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BUZANO’S INEQUALITY IN ALGEBRAIC PROBABILITY SPACES
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(Communicated by J. Pečarić)

Abstract. We obtain a generalization of Buzano’s inequality of vectors in Hilbert spaces , using
the theory of algebraic probability spaces. In particular, we extend a result of Dragomir given
in [7]. Applications for numerical inequalities for n - tuples of bounded linear operators and
functions of operators defined by double power series are also generalized.

1. Introduction

Quantum probability theory traces back to the famous book Mathematical foun-
dations of quantum mechanics by J. von Neumann, where a new structure containig to
the classical probability theory was proposed, though in a different language, on the
basis of an algebraic probability space. This language is typically used in open quan-
tum sistems and quantum Markov semigroups (see, e.g., Refs. [1], [14],[15],[16], and
[17], for results of the same flavour), many of his elements are used in Noncommutative
Geometry [5].

During the recent development, quantum probability theory and algebraic prob-
ability spaces, has been related to various fields of mathematical sciences beyond the
original purposes.

Hora and Obata focus, in [23], on the spectral analysis of a large graph (or of a
growing graph) and show how the quantum probabilistic techniques are applied, espe-
cially, for the study of asymptotics of spectral distributions in terms of quantum central
limit theorem.

Salimi studied continuous-time quantum and classical random walk on spidernet
lattices in [27], quantum central limit theorem for continuous-time quantum walks on
odd graphs in [28], and continuous-time quantum walks on quotient graphs (see [29])
via quantum probability theory.

In [6] the author use the theory of Noncommutative geometry to explore conec-
tions with the Pythagorean theorem in this context.

On the other hand, in [4], Buzano obtained the following extension of the cele-
brated Cauchy-Schwarz inequality in a complex Hilbert space h :

| 〈a,x〉 〈x,b〉 | � 1
2
[||a||||b||+ | 〈a,b〉 |] ‖ x ‖2
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for all a,b,x ∈ h . When a = b this inequality becomes the Cauchy-Schwarz inequality

| 〈a,x〉 |2 � ||a||2||x||2.

For a real inner product space, Richard [25] independently obtained the following
stronger inequality:∣∣∣∣〈a,x〉〈x,b〉− 1

2
〈a,x〉 ||x||2

∣∣∣∣� 1
2
||a||||b|| ‖ x ‖2

for all a,b,x ∈ h .
Dragomir [11] showed that this inequality (for real or complex case) is valid

with coefficients 1
|α | instead of 1

2 , where a non-zero number α satisfies the equal-
ity |1−α|= 1. As an application of this inequality, Fujii and Kubo [20] found a bound
for roots of algebraic equations. During developing the operator theory and its applica-
tions, the authors of [8] have recently extended some numerical inequalities to operator
inequalities. Some mathematicians have also investigated the operator versions of the
Cauchy-Schwarz inequality or its reverse (see [19]],[18],[22],[30]).

In this work we are interested in to establish a generalization of Buzano’s inequal-
ity, using the theory of algebraic probability spaces. Our interest in this inequality is
motivated by [7],[12],[13],[10], and [9], where several tecniques of Hilbert space are
used and different applications are established.

The paper is organized as follows. In Section 2 we show an introduction of basic
notions in quantum probability theory and algebraic probability spaces. In Section 3
we show how to generalize the Buzano’s inequality using algebraic probability spaces.
Finally, we present two appplications: application for numerical radius inequalities of
bounded operators, and application of inequalities of double power series with bounded
operators in section 4.

2. Algebraic probability spaces

We begin by reviewing basic notions and notations in quantum probability theory.
All the vector spaces, Hilbert spaces, algebras, are here supposed to be defined on

the field of complex numbers C .
On a Hilbert space the scalar product 〈·, ·〉 is linear in the right variable and anti-

linear in the left one. The notation for the scalar product does not refer to the underlying
space, there should not be any possible confusion.

In the same way, the norm of any normed space is denoted by ‖ · ‖ , unless it is
necessary for the comprehension to specify the underlying space.

On any Hilbert space, the identity operator is denoted by I , without precising the
associated space. The algebra of bounded operators on a Hilbert space h is denoted by
B(h) .

DEFINITION 1. An algebra A is a vector space over C , in which a binary op-
eration ((a,b) �→ ab ∈ A , for all a,b ∈ A ) , called multiplication, is defined. The
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multiplication satisfies the bilinearity:

(a+b)c = ac+bc, a(b+ c) = ab+ac, (λa)b = a(λb) = λ (ab),

for all a,b ∈ A , and λ ∈ C.

We assume in this paper that for all algebra A there exists an element 1A ∈ A such
that a1A = 1A a = a, ∀a ∈ A .

DEFINITION 2. 1A is called the identity of A .

It’s easy to see that 1A is unique. In many literatures an algebra is defined over an arbi-
trary field and does not necessarily possess the identity. In Noncommutative Geometry
it is useful to work with C∗ -algebras, however in this work it will be sufficient to work
with ∗ -algebras.

DEFINITION 3. A ∗ -algebra is an algebra A equippedwith an involution defined
on A . An involution is a map a �→ a∗ defined on A such that: (a + b)∗ = a∗ +
b∗,(λa)∗ = λa∗,(ab)∗ = b∗a∗,(a∗)∗ = a, with a,b ∈ A , and λ ∈ C.

A = C is the most basic example of ∗ -algebra where the complex conjugation is the
involution. A key tool for our work is the notion of states.

DEFINITION 4. A linear function ϕ defined on a ∗ -algebra A with values in C

is called

(i) positive if ϕ(a∗a) � 0 for all a ∈ A ;

(ii) normalized if ϕ(1A ) = 1; and

(iii) a state if ϕ is positive and normalized.

With these terminologies we give the following:

DEFINITION 5. An algebraic probability space is a pair (A ,ϕ) of a ∗−algebra
A and a state ϕ on it.

3. Geneneralized Buzano’s inequality

We show how to generalize the Buzano’s inequality using algebraic probability
spaces.

LEMMA 1. Let (A ,ϕ) an algebraic probability space. Then

ϕ(a∗) = ϕ(a), a ∈ A .
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Proof. Given that ϕ((a+ λb)∗(a+ λb)) � 0 for all λ ∈ C then

ϕ(a∗a)+ λϕ(a)+ λ ϕ(a∗)+ |λ |2 � 0.

In particular λ ϕ(a)+ λ ϕ(a∗) ∈ R , i.e.,

λ ϕ(a)+ λ ϕ(a∗) = λ ϕ(a)+ λ ϕ(a∗), λ ∈ C

so
λ ϕ(a)−λϕ(a∗) = λ ϕ(a∗)−λ ϕ(a∗), λ ∈ C.

Hence ϕ(a)−ϕ(a∗) = λ 2

|λ |2
(

ϕ(a)−ϕ(a∗)
)

for allλ ∈ C−{0}.
Given that ϕ(a)−ϕ(a∗) is independent of λ , we obtain ϕ(a) = ϕ(a∗) .

LEMMA 2. Let (A ,ϕ) an algebraic probability space. Then

|ϕ(a∗b)|2 � ϕ(a∗a)ϕ(b∗b), a,∈ A .

Proof. If ϕ(a∗b) = 0 then the statement follows trivially. Hence, we suposse
ϕ(a∗b) 
= 0. Given that ϕ((a+λb)∗(a+λb)) � 0 for all λ ∈ C , using Lemma 1, we
obtain

0 � ϕ(a∗a)+ λϕ(b∗a)+ λ ϕ(a∗b)+ |λ |2ϕ(b∗b) (1)

= ϕ(a∗a)+ λ ϕ(b∗a)+ λ ϕ(a∗b)+ |λ |2ϕ(b∗b). (2)

By hypothesis, ϕ(a∗b) 
= 0 then exists α ∈ R such that ϕ(a∗b) = eiα |ϕ(a∗b)| . Letting
λ = teiα with t ∈ R in (1) , we see that

ϕ(a∗a)+2t|ϕ(b∗a)|+ t2ϕ(b∗b) � 0 for all t ∈ R . (3)

In particular ϕ(b∗b) 
= 0 (if ϕ(b∗b) = 0 then (3) does not hold). Then (3) is an
quadratic inequality equivalent true if and only if

|ϕ(a∗b)|2 � ϕ(a∗a)ϕ(b∗b).

THEOREM 1. Let (A ,ϕ) an algebraic probability space. Then

|ϕ(a∗b)| � |ϕ(a∗b)−ϕ(a∗d)ϕ(d∗b)|+ |ϕ(a∗d)ϕ(d∗b)| � ϕ(a∗a)1/2ϕ(b∗b)1/2, (4)

a,b,d ∈ A with ϕ(d∗d) = 1 .

Proof. We take a,b ∈ A . Using triangle inequality for modulus we have

|ϕ(a∗b)| � |ϕ(a∗b)−ϕ(a∗d)ϕ(d∗b)|+ |ϕ(a∗d)ϕ(d∗b)|.
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Moreover,

|ϕ(a∗b)−ϕ(a∗d)ϕ(d∗b)|+ |ϕ(a∗d)ϕ(d∗b)| =|ϕ(a∗(b−dϕ(d∗b)))|
+ |ϕ(a∗dϕ(d∗b))|.

We take α1,α2 ∈ R such that

|ϕ(a∗(b−dϕ(d∗b)))| = eiα1ϕ(a∗(b−dϕ(d∗b)))

and
|ϕ(a∗dϕ(d∗b))| = eiα2ϕ(a∗dϕ(d∗b)).

Letting h = eiα1(b−dϕ(d∗b))+ eiα2dϕ(d∗b) , we obtain that

|ϕ(a∗b)−ϕ(a∗d)ϕ(d∗b)|+ |ϕ(a∗d)ϕ(d∗b)|
=eiα1ϕ(a∗(b−dϕ(d∗b)))+ eiα2ϕ(a∗dϕ(d∗b))

=ϕ(a∗eiα1(b−dϕ(d∗b)))+ ϕ(a∗eiα2dϕ(d∗b)) = ϕ(a∗h).

By Lemma 2, we have

|ϕ(a∗b)−ϕ(a∗d)ϕ(d∗b)|+ |ϕ(a∗d)ϕ(d∗b)| � ϕ(a∗a)1/2ϕ(h∗h)1/2. (5)

Where

ϕ(h∗h) = ϕ((b−dϕ(d∗b))∗(b−dϕ(d∗b)))+ ϕ((dϕ(d∗b))∗dϕ(d∗b))

+ ei(α2−α1)ϕ(d∗b)ϕ((b−dϕ(d∗b))∗d)

+ e−i(α2−α1)ϕ(d∗b)ϕ((b−dϕ(d∗b))∗d)

= ϕ((b∗ −d∗ϕ(d∗b))(b−dϕ(d∗b)))+ |ϕ(d∗b)|2ϕ(d∗d)

+2ℜe[ei(α2−α1)ϕ(d∗b)ϕ((b−dϕ(d∗b))∗d)]

= ϕ
(
b∗b−b∗dϕ(d∗b)−d∗bϕ(d∗b)+d∗d|ϕ(d∗b)|2

)
+ |ϕ(d∗b)|2ϕ(d∗d)

+2ℜe
[
ei(α2−α1)ϕ(d∗b)ϕ

(
(b∗ −d∗ϕ(d∗b))d

)]
= ϕ(b∗b)−2|ϕ(d∗b)|2 +2ϕ(d∗d)|ϕ(d∗b)|2

+2ℜe
[
ei(α2−α1)ϕ(d∗b)

(
ϕ(b∗d)−ϕ(d∗d)ϕ(d∗b)

)]
.

We recall that ϕ(d∗d) = 1 and ϕ(b∗d) = ϕ(d∗b) then

ϕ(h∗h) = ϕ(b∗b)−2|ϕ(d∗b)|2 +2|ϕ(d∗b)|2 (6)

+2ℜe
[
ei(α2−α1)ϕ(d∗b)(ϕ(b∗d)−ϕ(b∗d))

]
= ϕ(b∗b). (7)

By (5) and (6) , we obtain the sentence.
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Using Theorem 1 and triangle inequality for modulus we have

2|ϕ(a∗d)ϕ(d∗b)|− |ϕ(a∗b)| � |ϕ(a∗d)ϕ(d∗b)−ϕ(a∗b)|+ |ϕ(a∗d)ϕ(d∗b)|
� ϕ(a∗a)1/2ϕ(b∗b)1/2.

This implies a generalization of Buzano’s inequallity:

COROLLARY 1. Let (A ,ϕ) an algebraic probability space. Then

|ϕ(a∗d)ϕ(d∗b)| � 1
2
[ϕ(a∗a)1/2ϕ(b∗b)1/2 + |ϕ(a∗b)|] (8)

for all a,b,d ∈ A with ϕ(d∗d) = 1 .

We use in this paper the following algebraic probability space: Let A = M(n,C)
be the set of n×n complex matrices. Equipped with the usual addition, multiplication
and involution (defined by complex conjugation and transposition), M(n,C) becomes
a ∗ -algebra. It is noncommutative if n � 2. The normalized trace

ϕtr a =
1
n
tr a =

1
n

n

∑
i=1

aii, a = (ai j) ∈ M(n,C),

is a state on M(n,C) . We preserve the symbol tr a for the usual trace. This algebraic
probability space is denoted by (M(n,C),ϕtr) .

On the other hand, let h be a complex vectorial space with inner product 〈·, ·〉 .
DEFINITION 6. Given u,v ∈ h we denote by |u〉〈v| the linear map such that for

all w ∈ h
|u〉〈v|(w) = 〈v,w〉u.

This operator is called a projector. In particular if v = u , we obtain a projection.

When h is finite dimensional, we abuse of language and use the notation |u〉〈v| for
operator and his associated matrix.

REMARK 1. The theory of orthonormal basis of Hilbert space (see chapter 4 of
[26]) supports the following properties:

(i) tr |u〉〈v| = 〈v,u〉 for all u,v ∈ h, where h is a complex Hilbert space;

(ii) tr(|u〉〈v||y〉〈x|) = 〈x,u〉 〈v,y〉 for all u,v,x,y ∈ h, where h is a complex Hilbert
space.

If h is a n -dimensional space then using inequality (8) , the algebraic probability space
(M(n,C),ϕtr) , with a = |x〉〈e| , b = |y〉〈e| , d = n|e〉〈e| , and remark 1, we obtain the
classical Buzano’s inequality:

| 〈x,e〉〈e,y〉 | � 1
2
[||x||||y||+ | 〈x,y〉 |] (9)

for all x,y,e ∈ h with ||e|| = 1, i.e., inequality (8) is a generalization of the classical
Buzano’s inequality.
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DEFINITION 7. A matrix ρ ∈ M(n,C) is called a density matrix if

(i) ρ = ρ∗ ;

(ii) all eigenvalues of ρ are non-negative; and

(iii) tr ρ = 1.

A density matrix ρ gives rise to a state ϕρ on M(n,C) defined by

ϕρ(a) = tr(ρa), ∀a ∈ M(n,C).

Conversely, any state on M(n,C) is of this form. Moreover, there is a one–to–one
correspondence between the set of states and the set of density matrices. This algebraic
probability space is denoted by (M(n,C),ρ) .

The generalization of Buzano’s inequality obtained in [7] (Theorem 2.1) its follow
as corollary of theorem 1:

COROLLARY 2. Let p = (p1, . . . , pn) be a probability distribution, such that
∑n

i=1 pi = 1 . For any x = (x1, . . . ,xn),y = (y1, . . . ,yn) ∈ hn we have∣∣∣∣∣
〈

n

∑
i=1

pixi,e

〉〈
e,

n

∑
i=1

piyi

〉∣∣∣∣∣ (10)

�1
2

⎡
⎣( n

∑
i=1

pi||xi||2
)1/2( n

∑
i=1

pi||yi||2
)1/2

+

∣∣∣∣∣
n

∑
i=1

pi〈xi,yi〉
∣∣∣∣∣
⎤
⎦ (11)

for all e ∈ h with ||e|| = 1 , where h is a Hilbert space.

Proof. For a probability distribution p = (p1, . . . , pn) , x = (x1, . . . ,xn), and y =
(y1, . . . ,yn) in hn we distinguish two cases:

(i) n � dim(h) : We consider the density matrix defined as:

σp :=
n

∑
i=1

pi|vi〉〈vi|

and X ,Y ∈ M(n,C) define as:

X :=
n

∑
i=1

|xi〉〈vi|, Y :=
n

∑
i=1

|yi〉〈vi|,

where each vi is a vector belongs to an orthonormal basis of h , in other words, we

are using the algebraic probability space
(
M(n,C),ϕσp

)
) . Then X∗ =

n
∑
i=1

|vi〉〈xi| ,
by remark 1, properties (i),(ii) it follows that

ϕσp(X
∗Y ) = tr (σpX∗Y ) = ∑

i, j,k

pitr (|vi〉〈vi||v j〉〈x j||yk〉〈vk|) (i),(ii)
=

n

∑
i=1

pi〈xi,yi〉.
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Given e ∈ h with ||e|| = 1, we take E :=
n
∑
i=1

|e〉〈vi| ∈ M(n,C) then

ϕσp(E
∗E) =

(
n

∑
i=1

pi||e||2
)1/2

= 1.

Making use of Theorem 1, we obtain the inequality (10) .

(ii) n > dim(h) = m : We consider hc = h×Cn , where h is gifted with orthonormal
basis (vi)m

i=1 . Cn is gifted with the canonical basis (ek)k∈{1,...,n} and canonical
inner product. Moreover, hc is the cartesian product between h and Cn with
standard inner product.

It follows an analogous procedure to first case replacing hc by h , taking

σp :=
n

∑
i=1

pi|(0,ei)〉〈(0,ei)|+
m

∑
i=1

1
m
|(vi,0)〉〈(vi,0)|

and X ,Y,E ∈ M(n+m,C) define as:

X =
n

∑
i=1

|(xi,0)〉〈(0,ei)|,

Y :=
n

∑
i=1

|(yi,0)〉〈(0,ei)|,

E :=
n

∑
i=1

|(e,0)〉〈(0,ei)|.

4. Applications

4.1. Numerical radius inequalities of bounded operators

Let h be a complex Hilbert space.

DEFINITION 8. The numerical range of an operator T on h is the set given by

W (T ) := {〈Tx,x〉;x ∈ h, ||x|| = 1}
and the numerical radius of an operator T on h is defined by

w(T ) := sup{|α|;α ∈W (T )} = sup{〈Tx,x〉;x ∈ h, ||x|| = 1}.
It is well known the following inequality

w(T ) � ||T || � 2w(T ) for any T ∈ B(h) .

Using inequality (9) it is possible to obtain the following inequality for the nu-
merical radius (see [9] or [10]):
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THEOREM 2. Let h be a Hilbert space and T : h �→ h a bounded operator on h .
Then

w2(T ) � 1
2

[
w(T 2)+ ||T ||2] .

The constant 1/2 is sharp in the inequality.

We use the algebraic probability space (M(n,C),ρ) to obtain a generalization of
Theorem 2.

THEOREM 3. Let ρ = (ρi j) ∈ M(n,C) be a density matrix and (A1, . . . ,An) an
n-tuples of bounded operators on h . Then we have

w2

(
n

∑
i, j=1

ρi jAi

)
(12)

�1
2

⎡
⎣
∣∣∣∣∣
∣∣∣∣∣

n

∑
i, j=1

ρi jA
∗
jAi

∣∣∣∣∣
∣∣∣∣∣
1/2 ∣∣∣∣∣

∣∣∣∣∣
n

∑
i, j=1

ρi jA jA
∗
i

∣∣∣∣∣
∣∣∣∣∣
1/2

+w

(
n

∑
i, j=1

ρi, jA jAi

)⎤
⎦ (13)

Proof. For a density matrix ρ = (ρi j)∈M(n,C) , e∈ h with ||e||= 1, and (A1, . . . ,An)
an n -tuples of bounded operators on h we distinguish two cases:

(i) n � dim(h) : We consider X ,Y ∈ M(n,C) define as:

X :=
n

∑
i=1

|Aie〉〈vi|, Y :=
n

∑
i=1

|Bie〉〈vi|, σρ :=
n

∑
i, j=1

ρi j|vi〉〈v j|

E :=
n
∑
i=1

|e〉〈vi| ∈ M(n,C) where each vi is a vector belongs to an orthonor-

mal basis of h , in other words, we are using the algebraic probability space(
M(n,C),ϕσp

)
) . Then X∗ =

n
∑
i=1

|vi〉〈Aie| , by remark 1, properties (i),(ii) it

follows that

ϕσρ (X∗Y ) = tr
(
σρX∗Y

)
= ∑

i, j,k,l

ρi jtr (|v j〉〈vi||vk〉〈Ake||Ble〉〈vl|)

(i),(ii)
=

n

∑
i, j=1

ρi j〈Aie,Bje〉

and ϕσp(E
∗E) =

(
n
∑
i=1

ρii||e||2
)1/2

= 1. Making use of Theorem 1, we obtain
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the inequality ∣∣∣∣∣
〈

n

∑
i, j=1

ρi jAie,e

〉〈
n

∑
i, j=1

ρi jBie,e

〉∣∣∣∣∣
�1

2

∣∣∣∣∣
〈

n

∑
i, j=1

ρi jA
∗
jAie,e

〉∣∣∣∣∣
1/2 ∣∣∣∣∣

〈
n

∑
i, j=1

ρi jB
∗
jBie,e

〉∣∣∣∣∣
1/2

+
1
2

∣∣∣∣∣
〈

n

∑
i, j=1

ρi jB
∗
jAie,e

〉∣∣∣∣∣ .
We take Bi = A∗

i in the last inequality, then we obtain

∣∣∣∣∣
〈

n

∑
i, j=1

ρi jAie,e

〉∣∣∣∣∣
2

(14)

�1
2

∣∣∣∣∣
〈

n

∑
i, j=1

ρi jA
∗
jAie,e

〉∣∣∣∣∣
1/2 ∣∣∣∣∣

〈
n

∑
i, j=1

ρi jA jA
∗
i e,e

〉∣∣∣∣∣
1/2

(15)

+
1
2

∣∣∣∣∣
〈

n

∑
i, j=1

ρi jA jAie,e

〉∣∣∣∣∣ (16)

for all e ∈ h with ||e|| = 1.

By taking the supremum over ||e|| = 1 in (14) , we get

w2

(
n

∑
i, j=1

ρi jAi

)
= sup

||e||=1

∣∣∣∣∣
〈

n

∑
i, j=1

ρi jAie,e

〉∣∣∣∣∣
2

�1
2

sup
||e||=1

∣∣∣∣∣
〈

n

∑
i, j=1

ρi jA
∗
jAie,e

〉∣∣∣∣∣
1/2

sup
||e||=1

∣∣∣∣∣
〈

n

∑
i, j=1

ρi jB
∗
jBie,e

〉∣∣∣∣∣
1/2

+
1
2

sup
||e||=1

∣∣∣∣∣
〈

n

∑
i, j=1

ρi jA jAie,e

〉∣∣∣∣∣
�1

2

⎡
⎣
∣∣∣∣∣
∣∣∣∣∣

n

∑
i, j=1

ρi jA
∗
jAi

∣∣∣∣∣
∣∣∣∣∣
1/2 ∣∣∣∣∣

∣∣∣∣∣
n

∑
i, j=1

ρi jA jA
∗
i

∣∣∣∣∣
∣∣∣∣∣
1/2

+w

(
n

∑
i, j=1

ρi, jA jAi

)⎤⎦
and the theorem is proved.

(ii) n > dim(h) = m : We consider hc = h×Cn , where h is gifted with orthonormal
basis (vi)m

i=1 . Cn is gifted with the canonical basis (ek)k∈{1,...,n} and canonical
inner product. Moreover, hc is the cartesian product between h and Cn with
standard inner product.
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It follows an analogous procedure to first case replacing hc by h , taking

σρ :=
n

∑
i, j=1

ρi j|(0,ei)〉〈(0,e j)|+
m

∑
i, j=1

1
m
|(vi,0)〉〈(v j,0)|

and X ,Y,E ∈ M(n+m,C) define as:

X :=
n

∑
i=1

|(Aie,0)〉〈(0,ei)|,

Y :=
n

∑
i=1

|(Bie,0)〉〈(0,ei)|,

and E :=
n
∑
i=1

|(e,0)〉〈(0,ei)|.

4.2. Double power series of bounded operators

The procedure to proof the last theorem is similar to the procedure that it follow
in the corollary 2. Using this procedure with X ,Y ∈ M(n,C) define as:

X :=
n

∑
i=1

|Aie〉〈vi|, Y :=
n

∑
i=1

|Bie〉〈vi|, σρ
n

∑
i, j=1

ρi j|vi〉〈v j|

E :=
n
∑
i=1

|e〉〈vi| ∈ M(n,C) . where each vi is a vector belongs to an orthonormal basis

of h , and x,y,e ∈ h with ||e|| = 1, if n � dim(h) , or

σρ :=
n

∑
i, j=1

ρi j|(0,ei)〉〈(0,e j)|+
m

∑
i, j=1

1
m
|(vi,0)〉〈(v j,0)|

and X ,Y,E ∈ M(n+m,C) define as:

X :=
n

∑
i=1

|(Aix,0)〉〈(0,ei)|,

Y :=
n

∑
i=1

|(Biy,0)〉〈(0,ei)|,

and E :=
n
∑
i=1

|(e,0)〉〈(0,ei)| defined on hc cartesian product between h and C
n with

standard inner product, and x,y,e ∈ h with ||e|| = 1, if n > dim(h) , we obtain the
following result:
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PROPOSITION 4. Let ρ = (ρi j) ∈ M(n,C) be a density matrix, and (A1, . . . ,An)
an n-tuples of bounded operators on h . Then we have∣∣∣∣∣

〈
n

∑
i, j=1

ρi jAie,x

〉〈
n

∑
i, j=1

ρi jBie,y

〉∣∣∣∣∣
�1

2

∣∣∣∣∣
〈

n

∑
i, j=1

ρi jA
∗
jAix,x

〉∣∣∣∣∣
1/2 ∣∣∣∣∣

〈
n

∑
i, j=1

ρi jB
∗
jBiy,y

〉∣∣∣∣∣
1/2

+
1
2

∣∣∣∣∣
〈

n

∑
i, j=1

ρi jB
∗
jAix,y

〉∣∣∣∣∣ .
for all x,y,e ∈ h with ||e|| = 1 .

This proposition is useful to stablish the next inequality for double power series:

COROLLARY 3. Let f (z,w) = ∑∞
i, j=0 ai jziw j be a double power series with non-

negative coefficients ai j � 0 for i, j ∈ N and convergence for all z,w such that |z| ∈
[0,R) and |w| ∈ [0,R) , where R ∈ (0,∞] and z,w ∈ C . If A,B are operators on the
Hilbert space h ,(α,β ) ∈ (0,R)× (0,R) such that ρn := (ai jα iβ j)n

i, j=1 is a density
matrix for all n ∈ N , and ||A||, ||B|| � 1, then

|〈 f (αA,β I)e,x〉 〈 f (αB,β I)e,y〉|
�1

2
|〈 f (αA,βA∗)x,x〉|1/2 |〈 f (αB,βB∗)y,y〉|1/2

+
1
2
|〈 f (αA,βB∗)x,y〉|

for any x,y,e ∈ h with ||e|| = 1 , where I is identity operator on h .

If we consider in the corollary 3, f (z,0) = ∑∞
i ai0zi (with convention 00 = 1) then

recover the theorem 3.1 of [7]:

COROLLARY 4. Let f (z) = ∑∞
i=0 aizi be a power series with nonnegative coeffi-

cients ai � 0 for i ∈ N and having radius of convergence R > 0 or R = ∞ . If A,B are
normal operators on the Hilbert space h ,A∗B = BA∗ , α ∈ (0,R) , and ||A||, ||B|| � 1,
then

|〈 f (αA)e,x〉 〈 f (αB)e,y〉|
�1

2
|〈 f (αA∗A)x,x〉| |〈 f (αB∗B)y,y〉| f (α)

+
1
2
|〈 f (AB∗)x,y〉| f (α)

for any x,y,e ∈ h with ||e|| = 1 , where I is identity operator on h .
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Proof. By corollary 3 we obtain∣∣∣∣∣
〈

n

∑
i=0

aiα iAie,x

〉〈
n

∑
i=0

aiα iBie,y

〉∣∣∣∣∣ (17)

�1
2

〈
n

∑
i=0

aiα i(Ai)∗Aix,x

〉1/2〈 n

∑
i=0

aiα i(Bi)∗Biy,y

〉1/2 n

∑
i=0

aiαi (18)

+
1
2

〈
n

∑
i=0

aiα i(B∗)iAix,y

〉1/2 n

∑
i=0

aiαi (19)

for any x,y,e ∈ h with ‖ e ‖= 1. Since A,B are normal operators, then for i � 1
(Ai)∗Ai = (A∗)iAi = (A∗A)i and (Bi)∗Bi = (B∗B)i .

Also, since B∗A = AB∗ , then (B∗)iAi = (B∗A)i for all i � 1. Then from (17) we
have ∣∣∣∣∣

〈
n

∑
i=0

aiα iAie,x

〉〈
n

∑
i=0

aiα iBie,y

〉∣∣∣∣∣ (20)

�1
2

〈
n

∑
i=0

aiα i(A∗A)ix,x

〉1/2〈 n

∑
i=0

aiα i(B∗B)iy,y

〉1/2 n

∑
i=0

aiαi (21)

+
1
2

〈
n

∑
i=0

aiα i(B∗A)ix,y

〉1/2 n

∑
i=0

aiαi (22)

for all x,y,e ∈ h with ||e|| = 1.
Since

‖ αA∗A ‖= α ‖ A ‖2< R,‖ αB∗B ‖= α ‖ B ‖2< R,

‖ αB∗A ‖� α ‖ B ‖‖ A ‖< R,‖ αB ‖< R,‖ αA ‖< R,

then the series

∞

∑
i=0

aiα iBi,
∞

∑
i=0

aiα iAi,
∞

∑
i=0

aiα i(A∗A)i,
∞

∑
i=0

aiα i(B∗B)i,
∞

∑
i=0

aiα i(B∗A)i

are convergent in B(h) and
∞
∑
i=0

aiα i in R . Taking limits in (20) we get the proof.
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