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Abstract. The concept of closed sets is a central object in general topology. In order to extend
many of important properties of closed sets to a larger families, Norman Levine initiated the study
of generalized closed sets. In this paper we introduce, via ideals, new generalizations of closed
subsets, which are strong forms of the Ig-closed sets, called ρIg-closed sets and closed-I sets. We
present some properties and applications of these new sets and compare the ρIg-closed sets and
the closed-I sets with the g-closed sets introduced by Levine. We show that I-closed and closed-I
are independent concepts, as well as I∗-closed sets and closed-I concepts.
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1. Introduction and preliminaries

The g-closed sets, which is a extension of closed sets, was introduced by Levine and the
Ig-closed sets, which is a generalization of g-closed sets, was defined by Jafari-Rajesh, in
terms of ideals. In this paper we introduce and study new intermediate concepts between
closed and Ig-closed sets, via ideals. We also present some applications of these new sets,
related to compactness and normality.

An ideal I in a set X is a subset of P(X), the power set of X, such that:

(i) if A ⊆ B ⊆ X and B ∈ I then A ∈ I, and

(ii) if A ∈ I and B ∈ I then A ∪B ∈ I.

Some simple and useful ideals in X are:

(i) P(A), where A ⊆ X,

(ii) If (X), the ideal of all finite subsets of X, and

(iii) Ic (X), the ideal of all countable subsets of X.
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If (X, τ) is a topological space and I is an ideal in X, then (X, τ, I) is called an ideal
space. If (X, τ) is a topological space and A ⊆ X then the closure and the interior of A

are denoted by A (or adhτ (A)) and
0
A (or intτ (A)), respectively. If A and B are subsets

of the space (X, τ) and A ∩B = ∅ = A ∩B then A and B are called separated. If A ⊆
0

A

then A is said to be pre-open [6]. If
0
A ⊆ A then A is defined to be pre-closed [6]. It is

clear that A is pre-open if and only if X\A is pre-closed.
If (X, τ) is a topological space and A ⊆ X then A is said to be g-closed [5] if, for each

U ∈ τ , A ⊆ U implies A ⊆ U . An ideal space (X, τ, I) is defined to be I-normal [1] if for
every pair of disjoint closed subsets F and G, there exist disjoint open sets U and V such
that F\U ∈ I and G\V ∈ I.

The symbol □ is used to indicate the end of a proof.

2. ρIg-closed sets

The generalized closed sets via ideals, that we consider, are due to Jafari-Rajesh and
these are extensions of the g-closed sets of Levine. In this section we define the ρIg-
closed sets, which is a new intermediate concept between closed and Ig-closed sets. Some
properties, characterizations and applications are presented.

If (X, τ, I) is an ideal space and A ⊆ X then A is defined to be Ig-closed [2] if, for all
U ∈ τ , A ⊆ U implies A\U ∈ I. It is noted that closed → g-closed → Ig-closed.

Definition 2.1. If (X, τ, I) is an ideal topological space and A ⊆ X then A is said to be
ρIg-closed if for each U ∈ τ , if A\U ∈ I then A\U ∈ I.

It is clear that

closed → ρIg-closed → Ig-closed

The converse are not true, as we can see in the next example.

Example 2.2. (1) If U is the usual topology in the set R, then all A ⊆ R is ρIg-closed in
the ideal space (R,U , I = P(R)), but (0, 1) is not g-closed. Then ρIg-closed↛g-closed
and so ρIg-closed↛closed.

(2) If C = {∅,R}∪{(r,∞) : r ∈ R} then Z is not ρIg-closed in the space (R, C, I = Ic (R)),
because Z\ (0,∞) ∈ I but Z\ (0,∞) = (−∞, 0] /∈ I. However Z is g-closed, and then
Z is Ig-closed. Thus g-closed↛ ρIg-closed and Ig-closed ↛ ρIg-closed.

Observe that g-closed and ρIg-closed are independent concepts.
An application of ρIg-closed sets is shown in the next theorem.
If (X, τ, I) is an ideal space then a subset A is said to be:

(1) I-compact [8] if for each open cover {Vα}α∈Λ of A, there exists Λ0 ⊆ Λ, finite, such
that A\

∪
α∈Λ0

Vα ∈ I, and
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(2) ρI-compact [9] if for each family {Vα}α∈Λ of open subsets of X, if A\
∪
α∈Λ

Vα ∈ I there

exists Λ0 ⊆ Λ, finite, such that A\
∪

α∈Λ0

Vα ∈ I. The space (X, τ, I) is I-compact if X

is I-compact, and (X, τ, I) is ρI-compact if X is ρI-compact.

Theorem 2.3. If the ideal space (X, τ, I) is ρI-compact and A ⊆ X we have that:

(1) If A is closed then A is ρI-compact.

(2) If A is ρIg-closed then A is ρI-compact.

(3) If A is Ig-closed then A is I-compact.

Proof.

(1) Let {Vα}α∈Λ be a collection of open sets of X such that A\
∪
α∈Λ

Vα ∈ I, this is,

X\
[
(X\A) ∪

∪
α∈Λ

Vα

]
∈ I. There exists Λ0 ⊆ Λ, finite, with X\

[
(X\A) ∪

∪
α∈Λ0

Vα

]
∈

I, this is, A\
∪

α∈Λ0

Vα ∈ I.

(2) Let {Vα}α∈Λ be a collection of open sets of X such that A\
∪
α∈Λ

Vα ∈ I. Since A is

ρIg-closed we have that A\
∪
α∈Λ

Vα ∈ I. Given that A is ρI-compact, there exists

Λ0 ⊆ Λ, finite, with A\
∪

α∈Λ0

Vα ∈ I. Hence A\
∪

α∈Λ0

Vα ∈ I.

(3) Let {Vα}α∈Λ be a collection of open sets of X such that A ⊆
∪
α∈Λ

Vα. Given that A

is Ig-closed we have that A\
∪
α∈Λ

Vα ∈ I. But A is ρI-compact, and so there exists

Λ0 ⊆ Λ, finite, with A\
∪

α∈Λ0

Vα ∈ I. Thus A\
∪

α∈Λ0

Vα ∈ I. □

We recall that an ideal space (X, τ, I) is said to be Ig-normal if for every pair of
disjoint g-closed subsets F and G of X, there exist disjoint open sets U and V such that
F\U ∈ I and G\V ∈ I.

Renukadevi-Sivaraj have shown that if (X, τ, I) is I-compact and (X, τ) is T2 then
(X, τ, I) is I-normal. In contrast we have the following result.

Theorem 2.4. If (X, τ, I) is ρI-compact and (X, τ) is T2 then (X, τ, I) is Ig-normal.

Proof. Suppose that F and G are disjoint g-closed sets. It is noted that, by Theorem
2.3, F and G are I-compact subsets of X. Let g ∈ G, arbitrary. For each f ∈ F there
are disjoint Uf ∈ τ and Vf ∈ τ such that f ∈ Uf and g ∈ Vf . Given that F ⊆

∪
f∈F

Uf and
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F is I-compact, there exists F0 ⊆ F , finite, with F\
∪

f∈F0

Uf ∈ I. Let Tg =
∪

f∈F0

Uf and

Wg =
∩

f∈F0

Vf .

It is noted that Tg ∩Wg = ∅ and F\Tg ∈ I.
Now, since G ⊆

∪
g∈G

Wg and G is I-compact, there exists G0 ⊆ G, finite, with

G\
∪

g∈G0

Wg ∈ I.

If V =
∪

g∈G0

Wg and U =
∩

g∈G0

Tg then U and V are disjoint, G\V ∈ I and F\U =∪
g∈G0

(X\Tg) ∈ I. □

If I is an ideal in X and B ⊆ X, it is easy to see that the set IB = {I ∩B : I ∈ I} is
an ideal in B.

Theorem 2.5. Let (X, τ, I) be an ideal space. If A ⊆ X and B ⊆ X then:

(1) If A and B are ρIg-closed then A ∪B is ρIg-closed.

(2) A is ρIg-closed if and only if, for each closed set F , if F\
(
A\A

)
∈ I then F ∈ I.

(3) If A\B ∈ I, B\A ∈ I and A is ρIg-closed then B is ρIg-closed.

(4) If A ⊆ B ⊆ A and A is ρIg-closed, then B is ρIg-closed.

(5) If A is ρIg-closed and B is closed, then A ∩B is ρIg-closed.

(6) If A ⊆ B and A is ρIg-closed in the space (X, τ, I), then A is ρ(IB)g-closed in the
space (B, τB, IB), where τB = {U ∩B : U ∈ τ}.

Proof.

(1) Suppose that U ∈ τ and (A ∪B) \U ∈ I. Then A\U ∈ I and B\U ∈ I, and so
A\U ∈ I and B\U ∈ I. This implies that A ∪B\U ∈ I.

(2) (→) Suppose that A is ρIg-closed, F ⊆ X is closed and that F\
(
A\A

)
∈ I, this

is, F ∩
[(
X\A

)
∪A

]
∈ I. Then F ∩

(
X\A

)
∈ I and A\ (X\F ) = F ∩ A ∈ I.

Since A is ρIg-closed we have that A\ (X\F ) ∈ I, this is F ∩ A ∈ I. Thus F =(
F ∩A

)
∪
[
F ∩

(
X\A

)]
∈ I.

(←) Let U ∈ τ with A\U ∈ I. Given that A\U =
(
A\U

)
\
(
A\A

)
and A\U is closed,

the hypothesis implies that A\U ∈ I.

(3) Suppose that V ∈ τ and B\V ∈ I. Since A\V ⊆ (A\B) ∪ (B\V ) ∈ I then A\V ∈ I.
Given that A is ρIg-closed we have that A\V ∈ I. Hence

(
A\V

)
∪
(
B\A

)
∈ I. But

B\V ⊆
(
A\V

)
∪
(
B\A

)
and so B\V ∈ I.

(4) It is a consequence of (3).
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(5) If U ∈ τ and (A ∩B) \U ∈ I, this is, A\ [U ∪ (X\B)] ∈ I, then A\ [U ∪ (X\B)] ∈ I
because A is ρIg-closed. Thus

(
A ∩B

)
\U ∈ I. Now, A ∩B\U ⊆

(
A ∩B

)
\U =(

A ∩B
)
\U and so A ∩B\U ∈ I.

(6) Suppose that V ∈ τB and A\V = I0 ∈ IB. There are U ∈ τ and I ∈ I with
V = B ∩ U and I0 = I ∩ B. Then A\V = A\ (B ∩ U) = B ∩ I and this implies that
A\U ⊆ A\ (B ∩ U) = B ∩ I ⊆ I. Thus A\U ∈ I. Since A is ρIg-closed we have that
A\U ∈ I. This implies that

(
A\U

)
∩ B ∈ IB, this is,

(
A ∩B

)
\U ∈ IB, and finally

adhτB (A) \V = adhτB (A) \ (U ∩B) =
(
B ∩A

)
\ (U ∩B) =

(
B ∩A

)
\U ∈ IB. □

Example 2.6. Let C = {∅,R} ∪ {(r,∞) : r ∈ R} , I = If (R), A = 2Z and B =
{p ∈ Z : |p| is a prime number}. We have that, in the space (R, C, I), A and B are
ρIg-closed sets, because if U ∈ C and A\U ∈ I (or B\U ∈ I) then U = R and so
A\U ∈ I

(
or B\U ∈ I

)
. However A ∩ B is not ρIg-closed since A ∩ B = {−2, 2},

(A ∩B) \ (0,∞) ∈ I, but A ∩B\ (0,∞) = (−∞, 0] /∈ I.

The following result is due to Newcomb.

Lemma 2.7. If f : X → Y is a function we have that:

(1) If I is an ideal in X, then f(I) = {f(I) : I ∈ I} is an ideal in Y .

(2) If f is inyective and J is an ideal in Y , then the set f−1 (J ) =
{
f−1(J) : J ∈ J

}
is

an ideal in X.

Theorem 2.8. (1) If f : (X, τ) → (Y, β) is a continuous, closed and inyective function,
I is an ideal on X, J = f(I) and if A ⊆ X is ρIg-closed, then f(A) is ρJg-closed.

(2) If f : (X, τ)→ (Y, β) is a continuous, closed and inyective function, I is an ideal on
X, J =

{
V ⊆ Y : f−1 (V ) ∈ I

}
and if A ⊆ X is ρIg-closed, then f(A) is ρJg-closed.

(3) If f : (X, τ)→ (Y, β) is a continuous, open and inyective function, I is an ideal on X,
J =

{
V ⊆ Y : f−1 (V ) ∈ I

}
and if B ⊆ Y is ρJg-closed, then f−1(B) is ρIg-closed.

(4) If f : (X, τ)→ (Y, β) is an inyective, continuous and closed function, J is an ideal in
Y and if A is ρ

(
f−1(J )

)
g
-closed, then f(A) is ρJg-closed.

Proof.

(1) If V ∈ β and f(A)\V ∈ J then A\f−1(V ) ∈ I, because f is inyective. Given that
A is ρIg-closed we have that A\f−1(V ) ∈ I, and so f

[
A\f−1(V )

]
∈ f(I). But

f
(
A
)
\V ⊆ f

(
A
)
\f(f−1(V )) ⊆ f [A\f−1(V )]. Moreover f(A) ⊆ f(A), since f is

closed. In consequence f(A)\V ∈ f(I).

(2) It is similar to (1).
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(3) If U ∈ τ and f−1(B)\U ∈ I, this is, f−1 [B\f(U)] ∈ I, then B\f(U) ∈ J . Given
that B is ρJg-closed we have that B\f(U) ∈ J . In consequence f−1

[
B\f(U)

]
∈ I,

this is f−1
(
B
)
\U ∈ I. Since f is continuous we have that f−1(B) ⊆ f−1(B), and so

f−1 (B)\U ∈ I.

(4) If W ∈ β and f(A)\W ∈ J then A\f−1 (W ) = f−1 [f (A) \W ] ∈ f−1 (J ). Since
A is ρ

(
f−1(J )

)
g
-closed there is J ∈ J with A\f−1 (W ) = f−1 (J). But f (A)\W

⊆ f
(
A
)
\W ⊆ f

(
A
)
\f

[
f−1 (W )

]
⊆ f

[
A\f−1 (W )

]
= f

(
f−1 (J)

)
⊆ J , and so

f (A)\W ∈ J . □

Definition 2.9. If (X, τ, I) is an ideal topological space and A ⊆ X then A is said to be
ρIg-open if X\A is ρIg-closed.

The following result is a consequence of Theorem 2.5.

Theorem 2.10. Let (X, τ, I) be an ideal space. If A ⊆ X and B ⊆ X then:

(1) If A and B are ρIg-open then A ∩B is ρIg-open.

(2) A is ρIg-open if and only if, for each closed set F , if F\
(
A\

0
A

)
∈ I then F ∈ I.

(3) If B\A ∈ I,
0
A\

0
B ∈ I and A is ρIg-open then B is ρIg-open.

(4) If
0
A ⊆ B ⊆ A and A is ρIg-open, then B is ρIg-open.

(5) If A is ρIg-open and B is open, then A ∪B is ρIg-open.

Next we present other useful properties of ρIg-open sets.

Theorem 2.11. If (X, τ, I) is an ideal space then A ⊆ X is ρIg-open if and only if, for

each F ⊆ X, closed, if F\A ∈ I then F\
0
A ∈ I.

Proof. (→) Suppose that F ⊆ X is closed and that F\A ∈ I, this is, (X\A) \ (X\F ) ∈

I. Given that X\A is ρIg-closed we have that X\A\ (X\F ) ∈ I or, equivalently, F\
0
A ∈ I.

(←) Suppose that V ∈ τ and (X\A) \V ∈ I, this is, (X\V ) \A ∈ I. The hypothesis

implies that (X\V ) \
0
A ∈ I, or equivalently,

(
X\

0
A

)
\V ∈ I. Hence X\A\V ∈ I and so

X\A is ρIg-closed. □

Theorem 2.12. If (X, τ, I) is an ideal space, then A ⊆ X is ρIg-closed if and only if
A\A is ρIg-open.
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Proof. (→) Suppose that F ⊆ X is closed and that F\
(
A\A

)
∈ I. By the Theorem

2.5 we have that F ∈ I, and so F\int
(
A\A

)
∈ I, because int

(
A\A

)
= ∅. Thus A\A is

ρIg-open.
(←) Suppose that U ∈ τ and that A\U ∈ I. Given that

(
A\U

)
\
(
A\A

)
= A\U ∈ I

and A\A is ρIg-open, the Theorem 2.11 implies
(
A\U

)
\int

(
A\A

)
∈ I, this is, A\U ∈ I.

□

Theorem 2.13. If A and B are ρIg-open subsets of an ideal space (X, τ, I), such that
A ∩B ∈ I and A ∩B ∈ I, then A ∪B is ρIg-open.

Proof. Suppose that F ⊆ X is closed and that F\ (A ∪B) ∈ I. We have that:

(a) F\A ∪B ∈ I.

(b)
(
F ∩A

)
\A ∈ I, because

(
F ∩A

)
\A ⊆

(
A ∩B

)
∪ [F\ (A ∪B)] ∈ I.

(c)
(
F ∩B

)
\B ∈ I.

(d)
(
F ∩A

)
\
0
A ∈ I, because F ∩A is closed and A is ρIg-open.

(e)
(
F ∩B

)
\
0
B ∈ I.

(f)
[
F ∩A ∪B

]
\
(

0
A ∪

0
B

)
∈ I. In fact, given that[(

F ∩A
)
\
0
A

]
∪
[(
F ∩B

)
\
0
B

]
∈ I and

(
A ∪B

)
\
(

0
A ∪

0
B

)
⊆

(
A\

0
A

)
∪
(
B\

0
B

)
, we

have that[
F ∩A ∪B

]
\
(

0
A ∪

0
B

)
= F ∩

[(
A ∪B

)
\
(

0
A ∪

0
B

)]
⊆ F ∩

[(
A\

0
A

)
∪
(
B\

0
B

)]
=[(

F ∩A
)
\
0
A

]
∪
[(
F ∩B

)
\
0
B

]
, and so

[
F ∩A ∪B

]
\
(

0
A ∪

0
B

)
∈ I.

(g) F\
0

(A ∪B) ∈ I, because

F\
0

(A ∪B) ⊆ F\
(

0
A ∪

0
B

)
⊆

[(
F ∩A ∪B

)
\
(

0
A ∪

0
B

)]
∪
(
F\A ∪B

)
∈ I.

Therefore A ∪B is ρIg-open. □

Corollary 2.14. (1) If A and B are separated ρIg-open subsets of an ideal space (X, τ, I)
then A ∪B is ρIg-open.

(2) If A and B are ρIg-closed subsets of an ideal space (X, τ, I), such that X\
(

0
A ∪B

)
∈

I and X\
(
A ∪

0
B

)
∈ I, then A ∩B is ρIg-closed.
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We end this section with an application to ρIg-open sets to I-normality.

Theorem 2.15. The ideal space (X, τ, I) is I-normal if and only if, for each pair of
disjoint closed sets F and G, there are disjoint ρIg-open sets A and B such that F\A ∈ I
and G\B ∈ I.

Proof. (→) This is simple because open → ρIg-open.
(←) If F and G are disjoint closed sets, then there exist disjoint ρIg-open sets A and

B with F\A ∈ I and G\B ∈ I. The Theorem 2.11 implies that F\
0
A ∈ I and G\

0
B ∈ I.

Moreover
0
A and

0
B are disjoint open sets. □

3. Closed-I sets

In this section we introduce the closed-I sets, an intermediate concept between closed
sets and ρIg-closed sets. We also consider some applications of these sets.

Given an ideal space (X, τ, I) and a set A ⊆ X, we denote by

A∗ (I) = {x ∈ X : U ∩A /∈ I, for every U ∈ τ with x ∈ U} ,

written simply as A∗ when there is no chance for confusion. It is clear that A∗ ⊆ A. A
Kuratowski closure operator for a topology τ∗ (I), finer than τ , is defined by Cl∗ (A) =
A∪A∗, for all A ⊆ X. When there is no chance for confusion τ∗ (I) is denoted by τ∗. The
topology τ∗ has as a base β (τ, I) = {V \I : V ∈ τ and I ∈ I} [12] . In 1990, D. Jancovic
and T. R. Hamlett introduced the notion of I-open sets. If (X, τ, I) is an ideal space and
A ⊆ X, A is said to be I-open [3] if A ⊆ int (A∗). A is said to be I-closed if X\A is
I-open. In 1992, D. Jancovic and T. R. Hamlett introduced the notion of I∗-open sets.
If (X, τ, I) is an ideal space and A ⊆ X, A is said to be I∗-closed [4] if A∗ ⊆ A or,
equivalently, if A is closed in (X, τ∗). A is said to be I∗-open if X\A is I∗-closed.

Definition 3.1. If (X, τ, I) is an ideal space and A ⊆ X, then A is said to be closed-I if
A\A ∈ I. A subset B is defined to be open-I if X\B is closed-I.

It is observed that:

(1) closed → closed-I.

(2) A is open-I if and only if A\
0
A ∈ I.

(3) A is closed-I and open-I if and only if Fr(A) ∈ I, where Fr(A) is the frontier of A.

(4) A is closed-I if and only if A\A is open-I.

(5) Each I ∈ I is open-I.

(6) If A is open then A is open-I.
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Example 3.2. (1) If U is the usual topology in R and if I = If (R), then [0, 1) is
closed-I but [0, 1) is not closed. Since Q\Q /∈ I then Q is not closed-I.

(2) If X = {a, b, c, d}, τ = {∅, X, {c} , {a, b} , {a, b, c}} and I = {∅, {a}}, then the set

A = {b, c, d} is I-open [7]. Now, since A\
0
A = {b, d} /∈ I then A is not open-I. It

is noted that {a, c} /∈ τ but {a, c} is open-I. Moreover, since A\A = {a} ∈ I and
A∗ = {a, b, d} ⊈ A then A is closed-I but A is not I∗-closed. Now, if B = {a} then
B\B = {b, d} /∈ I and B∗ = ∅ ⊆ B. Then B is I∗-closed but B is not closed-I.

(3) If I = {∅, {c} , {d} , {c, d}} and τ = {∅, X, {d} , {a, c} , {a, c, d}}, where X = {a, b, c, d},
then the set A = {a, c, d} is open-I. However A is not I-open [7]. Hence, in general,
open ↛ I-open.

In consequence the I-closed and closed-I are independent concepts, as well as I∗-closed
and closed-I concepts.

Theorem 3.3. Let (X, τ, I) be an ideal space. If A ⊆ X and B ⊆ X then:

(1) If A is closed-I then A is ρIg-closed.

(2) If A is closed-I then
(
A
)∗ \A ∈ I, and so

(
0
A

)∗
\A ∈ I.

(3) If A and B are closed-I then A ∪B and A ∩B are closed-I.

(4) If A\B ∈ I, B\A ∈ I and A is closed-I then B is closed-I.

(5) If A ⊆ B ⊆ A and A is closed-I, then B is closed-I.

(6) If A is pre-open and closed-I then A is open-I.

(7) If A ⊆ B and A is closed-I in (X, τ, I), then A is closed-IB in (B, τB, IB).

(8) If A ⊆ B, A is closed-IB in (B, τB, IB), B is closed-I in (X, τ, I), then A is closed-I
in (X, τ, I).

Proof.

(1) Suppose that U ∈ τ and A\U ∈ I. Given that A\U ⊆
(
A\A

)
∪ (A\U) ∈ I, we have

that A\U ∈ I.

(2) Since A is closed then
(
A
)∗ ⊆ A, and so

(
0
A

)∗
\A ⊆

(
A
)∗ \A ⊆ A\A ∈ I.

(3) It is enough to note that A ∪B\ (A ∪B) =
(
A ∪B

)
\ (A ∪B) ⊆

(
A\A

)
∪
(
B\B

)
∈ I,

and that A ∩B\ (A ∩B) ⊆
(
A ∩B

)
\ (A ∩B) ⊆

(
A\A

)
∪
(
B\B

)
∈ I.

(4) Since B\B ⊆
(
A\A

)
∪
(
B\A

)
∪ (A\B) ∈ I, we have that B\B ∈ I.
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(5) It is a consequence of (4).

(6) By hypothesis, A\
0

A ⊆ A\A ∈ I.

(7) Given that adhτB (A) \A =
(
A ∩B

)
\A =

(
A\A

)
∩B ∈ IB, then adhτB (A) \A ∈ IB.

(8) We have that B\B ∈ I and adhτB (A) \A ∈ IB ⊆ I. Now, adhτB (A) = A ∩ B and
A\A ⊆

[(
A ∩B

)
\A

]
∪
(
B\B

)
∈ I. □

Example 3.4. (1) In the space (R, C, I) of Example 2.2, Z is g-closed but Z is not closed-
I, because Z is not ρIg-closed.

(2) If C = {∅,R} ∪ {(r,∞) : r ∈ R} and I = P ((0,∞)), then the set A = (−∞, 0) is
ρIg-closed in the space (R, C, I) because if U ∈ C and A\U ∈ I then U = R, and so
A\U ∈ I. However, since A\A = {0} /∈ I, we have that A is not closed-I.
Thus, in general, ρIg-closed ↛closed-I.

(3) If U is the usual topology in R and I = P ({0, 1}), then the set A = (0, 1) is not
g-closed. However, given that A\A = {0, 1} ∈ I, we conclude that (0, 1) is closed-I.
So, in general, closed-I ↛g-closed.
Thus, closed-I and g-closed are independent concepts.

We have the following diagram.

g − Closed

Closed Closed− I ρIg − Closed

Ig − Closed

In the Theorem 3.5 we review the behavior of closed-I sets under continuous or closed
functions.

Theorem 3.5. (1) If (Y, β,J ) is an ideal space, f : (X, τ)→ (Y, β) is a continuous and
inyective function and B is closed-J , then f−1 (B) is closed-f−1 (J ).

(2) If (X, τ, I) is an ideal space, f : (X, τ)→ (Y, β) is a closed function and A is closed-I,
then f (A) is closed-f(I).

(3) If (X, τ, I) is an ideal space, f : (X, τ) → (Y, β) is a continuous function, J ={
D ⊆ Y : f−1 (D) ∈ I

}
and B is closed-J , then f−1 (B) is closed-I.

(4) If f : (X, τ)→ (Y, β) is an inyective and closed function, J is an ideal in Y and if A
is closed-f−1(J ), then f(A) is closed-J .
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Proof.

(1) We have that f−1 (B)\f−1 (B) ⊆ f−1
(
B
)
\f−1(B) = f−1

(
B\B

)
∈ f−1(J ), given

that B\B ∈ J .

(2) Since f(A)\f(A) ⊆ f
(
A
)
\f (A) ⊆ f

(
A\A

)
∈ f (I), then f(A)\f(A) ∈ f (I).

(3) Given that B\B ∈ J then f−1
(
B
)
\f−1 (B) = f−1

(
B\B

)
∈ I. But f−1 (B)\f−1 (B) ⊆

f−1
(
B
)
\f−1 (B) and so f−1 (B)\f−1 (B) ∈ I.

(4) There is J ∈ J such that A\A = f−1 (J), and so f (A)\f (A) ⊆ f
(
A
)
\f (A) ⊆

f
(
A\A

)
= f

(
f−1 (J)

)
⊆ J . Hence f (A)\f (A) ∈ J . □

The following theorem is a consequence of Theorem 3.3.

Theorem 3.6. Let (X, τ, I) be an ideal space. If A ⊆ X and B ⊆ X then:

(1) If A is open-I then A is ρIg-open.

(2) If A and B are open-I then A ∪B and A ∩B are open-I.

(3) If B\A ∈ I,
0
A\

0
B ∈ I and A is open-I then B is open-I.

(4) If
0
A ⊆ B ⊆ A and A is open-I, then B is open-I.

(5) If A is pre-closed and open-I then
0
A is closed-I.

(6) If A ⊆ B and A is open-I in (X, τ, I), then A is open-IB in (B, τB, IB).

Some applications of the closed-I and open-I sets are shown now.

A subset A of an ideal space (X, τ, I) is said to be σI-compact [9] if for each nonempty
collection {Vα}α∈Λ of nonempty open sets, if A\

∪
α∈Λ

Vα ∈ I then there exists Λ0 ⊆ Λ,

finite, such that A ⊆
∪

α∈Λ0

Vα. The space (X, τ, I) is σI-compact if X is σI-compact.

It is simple to see that if (X, τ, I) is σI-compact and if A ⊆ X is closed then A is
σI-compact.

Theorem 3.7. If (X, τ, I) is an ideal space and A ⊆ X is closed-I we have that:

(1) If (X, τ, I) is ρI-compact then A is ρI-compact.

(2) If (X, τ, I) is σI-compact then A is σI-compact.

Proof.

(1) It is a consequence of Theorem 2.3, because closed-I → ρIg-closed.
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(2) Let {Vα}α∈Λ be a nonempty collection of nonempty open sets with A\
∪
α∈Λ

Vα ∈ I.

Since A\A ∈ I and A\
∪
α∈Λ

Vα ⊆
(
A\

∪
α∈Λ

Vα

)
∪
(
A\A

)
∈ I then A\

∪
α∈Λ

Vα ∈ I. But

A is σI-compact and so there exists Λ0 ⊆ Λ, finite, such that A ⊆ A ⊆
∪

α∈Λ0

Vα. □

Theorem 3.8. The ideal space (X, τ, I) is I-normal if and only if, for each pair of
disjoint closed sets F and G, there are disjoint open-I sets A and B such that F\A ∈ I
and G\B ∈ I.

Proof. (→) It is clear because open→open-I.
(←) It is a consequence of Theorem 2.15 since open-I → ρIg-open. □

Remark 3.9. If (X, τ, I) is an ideal space and A ⊆ X, then:

(1) τ ⊕ I is the topology generated for the base τ ∪ I.
It is noted that

τ ⊕ I =
{
V ∪

∪
C : V ∈ τ and C ⊆ P(I)

}
.

(2) I(A) is the set
∪

I∈I, I⊆A

I.

In the next Theorem 3.10 we show that τ ⊕ I is the smallest topology in X, that
contains τ , such that all open-I set is an open set.

Theorem 3.10. If (X, τ, I) is an ideal space we have that:

(1) If A ⊆ X then intτ⊕I (A) = intτ (A) ∪ I(A).

(2) A set F ⊆ X is closed in the space (X, τ ⊕ I) if and only if there exists G ⊆ X, closed
in (X, τ), and a collection C ⊆ P(I), such that F = G\

∪
C.

(3) If A ⊆ X then adhτ⊕I (A) = adhτ (A) \I(X\A).

(4) τ ⊕ I is the smallest topology β in X such that:

(a) τ ⊆ β and
(b) In the space (X,β, I), for each A ⊆ X, A is open-I if and only if A is open.

Proof.

(1) It is clear that intτ (A)∪I(A) ∈ τ ⊕I and that intτ (A)∪I(A) ⊆ A, and so intτ (A)∪
I(A) ⊆ intτ⊕I (A).
Now, suppose that W ∈ τ ⊕ I and that W ⊆ A. There exist V ∈ τ and a collection
{Iα}α∈Λ of elements in I, such that W = V ∪

∪
α∈Λ

Iα. Since V ⊆ A then V ⊆ intτ (A).

Given that, for all α ∈ Λ, Iα ⊆ A then
∪
α∈Λ

Iα ⊆ I(A), and so W ⊆ intτ (A) ∪ I(A).

In particular intτ⊕I (A) ⊆ intτ (A) ∪ I(A).
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(2) It is obvious.

(3) Given that A ⊆ adhτ (A) \I(X\A) and adhτ (A) \I(X\A) is closed in (X, τ ⊕ I) then
adhτ⊕I (A) ⊆ adhτ (A) \I(X\A). Now, suppose that F is closed in (X, τ ⊕ I) and
that A ⊆ F . There exists G ⊆ X, closed in (X, τ), and a collection C ⊆ P(I),
such that F = G\

∪
C. Since adhτ (A) ⊆ G and

∪
C ⊆ I (X\A) we have that

adhτ (A) \I (X\A) ⊆ G\
∪
C = F . In particular, adhτ (A) \I (X\A) ⊆ adhτ⊕I (A).

(4) (i) Suppose that B ⊆ X is open-I in the space (X, τ ⊕ I, I), this is B\intτ⊕I (B) ∈
I⊆τ ⊕ I. Since B = [B\intτ⊕I (B)] ∪ intτ⊕I (B) then B ∈ τ ⊕ I.

(ii) Suppose that β is a topology in X such that τ ⊆ β and that in the space
(X,β, I), for each A ⊆ X, A is open-I if and only if A is open.

Given that all I ∈ I is open-I in (X,β, I) then, by hypothesis, I ⊆ β. Hence τ⊕I⊆β.
□

Remark 3.11. If I is an ideal in X and J is an ideal in Y , then I ⊗ J is the set
of all D ⊆ X × Y such that there exist I ∈ I, A ⊆ X, J ∈ J and B ⊆ Y , with
D ⊆ (A× J) ∪ (I ×B).

Theorem 3.12. (1) If I is an ideal in X and J is an ideal in Y , then I ⊗ J is an
ideal in X × Y .

(2) If A is open-I in the space (X, τ, I) and B is open-J in the space (Y, β,J ), then
A×B is open-I ⊗ J in the space (X × Y, τ × β, I ⊗ J ).

Proof.

(1) It is clear that if V ⊆ W ⊆ X × Y and W ∈ I ⊗ J , then V ∈ I ⊗ J . Sup-
pose that {D1, D2} ⊆ I ⊗ J . There are {I1, I2} ⊆ I, {J1, J2} ⊆ J , {A1, A2} ⊆
P (X) and {B1, B2} ⊆ P (Y ) such that D1 ⊆ (A1 × J1) ∪ (I1 ×B1) and D2 ⊆
(A2 × J2)∪(I2 ×B2). Hence D1∪D2 ⊆ (A1 × J1)∪(A2 × J2)∪(I1 ×B1)∪(I2 ×B2) ⊆
[(A1 ∪A2)× (J1 ∪ J2)] ∪ [(I1 ∪ I2)× (B1 ∪B2)]. This implies that D1 ∪D2 ∈ I ⊗ J .

(2) Since A\
0
A ∈ I and B\

0
B ∈ J , we have that (A×B) \int (A×B) = (A×B) \

(
0
A×

0
B

)
=[(

A\
0
A

)
×B

]
∪
[
A×

(
B\

0
B

)]
∈ I ⊗ J . □

4. Other characteristics of the topology τ ⊕ I

In this section we present some properties of the topology τ ⊕I, related to normality,
compactness and C-compactness.



N.R. Pachón / Eur. J. Pure Appl. Math, 11 (1) (2018), 299-314 312

Remark 4.1. If (X, τ, I) is an ideal space then

I⊛ =
{∪
C : C ⊆ P(I)

}
and I =

{
J : J ⊆ I, for some I ∈ I

}
It is clear that I⊛ = P(UI), where UI =

∪
I∈I

I.

It is easy to see that I is an ideal in X, that I ⊆ I⊛, I ⊆ I, and that if I ∈ I then
I ∈ I. Moreover, if τ is a topology in X, it is clear that τ ⊕ I = τ ⊕ I⊛.

Theorem 4.2. If I is an ideal in X, τ is a topology in X and (X, τ ⊕ I) is a normal
space, then (X, τ, I⊛) is I⊛-normal.

Proof. Suppose that F and G are disjoint closed sets in (X, τ). Since F and G are closed
sets in (X, τ ⊕ I), there exists disjoint sets U ∪

∪
α∈Λ1

Iα ∈ τ ⊕ I and V ∪
∪

α∈Λ2

Iα ∈ τ ⊕ I

such that F ⊆ U ∪
∪

α∈Λ1

Iα and G ⊆ V ∪
∪

α∈Λ2

Iα. Thus F\U ⊆
∪

α∈Λ1

Iα ∈ I⊛ and

G\V ⊆
∪

α∈Λ2

Iα ∈ I⊛. Moreover U and V are disjoint open sets in (X, τ). □

A space (X, τ) is said to be:

(1) QHC [11] if for each open cover {Vα}α∈Λ of X, there exists Λ0 ⊆ Λ, finite, such that
X =

∪
α∈Λ0

Vα.

(2) C-compact [13] if for each closed set F and each open cover {Vα}α∈Λ of F , there exists
Λ0 ⊆ Λ, finite, such that F ⊆

∪
α∈Λ0

Vα.

An ideal space (X, τ, I) is defined to be:

(1) ρI-QHC [10] if for each collection {Vα}α∈Λ of open sets, if X\
∪
α∈Λ

Vα ∈ I there exists

Λ0 ⊆ Λ, finite, such that X\
∪

α∈Λ0

Vα ∈ I.

(2) ρC(I)-compact [10] if for each closed set F and each collection {Vα}α∈Λ of open sets,
if F\

∪
α∈Λ

Vα ∈ I there exists Λ0 ⊆ Λ, finite, such that F\
∪

α∈Λ0

Vα ∈ I.

Theorem 4.3. (1) If the space (X, τ, I⊛) is ρI⊛-compact then the space (X, τ ⊕ I, I⊛)
is I⊛-compact.

(2) If the space (X, τ, I⊛) is σI⊛-compact then (X, τ ⊕ I) is compact.

(3) If the space (X, τ ⊕ I) is compact then the space (X, τ, I) is ρI-compact.

(4) If the space
(
X, τ ⊕ I

)
is C-compact then the space

(
X, τ, I

)
is ρC(I)-compact.

(5) If
(
X, τ ⊕ I

)
is QHC then the space

(
X, τ, I

)
is ρI-QHC.
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Proof.

(1) Suppose that X =
∪
α∈Λ

Wα, where Wα ∈ τ ⊕ I for each α ∈ Λ. For all α ∈ Λ, there

exist Vα ∈ τ and a collection {Ij}j∈Λα
of elements in I, such that Wα = Vα∪

∪
j∈Λα

Ij .

Hence X =
∪
α∈Λ

Vα ∪
∪
α∈Λ

∪
j∈Λα

Ij . Then X\
∪
α∈Λ

Vα ∈ I⊛ and since (X, τ, I⊛) is

ρI⊛-compact, there exists Λ0 ⊆ Λ, finite, with X\
∪

α∈Λ0

Vα ∈ I⊛. This implies that

X\
∪

α∈Λ0

Wα ∈ I⊛.

(3) Suppose that X\
∪
α∈Λ

Vα ∈ I, where {Vα}α∈Λ is a collection of elements in τ . There

exists I ∈ I such that X\
∪
α∈Λ

Vα = I, and so X = I∪
∪
α∈Λ

Vα. Given that (X, τ ⊕ I) is

compact there exists Λ0 ⊆ Λ, finite, with X = I∪
∪

α∈Λ0

Vα. Hence X\
∪

α∈Λ0

Vα ⊆ I ∈ I

and X\
∪

α∈Λ0

Vα ∈ I.

(4) Suppose that F\
∪
α∈Λ

Vα ∈ I, where {Vα}α∈Λ is a collection of elements in τ and F

is closed in (X, τ). There exists J ∈ I with F\
∪
α∈Λ

Vα = J , and so F ⊆ J ∪
∪
α∈Λ

Vα.

Given that
(
X, τ ⊕ I

)
is C-compact and F is closed in

(
X, τ ⊕ I

)
, there exists Λ0 ⊆

Λ, finite, with F ⊆ adhτ⊕I (J) ∪
∪

α∈Λ0

adhτ⊕I(Vα) ⊆ J ∪
∪

α∈Λ0

Vα.

Hence F\
∪

α∈Λ0

Vα ⊆ J ∈ I and F\
∪

α∈Λ0

Vα ∈ I.

Parts (2) and (5) have similar demonstrations. □
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