Negafibonacci Numbers via Matrices

Juan Triana*
Universidad Nacional de Colombia, Bogotá, Colombia
(Received November 01, 2018; Revised June 08, 2019; Accepted June 24, 2019)

Abstract

In this paper, negafibonacci numbers are generated by means of matrix methods. A 2×2 matrix is used to obtain some properties of negafibonacci numbers; on the other hand, families of tridiagonal matrices are introduced to generate negafibonacci numbers through determinants.

Keywords: Fibonacci numbers, Matrices, Determinants.
AMS Subject Classification: 11B39, 40C05, 11C20.

1. Introduction

The Fibonacci sequence $\left\{f_{n}\right\}$ is defined by the following recurrence relation

$$
f_{n+1}=f_{n}+f_{n-1}, \text { for } n \geq 1
$$

with $f_{0}=0, f_{1}=1$. The Fibonacci numbers have been widely studied, and the different ways to generate those numbers have gained continued interest, among them matrix methods [10], determinants [5], permanents [6], Pascal's triangle [9], binomial coefficients [3], and many others [8].

An interesting connection between Fibonacci numbers and matrices, introduced in [4], is given by the matrix $Q=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$, known as Fibonacci Q-matrix [7] or Fibonacci's matrix [11], such that

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]^{n}=\left[\begin{array}{cc}
f_{n+1} & f_{n} \\
f_{n} & f_{n-1}
\end{array}\right]
$$

In [1] two tridiagonal Toeplitz matrices were presented

$$
H_{n}=\left[\begin{array}{ccccc}
1 & i & & & \\
i & 1 & i & & \\
& i & 1 & \ddots & \\
& & \ddots & \ddots & \ddots \\
& & & i & 1
\end{array}\right]_{n \times n} \quad, D_{n}=\left[\begin{array}{ccccc}
1 & -1 & & & \\
1 & 1 & -1 & \\
& 1 & 1 & \ddots & \\
& & \ddots & \ddots & \\
& & & 1 & 1
\end{array}\right]_{n \times n}
$$

[^0]such that $\operatorname{det}\left(H_{n}\right)=\operatorname{det}\left(D_{n}\right)=f_{n+1}$.
By the relation $f_{-n}=(-1)^{n+1} f_{n}$, where n is any positive integer, Fibonacci numbers can be extended to negative index [2], terms in this sequence are called negafibonacci numbers. Since $f_{n+1}=f_{n}+f_{n-1}$, it is easy to check that $f_{-(n+1)}=$ $-f_{-n}+f_{-(n-1)}$; some negafibonacci numbers are $f_{-1}=1, f_{-2}=-1, f_{-3}=2$, $f_{-4}=-3, f_{-5}=5$. In this paper negafibonacci numbers are generated by means of matrices, and some identities are proved by matrix methods.

2. Negafibonacci identities by matrix methods

Motivated by the Fibonacci Q-matrix, the matrix $N=\left[\begin{array}{cc}-1 & 1 \\ 1 & 0\end{array}\right]$ is presented, the following proposition shows a connection between N and negafibonacci numbers.

Proposition 2.1: $\left[\begin{array}{cc}-1 & 1 \\ 1 & 0\end{array}\right]^{n}=\left[\begin{array}{cc}f_{-(n+1)} & f_{-n} \\ f_{-n} & f_{-(n-1)}\end{array}\right]$.
Proof: Since $\left[\begin{array}{rr}-1 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}f_{-2} & f_{-1} \\ f_{-1} & f_{0}\end{array}\right]$, the proposition is true for $n=1$. Assuming that $\left[\begin{array}{cc}-1 & 1 \\ 1 & 0\end{array}\right]^{n}=\left[\begin{array}{cc}f_{-(n+1)} & f_{-n} \\ f_{-n} & f_{-(n-1)}\end{array}\right],\left[\begin{array}{cc}-1 & 1 \\ 1 & 0\end{array}\right]^{n+1}$ is calculated as follows:

$$
\begin{aligned}
{\left[\begin{array}{rr}
-1 & 1 \\
1 & 0
\end{array}\right]^{n+1} } & =\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]^{n} \\
& =\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
f_{-(n+1)} & f_{-n} \\
f_{-n} & f_{-(n-1)}
\end{array}\right] \\
& =\left[\begin{array}{cc}
-f_{-(n+1)}+f_{-n} & -f_{-n}+f_{-(n-1)} \\
f_{-(n+1)} & f_{-n}
\end{array}\right] \\
& =\left[\begin{array}{cc}
f_{-(n+2)} & f_{-(n+1)} \\
f_{-(n+1)} & f_{-n}
\end{array}\right] .
\end{aligned}
$$

The above proposition is useful to prove some identities about negafibonacci numbers.

Proposition 2.2: For all $n, k \geq 0$:

$$
\begin{aligned}
f_{-(n+k+1)} & =f_{-(n+1)} f_{-(k+1)}+f_{-n} f_{-k} & f_{-(n+k)} & =f_{-(n+1)} f_{-k}+f_{-n} f_{-(k-1)} \\
f_{-(n+k)} & =f_{-n} f_{-(k+1)}+f_{-(n-1)} f_{-k} & f_{-(n+k-1)} & =f_{-n} f_{-k}+f_{-(n-1)} f_{-(k-1)} .
\end{aligned}
$$

Proof : Since $\left[\begin{array}{cc}-1 & 1 \\ 1 & 0\end{array}\right]^{n}=\left[\begin{array}{cc}f_{-(n+1)} & f_{-n} \\ f_{-n} & f_{-(n-1)}\end{array}\right]$, by Proposition 2.1, then

$$
\left[\begin{array}{rr}
-1 & 1 \\
1 & 0
\end{array}\right]^{n+k}=\left[\begin{array}{cc}
f_{-(n+k+1)} & f_{-(n+k)} \\
f_{-(n+k)} & f_{-(n+k-1)}
\end{array}\right] .
$$

On the other hand,

$$
\begin{aligned}
{\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]^{n+k} } & =\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]^{n}\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]^{k} \\
& =\left[\begin{array}{cc}
f_{-(n+1)} & f_{-n} \\
f_{-n} & f_{-(n-1)}
\end{array}\right]\left[\begin{array}{cc}
f_{-(k+1)} & f_{-k} \\
f_{-k} & f_{-(k-1)}
\end{array}\right] \\
& =\left[\begin{array}{cc}
f_{-(n+1)} f_{-(k+1)}+f_{-n} f_{-k} & f_{-(n+1)} f_{-k}+f_{-n} f_{-(k-1)} \\
f_{-n} f_{-(k+1)}+f_{-(n-1)} f_{-k} & f_{-n} f_{-k}+f_{-(n-1)} f_{-(k-1)}
\end{array}\right]
\end{aligned}
$$

Thus obtaining the desired equalities.
From Proposition 2.2, we may immediately deduce the following identities.
Corollary 2.3: For all $n \geq 0$:
(1) $f_{-2 n}=f_{-n} f_{-(n+1)}+f_{-(n-1)} f_{-n}$.
(2) $f_{-(n+2)}=2 f_{-n}-f_{-(n-1)}$.

The following result can be called Cassini's formula for negafibonacci numbers, the reader is referred to [12] for more Cassini-like formulas.

Proposition 2.4: $\quad f_{-(n+1)} f_{-(n-1)}-f_{-n}^{2}=(-1)^{n}$
Proof: Let $N=\left[\begin{array}{cc}-1 & 1 \\ 1 & 0\end{array}\right]$, then $\operatorname{det}(N)=-1$. Since $N^{n}=\left[\begin{array}{cc}f_{-(n+1)} & f_{-n} \\ f_{-n} & f_{-(n-1)}\end{array}\right]$, then $\operatorname{det}\left(N^{n}\right)=f_{-(n+1)} f_{-(n-1)}-f_{-n}^{2}$. On the other hand, $\operatorname{det}\left(N^{n}\right)=(\operatorname{det}(N))^{n}=$ $(-1)^{n}$; therefore $f_{-(n+1)} f_{-(n-1)}-f_{-n}^{2}=(-1)^{n}$.

3. Negafibonacci numbers as tridiagonal matrix determinants

In this section, we present the matrices G_{n} and K_{n} defined as follows:

$$
G_{n}=\left[\begin{array}{ccccc}
-1 & -1 & & & \\
1 & -1 & 1 & & \\
& -1 & -1 & \ddots & \\
& \ddots & \ddots & (-1)^{n-1}
\end{array} K_{n \times n}=\left[\begin{array}{cccc}
-1 & -i & & \\
-i-1 & i & & \\
& & & (-1)^{n} \\
& & -1 & \ddots \\
& & \ddots & \ddots \\
& & & (-1)^{n-1} i \\
& & & (-1
\end{array}\right]_{n \times n}\right.
$$

The following proposition shows a connection between negafibonacci numbers and the determinants of a family of tridiagonal matrices.

Proposition 3.1: For all $n>0$:
(1) $\operatorname{det}\left(G_{n}\right)=f_{-(n+1)}$.
(2) $\operatorname{det}\left(K_{n}\right)=f_{-(n+1)}$.

Proof: Here we prove (1); (2) can be similarly proved.
We argue by induction on n. Clearly $G_{1}=-1=f_{-2}$ and $\operatorname{det}\left(G_{2}\right)=2=f_{-3}$.

Let G_{n+2} be the matrix

$$
G_{n+2}=\left[\begin{array}{ccc}
G_{n} & 0_{n-1 \times 1} & 0_{n-1 \times 1} \\
& -1 & 0 \\
0_{1 \times n-1}(-1)^{n+1} & -1 & (-1)^{n+1} \\
0_{1 \times n-1} & 0 & (-1)^{n+2} \\
-1
\end{array}\right] .
$$

Assuming that the determinant $\operatorname{det}\left(G_{k}\right)=f_{-(k+1)}$ for all $k \leq n$, we aim to show that $\operatorname{det}\left(G_{n+2}\right)=f_{-(n+3)}$. Assuming that n is odd

Applying the column operation $C_{n+1}-C_{n+2}$, we obtain

$$
\left[\begin{array}{ccc}
G_{n} & 0_{n-1 \times 1} & 0_{n-1 \times 1} \\
0_{1 \times n-1} & 1 & -2
\end{array}\right)
$$

Since the above row and column elementary operations do not change the value of the determinant [11], we have

$$
\begin{equation*}
\operatorname{det}\left(G_{n+2}\right)=[-1]\left[(-1)^{2[n+1]}[-2] \operatorname{det}\left(G_{n}\right)+(-1)^{2 n+1}[1] \operatorname{det}\left(B_{n}\right)\right] \tag{3.1}
\end{equation*}
$$

where $B_{n}=\left[\begin{array}{cc}G_{n-1} & 0_{n-1 \times 1} \\ 0_{1 \times n-2}-1 & -1\end{array}\right]$. Applying the column operation $C_{n-1}-C_{n}$, we obtain the equivalent matrix

$$
\left[\begin{array}{cc}
G_{n-1} & 0_{n-1 \times 1} \\
0_{1 \times n-1} & -1
\end{array}\right] .
$$

Therefore $\operatorname{det}\left(B_{n}\right)=[-1] \operatorname{det}\left(G_{n-1}\right)=-f_{-n}$. By replacing in equation (3.1) we obtain

$$
\begin{aligned}
\operatorname{det}\left(G_{n+2}\right) & =[-1]\left[[-2]\left[f_{-(n+1)}\right]+(-1)^{2 n+1}[1]\left[-f_{-n}\right]\right] \\
& =2 f_{-(n+1)}-f_{-n} .
\end{aligned}
$$

Thus, by corollary 2.3, $\operatorname{det}\left(G_{n+2}\right)=f_{-(n+3)}$ for n odd. Similarly, if n is even G_{n+2} is given by

$$
G_{n+2}=\left[\begin{array}{ccc}
G_{n} & 0_{n-1 \times 1} & 0_{n-1 \times 1} \\
0_{1 \times n-1}-1 & 1 & 0 \\
0_{1 \times n-1} 0 & 1 & -1 \\
-1
\end{array}\right] .
$$

Applying, first the row operation $R_{n+1}-R_{n+2}$, and after the column operation $C_{n+1}+C_{n+2}$, we obtain the equivalent matrix

$$
\left[\begin{array}{ccc}
G_{n} & 0_{n-1 \times 1} & 0_{n-1 \times 1} \\
& 1 & 0 \\
0_{1 \times n-1}-1 & -2 & 0 \\
0_{1 \times n-1} 0 & 0 & -1
\end{array}\right] .
$$

Therefore,

$$
\begin{equation*}
\operatorname{det}\left(G_{n+2}\right)=[-1]\left((-1)^{2 n+2}[-2] \operatorname{det}\left(G_{n}\right)+(-1)^{2 n+1}[-1] \operatorname{det}\left(C_{n}\right)\right) \tag{3.2}
\end{equation*}
$$

where C_{n} is given by

$$
C_{n}=\left[\begin{array}{cc}
G_{n-1} & 0_{n-1 \times 1} \\
0_{1 \times n-2} & 1
\end{array}\right] .
$$

Hence, $\operatorname{det}\left(C_{n}\right)=\operatorname{det}\left(G_{n-1}\right)=f_{-n}$. By replacing in equation (3.2) we obtain

$$
\begin{aligned}
\operatorname{det}\left(G_{n+2}\right) & =[-1]\left([-2]\left(f_{-(n+1)}\right)+\left(f_{-n}\right)\right) \\
& =2 f_{-(n+1)}-f_{-n}
\end{aligned}
$$

Thus, by Corollary $2.3, \operatorname{det}\left(G_{n+2}\right)=f_{-(n+3)}$ for n even.
Given a matrix that generates Fibonacci numbers we can obtain a matrix for negafibonacci numbers and vice-versa, as shows the following proposition.

Proposition 3.2: $\quad F_{n}$ is a matrix such that $\operatorname{det}\left(F_{n}\right)=f_{n+1}$ if and only if $N_{n}=$ $-F_{n}$ is such that $\operatorname{det}\left(N_{n}\right)=f_{-(n+1)}$.
Proof: Assuming that $\operatorname{det}\left(F_{n}\right)=f_{n+1}$, for the matrix $N_{n}=-F_{n}$ we have $\operatorname{det}\left(N_{n}\right)=\operatorname{det}\left(-F_{n}\right)=(-1)^{n} \operatorname{det}\left(F_{n}\right)=(-1)^{n} f_{n+1}=(-1)^{n+2} f_{n+1}=f_{-(n+1)}$.

Assuming that $\operatorname{det}\left(N_{n}\right)=f_{-(n+1)}$, for the matrix $F_{n}=-N_{n}$ we have $\operatorname{det}\left(F_{n}\right)=$ $\operatorname{det}\left(-N_{n}\right)=(-1)^{n} \operatorname{det}\left(N_{n}\right)=(-1)^{n} f_{-(n+1)}=(-1)^{n}\left((-1)^{n+2} f_{n+1}\right)=f_{n+1}$.

By Proposition 3.2, we have the following result.
Corollary 3.3: For all $n \geq 0$:
(1) $\operatorname{det}\left(-G_{n}\right)=\operatorname{det}\left(-K_{n}\right)=f_{n+1}$.
(2) $\operatorname{det}\left(-D_{n}\right)=\operatorname{det}\left(-H_{n}\right)=f_{-(n+1)}$.

References

[1] N. Cahill, J. D'errico, N. Narayan, J. Narayan, Fibonacci determinants, College Mathematical Journal, 33, 3 (2002), 221-225
[2] R, Dunlap, The Golden Ratio and Fibonacci Numbers, World scientific, Singapore, 1997
[3] H. Gulec, N. Taskara, K. Uslu, A new approach to generalized Fibonacci and Lucas numbers with binomial coefficients, Applied Mathematics and Computation, 220 (2013), 482-486
[4] C. King, Some Properties of Fibonacci Numbers, San Jose State College: Master's Thesis, 1960
[5] P. Trojovsky, On a sequence of tridiagonal matrices whose determinants are fibonacci numbers F_{n+1}, International Journal of Pure and Applied Mathematics, 102, 3 (2015), 527-532
[6] I. Matousova, P. Trojovsky, On a sequence of tridiagonal matrices whose permanents are related to Fibonacci and Lucas numbers, International Journal of Pure and Applied Mathematics, 105, 4 (2015), 715721
7] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley \& sons, New York, 2001
[8] A, Posamentier, I. Lehmann, The Fabulous Fibonacci Numbers, Prometheus Books, New York, 2007
[9] H. Belbachir, S. Laszlo, Fibonacci and Lucas Pascal triangles, Hacettepe journal of mathematics and statistics, 45, 5 (2016), 1343-1354
[10] R. Keskin, B. Demirturk, Some new Fibonacci and Lucas identities by matrix methods, International Journal of Mathematical Education in Science and Technology, 41, 3 (2010), 379-387
[11] G. Strang, Linear Algebra and its Applications, Thomson Brooks/Cole, Belmont, 2006
[12] N. Voll, The Cassini identity and its relative, Fibonacci Quarterly, 48, 3 (2010), 197-201

[^0]: * Email: jtrianal@unal.edu.co

 ISSN: 1512-0082 print
 (C) 2019 Tbilisi University Press

