we present a characterization of the C-continuity in terms of the
interior operator.

Theorem 2.3 The function f : (X, τ) → (Y, β,J ) is C -continuous if
and only if, for each B ⊆ Y , there exists J ∈ J such that f−1 (B◦\J) ⊆
int

¡
f−1 (B)

¢
or, equivalently, f−1

µ ◦
B

¶
⊆ int

¡
f−1 (B)

¢
∪f−1 (J) . Then f

is C -continuous if and only if, for all B ⊆ Y , f
£
f−1 (B◦) \int

¡
f−1(B)

¢¤
∈

J .

Proof. (→) Suppose thatB ⊆ Y . There exists J ∈ J with f
h
f−1 (Y \B)

i
⊆

f [f−1 (Y \B)]∪J ⊆ (Y \B)∪J = [Y \B◦]∪J . Then f
£
X\int

¡
f−1 (B)

¢¤
⊆

(Y \B◦) ∪ J , and so X\int
¡
f−1 (B)

¢
⊆ f−1 (Y \B◦) ∪ f−1 (J).

Hence f−1 (B◦\J) ⊆ int
¡
f−1 (B)

¢
.

(←) If A ⊆ X then there is a J ∈ J with f−1 [int (Y \f (A)) \J ] ⊆
int

£
f−1 (Y \f (A))

¤
. Thus f−1

h³
Y \f (A)

´
\J
i
⊆ X\f−1 (f (A)) ⊆ X\A,

and so A ⊆ f−1
h
f (A) ∪ J

i
or, equivalently, f

³
A
´
⊆ f (A) ∪ J , and this

implies that f
³
A
´
\f (A) ∈ J .

Corollary 2.4 (1) The following propositions are equivalents:
(a) The function f : (X, τ) → (Y, β,J ) is C -continuous. (b) For each
V ∈ β , there exists J ∈ J such that f−1 (V \J) ⊆ int

¡
f−1 (V )

¢
, this is

f
£
f−1 (V ) \int

¡
f−1 (V )

¢¤
∈ J . (c) For eachB ⊆ Y , there is a J ∈ J such

that f−1 (B) ⊆ f−1
³
B ∪ J

´
or, equivalently, f

h
f−1 (B)\f−1

³
B
´i
∈ J .

(d) For each closed F ⊆ Y , f
h
f−1 (F )\f−1 (F )

i
∈ J . (2) If f : (X, τ) →

(Y, β,J ) is one-one, then the following statements are equivalents: (a)

f is C -continuous. (b) For each B ⊆ Y , f−1 (B)\f−1
³
B
´
∈ f−1 (J ).

(c) For each closed set B ⊆ Y , f−1 (B) is closed-f−1 (J ). (d) For each
V ⊆ Y , f−1 (V ◦) \int

£
f−1 (V )

¤
∈ f−1 (J ). (e) For each V ∈ β , f−1 (V )
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is open-f−1 (J ). (3) If I is an ideal in X and if f : X → Y is an one-one
function, then f : (X, τ) → (Y, β, f (I)) is C -continuous if and only if
f−1 (V ) is open- I , for each V ∈ β .

Now we present a characterization of the C-continuous functions, in
terms of the frontier operator.

Theorem 2.5 The function f : (X, τ) → (Y, β,J ) is C -continuous if
and only if, for each B ⊆ Y , there exists J ∈ J such that Fr

£
f−1 (B)

¤
⊆

f−1 (Fr (B) ∪ J) or, equivalently, f
£
Fr

¡
f−1 (B)

¢
\f−1 (Fr (B))

¤
∈ J .

Proof. (→) If B ⊆ Y , there is a {J1, J2} ⊆ J such that f−1 (B) ⊆
f−1

³
B ∪ J1

´
and f−1 (Y \B) ⊆ f−1

³
Y \B ∪ J2

´
.

So Fr
¡
f−1 (B)

¢
= f−1 (B) ∩X\f−1 (B) ⊆ f−1

h³
B ∪ J1

´
∩
³
Y \B ∪ J2

´i
= f−1

h
Fr (B) ∪

³
B ∩ J2

´
∪
³
J1 ∩ Y \B

´
∪ (J1 ∩ J2)

i
= f−1 [Fr (B) ∪ J ],

where J =
³
B ∩ J2

´
∪
³
J1 ∩ Y \B

´
∪ (J1 ∩ J2) ∈ J .

(←) Suppose that F ⊆ Y is closed. There is a J ∈ J such that
Fr

£
f−1 (F )

¤
⊆ f−1 (Fr (F ) ∪ J) ⊆ f−1 (F ∪ J) = f−1 (F ) ∪ f−1 (J).

Hence
f−1 (F )\int

¡
f−1 (F )

¢
⊆ f−1 (F )∪f−1 (J), and so f−1 (F ) ⊆ int

¡
f−1 (F )

¢
∪

f−1 (F ) ∪ f−1 (J) = f−1 (F ) ∪ f−1 (J). Corollary 2.4 implies that f is C-
continuous.

The following characterization of C-continuous (and one-one) functions
is expressed completely in terms of closed-I sets.

Theorem 2.6 If f : (X, τ) → (Y, β,J ) is one-one, then f is C -
continuous if and only if, for each closed- J set B ⊆ Y , it is true that
f−1 (B) is closed- f−1 (J ) .

Proof. (→) If B ⊆ Y is closed-J , we have that B\B ∈ J , and so
f−1

³
B
´
\f−1 (B) = f−1

³
B\B

´
∈ f−1 (J ). In addition, f−1 (B)\f−1

³
B
´
∈

f−1 (J ), by Corollary 2.4. This implies that f−1 (B)\f−1 (B) ∈ f−1 (J ).
(←) It is a consequence of Corollary 2.4, given that if F ⊆ Y is closed then
F is closed-J .

Corollary 2.7 If I is an ideal in X and if f : X → Y is an one-one
function, then f : (X, τ) → (Y, β, f (I)) is C -continuous if and only
if f−1 (V ) is open-I , for each open- f(I) set V ⊆ Y .
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Theorem 2.8 Suppose that I is an ideal in X and f : X → Y is an one-
one function. If J =

©
B ⊆ Y : f−1 (B) ∈ I

ª
then f : (X, τ) → (Y, β,J )

is C -continuous if and only if f−1 (B) is closed- I , for each closed- J
set B ⊆ Y .

Proof. (→) IfB ⊆ Y is closed-J thenB\B ∈ J , and so f−1
³
B
´
\f−1 (B) ∈

I. Since f is C-continuous we have that f−1 (B)\f−1
³
B
´
∈ f−1 (J ) ⊆ I.

Given that f−1 (B)\f−1 (B) ⊆
h
f−1

³
B
´
\f−1 (B)

i
∪
h
f−1 (B)\f−1

³
B
´i
,

then f−1 (B)\f−1 (B) ∈ I.
(←) If B ⊆ Y then f−1

³
B
´
\f−1

³
B
´
∈ I, since B is closed-J , and so

f−1 (B)\f−1
³
B
´
∈ I. There exists I ∈ I with f−1 (B)\f−1

³
B
´
= I =

f−1 (f (I)). Moreover f(I) ∈ J .

The following two properties of the C-continuity are related with re-
strictions of functions.

Theorem 2.9 If f : (X, τ) → (Y, β,J ) is C -continuous and A ⊆ X,
then the function fA : (A, τA)→ (Y, β,J ) is C -continuous, where fA is
the restriction of f to A .

Proof. If V ∈ β, there is a J ∈ J such that f−1 (V ) ⊆ int
¡
f−1 (V )

¢
∪

f−1 (J). Thus f−1A (V ) = A∩f−1 (V ) ⊆
£
A ∩ int

¡
f−1 (V )

¢¤
∪
£
A ∩ f−1 (J)

¤
=£

A ∩ int
¡
f−1 (V )

¢¤
∪f−1A (J). ButA∩int

¡
f−1 (V )

¢
⊆ intτA

£
A ∩ f−1 (V )

¤
=

intτA

³
f−1A (V )

´
. Hence f−1A (V ) ⊆ intτA

³
f−1A (V )

´
∪ f−1A (J).

Theorem 2.10 Suppose that (X, τ) is a topological space and that X =
U∪V , where {U, V } ⊆ τ . If f : (X, τ)→ (Y, β,J ) is a function such that
fU : (U, τU )→ (Y, β,J ) and fV : (V, τV )→ (Y, β,J ) are C -continuous,
then f is C -continuous.

Proof. If W ∈ β, there is a {J1, J2} ⊆ J such that f−1U (W ) ⊆
intτU

³
f−1U (W )

´
∪ f−1U (J1) and f−1V (W ) ⊆ intτV

³
f−1V (W )

´
∪ f−1V (J2).

Then f−1 (W ) = f−1U (W )∪f−1V (W ) ⊆ intτU

³
f−1U (W )

´
∪intτV

³
f−1V (W )

´
∪

f−1U (J1)∪ f−1V (J2). Given that U and V are open, intτU

³
f−1U (W )

´
= U ∩

int
¡
f−1 (W )

¢
and intτV

³
f−1V (W )

´
= V ∩ int

¡
f−1 (W )

¢
. Thus f−1 (W ) ⊆£

U ∩ int
¡
f−1 (W )

¢¤
∪
£
V ∩ int

¡
f−1 (W )

¢¤
∪ f−1 (J1 ∪ J2) = int

¡
f−1 (W )

¢
∪ f−1 (J1 ∪ J2).
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Recall that if A ⊆ X, the characteristic function, associated with A,
is the function χA : X → {0, 1} defined by: χA (x) = 1, if x ∈ A, and
χA (x) = 0, if x /∈ A.

Theorem 2.11 If (X, τ) is a topological space, A ⊆ X , J1 = {∅, {0}}
and J2 = {∅, {1}} then:

(1) The function χA : (X, τ)→ ({0, 1} ,P ({0, 1}) ,J1) is C -continuous if
and only ifA is open. (2) The function χA : (X, τ)→ ({0, 1} ,P ({0, 1}) ,J2)
is C -continuous if and only if A is closed.

Proof. (1) (→) There is a J ∈ J1 such that A = χ−1A ({1}) ⊆ χ−1A (J) ∪
int

³
χ−1A ({1})

´
= A◦ ∪ χ−1A (J) ⊆ A◦ ∪ (X\A). Hence A ⊆ A◦, and then

A is open. (←) It is sufficient to note that: (a) χ−1A ({0}) ⊆ χ−1A ({0}) ∪
int

³
χ−1A ({0})

´
, and (b) χ−1A ({1}) = A ⊆ χ−1A (J)∪A = χ−1A (J)∪int

³
χ−1A ({1})

´
,

for all J ∈ J1.
(2) It is similar to (1).

Theorem 2.12 Let (Y, β) be a topological space, B a base for β and
J an ideal in Y . The function f : (X, τ)→ (Y, β,J⊗) is C -continuous
if and only if, for each B ∈ B , there exists J ∈ J⊗ such that f−1 (B) ⊆
int

¡
f−1 (B)

¢
∪ f−1 (J) or, equivalently, f

£
f−1 (B) \int

¡
f−1 (B)

¢¤
∈ J⊗ .

Proof. (→) It is clear.
(←) If V ∈ β then there exists {Bα : α ∈ ∆} ⊆ B, such that V =S

α∈∆
Bα. If α ∈ ∆, there is a Jα ∈ J⊗ with f−1 (Bα) ⊆ int

¡
f−1 (Bα)

¢
∪

f−1 (Jα). If J =
S

α∈∆
Jα then J ∈ J⊗.

Now, f−1 (V ) =
S

α∈∆
f−1 (Bα) ⊆

S
α∈∆

£
int

¡
f−1 (Bα)

¢
∪ f−1 (Jα)

¤
⊆ int

¡
f−1 (V )

¢
∪f−1 (J).

Theorem 2.13 Let (Y, β) be a topological space, S a sub-base for β
and J an ideal in Y . The function f : (X, τ) → (Y, β,J⊗) is C -
continuous if and only if for each S ∈ S there exists J ∈ J⊗ such that
f−1 (S) ⊆ int

¡
f−1 (S)

¢
∪ f−1 (J) .

Proof. (→) It is clear.
(←) By Theorem 2.12, it is enough to see that if {S1, S2} ⊆ S, there

exists J ∈ J⊗ such that f−1 (S1 ∩ S2) ⊆ int
¡
f−1 (S1 ∩ S2)

¢
∪ f−1 (J). If
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{S1, S2} ⊆ S, there is a {J1, J2} ⊆ J⊗ such that f−1 (Si) ⊆ int
¡
f−1 (Si)

¢
∪

f−1 (Ji), for all i ∈ {1, 2}.
Thus f−1 (S1 ∩ S2) = f−1 (S1)∩f−1 (S2) ⊆

£
int

¡
f−1 (S1)

¢
∪ f−1 (J1)

¤
∩£

int
¡
f−1 (S2)

¢
∪ f−1 (J2)

¤
=

£
int

¡
f−1 (S1)

¢
∩ int

¡
f−1 (S2)

¢¤
∪ A ∪ B ∪

f−1 (J3), where J3 = J1 ∩ J2, A = int
¡
f−1 (S1)

¢
∩ f−1 (J2) and B =

f−1 (J1) ∩ int
¡
f−1 (S2)

¢
.

Hence f−1 (S1 ∩ S2) ⊆ int
£
f−1 (S1 ∩ S2)

¤
∪f−1 (J2 ∪ J1), and J2∪J1 ∈

J⊗.

Theorem 2.14 If f : (X, τ)→ (Y, β,J ) and g : (Y, β)→ (Z, γ,L) are C
-continuous, and if g (J ) ⊆ L then g ◦ f is C -continuous.

Proof. If A ⊆ X, there are J ∈ J and L ∈ L such that f
³
A
´
⊆

f(A) ∪ J and g
³
f(A)

´
⊆ (g ◦ f) (A) ∪L. Thus (g ◦ f)

³
A
´
= g

³
f
³
A
´´
⊆

g
³
f (A)

´
∪ g (J) ⊆ (g ◦ f) (A) ∪ L ∪ g (J), with L ∪ g (J) ∈ L.

Corollary 2.15 If f : (X, τ) → (Y, β,J ) and g : (Y, β) → (Z, γ, g (J ))
are C -continuous, then g ◦ f is C -continuous.

The example that follows shows us that, in general, the composition of
C-continuous functions is not C-continuous.

Example 2.16 If X = Y = Z = {a, b, c}, τ = {∅,X, {a} , {a, b} , {a, c}},
β = {∅, Y, {b} , {a, b} , {b, c}}, γ = {∅, Z, {c} , {a, c} , {b, c}}, L = {∅, {a}},
J = {∅, {a} , {b} , {a, b}}, and if f : X → Y and g : Y → Z are defined by
f(a) = c, f(b) = a, f(c) = b, g(a) = a = g(c)and g(b) = b, it is easy to see

that f and g are C-continuous. However, since (g ◦ f)
³
{a}

´
\(g ◦ f) ({a}) =

{a, b} \ {a} = {b} /∈ L, we have that g ◦ f is not C-continuous.

Theorem 2.17 If f : (X, τ) → (Y, β) is a function, {Xα}α∈Λ is a locally
finite collection of closed subsets of X whose union is X , and if J is
an ideal on Y , then f : (X, τ)→ (Y, β,J⊗) is C -continuous if and only
if each restriction fXα : (Xα, τα) → (Y, β,J⊗) is C -continuous. Here
τα = τXα .

Proof. (←) For each α ∈ Λ, we will denote the function fXα simply
by fα. Suppose that F ⊆ Y is closed. Since f−1 (F ) =

S
α∈Λ

f−1α (F )

and
©
f−1α (F )

ª
α∈Λ is locally finite, we have that f

−1 (F ) =
S
α∈Λ

f−1α (F ) =
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S
α∈Λ

f−1α (F ). Now, for each α ∈ Λ, there is a Jα ∈ J⊗ such that adhτα
¡
f−1α (F )

¢
⊆

f−1α (F ∪ Jα). Given that each Xα is closed, adhτα
¡
f−1α (F )

¢
= f−1α (F ).

Hence f−1 (F ) ⊆ S
α∈Λ

f−1α (F )∪f−1
Ã S
α∈Λ

Jα

!
= f−1 (F )∪f−1

Ã S
α∈Λ

Jα

!
=

f−1
Ã
F ∪ S

α∈Λ
Jα

!
, with

S
α∈Λ

Jα ∈ J⊗.

(→) It is a consequence of Theorem 2.9.

Notation 2.18 If I is an ideal in X and J is an ideal in Y , then I ⊗ J
[10] is the set of all D ⊆ X ×Y such that there exist I ∈ I, A ⊆ X, J ∈ J
and B ⊆ Y , with D ⊆ (A× J) ∪ (I ×B).

It is shown in [10] that I ⊗ J is an ideal in X × Y , and that if A is
open-I in (X, τ, I) and B is open-J in (Y, β,J ) then A×B is open-(I ⊗ J ).

It is possible to build new C-continuous functions from some previously
known ones, as we will show in the two theorems that follow.

Theorem 2.19 If f : (X, τ) → (Y, β,J ) and g : (X, τ) → (Z, γ,L) are
C -continuous, then h : (X, τ) →

³
Y × Z, β × γ, (J ⊗ L)⊗

´
, defined by

h (x) = (f(x), g(x)) for all x ∈ X , is C -continuous.

Proof. If U ∈ β and V ∈ γ then there are J ∈ J and L ∈ L, such that
f−1 (U) ⊆ int

¡
f−1 (U)

¢
∪ f−1 (J) and g−1 (V ) ⊆ int

¡
g−1 (V )

¢
∪ g−1 (L).

Now, h−1 (U × V ) = f−1 (U) ∩ g−1 (V ) ⊆
£
int

¡
f−1 (U)

¢
∪ f−1 (J)

¤
∩£

int
¡
g−1 (V )

¢
∪ g−1 (L)

¤
= int

£
f−1 (U) ∩ g−1 (V )

¤
∪
£
int

¡
f−1 (U)

¢
∩ g−1(L)

¤
∪£

f−1 (J) ∩ int
¡
g−1 (V )

¢¤
∪
£
f−1 (J) ∩ g−1(L)

¤
⊆ int

£
h−1 (U × V )

¤
∪h−1 (J × L)∪

h−1 (U × L)∪ h−1 (J × V ) = int
£
h−1 (U × V )

¤
∪ h−1 [(J × L) ∪ (U × L) ∪

(J × V )]. Moreover J × L ∈ J ⊗ L and (U × L) ∪ (J × V ) ∈ J ⊗
L⊆ (J ⊗ L)⊗. Theorem 2.12 implies that h is C-continuous.

Theorem 2.20 If f : (X, τ) → (Y, β,J ) is C -continuous and if Jτ =
{W ⊆ X × Y : there are U ∈ τ and J ∈ J such that W ⊆ U × J} , then Jτ
is an ideal in X × Y and the function g : (X, τ)→

³
X × Y, τ × β, (Jτ )⊗

´
, defined by g (x) = (x, f (x)) , is C -continuous.

Proof. It is easy to be established that Jτ is an ideal in X × Y . Sup-
pose that U ∈ τ and V ∈ β. There is a J ∈ J such that f−1 (V ) ⊆
int

¡
f−1 (V )

¢
∪f−1 (J). Now, g−1 (U × V ) = U∩f−1 (V ) ⊆ U∩

£
int

¡
f−1 (V )

¢
∪ f−1 (J)

¤
=£

U ∩ int
¡
f−1 (V )

¢¤
∪
£
U ∩ f−1 (J)

¤
= int

¡
U ∩ f−1 (V )

¢
∪ g−1 (U × J) =
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int
¡
g−1 (U × V )

¢
∪ g−1 (U × J), and U × J ∈ Jτ ⊆ (Jτ )⊗. Theorem 2.12

implies that g is C-continuous.

Recall that, if I and J are ideals in X, then the ideal I ∨ J is the set
{I ∪ J : I ∈ I and J ∈ J }.

Lemma 2.21 If I and J are ideals in X , A ⊆ X is open- I in (X, τ,I)
and B ⊆ X is open- J in (X, τ,J ) , then A ∩B is open- (I ∨ J ) .

Proof. SinceA\A◦∈ I andB\B◦ ∈ J , we have that (A ∩B) \int (A ∩B) ⊆
(A\A◦) ∪ (B\B◦) ∈ I ∨ J , and so (A ∩B) \int (A ∩B) ∈ I ∨ J .

If (X, τ, I) is an ideal space, the set τ ∪ I is a base for a topology τ ⊕ I in
X. It is observed that τ ⊕ I= {V ∪ I : V ∈ τ and I ∈ I⊗} = τ ⊕ I⊗ [10].
If J is an ideal in Y and if f : X → Y is a function, we denote the set©
A ⊆ X : A ⊆ f−1 (J) for some J ∈ J

ª
by If,J . It is noted that If,J is

an ideal in X and that
©
f−1 (J) : J ∈ J

ª
⊆ If,J .

The following theorem shows some properties of the C-continuous func-
tions, in the case where the codomain is a Hausdorff space.

Theorem 2.22 (1) If f : (X, τ)→ (Y, β,J ) and g : (X, τ)→ (Y, β,J ) are
C -continuous functions and if (Y, β) is T2, the setA = {x ∈ X : f (x) = g (x)}
is closed in the space (X, τ ⊕ (If,J ∨ Ig,J )) .
(2) If f : (X, τ) → (Y, β,J ) is a C -continuous function and if (Y, β)
is T2, the set A = {(u, v) ∈ X ×X : f (u) = f (v)} is closed in the space
(X ×X, (τ × τ)⊕ (If,J ⊗ If,J )) .

Proof. (1) Suppose that u ∈ X\A. There is a {U,V } ⊆ τ such that
f (u) ∈ U , g (u) ∈ V and U ∩ V = ∅. Then u ∈ f−1 (U) ∩ g−1 (V ),
f−1 (U)∩ g−1 (V )∩A = ∅ and, by hypothesis, Lemma 2.21 and Corollary
2.4, f−1 (U) ∩ g−1 (V ) is open-(If,J ∨ Ig,J ). Thus f−1 (U) ∩ g−1 (V ) ∈
τ ⊕ (If,J ∨ Ig,J ).
(2) Suppose that (u, v) ∈ (X ×X) \A. There exists {U,V } ⊆ βsuch that
f (u) ∈ U , f(v) ∈ V and U ∩ V = ∅. Thus (u, v) ∈ f−1 (U) × f−1 (V ),
A∩

£
f−1 (U)× f−1 (V )

¤
= ∅ and f−1 (U)× f−1 (V ) is open-(If,J ⊗ If,J ),

and so f−1 (U)× f−1 (V ) ∈ (τ × τ)⊕ (If,J ⊗ If,J ).

In our last property for this new type of weak continuity, we present
the smallest ideal J in Y for which a given function f : (X, τ) → (Y, β)
is C-continuous.
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Theorem 2.23 If f : (X, τ)→ (Y, β) is a function and if

Jf =

⎧⎨⎩B ⊆ Y : there is a finite ∆B ⊆ P(X) with B ⊆
[

A∈∆B

h
f
³
A
´
\f(A)

i⎫⎬⎭
then Jf is the smallest ideal J in Y such that f : (X, τ) → (Y, β,J )
is C -continuous.

Proof. It is evident that Jf is an ideal in Y . Given that f
³
A
´
\f(A) ∈ Jf ,

for each A ⊆ X, then f : (X, τ) → (Y, β,Jf ) is a C-continuous function.
Now, suppose that f : (X, τ) → (Y, β,J ) is C-continuous. If B ∈ Jf
then there is a finite ∆B ⊆ P(X) with B ⊆ S

A∈∆B

h
f
³
A
´
\f(A)

i
. Since

f
³
A
´
\f(A) ∈ J , for each A ∈ ∆B, we can conclude that B ∈ J . In this

way Jf ⊆ J .

The example that follows shows us that C-continuous and J -continuous
are independent concepts.

Example 2.24 Let X = Y = {a, b}, τ = {∅,X}, β = {∅, {a} , Y } and
f : X → Y the function defined by f(a) = b and f(b) = a. Then:
(1) If J = {∅, {a}}, it is not a problem to prove that f is C-continuous.
However f (b) = a ∈ {a}, {a} ∈ β, but f (X) \ {a} = {b} /∈ J . Hence f is
not J -continuous.
(2) If J = {∅, {b}}, it is easy to see that f is J -continuous. Now, since
f
³
{a}

´
\f ({a}) = f(X)\{b} = {a} /∈ J , we conclude that f is not C-

continuous.

Next we show that C-continuous and Jw-continuous are independent
concepts.

Example 2.25 (1) Suppose that X = Y = {a, b, c}, β = {∅, Y, {a} , {b} ,
{a, b}}, τ = {∅,X, {a, b} , {b, c} , {b}}, J = {∅, {a}} and that f : X → Y
is defined by: f(a) = a, f (b) = b = f(c). It is easy to see that f is C-
continuous. Given that f (a) = a ∈ {a}, {a} ∈ β, f ({a, b}) \{a} = {b} /∈ J
and f(X)\{a} = {b}, then f is not Jw-continuous.
(2) Let X, Y , τ , β and J be as in part (1). If f : X → Y is defined by:
f (a) = b = f (c), and f (b) = c, it is not a problem to prove that f is Jw-
continuous. However, given that f

³
{b}

´
\f ({b}) = {b, c} \{c} = {b} /∈ J ,

we have that f is not C-continuous.
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3. C-closed and C-open functions

Through the I-open sets, Abd El Monsef et al. defines the J -open func-
tions. The authors consider the case in which an ideal is defined in the
codomain of the function. Under the same requirement, in this section we
define the C-open functions, and we show that this new concept is inde-
pendent of the concept introduced by them. Recall that if J is an ideal in
Y , a function f : (X, τ)→ (Y, β,J ) is said to be J -open (resp. J -closed)
[1] if, for each U ∈ τ (resp. U is closed), we have that f(U) is J -open
(resp. J -closed).

Definition 3.1 If J is an ideal in Y , a function f : (X, τ) → (Y, β,J ) is
said to be:
(1) C -closed if, for each A ⊆ X, we have that f (A)\f

³
A
´
∈ J .

(2) C -open if, for each A ⊆ X, we have that f (A◦) \int (f(A)) ∈ J .
It is clear that if f is closed (or open) then f is C-closed (or C-open)

and that f : (X, τ)→ (Y, β) is closed (or open) if and only if f : (X, τ)→
(Y, β, {∅}) is C-closed (or C-open). It is immediate to see that f : (X, τ)→
(Y, β,J ) is: (1) C-open if and only if, for each U ∈ τ , f (U) is open-J ,
and (2) C-closed if and only if, for all closed set F ⊆ X, f (F ) is closed-
J . Moreover, if f is C-open then f : (X, τ) → (Y, β ⊕ J ) is open, and
f : (X, τ) → (Y, β,J⊗) is C-open if and only if f : (X, τ) → (Y, β ⊕ J ) is
open.

Examples 3.2
(1) Each function f : (X, τ) → (Y, β,J = P(Y )) is C-closed and C-open.
(2) If β = {∅,R, {0}} and J = P ({−1, 0, 1}) then the function f :
(R,U)→ (R, β,J ) defined by

f (x) =

⎧⎪⎨⎪⎩
1, if x > 0
0, if x = 0
−1, if x < 0,

is C-open, but f is not open. Moreover f is not C-closed, because f(R)\f
³
R
´

= R\ {−1, 0, 1} /∈ J .
(3) If β = {∅,R}∪{(r,∞) : r ∈ R} and J = P ((−∞, 1]), then the function
f : (R,U) → (R, β,J ), defined as in example (2), is not closed, but f is
C-closed since if F ⊆ R then f (F ) ⊆ (−∞, 1], and so f (F )\f

³
F
´
∈ J .

(4) Consider the function f : (R,U) → (R,U ,J = P ({0})) defined by
f(x) = [x], where [x] denotes the integer part of x.
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Since f (int ([1, 2])) \int (f ([1, 2])) = {1} /∈ J , we conclude that f is
not C-open.

Since that open → C-open, and that J -open and open are independent
concepts [1], we have that C-open 6→ J -open. The next example shows
that J -open 6→ C-open.

Example 3.3 Suppose that X = Y = {a, b, c, d} and that f : X → Y
is defined by f(x) = c, for each x ∈ X. Let τ = {∅,X, {a} , {b} , {a, b}},
β = {∅, Y, {a, d} , {b, c}} and J = {∅, {b} , {d} , {b, d}}. Given that {a} ∈ τ
and f ({a}) \int (f ({a})) = {c} /∈ J , we have that f is not C-open. Since,
for each U ∈ τ\ {∅}, f (U) = {c} ⊆ {b, c} = int [(f (U))∗], we conclude that
f is J -open.

Theorem 3.4 Suppose that (X, τ) and (Y, β) are topological spaces,
B is a base for τ and that J is an ideal in Y . Then the function
f : (X, τ) → (Y, β,J⊗) is C -open if and only f(B) is open- J⊗ , for
each B ∈ B .

Proof. (→) It is clear.
(←) If V ∈ τ , there exists {Vα : α ∈ Λ} ⊆ B such that V =

S
α∈Λ

Vα. For

each α ∈ Λ there exists Jα ∈ J⊗ such that f (Vα) = int (f (Vα))∪Jα. Then
f(V ) =

S
α∈Λ

f(Vα) =
S
α∈Λ

int (f (Vα)) ∪
S
α∈Λ

Jα ⊆ int(f(V )) ∪ S
α∈Λ

Jα. Hence

f(V )\int(f(V )) ∈ J⊗.

Theorem 3.5 (1) Suppose that f : (X, τ) → (Y, β,J ) and g : (Y, β) →
(Z, γ,L) are C -open and that g(J ) ⊆ L . Then g ◦ f is C -open.
(2) If f : (X, τ)→ (Y, β) is open and if g : (Y, β)→ (Z, γ,L) is C -open,
then g ◦ f is C -open.

Proof. (1) If U ∈ τ then there is a J ∈ J such that f(U)\int (f(U)) = J .
Then f(U) = int (f(U)) ∪ J . There exists L ∈ L with g (int (f(U))) =
int (g (int (f(U)))) ∪ L.

Hence g (f (U)) = g (int (f(U))) ∪ g (J) = int (g (int (f(U)))) ∪ L ∪
g (J) ⊆ int (g (f(U))) ∪ L ∪ g (J), and L ∪ g (J) ∈ L.

This implies that (g ◦ f) (U) \int ((g ◦ f) (U)) ∈ L.
(2) It is a consequence of (1).

The following example shows that the composition of C-open functions
may not be a C-open function.
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Example 3.6 Suppose that X = Y = Z = {a, b, c, d} and that f : X → Y
and g : Y → Z are functions defined by f(a) = b = f(b), f(c) = c = f(d)
and g(a) = a, g(b) = c, g(c) = b, g(d) = d.

If β = {∅, Y, {b} , {a, d} , {a, b, d}}, τ = {∅,X, {a, b, c} , {a, c, d} , {a, c}},
γ = {∅, Z, {c}}, J = {∅, {c}}, L = {∅, {a} , {d} , {a, d}}, we have that g ◦ f
is not C-open, because (g ◦ f) ({a, b, c}) \int [(g ◦ f) ({a, b, c})] = {b} /∈ L.
However f and g are C-open.

Theorem 3.7 If I is an ideal in X then the function f : (X, τ) →
(Y, β, f (I)) is C -closed if and only if, for each closed-I set A ⊆ X , it is
true that f(A) is closed-f(I) .

Proof. (→) Suppose that A ⊆ X is closed-I. Since A\A ∈ I and

f
³
A
´
\f (A) ⊆ f

³
A\A

´
∈ f (I), then f

³
A
´
\f (A) ∈ f (I). Now, given

that f is C-closed, we have that f
³
A
´
\f
³
A
´
∈ f(I). Moreover, f (A)\f (A) ⊆

f
³
A
´
\f (A) ⊆

∙
f
³
A
´
\f
³
A
´¸
∪
h
f
³
A
´
\f (A)

i
∈ f(I), and so f (A)\f (A) ∈

f(I).
(←) It is clear.

4. Some applications of C-continuous, C-closed and C-open
functions

In this section we present some applications of these three new type of
functions, mainly related to compactness and separability, which constitute
generalizations of well-known results of the general topology. If (X, τ, I) is
an ideal space, the set I =

n
A ⊆ X : A ⊆ I, for some I ∈ I

o
is an ideal in

X. Moreover, it is clear that if J ∈ I then J ∈ I.

Recall that a topological space (X,τ) is said to be quasi-H-closed, or
simply QHC [11], if for each open cover {Vα}α∈Λ of X, there exists a finite
Λ0 ⊆ Λ with X =

S
α∈Λ0

Vα. An ideal space (X,τ ,I) is defined to be: (1) I-

compact [7] if for all open cover {Vα}α∈Λ of X, there exists a finite Λ0 ⊆ Λ
such that X\ S

α∈Λ0
Vα ∈ I, (2) I-QHC [3] if for all open cover {Vα}α∈Λ of

X, there exists a finite Λ0 ⊆ Λ such that X\
S

α∈Λ0
Vα ∈ I, and (3) I-normal
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[12] if, for each pair of disjoint closed sets F and G, there are disjoint
open sets U and V such that F\U ∈ I and G\V ∈ I.

Theorem 4.1 If f : (X, τ)→ (Y, β,J ) is sobreyective and C -continuous
and if (X, τ ⊕ If,J ) is compact, then (Y, β,J ) is J -compact.

Proof. If {Vα}α∈Λ is an open cover of Y then X =
S
α∈Λ

f−1 (Vα). For each

α ∈ Λ, there exists Jα ∈ J such that f−1 (Vα) ⊆ int
£
f−1 (Vα)

¤
∪ f−1 (Jα).

Thus X =
S
α∈Λ

©
int

£
f−1 (Vα)

¤
∪ f−1 (Jα)

ª
, with int

£
f−1 (Vα)

¤
∪f−1 (Jα) ∈

τ ⊕ If,J , for each α ∈ Λ. There exists a finite Λ0 ⊆ Λ such that X =S
α∈Λ0

©
int

£
f−1 (Vα)

¤
∪ f−1 (Jα)

ª
. This implies that X =

Ã S
α∈Λ0

f−1 (Vα)

!
∪

S
α∈Λ0

f−1 (Jα). Hence Y =

Ã S
α∈Λ0

Vα

!
∪ S

α∈Λ0
Jα, and so Y \

S
α∈Λ0

Vα ∈ J .

Theorem 4.2 If f : (X, τ)→ (Y, β,J ) is sobreyective and C -continuous
and if (X, τ ⊕ If,J ) is QHC, then

³
Y, β,J

´
is J− QHC.

Proof. Let λ = τ ⊕ If,J be. Suppose that {Vα}α∈Λ is an open cover of
Y . For each α ∈ Λ there exists Jα ∈ J such that f−1 (Vα) ⊆ f−1 (Jα) ∪
intτ

¡
f−1 (Vα)

¢
. Hence X =

S
α∈Λ

£
f−1 (Jα) ∪ intτ

¡
f−1 (Vα)

¢¤
. Given that

(X,λ) is QHC, we have thatX =
S

α∈Λ0

£
adhλ

¡
f−1 (Jα)

¢
∪ adhλ

¡
intτ

¡
f−1 (Vα)

¢¢¤
,

for some finite Λ0 ⊆ Λ. But adhλ (A) ⊆ adhτ (A), for each A ⊆ X. This
allows us to conclude that X =

S
α∈Λ0

£
adhτ

¡
f−1 (Jα)

¢
∪ adhτ

¡
f−1 (Vα)

¢¤
.

Thus Y =
S

α∈Λ0

£
f
¡
adhτ

¡
f−1 (Jα)

¢¢
∪ f

¡
adhτ

¡
f−1 (Vα)

¢¢¤
. For each α ∈

Λ0 there exist {Lα,Mα} ⊆ J such that f
¡
adhτ

¡
f−1 (Vα)

¢¢
⊆ adhβ

£
f
¡
f−1 (Vα)

¢¤
∪

Lα = adhβ(Vα)∪Lα and f
¡
adhτ

¡
f−1 (Jα)

¢¢
⊆ adhβ

£
f
¡
f−1 (Jα)

¢¤
∪Mα =

adhβ(Jα)∪Mα. In consequence, Y =
S

α∈Λ0
adhβ(Vα)∪

S
α∈Λ0

[adhβ(Jα) ∪ Lα ∪Mα]

and so Y \ S
α∈Λ0

adhβ(Vα) ∈ J .

Theorem 4.3 If f : (X, τ)→ (Y, β,J ) is C -continuous then:
(1) If {xn}∞n=1 is a succession in X , a ∈ X and xn → a , then either
{f (a)} ∈ J or f (xn)→ f (a) .
(2) If F is a filter in X , a ∈ X and F → a then either {f (a)} ∈ J or
f (F)→ f (a) .
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Proof.
(1) Suppose that {f (a)} /∈ J . If W ∈ β and f (a) ∈W , there exists J ∈ J
such that a ∈ f−1 (W ) ⊆ f−1 (J) ∪ int

¡
f−1 (W )

¢
. Since {f (a)} /∈ J then

a ∈ int
¡
f−1 (W )

¢
, and so there is a N ∈ Z+ such that, if n ≥ N then

xn ∈ int
¡
f−1 (W )

¢
. Thus, if n ≥ N we have that f (xn) ∈W .

(2) Suppose that {f (a)} /∈ J . If W ∈ β and f (a) ∈W , there exists J ∈ J
such that a ∈ f−1 (W ) ⊆ f−1 (J) ∪ int

¡
f−1 (W )

¢
. Since {f (a)} /∈ J

then a ∈ int
¡
f−1 (W )

¢
, and so int

¡
f−1 (W )

¢
∈ F . This implies that

f
¡
int

¡
f−1 (W )

¢¢
∈ f(F). Given that f

¡
int

¡
f−1 (W )

¢¢
⊆ W , we have

that W ∈ f(F).

Theorem 4.4 If f : (X, τ)→ (Y, β,J ) is continuous, sobreyective and C
-closed , and if (X, τ) is normal, then (Y, β,J ) is J -normal.

Proof. Suppose that F and G are disjoint closed subsets of Y . There
exist disjoint U ∈ τ and V ∈ τ , with f−1 (F ) ⊆ U and f−1 (G) ⊆
V . Then f (X\U) ⊆ Y \F and f(X\V ) ⊆ Y \G. Now,

h
Y \f (X\U)

i
∩h

Y \f (X\V )
i
= Y \f [X\(U ∩ V )] = ∅. Moreover

F\
h
Y \f (X\U)

i
= f (X\U)\ (Y \F ) ⊆ f (X\U)\f (X\U) ∈ J , because f

is C-closed. Hence F\
h
Y \f (X\U)

i
∈ J . Similarly G\

h
Y \f (X\V )

i
∈ J .

Definition 4.5 The ideal space (X, τ, I) is said to be separable- I if there
exists a countable D ⊆ X such that X\D ∈ I.

It is noted that separable → separable-I and that (X, τ) is separable if
and only if (X, τ, {∅}) is separable-{∅}.

Example 4.6
(1) The space (R,P(R), I = P(R)) is separable-I, but (R,P(R)) is not
separable. (2) Let β be the topology in R given by: V ∈ β if and
only if, for each r ∈ R, if r ∈ V ∩ Q then there exists > 0 such
that (r − , r + ) ⊆ V . We have that the space (R, β,I = P(R\Q)) is
separable-I since R\Q = R\Q ∈ I. Besides (R, β) is not separable. (3)
If ζ = {∅} ∪ {A ⊆ R : R\A is countable} then (R, ζ, I = Ic (R)) is not
separable-I, because if A ⊆ R is countable we have that A = A and so
R\A /∈ I.

Theorem 4.7
(1) If f : (X, τ) → (Y, β,J ) is sobreyective and C -continuous, and if
(X, τ) is separable then (Y, β,J ) is separable- J .



Other forms of continuity modulo an ideal 1237

(2) If I is an ideal in X , f : (X, τ)→ (Y, β, f (I)) is sobreyective and C
-continuous, and if (X, τ, I) is separable-I , then (Y, β, f (I)) is separable-
f(I) .
(3) If (X, τ, I) is separable-I and V ∈ τ , then (V, τV , IV ) is separable-
IV .
(4) If (X, τ, I) is separable-I and (Y, β,J ) is separable-J then the space
(X × Y, τ × β, I ⊗ J ) is separable-(I ⊗ J ) .

Proof.
(1) There exists D ⊆ X, countable, with D = X. Hence Y \f (D) =
f
³
D
´
\f (D) ∈ J , because f is C-continuous. Moreover f(D) is countable.

(2) There is a countable D ⊆ X with X\D ∈ I. Given that
Y \f

³
D
´
⊆ f

³
X\D

´
∈ f (I) and f

³
D
´
\f(D) ∈ f(I), then Y \f(D) ∈

f(I).
(3) There exists a countable D ⊆ X such that X\D ∈ I.

Since V \adhτV (V ∩D) = V \
h
V ∩D ∩ V

i
= V ∩

³
X\D

´
and X\D ∈

I, we have that V \adhτV (V ∩D) ∈ IV .
(4) There are countable sets D ⊆ X and E ⊆ Y such that X\D ∈ I and
Y \E ∈ J .
Given that (X × Y ) \D ×E = (X × Y ) \

³
D ×E

´
=
h³
X\D

´
× Y

i
∪h

X ×
³
Y \E

´i
, we have that (X × Y ) \D ×E ∈ I ⊗ J .

Definition 4.8 The space (X, τ, I) is said to be regular-I if for each U ∈ τ
and x ∈ U , it is true that either {x} ∈ I or there is a V ∈ τ such that
x ∈ V and V ⊆ U .

It is clear that regular → regular-I and that (X, τ) is regular if and
only if (X, τ, {∅}) is regular-{∅}.

Example 4.9
(1) Let λ be the topology in R in which the nboods of any nonzero point
being as in the usual topology, while nboods of 0 will have the form
U\ {1, 1/2, 1/3, ...} where U is a nbood of 0 in that usual topology. It
is known that {1, 1/2, 1/3, ...} is a closed set and that (R, λ) is not regular.
However (R, λ, I = P ({0})) is regular-I. Indeed, suppose that U ∈ λ and
a ∈ U .

(i) If a = 0 then {a} ∈ I.
(ii) If a 6= 0, there is r ∈ (0, |a|) such that (a− r, a+ r) ⊆ U . It is very
easy to see that adhλ ((a− r/2, a+ r/2)) = [a− r/2, a+ r/2] ⊆ U .
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(2) The space (R, λ,I = P ({1})) is not regular-I, because we have that
0 ∈ R\ {1, 1/2, 1/3, ...}, {0} /∈ I and there is no V ∈ λ with 0 ∈ V ⊆ V ⊆
R\ {1, 1/2, 1/3, ...}.
(3) If I is an admissible ideal in X, then each space (X, τ, I) is regular-I.

Theorem 4.10
(1) If f : (X, τ) → (Y, β,J ) is sobreyective, open, closed and C -
continuous, and if (X, τ) is regular then (Y, β,J ) is regular- J .

(2) If I is an ideal in X , f : (X, τ)→ (Y, β, f (I)) is sobreyective, open,
closed and C -continuous, and if (X, τ,I) is regular- I then (Y, β, f (I))
is regular-f (I) .
(3) If (X, τ,I) is regular-I and (Y, β,J ) is regular-J then the space
(X × Y, τ × β, I ⊗ J ) is regular-(I ⊗ J ) .

Proof.
(1) If W ∈ β and y0 ∈ W , there is a x0 ∈ X such that f (x0) = y0.
There exists J ∈ J with x0 ∈ f−1 (W ) ⊆ int

¡
f−1 (W )

¢
∪ f−1 (J). If

x0 ∈ f−1 (J) then {y0} ∈ J . If x0 ∈ int
¡
f−1 (W )

¢
, there is a U ∈ τ

such that x0 ∈ U and U ⊆ int
¡
f−1 (W )

¢
. In this case y0 ∈ f (U) and

f (U) ⊆ f
³
U
´
⊆ f

¡
int

¡
f−1 (W )

¢¢
⊆ f

¡¡
f−1 (W )

¢¢
=W , with f (U) ∈ β.

(2) Suppose that W ∈ β and f (x0) ∈ W . There exists I ∈ I such that
x0 ∈ f−1 (W ) ⊆ int

¡
f−1 (W )

¢
∪ f−1 (f (I)), since f is C-continuous. If

x0 ∈ f−1 (f (I)) then {f (x0)} ∈ f (I). If x0 ∈ int
¡
f−1 (W )

¢
then ei-

ther {x0} ∈ I, and so {f(x0)} ∈ f(I), or there exists U ∈ τ such that

x0 ∈ U ⊆ U ⊆ int
¡
f−1 (W )

¢
, and so f (x0) ∈ f (U) ⊆ f (U) ⊆ f

³
U
´
⊆

f
¡
int

¡
f−1 (W )

¢¢
⊆W , with f(U) ∈ β.

(3) Suppose that W ∈ τ × β and (x, y) ∈ W . There are U ∈ τ and V ∈ β
such that (x, y) ∈ U × V ⊆ W . We have that either {x} ∈ I or there is a
U1 ∈ τ with x ∈ U1 and U1 ⊆ U . Moreover, either {y} ∈ J or there is a
V1 ∈ β with y ∈ V1 and V1 ⊆ V .

(a) If {x} ∈ I or {y} ∈ J , it is clear that {(x, y)} = {x} × {y} ∈ I ⊗ J .
(b) If there are U1 ∈ τ and V1 ∈ β, such that x ∈ U1, U1 ⊆ U , y ∈ V1 and
V1 ⊆ V , then (x, y) ∈ U1 × V1 and U1 × V1 = U1 × V1 ⊆ U × V ⊆W .

Theorem 4.11 If (X, τ) is T2 and if f : (X, τ) → (Y, β,J ) is biyective
and C -open, then (Y, β ⊕ J ) is T2 .

Proof. Suppose that {u, v} ⊆ Y and u 6= v. There exists {a, b} ⊆ X with
f (a) = u and f(b) = v. Now, there is a {U, V } ⊆ τ such that a ∈ U , b ∈ V
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and U ∩ V = ∅. Thus u ∈ f(U), v ∈ f(V ), f (U) ∩ f(V ) = ∅, with f(U)
and f(V ) open-J . So that {f(U), f(V )} ⊆ β ⊕ J .

5. D-Continuous functions

Other forms of continuity via ideals were defined and studied by Abd El
Monsef et al. and by Kaniewski et al. In both cases the considered ideal is
defined in the domain of the function. Under the same hypothesis, in this
section we define the D-continuous functions, a new and natural general-
ization of the concept of continuity, which turns out to be independent of
the concepts introduced by these authors.

Recall that if I is an ideal in X then a function f : (X, τ, I) → (Y, β)
is said to be I-continuous [1] [El-Monsef form] if, for each V ∈ β, f−1 (V )

is I-open, that is, f−1 (V ) ⊆ int
h¡
f−1 (V )

¢∗i
. On the other hand, f is

defined to be I-continuous [6] [Kaniewski form] if, for each V ∈ β, there
are U ∈ τ and I ∈ I, such that f−1 (V ) = U\I.

Definition 5.1 If I is an ideal in X, a function f : (X, τ, I) → (Y, β) is
said to be D -continuous if, for each V ∈ β, we have that f−1 (V ) is open-I,
that is, f−1 (V ) \int

¡
f−1 (V )

¢
∈ I.

It is observed that if f is continuous then f is D-continuous, and that
f : (X, τ) → (Y, β) is continuous if and only if f : (X, τ, {∅}) → (Y, β) is
D-continuous.

The following theorem establishes a relationship between C-continuity
and D-continuity.

Theorem 5.2
(1) The function f : (X, τ,I)→ (Y, β) is D -continuous if and only f−1 (F )
is closed-I , for each closed set F ⊆ Y .
(2) If f : (X, τ, I)→ (Y, β) is a D -continuous function, then the function
f : (X, τ)→ (Y, β, f(I)) is C -continuous.

Proof.
(1) It is clear.
(2) If V ∈ β there is a I ∈ I such that f−1 (V ) = int

¡
f−1 (V )

¢
∪ I

⊆ int
¡
f−1 (V )

¢
∪ f−1 (f (I)), with f (I) ∈ f (I).

Corollary 2.4 implies that f : (X, τ)→ (Y, β, f(I)) is C-continuous.
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Example 5.3
(1) If U is the usual topology inR, the identity function f : (R,U , I = P(R))→
(R,P(R)) is D-continuous, but f is not continuous.
(2) The function f : (R,U ,I = P(Z)) → (R,U) given by f(x) = [x],
where [x] is the integer part of x, is D-continuous, because if B ⊆ R then
f−1 (B) =

S
n∈B∩Z

[n, n+ 1), and given that {[n, n+ 1) : n ∈ B ∩ Z} is lo-

cally finite in (R,U), we have that S
n∈B∩Z

[n, n+ 1) =
S

n∈B∩Z
[n, n+ 1) =S

n∈B∩Z
[n, n+ 1], and so f−1 (B)\f−1 (B) = S

n∈B∩Z
[n, n+ 1] \ S

n∈B∩Z
[n, n+ 1) ⊆S

n∈B∩Z
([n, n+ 1] \ [n, n+ 1)) = {n+ 1 : n ∈ B ∩ Z} ∈ I.

(3) The function f : (R,U , I = P({−1, 1}))→ (R,U) given by f(x) = −1
if x < 0, and f(x) = 1 if x ≥ 0, is not D-continuous since if A = {−1}
then A = A and f−1 (A)\f−1

³
A
´
= {0} /∈ I. However, f : (R,U) →

(R,U , f(I)) is C-continuous given that f(I) = I and if A ⊆ R then

f
³
A
´
\f (A) ⊆ {−1, 1} and so f

³
A
´
\f (A) ∈ f(I).

In the three next theorems we present other characterizations of D-
continuity in terms of interior, adherence and frontier operators.

Theorem 5.4 The following propositions are equivalents:

(1) The function f : (X, τ, I)→ (Y, β) is D -continuous.

(2) For each B ⊆ Y , f−1 (B◦) \int
¡
f−1 (B)

¢
∈ I.

(3) For each B ⊆ Y , f−1 (B)\f−1
³
B
´
∈ I.

Proof. It is easy to be established.

Theorem 5.5 The function f : (X, τ, I)→ (Y, β) is D -continuous if and
only if Fr

¡
f−1 (B)

¢
\f−1 (Fr (B)) ∈ I , for each B ⊆ Y .

Proof. (→) If B ⊆ Y , there exists {I1, I2} ⊆ I such that f−1 (B) ⊆
f−1

³
B
´
∪ I1 and f−1 (Y \B) ⊆ f−1

³
Y \B

´
∪ I2, by Theorem 5.4. Then

Fr
¡
f−1 (B)

¢
= f−1 (B)∩f−1 (Y \B) ⊆

h
f−1

³
B
´
∪ I1

i
∩
h
f−1

³
Y \B

´
∪ I2

i
=

f−1 (Fr (B))∪I, where I =
h
f−1

³
B
´
∩ I2

i
∪
h
I1 ∩ f−1

³
Y \B

´i
∪(I1 ∩ I2) ∈

I. Hence Fr
¡
f−1 (B)

¢
\f−1 (Fr (B)) ∈ I.

(←) If F ⊆ Y is closed, there is a I ∈ I such that Fr
¡
f−1 (F )

¢
⊆

f−1 (Fr (F ))∪I ⊆ f−1 (F )∪I, and so f−1 (F )\int
¡
f−1 (F )

¢
⊆ f−1 (F )∪I.
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Thus f−1 (F ) ⊆ int
¡
f−1 (F )

¢
∪ f−1 (F ) ∪ I = f−1 (F ) ∪ I. This implies

that f−1 (F )\f−1 (F ) ∈ I. By Theorem 5.2 f is D-continuous.

Theorem 5.6 The function f : (X, τ, I)→ (Y, β) is D -continuous if and
only if, for each A ⊆ X , there is a I ∈ I such that f

³
A\I

´
⊆ f(A) .

Proof. (→) IfA ⊆ X, there is a I ∈ I such that f−1 (f (A))\f−1
³
f (A)

´
=

I, by Theorem 5.4. Hence A\I ⊆ f−1
³
f (A)

´
, and so f

³
A\I

´
⊆ f(A).

(←) IfB ⊆ Y then there exists I ∈ I with f
³
f−1 (B)\I

´
⊆ f (f−1 (B)) ⊆

B. This allows us to conclude that f−1 (B)\f−1
³
B
´
∈ I. By Theorem

5.4, f is D-continuous.

Corollary 5.7 If the function f : (X, τ,I)→ (Y, β) is D -continuous then
f
³
I
´
⊆ f(I) .

Proof. Let J ∈ I be. There exists I ∈ I such that J ⊆ I. There is a
I1 ∈ I with f

³
I\I1

´
⊆ f (I), by Theorem 5.6. Since we also have that

f
³
I\
´
\f (I1) ⊆ f

³
I\I1

´
, then f (J) ⊆ f

³
I
´
⊆ f (I)∪f (I1) ⊆ f (I ∪ I1) ∈

f (I).

Theorem 5.8
(1) If {Iα}α∈Λ is a collection of ideals in X and if I = T

α∈Λ
Iα , then

f : (X, τ, I)→ (Y, β) is D -continuous if and only if
f : (X, τ, Iα)→ (Y, β) is D -continuous, for each α ∈ Λ .
(2) If f : (X, τ, I) → (Y, β) is D -continuous and g : (Y, β) → (Z, γ) is
continuous, then g ◦ f is D -continuous.
(3) If A ⊆ X then the function χA : (X, τ, I) → ({0, 1} ,P ({0, 1})) is
D -continuous if and only if Fr (A) ∈ I .
(4) If A and B are open sets in (X, τ) , X = A∪B and if f : (X, τ, I)→
(Y, β) is a function such that the restrictions fA : (A, τA, IA)→ (Y, β) and
fB : (B, τB, IB)→ (Y, β) are D -continuous, then f is D -continuous.
(5) If A ⊆ X and if f : (X, τ, I) → (Y, β) is D -continuous, then
fA : (A, τA, IA)→ (Y, β) is D -continuous.

Proof. (3) (→) Given that χ−1A {0} and χ−1A {1} are open-I, then Fr(A) =
A\A◦ =

³
A\A

´
∪ (A\A◦) ∈ I. (←) If Fr(A) ∈ I then A\A ∈ I and

A\A◦ ∈ I or, equivalently, χ−1A {0} and χ−1A {1} are open-I.
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(4) Suppose that V ∈ β. Given that {A,B} ⊆ τ , intτA

³
f−1A (V )

´
=

A ∩ int
¡
f−1 (V )

¢
and intτB

³
f−1B (V )

´
= B ∩ int

¡
f−1 (V )

¢
.

Since f−1 (V ) = f−1A (V )∪f−1B (V ), we have that f−1 (V ) \int
¡
f−1 (V )

¢
⊆h

f−1A (V ) \intτA
³
f−1A (V )

´i
∪
h
f−1B (V ) \intτB

³
f−1B (V )

´i
∈ IA ∪ IB ⊆ I.

The other parts of the theorem are obtained without any problem.

Theorem 5.9 If f : (X, τ,I) → (Y, β) and g : (Y, β,L) → (Z, γ) are D
-continuous and if

©
f−1 (L) : L ∈ L

ª
⊆ I , then g ◦ f is D -continuous.

Proof. IfW ∈ γ there exists L ∈ L such that g−1 (W ) = int
¡
g−1 (W )

¢
∪L.

Now, there is a I ∈ I with f−1
£
int

¡
g−1 (W )

¢¤
= int

©
f−1

£
int

¡
g−1 (W )

¢¤ª
∪

I. So f−1
¡
g−1 (W )

¢
= f−1

¡
int

¡
g−1 (W )

¢¢
∪f−1 (L) = int

©
f−1

£
int

¡
g−1 (W )

¢¤ª
∪

I ∪ f−1 (L) ⊆ int
©
f−1

¡
g−1 (W )

¢ª
∪ I ∪ f−1 (L).

Hence (g ◦ f)−1 (W ) \int
h
(g ◦ f)−1 (W )

i
⊆ I ∪ f−1 (L) ∈ I.

Corollary 5.10 If f : X → Y is one-one and if g : (Y, β,L) → (Z, γ)
and f :

¡
X, τ, f−1 (L)

¢
→ (Y, β) are D -continuous, then g ◦ f is D

-continuous.

The composition of D-continuous functions may not be a D-continuous
function, as we show in the following example.

Example 5.11 Suppose that X = Y = Z = {a, b, c}, τ = {∅, {a, b} ,X},
β = {∅, {a, c} , Y }, γ = {∅, {c} , Z}, I = J = P ({b, c}) and that f : X →
Y , g : Y → Z are defined by: f (a) = b, f(b) = a, f(c) = c, g (a) = b,
g (b) = c and g (c) = a. It is not a problem to prove that f and g are

D-continuous. Given that (g ◦ f)−1 ({c}) \int
h
(g ◦ f)−1 ({c})

i
= {a} /∈ I,

we conclude that g ◦ f is not D-continuous.

Theorem 5.12 If I is an ideal in X , then f : (X, τ,I⊗)→ (Y, β) is D
-continuous if and only if f : (X, τ ⊕ I)→ (Y, β) is continuous.

Proof. (→) If V ∈ β, there is a J ∈ I⊗ such that f−1 (V ) \int
¡
f−1 (V )

¢
=

J . So that f−1 (V ) = int
¡
f−1 (V )

¢
∪ J ∈ τ ⊕ I.

(←) If W ∈ β, there are U ∈ τ and J ∈ I⊗ such that f−1 (W ) = U ∪J .
Then U ⊆ intτ

¡
f−1 (W )

¢
and so f−1 (W ) ⊆ intτ

¡
f−1 (W )

¢
∪ J . This im-

plies that f−1 (W ) \intτ
¡
f−1 (W )

¢
⊆ J . Thus f−1 (W ) \intτ

¡
f−1 (W )

¢
∈

J⊗.
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It is possible to build new D-continuous functions from some previously
known ones, as we will show now.

Theorem 5.13
(1) If f : (X, τ, I)→ (Y, β) and g : (X, τ, I)→ (Z, γ) are D -continuous,
then the function h : (X, τ, I⊗) → (Y × Z, β × γ) , defined by h (x) =
(f (x) , g (x)) , is D -continuous.
(2) If f : (X, τ, I) → (Y, β) is D -continuous then the function g :
(X, τ ⊕ I) → (X × Y, (τ ⊕ I)× β) defined by g(x) = (x, f (x)), is contin-
uous. Moreover, if g is continuous then f : (X, τ,I⊗) → (Y, β) is D
-continuous.

Proof.
(1) If W ∈ β × γ, there are {Uj : j ∈ Λ} ⊆ β and {Vj : j ∈ Λ} ⊆ γ such
that W =

S
j∈Λ

(Uj × Vj). Hence h
−1 (W ) =

S
j∈Λ

h−1 (Uj × Vj) =S
j∈Λ

f−1(Uj) ∩ g−1(Vj).

For each j ∈ Λ there exists {Ij , Jj} ⊆ I such that f−1(Uj) = int
£
f−1(Uj)

¤
∪

Ij and g−1(Vj) = int
£
g−1(Vj)

¤
∪ Jj .

Thus h−1 (W ) =
S
j∈Λ

£
int

¡
f−1(Uj)

¢
∪ Ij

¤
∩
£
int

¡
g−1(Vj)

¢
∪ Jj

¤
⊆ int

¡
h−1 (W )

¢
∪

I, where I =
S
j∈Λ

£
int

¡
f−1(Uj)

¢
∩ Jj

¤
∪
£
int

¡
g−1(Vj)

¢
∩ Ij

¤
∪(Ij ∩ Jj) ∈ I⊗.

Hence h−1 (W ) \int
£
h−1 (W )

¤
∈ I⊗.

(2) If U ∈ τ and V ∈ β, g−1 (U × V ) = U ∩ f−1 (V ) ∈ τ ⊕ I. Now, if I ∈ I
and V ∈ β, g−1 (I × V ) = I ∩ f−1 (V ) ∈ I ⊆ τ ⊕ I. This implies that g is
continuous.

Finally, if V ∈ β then f−1 (V ) = g−1 (X × V ) ∈ τ ⊕ I, and so f−1 (V )
is open-I⊗.

Theorem 5.14
(1) If f : (X, τ,I)→ (Y, β) is one-one then f is D -continuous if and only
if f : (X, τ)→ (Y, β, f(I)) is C -continuous.
(2) If f : X → Y is one-one, then f : (X, τ)→ (Y, β,J ) is C -continuous
if and only if f :

¡
X, τ, f−1(J )

¢
→ (Y, β) is D -continuous.

Proof. It is easy to be established.

In our final property for this new type of weak continuity, we present
the smallest ideal I in X for which a given function f : (X, τ)→ (Y, β) is
D-continuous.



1244 N. R. Pachón R.

Theorem 5.15 If f : (X, τ)→ (Y, β) is a function and if

If =

⎧⎨⎩A ⊆ X : there is a finite βA ⊆ β with A ⊆
[

V ∈βA

h
f−1 (V ) \int

³
f−1 (V )

´i⎫⎬⎭ ,

then If is the smallest ideal I in X such that f : (X, τ, I)→ (Y, β)
is D -continuous.

Proof. It is clear that If is an ideal inX. Given that f−1 (V ) \int
¡
f−1 (V )

¢
∈

If , for each V ∈ β, then f : (X, τ, If ) → (Y, β) is D-continuous. Now,
suppose that f : (X, τ,I) → (Y, β) is D-continuous. If A ∈ If then
there is a finite βA ⊆ β with A ⊆ S

V ∈βA

£
f−1 (V ) \int

¡
f−1 (V )

¢¤
. Since

f−1 (V ) \int
¡
f−1 (V )

¢
∈ I, for each V ∈ βA, we can conclude that A ∈ I.

In this way If ⊆ I.

In the next example we show that D-continuous and I-continuous
(Kaniewski form) are independent concepts.

Example 5.16
(1) Consider the function f : (R,U , I = P(Z))→ (R,L) defined by f (x) =
[x]. Here L is the Sorgenfrey topology in R. If V ∈ L then f−1 (V ) =S
n∈V ∩Z

[n, n+ 1) and
S

n∈V ∩Z
(n, n+ 1) ⊆ int

¡
f−1 (V )

¢
. Therefore

f−1 (V ) \int
¡
f−1 (V )

¢
⊆ Z. Hence f−1 (V ) is open-I, and f isD-continuous.

On the other hand, if V = [0, 1), we have that [0, 1) ∈ L but there are
no U ∈ U and I ∈ I such that f−1 (V ) = U\I, because f−1 (V ) = [0, 1). In
effect, if U ∈ U , I ∈ I and f−1 (V ) = U\I, we have that U = [0, 1)∪(U ∩ I),
and so there exists ε ∈ (0, 1) such that (−ε, 0) ⊆ U ∩ I ⊆ Z, absurd. In
conclusion, f is not I-continuous (Kaniewski form).
(2) Let β = {∅,R} ∪ {(a,∞) : a ∈ R} and g : (R,U , I = P(R\Z)) →
(R, β), defined by g (x) = [x]. If r ∈ R then g−1 ((r,+∞)) = [[r] + 1,+∞) =
(r,+∞) \I, where I = (r, [r] + 1) ∈ I. This implies that g is I-continuous
(Kaniewski form).

Now, since g−1
³³

1
2 ,+∞

´´
\int

³
g−1

³³
1
2 ,+∞

´´´
= [1,+∞) \ (1,+∞) =

{1} /∈ I, we conclude that g is not D-continuous.

Finally, we show that D-continuous and I-continuous (El Monsef form)
are independent concepts.

Example 5.17
(1) The function f of Example 5.16-(1) is not I-continuous (El Monsef
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form) because
¡
f−1 ([0, 1))

¢∗
= [0, 1)∗ = [0, 1] and

int
h¡
f−1 ([0, 1))

¢∗i
= (0, 1), and so f−1 ([0, 1)) int

h¡
f−1 ([0, 1))

¢∗i
.

(2) If λ = {∅}∪{A ⊆ R : R\A is finite} and β = {∅,R}∪{(a,∞) : a ∈ R},
the function f : (R, λ, I = If (R)) → (R, β) defined by f (x) = [x] is I-
continuous (El Monsef form) because

f−1 (R) = R = int (R∗), f−1 (∅) = ∅ = int (∅∗) and, if a ∈ R, f−1 ((a,+∞)) =
[[a] + 1,+∞) ⊆ int

h¡
f−1 ((a,+∞))

¢∗i
= R.

However f is not D-continuous because
f−1

³³
1
2 ,+∞

´´
\int

³
f−1

³³
1
2 ,+∞

´´´
= [1,+∞) /∈ I.

6. D-open functions

In this section we introduce an extension of the open functions to the ideal
spaces, in the case in which the considered ideal is defined in the domain
of the function.

Definition 6.1 The function f : (X, τ, I) → (Y, β) is said to be D -open
if, for each U ∈ τ , there exists I ∈ I such that f (U\I) ⊆ int (f (U)).

It is noted that if f : (X, τ) → (Y, β) is open then f : (X, τ, I) →
(Y, β) D-open, and that if f : (X, τ, I)→ (Y, β) isD-open then f : (X, τ)→
(Y, β, f(I)) C-open. The reciprocal implications, in general, are false, as
we can see in the following examples.

Examples 6.2
1) The function f : (R,U , I = P(R))→ (R, {∅,R}), given by f(x) = x, is
D-open but f is not open.
2) Suppose that X = Y = {a, b, c}, τ = {∅, {a, b} , {b, c} , {b} ,X}, β =
{∅, {a} , {b} , {a, b} , Y } and I = {∅, {b}}. Let f : X → Y be the function
defined by f(a) = b, f(b) = c and f(c) = a. It is not a problem to prove
that f is D-open. Now, given that f ({a, b}) = {b, c} /∈ β then f is not
open.

3) Suppose that X, Y , τ and β are as in example 2, that I = {∅, {a}},
and that f : X → Y is defined by f(a) = f(b) = c and f(c) = a. It
is observed that f (I) = {∅, {c}} and that f : (X, τ) → (Y, β, f(I)) is
C-open. However f is not D-open since there is no a I ∈ I such that
f ({b, c} \I) ⊆ int (f ({b, c})).
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Theorem 6.3
(1) If f : (X, τ, I) → (Y, β) is D -open and g : (Y, β) → (Z, γ) is open,
then g ◦ f is D -open.
(2) If f : (X, τ,I) → (Y, β) and g : (Y, β,J ) → (Z, γ) are D -open,
g ◦ f is one-one and J ⊆ f(I) , then g ◦ f is D -open.

Proof.
1) If U ∈ τ then there exists I ∈ I such that f (U\I) ⊆ int (f (U)). Hence
f (U) ⊆ int (f (U)) ∪ f (I) and (g ◦ f) (U) ⊆ g (int (f (U))) ∪ (g ◦ f) (I) ⊆
int [(g ◦ f) (U)] ∪ (g ◦ f) (I).

2) If U ∈ τ then there exists I ∈ I such that f (U\I) ⊆ int (f (U)). Hence
f (U) ⊆ int (f (U)) ∪ f (I) and (g ◦ f) (U) ⊆ g (int (f (U))) ∪ (g ◦ f) (I).
Now, there exists J ∈ J with g [int (f (U)) \J ] ⊆ int [g (int (f (U)))].
There is a I1 ∈ I such that J = f (I1). Thus g (int (f (U))) ∪ (g ◦ f) (I) ⊆
int [g (int (f (U)))]∪(g ◦ f) (I ∪ I1) ⊆ int [(g ◦ f) (U)]∪(g ◦ f) (I ∪ I1). Since
g ◦ f is inyective,
(g ◦ f) (U\ (I ∪ I1)) = (g ◦ f) (U) \ (g ◦ f) (I ∪ I1) ⊆ int [(g ◦ f) (U)].

The composition of D-open functions may not be a D-open function, as
we show in the next example.

Example 6.4 Let X = Y = Z = {a, b, c}, τ = {∅,X, {a, b} , {b, c} , {b}},
β = {∅, Y, {a} , {b} , {a, b}}, γ = {∅, Z, {c}}, I = {∅, {b}} and J = {∅, {a} ,
{b} , {a, b}}. Consider the functions f : X → Y and g : Y → Z defined by:
f(a) = b, f(b) = c, f(c) = a, and g(a) = b, g(b) = a, g(c) = c. It is not a
problem to verify that f and g are D-open. However, since there is no a
I ∈ I such that (g ◦ f) [{a, b} \I] ⊆ int [(g ◦ f) ({a, b})], we have that g ◦ f
is not D-open.

7. Some applications of D-continuous, D-closed and D-open
functions

In this final section we present some properties of D-continuous and D-open
functions, mainly related to compactness and separability. This results also
are generalizations of well-known results in general topology.

Recall that an ideal space (X, τ, I) is: (1) ρI -compact [9] if, for each
collection {Uα}α∈Λ of open sets, if X\

S
α∈Λ

Uα ∈ I, there exists a finite

Λ0 ⊆ Λ such that X\ S
α∈Λ0

Uα ∈ I, and (2) σI -compact [9] if, for each
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non-empty collection {Uα}α∈Λ of non-empty open sets, if X\
S
α∈Λ

Uα ∈ I,
there exists a finite Λ0 ⊆ Λ such that X =

S
α∈Λ0

Uα.

Theorem 7.1 Suppose that f : (X, τ, I)→ (Y, β) is sobreyective and D
-continuous and that (X, τ ⊕ I) is compact. Then (Y, β, f (I)) is f (I)
-compact.

Proof. If {Vα}α∈Λ is an open cover of Y , then X =
S
α∈Λ

f−1 (Vα). For

each α ∈ Λthere exists Iα ∈ I such that f−1 (Vα) = intτ
¡
f−1 (Vα)

¢
∪ Iα.

Then X =
S
α∈Λ

¡
intτ

¡
f−1 (Vα)

¢
∪ Iα

¢
. Given that (X, τ ⊕ τ) is compact,

there is a finite Λ0 ⊆ Λ such that X =
S

α∈Λ0

¡
intτ

¡
f−1 (Vα)

¢
∪ Iα

¢
. Thus

X =
S

α∈Λ0

¡
f−1 (Vα) ∪ Iα

¢
, and this implies Y =

S
α∈Λ0

Vα∪
S

α∈Λ0
f(Iα). Hence

Y \ S
α∈Λ0

Vα ⊆
S

α∈Λ0
f(Iα) ∈ f (I).

Theorem 7.2 Suppose that f : (X, τ, I)→ (Y, β) is sobreyective and D
-continuous. Then:
(1) If (X, τ,I⊗) is σI⊗ -compact then (Y, β) is compact.
(2) If (X, τ, I⊗) is ρI⊗ -compact then (Y, β, f (I⊗)) is f (I⊗) -compact.
(3) If (X, τ ⊕ I) is QHC then

³
Y, β, f

³
I
´´

is f
³
I
´
-QHC.

Proof.
(1) If {Vα}α∈Λ is an open cover of Y , then X =

S
α∈Λ

f−1 (Vα). For each

α ∈ Λ there exists a Iα ∈ I such that f−1 (Vα) = int
¡
f−1 (Vα)

¢
∪ Iα. Then

X\ S
α∈Λ

int
¡
f−1 (Vα)

¢
⊆ S

α∈Λ
Iα ∈ I⊗. Since (X, τ, I⊗) is σI⊗-compact,

there exists a finite Λ0 ⊆ Λ such that X =
S

α∈Λ0
int

¡
f−1 (Vα)

¢
. Then

X =
S

α∈Λ0
f−1 (Vα), and so Y =

S
α∈Λ0

Vα.

(2) If {Vα}α∈Λ is an open cover of Y , then X =
S
α∈Λ

f−1 (Vα). For each

α ∈ Λ there exists Iα ∈ I such that f−1 (Vα) = int
¡
f−1 (Vα)

¢
∪ Iα. Then

X\ S
α∈Λ

int
¡
f−1 (Vα)

¢
⊆ S

α∈Λ
Iα ∈ I⊗. Since (X, τ, I⊗) is ρI⊗-compact,

there exists Λ0 ⊆ Λ, finite, such that X\
S

α∈Λ0
int

¡
f−1 (Vα)

¢
∈ I⊗.

ThenX\ S
α∈Λ0

f−1 (Vα) ∈ I⊗. Given that Y \
S

α∈Λ0
Vα ⊆ f

Ã
X\ S

α∈Λ0
f−1 (Vα)

!
∈
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f (I⊗), we have that Y \ S
α∈Λ0

Vα ∈ f (I⊗).

(3) Let λ = τ ⊕ I be. We will denote adhτ (A) by A, for all A ⊆ X. If
{Vα}α∈Λ is an open cover of Y , then X =

S
α∈Λ

f−1 (Vα). For each α ∈ Λ

there exists a Iα ∈ I such that f−1 (Vα) = intτ
¡
f−1 (Vα)

¢
∪ Iα. Then

X =
S
α∈Λ

£
intτ

¡
f−1 (Vα)

¢
∪ Iα

¤
.

Since (X, τ ⊕ I) is a QHC space, there exists a finite Λ0 ⊆ Λ such that
X =

S
α∈Λ0

£
adhλ

¡
intτ

¡
f−1 (Vα)

¢¢
∪ adhλ(Iα)

¤
⊆ S

α∈Λ0

£
adhλ

¡
f−1 (Vα)

¢
∪ adhλ (Iα)

¤
.

But adhλ (A) ⊆ A, for each A ⊆ X.

ThenX =
S

α∈Λ0

h
f−1 (Vα) ∪ Iα

i
, and so Y =

S
α∈Λ0

f
h
f−1 (Vα)

i
∪ S
α∈Λ0

f
³
Iα
´
.

For each α ∈ Λ0 there exists Jα ∈ I with f−1 (Vα)\f−1 (adhβ(Vα)) =
Jα. Hence Y =

S
α∈Λ0

f
³
Iα
´
∪ S

α∈Λ0
f
£
f−1 (adhβ(Vα))

¤
∪ S

α∈Λ0
f (Jα) =S

α∈Λ0
f
³
Iα
´
∪ S
α∈Λ0

adhβ(Vα)∪
S

α∈Λ0
f (Jα). Consecuently Y \

S
α∈Λ0

adhβ(Vα) ∈

f
³
I
´
.

Now we present some properties of the D-continuous functions, in the
case in which the codomain is a Hausdorf space.

Theorem 7.3
(1) If f : (X, τ,I)→ (Y, β) and g : (X, τ,I)→ (Y, β) are D -continuous
functions, and if (Y, β) is T2 , then A = {x ∈ X : f(x) = g(x)} is closed
in (X, τ ⊕ I) .
(2) If f : (X, τ, I)→ (Y, β) is D -continuous and (Y, β) is T2 , then A =
{(u, v) ∈ X ×X : f (u) = f (v)} is closed in (X ×X, (τ ⊕ I)× (τ ⊕ I)) .

Proof.
(1) Suppose that u ∈ X\A. There is a {U, V } ⊆ β with f(u) ∈ U , g(u) ∈ V
and U ∩ V = ∅. Then u ∈ f−1 (U) ∩ g−1 (V ), A ∩

£
f−1 (U) ∩ g−1 (V )

¤
= ∅

and f−1 (U) ∩ g−1 (V ) ∈ τ ⊕ I, because f−1 (U) ∩ g−1 (V ) is open-I.
(2) Suppose that (u, v) ∈ (X ×X) \A. There is a {U, V } ⊆ β with f(u) ∈
U , f(v) ∈ V and U ∩ V = ∅. Then (u, v) ∈ f−1 (U) × f−1 (V ), A ∩£
f−1 (U)× g−1 (V )

¤
= ∅ and f−1 (U)×f−1 (V ) ∈ (τ ⊕ I)×(τ ⊕ I), because

f−1 (U) and f−1 (V ) are open-I. This allows us to conclude that A is
closed in the space (X ×X, (τ ⊕ I)× (τ ⊕ I)).

Recall that an ideal space (X, τ, I) is said to be J -Hausdorff [13] if for
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each {a, b} ⊆ X with a = b, there exists {U, V } ⊆ τ such that a ∈ U , b ∈ V
and U ∩ V ∈ I.

Theorem 7.4 If f : (X, τ, I) → (Y, β) is biyective and D -open, and if
(X, τ, I) is J -Hausdorff, then (Y, β ⊕ f (I) , f (I)) is J -Hausdorff.

Proof. Suppose that {a, b} ⊆ X and that f(a) = f (b). There exists
{U,V } ⊆ τ such that a ∈ U , b ∈ V and U ∩V ∈ I. Given that int (f(U))∩
int (f(V )) ⊆ f(U) ∩ f(V ) = f (U ∩ V ) ∈ f(I), we have that int (f(U)) ∩
int (f(V )) ∈ f(I). On the other hand, there exists {I1, I2} ⊆ I such that
f (U\I1) ⊆ int (f(U)) and f (V \I2) ⊆ int (f(V )).

Hence:
(i) f(a) ∈ int (f(U)) ∪ f (I1), f(b) ∈ int (f(V )) ∪ f (I2),
(ii) {int (f(U)) ∪ f (I1) , int (f(V )) ∪ f (I2)} ⊆ β⊕f (I) and (iii) [int (f(U)) ∪ f (I1)]∩

[int (f(V )) ∪ f (I2)] = [int (f(U)) ∩ int (f(V ))]∪[f (I1) ∩ int (f(V ))]∪[int (f(U)) ∩ f (I2)]∪
[f (I1) ∩ f (I2)] ∈ f (I).
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