
International Journal of Pure and Applied Mathematics

Volume 107 No. 4 2016, 909-925

ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version)
url: http://www.ijpam.eu
doi: 10.12732/ijpam.v107i4.9

PA
ijpam.eu

ON EXPONENTIAL CONVERGENCE OF GENERIC

QUANTUM MARKOV SEMIGROUPS IN

A WASSERSTEIN-TYPE DISTANCE

J. Agredo

Department of Mathematics
National University of Colombia

and
Department of Mathematics

Colombian School of Engineering Julio Garavito
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Abstract: We investigate about exponential convergence for generic quantum Markov semi-

groups using an generalization of the Lipschitz seminorm and a noncommutative analogue of

Wasserstein distance. We show turns out to be closely related with classical convergence rate

of reductions to diagonal subalgebras of the given generic quantum Markov semigroups.In

particular we compute the convergence rates of generic quantum Markov semigroups.

AMS Subject Classification: 81S22, 60J27

Key Words: quantum Markov semigroups, Wasserstein distance, exponential convergence

1. Introduction

We consider the von Neumann algebra B(h) of all linear bounded operators
on a given complex separable Hilbert space h and a Quantum Markov semi-
group (QMS) T = (Tt)t≥0 which acts on B(h), i.e., T is a weakly∗-continuous
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semigroup of completely positive, preserving, normal maps on B(h). Quan-
tum Markov semigroups (QMS) are a non-commutative extension of Markov
semigroups defined in classical probability, they represent an evolution with-
out memory of a microscopic system in accordance with the laws of quantum
physics and fit into the framework of open quantum systems. The semigroup
T corresponds to the Heisenberg picture in the sense that given any observable
x, Tt(x) describes its evolution at time t. In this way, given a density matrix
ρ, its dynamics (Schrodinger picture) is given by the semigroup T∗t(ρ), where
tr(ρTt(x)) = tr(T∗t(ρ)x).

Several aspects of temporal evolutions described by QMSs have been inves-
tigated. By example, in [4],[5], and [6], the exponential speed of convergence of
the quantum Markov semigroup is studied using the quantum L2-spectral gap
(gap(L)). In [3] a Wasserstein-type distance, denoted by Wd, has been defined
and applied to measure deviations from equilibrium, in other words, to define
an entropy production index (see [16, 17]). Wd is a non commutative analogue
of the classical Wasserstein distance wd used in optimal transport (see [12],[22],
[23]).

In this paper we use a generalization of the Lipschitz seminorm and a non-
commutative analogue of Wasserstein distance to study exponential convergence
of generic QMSs. This research is motivated by the exploration of relation be-
tween exponential convergence of QMSs and his classical reductions given by
classical Markov semigroups. The exponential convergence in the classical case
is represented by a Wasserstein curvature (or Chen exponent) σd linked with
the classical Wasserstein distance (see [8],[9],[19] ,[22]). Moreover, we show that
in the generic QMSs case the exponent convergence is related with σd and the
parameters of QMS.

The paper is organized as follows. In Section 2 we recall the basic aspects
about classical Wasserstein distance. We recall generalization of the Lipschitz
seminorm and a noncommutative analogue of Wasserstein distance introduced
in [3]. After, some useful estimates on norms of commutators are showed in the
Section 4. Finally, we apply these estimates. Specifically, we see in Section 5
that if T is a generic quantum Markov semigroup and

r = sup
n 6=m

max

{

d(m,m+ 1)

d(n,m)
,
d(m,m− 1)

d(n,m)

}

<∞

then for all states ρ1, ρ2

Wd(T∗t(ρ1),T∗t(ρ2)) ≤ (4
√
2 + 1 + 2

√
2 r)e−tkWd(ρ1, ρ2)
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with k := minn 6=m

{

µn+λn+µm+λm

2 ∧ σd
}

. Where µn, λn are coefficients genera-

tor of semigroup and σd is a rate convergence of classical reduction of semigroup.

2. Exponential Convergence: Classical Case

We start this section by reviewing the Wasserstein distance and Wasserstein
curvature for classical Markov processes.

Let (Ω, (Ft)t≥0,F ,P) be a filtered probability space, E a Polish space en-
dowed with metric d, and A = L∞(E). Consider a E-valued cadlag Markov
process {(Xt)t≥0, (Px)x∈E}, with (Tt)t≥0 associated Markov semigroup acting
on A as follows

Ttf(x) =

∫

E
f(y)Pt(x, dy), Pt(x, dy) = Px(Xt ∈ dy), x ∈ E.

The predual semigroup of (Tt)t≥0 acts on probability measures µ as

T∗tµ(·) =
∫

E
µ(dx)Pt(x, ·).

We denote by Pd(E) the space of probability measures ν on E such that
∫

E
d(x, y)ν(dy) < +∞ for some (or equivalently for all) x ∈ E.

Moreover, we consider Lipd(E) the space of Lipschitz functions on E with a
Lipschitz seminorm defined by

‖f‖Lipd := sup
x 6=y

|f(x)− f(y)|
d(x, y)

< +∞.

Remark 1. Under the previous assumptions, if a Markov kernel Pt(x, ·)
belongs to Pd(E) for all t > 0 and for all x ∈ E then Tt(f) is well defined for
all f ∈ Lipd(E).

We can therefore define

σd(t) := − sup{ log ‖Ttf‖Lipd ; ‖f‖Lipd = 1}, t ≥ 0.

Remark 2. Is easy to see that

σd(t) = − sup{ log ‖Ttf‖Lipd; ‖f‖Lipd = 1, f = f}, t ≥ 0.

i.e, the supremum does not change if we restrict to self-adjoint elements.
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Note that σd(0) = 0. By the semigroup property of Tt, it follows that the
function σd(t) is super-additive so that the following limit is well defined:

σd := lim
t↓0

σd(t)

t
= inf

t>0

σd(t)

t
. (1)

Moreover, the number σd is the best (maximal) constant ∆ in the contraction
inequality

‖Ttf‖Lipd ≤ e−∆t‖f‖Lipd , f ∈ Lipd(E), t > 0. (2)

Definition 1. The number σd given by (1) is called Wasserstein curvature

of the process (Xt)t≥0 with respect to metric d.

This notion of curvature was introduced by Joulin [19],[20] and Ollivier
[21] and is connected to the notion of Ricci curvature on Riemannian manifolds
[24]. In this remainder of this section, we will assume implicitly that the Markov
kernel Pt(x, ·) belongs to the space Pd(E) for all t > 0, x ∈ E.

The coefficient σd is linked with the classical Wasserstein distance.

Remark 3. The classical Wasserstein distance is defined by

wd(µ, ν) = inf
ϑ∈Ξ(µ,ν)

∫

M×M
d(m,n)dϑ(m,n)

where (M,d) is a metric space and Ξ(µ, ν) is the set of all Borel probability
measures ϑ on M ×M such that for all measurable subsets A,B ⊆M

ϑ(A×M) = µ(A), ϑ(M ×B) = ν(B).

When M is a separable space and µ, ν ∈ Pd(M) the Kantorovich-Rubinstein
theorem provides another representation for the Wasserstein metric:

wd(µ, ν) = sup

{∫

M
fd(µ− ν); f ∈ L1(d|µ − ν|); ‖ f ‖Lipd≤ 1

}

(for a proof of the Kantorovich-Rubinstein theorem see for example [12], The-
orem 11.8.2 p.421).

By remark 3, the Wasserstein curvature σd is the best (maximal) constant
∆ in the inequality

wd(T∗t(µ1), T∗t(µ2)) ≤ e−∆td(µ1, µ2), t > 0, (3)

where µ1 and µ2 are σ-finite measures.
Then σd is the best (maximal) constant ∆ holding simultaneously the in-

equalities (2) and (3).
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3. An Non Commutative Extension of the Lipschitz Seminorm and

a Wasserstein-Type Distance

We start our discussion about a non commutative extension of the Lipschitz
seminorm and a Wasserstein-type distance. In the quantum case, we consider
h complex separable Hilbert space with orthonormal basis fixed (ek)k∈V (V is
a finite or countable set).

In [3], we proposed a quantum version of wd, we recall the definition.

Definition 2. The quantum Wasserstein distance between two states

ϕσ1
(·) = tr(σ1(·)), ϕσ2

(·) = tr(σ2(·)) in B(h)

is defined by:

Wd (σ1, σ2) :=Wd (ϕσ1
, ϕσ2

) = sup
‖a‖LIPd

≤1
|tr ((σ1 − σ2) a)|

with

‖a‖LIPd
= sup

m,l∈V,m6=l
‖ δdml(a) ‖, δdml(a) =

1

d(m, l)
[(|em〉〈el|+ |el〉〈em|), a] ,

and d a distance defined on the set V .

Note that the usual deriviation δml(a) = [(|em〉〈el|+ |el〉〈em|), a] satisfies
δml = d(m, l)δdml.

We collect here some preliminary results on the quantum Wasserstein dis-
tance that we need in the sequel.

Proposition 3. The quantum Wasserstein distance Wd(ϕσ1
, ϕσ2

) is equal
to the infimum of |tr ((σ1 − σ2)a) | on self-adjoints elements a ∈ B(h) with
‖a‖LIPd

≤ 1

Proof. To prove our statement is enough to suppose thatWd(ϕσ1
, ϕσ2

) <∞
(the procedure is analogous if Wd(ϕσ1

, ϕσ2
) = ∞ ). For any ǫ > 0 there exists

a ∈ B(h) with ‖a‖LIPd
≤ 1

Wd(ϕσ1
, ϕσ2

)− ǫ < |tr ((σ1 − σ2)a) | = |tr ((σ1 − σ2)a
∗) |.

Let θ be the phase of the complex number tr ((σ1 − σ2)a) so that

e−iθtr((σ1 − σ2)a) = |tr((σ1 − σ2)a)| = eiθtr((σ1 − σ2)a
∗), (4)
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The operator y = (e−iθa+eiθa∗)/2 is clearly self-adjoint and has Lipschitz norm
smaller than 1, indeed

sup
m,l

‖δdml(y)‖ ≤ 1

2
sup
m,l

(

‖δdml(a)‖+ ‖δdml(a
∗)‖
)

≤ 1.

Moreover, by (4),

|tr ((σ1 − σ2)y) | = |tr ((σ1 − σ2)a) | > W (ϕσ1
, ϕσ2

)− ǫ.

This completes the proof.

We call diagonal algebra, and denote it by D the Abelian algebra generated
by one-dimensional projections |ek〉〈ek|. Let E : B(h) → D be the conditional
expectation with range D defined by

E(x) =
∑

j

xjj|ej〉〈ej | :=
∑

j

x(j)|ej〉〈ej | (5)

and let E∗ be the predual map on trace class operators with range l1(V )

E∗(ω) =
∑

j

ωjj|ej〉〈ej |. (6)

Proposition 4. For all x ∈ B(h) it follows that

(a) ‖E(x)‖LIPd
= supm,l∈V,m6=l

1
d(m,l) |x(l)− x(m)|.

(b) ‖E(x)‖LIPd
≤ ‖x‖LIPd

Proof. (a) If x ∈ B(h) then E(x) =
∑

s∈V x(s)|es〉〈es| where x(s) ∈ C

and the convergence of the sum is in the weak* topology, then

d(n,m)δdmn(E(x)) = (x(l)− x(m))|el〉〈em| − (x(l)− x(m))|em〉〈el|.
Since the norm of an anti self-adjoint matrix is the largest eigenvalue,
computing the norm of the above 2 × 2 matrix (thought as an operator
on the linear span of el, em) we find

‖E(x)‖LIPd
= sup

m,l∈V,m6=l
‖δdml(E(x))‖

= sup
m,l∈V,m6=l

1

d(m, l)
‖(x(l) − x(m))|el〉〈em| − (x(l)− x(m))|em〉〈el|‖

= sup
m,l∈V,m6=l

1

d(m, l)

√

‖|x(l) − x(m)|2|em〉〈em|+ |x(l)− x(m)|2|el〉〈el|‖

= sup
m,l∈V,m6=l

1

d(m, l)
|x(l) − x(m)| = ‖x(·)‖LIPd

.
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(b) First notice that if n 6= m and x =
∑

ij xij |ei〉〈ej | then

d(n,m)δdmn(x) = (xnm − xmn)|em〉〈em|+ (xmn − xnm)|en〉〈en|
+ (xnn − xmm)|em〉〈en|+

∑

j 6=n
j 6=m

xnj |em〉〈ej |

+ (xmm − xnn)|en〉〈em|+
∑

j 6=n
j 6=m

xmj |en〉〈ej |

−
∑

i 6=n
i 6=m

xim|ei〉〈en| −
∑

i 6=m
i 6=n

xin|ei〉〈em|.

Let pnm be a projection defined by pnm = |en〉〈en|+ |em〉〈em| so

d(n,m)pnmδ
d
mn(x)pnm = (xnm − xmn)|em〉〈em|+ (xmn − xnm)|en〉〈en|

+ (xnn − xmm)|em〉〈en|+ (xmm − xnn)|en〉〈em|
.

Since the norm of an anti self-adjoint matrix is the largest eigenvalue,
computing the norm of the above 2× 2 matrix (thought of as an operator
on the linear span of en, em) we find

d(n,m)2‖pnmδdmn(x)pnm‖2 = ‖(|xnm − xmn|2 + |xnn − xmm|2)em〉〈em|
+ (2ℜe((xnm − xmn)(xnn − xmm)))|em〉〈en|
+ (2ℜe((xnm − xmn)(xnn − xmm)))|en〉〈em|
+ (|xnm − xmn|2 + |xnn − xmm|2)|en〉〈en|‖
= |xnm − xmn|2 + |xnn − xmm|2

+
√

(2ℜe((xnm − xmn)(xnn − xmm)))2,

so, by item (a), we see that ‖δdmn(E(x))‖ ≤ ‖pnmδdmn(x)pnm‖,then

‖δdmn(E(x))‖ ≤ ‖pnmδdmn(x)pnm‖ ≤ ‖pnm‖‖δdmn(x)‖‖pnm‖ ≤ ‖δdmn(x)‖

therefore ‖δdmn(E(x))‖ ≤ ‖δdmn(x)‖ ≤ ‖x‖LIPd
for all n,m, n 6= m, so

‖E(x))‖LIPd
≤ ‖x‖LIPd

.
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Let σ1, σ2 be states on B(h) then E∗(σ1), E∗(σ2) are diagonal states with
respect to (ej)j∈V (i.e. measures probabilities on V ), then

tr((σ1 − σ2)E(x)) = tr(E∗(σ1 − σ2)E(x)) =
∑

s

x(s)(σ1 − σ2)(s)

=

∫

V
x(·)d(σ1(·)− σ2(·)).

Note that, since tr(σj|D a) = tr(σj|D E(a))) = tr(σjE(a)) for all a ∈ B(h)),

Wd(σ1|D, σ2|D) = sup
a∈D,a=a∗

|tr((σ1 − σ2)a)|

= sup
a∈D,a=a∗

|tr((σ1 − σ2)E(a))|

= wd(σ1(·), σ2(·))
for all pairs (σ1, σ2) of states. Then the restriction of Wd to the diagonal
subalgebra of B(h) coincides with the classical Wasserstein distance wd.

4. Estimates of Lipschitz Seminorm

In this section we prove some useful estimates on the norms of commutators
δmn(x). These estimates turn out to be useful for computing the exponential
convergence rate of a generic quantum Markov semigroup. We begin by some
simple lemma.

Lemma 5. Let e, f be two unit vectors in h and a, b ∈ h. Then

‖ |a〉〈e|+ |b〉〈f | ‖2 = 1

2

(

‖a‖2 + ‖b‖2 +
(

(

‖a‖2 − ‖b‖2
)2

+ 4 |〈a, b〉|2
)1/2

)

In particular

1

2

(

‖a‖2 + ‖b‖2
)

≤ ‖ |a〉〈e| + |b〉〈f | ‖2 ≤ ‖a‖2 + ‖b‖2

Proof. Let x = |a〉〈e|+ |b〉〈f |. Then x∗x is a rank-two self-adjoint operator
that can be represented by the 2× 2 matrix

(

‖a‖2 |〈a, b〉|
|〈a, b〉| ‖b‖2

)

Recalling that ‖x‖2 = ‖x∗x‖ and computing the biggest eigenvalue we ob-
tain the squared norm of x. The last inequalities immediately follow from the
Schwarz inequality |〈a, b〉| ≤ ‖a‖ · ‖b‖.
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The previous Lemma will be used to deduce bounds of ‖δnm(x)‖.
Proposition 6. For all n 6= m and all x ∈ B(h) we have

‖δnm(x)‖2 ≤ 2

(

2 |xnn − xmm|2 + 2 |xnm − xmn|2 (7)

+
∑

j 6=m,n

|xjn|2 +
∑

j 6=m,n

|xjm|2 +
∑

i 6=m,n

|xni|2 +
∑

i 6=m,n

|xmi|2
)

Proof. Note that the above series converge because x is a bounded operator.
Computing

δmn(x) = |em〉〈xn •|+ |em〉〈xm •| − |x•m〉〈en| − |x•n〉〈em|

where xn • and xm • (resp. x•n and x•m) denote the n andm row (resp. column)
vector of x. Keeping into account cancellations for i, j = n,m we find then

δmn(x) = |em〉〈φn|+ |en〉〈ψm| − |ξm〉〈en| − |ηn〉〈em| (8)

where

φn = (xn1, . . . , xnm−1, xnm − xmn, xnm+1, . . . , xnn − xmm, xnn+1, . . . )

ψm = (xm1, . . . , xmm−1, xmm − xnn, xmm+1, . . . , xmn − xnm, xmn+1, . . . )

ξm = (−x1m, . . . ,−xm−1m, 0,−xm+1m, . . . ,−xn−1m, 0,−xn+1m, . . . )

ηn = (−x1n, . . . ,−xm−1n, 0,−xm+1 n, . . . ,−xn−1n, 0,−xn+1n, . . . )

It follows then, from Lemma 5 and the elementary inequality ‖x+y‖2 ≤ 2‖x‖2+
2‖y‖2

‖δmn(x)‖2 ≤ 2 ‖|em〉〈φn|+ |en〉〈ψm|‖2 + 2 ‖(|ξm〉〈en|+ |ηn〉〈em|)∗‖2

≤ 2
(

‖φn‖2 + ‖ψm‖2 + ‖ξm‖2 + ‖ηn‖2
)

.

The proof is completed writing explicitly the norms of the four vectors φn, ψm,
ξn, ηm.

Proposition 7. For all n 6= m and all x ∈ B(h) we have

‖δnm(x)‖2 ≥ |xnn − xmm|2 + |xnm − xmn|2 (9)

+ max







∑

i 6=m,n

|xni|2,
∑

i 6=m,n

|xmi|2
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Proof. Let pmn be the orthogonal projection onto the subspace generated
by en and em Clearly, for all unit vector u ∈ h we have

‖δnm(x)‖2 ≥ ‖δnm(x)u‖2 ≥ ‖pnmδnm(x)u‖2 .
Note that vectors ξn, ηm in (8) are orthogonal to en, em and so the right-hand
side is equal to

‖〈φn, u〉 en + 〈ψm, u〉 em‖2 = |〈φn, u〉|2 + |〈ψm, u〉|2 .
Maximizing the right-hand side on the unit sphere in h we find

‖δnm(x)‖2 ≥ max
{

‖φn‖2 , ‖ψm‖2
}

and the claimed inequality follows computing the norms of φn and ψm

For a self-adjoint x we can also find an upper bound for the norm of δnm(x)
as a multiple of the right hand side of (9).

Theorem 8. For all self-adjoint x ∈ B(h) and all n,m we have

Mnm(x) ≤ ‖δnm(x)‖2 ≤ 8Mnm(x)

where

Mnm(x) = |xnn − xmm|2 + |xnm − xmn|2 +max







∑

i 6=m,n

|xni|2,
∑

i 6=m,n

|xmi|2






Proof. It suffices to apply Propositions 6 and 7 noting that, for a self-adjoint
operator x

∑

j 6=m,n

|xjn|2 +
∑

j 6=m,n

|xjm|2 +
∑

i 6=m,n

|xni|2 +
∑

i 6=m,n

|xmi|2

is dominated by

4max







∑

i 6=m,n

|xni|2,
∑

i 6=m,n

|xmi|2






.

Remark 4. A straightforward application of Theorem 8 shows that our
Wasserstein norm is equivalent to the Hilbert-Schmidt norm for a finite V (with
card(V ) ≥ 2) and, more generally, for a set V with a distance d such that

inf
m,l∈V,m6=l

d(m, l) > 0 and sup
m,l∈V

d(m, l) <∞.
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5. Lipschitz Seminorm and Generic QMSs

Generic QMS arise in the stochastic limit of a open discrete quantum system
with generic Hamiltonian, interacting with Gaussian fields through a dipole
type interaction (see Refs.[1],[2] and [6]).

The generator is given by

L(x) = G∗x+
∑

k,j;k 6=j

L∗
kjxLkj + xG,

where

H =
∑

k∈V
κk|ek〉〈ek|,

µk :=
∑

j∈V,κj<κk

γ−kj, λk :=
∑

j∈V,κj<κk

γ+jk,

and operators G,Lkj given by

Lkj =







√

γ−kj |ej〉〈ek|, if κj < κk
√

γ+kj |ej〉〈ek|, if κk < κj ,

G = −
∑

k∈V

(

µk + λk
2

+ iκk

)

|ek〉〈ek| = −1

2

∑

k,j;k 6=j

L∗
kjLkj − iH, (10)

We denote by D, and call it the diagonal subalgebra, the Abelian subalgebra
of B(h) of operators x such that 〈ej , xek〉 = 0 for all k 6= j ∈ V and Doff

the operator space of off-diagonal operators namely the closed (in the norm,
strong and weak* topologies) subspace of x ∈ B(h) such that 〈ek, xek〉 = 0
for all k ∈ V . Finally, we also denote by (Pt)t≥0 the strongly continuous
contraction semigroup on B(h) generated by G (see (10) and Theorem 3.1 of
[6]). The diagonal algebra D is clearly isometrically isomorphic to the Banach
space l∞(V ). Identifying D with l∞(V ) and taking the restrictions of Tt to D
we find a weakly-* continuous classical sub-Markov semigroup T = (Tt)t≥0 on
l∞(V ). Its generator L is characterized (see [13] Lemma 2.19) by

Dom(L) = Dom(L) ∩ l∞(V ), Lf = L(f) for all f ∈ Dom(L).

A straightforward computation shows that the operator L satisfies

Ljk = γ−jk, for all j, k with κk < κj ,
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Lkj = γ+kj, for all j, k with κj < κk,

Lkk = −
∑

{k,j∈V |κk<κj}
γ−jk −

∑

{k,j∈V |κj<κk}
γ+jk = −(µj + λj).

The following properties are important in this section.

Theorem 9. Let (Tt)t≥0 be a generic QMS then:

(a) The Abelian subalgebra D and the operator space Doff are Tt-invariant
for all t ≥ 0. Moreover Tt(x) = P ∗

t xPt for all x ∈ Doff .

(b) The spectral gap of a generic generator L is always equal to the spectral
gap of the corresponding diagonal restriction L.

For a proof of the previous theorem, see Theorems 3 and 15 of [6].

Lemma 10. For all selfadjoint x ∈ Doff and all t ≥ 0 we have

‖δnm (P ∗
t xPt)‖ ≤ 2

√
2 e−ct (‖δnm (x)‖+ ‖δnm′ (x)‖)

where

c =
1

2
min {λn + µn + λm + µm | n 6= m } (11)

and m′ = m+ 1 if m+ 1 6= n and m′ = m− 1 if m+ 1 = n.

Proof. Clearly

P ∗
t xPt =

∑

j 6=k

e−t(λj+µj+λk+µk)/2+it(κj−κk)xjk|ej〉〈ek|.

In other words, the action of P ∗
t ·Pt on matrix elements xjk of x corresponds to

multiplication by a scalar. As a consequence, by Proposition 6, for all n 6= m,
‖δmn (P

∗
t xPt)‖2 is smaller than

4e−2ct





∣

∣

∣
xnme

it(κn−κm) − xmne
−it(κn−κm)

∣

∣

∣

2
+max







∑

i 6=m,n

|xni|2,
∑

i 6=m,n

|xmi|2










Unfortunately
∣

∣

∣xnme
it(κn−κm) − xmne

−it(κn−κm)
∣

∣

∣

2
(12)

is not dominated by any multiple of |xnm − xmn|2 (this happens, for instance,
when xnm = xmn ∈ R), therefore we bring into action another derivation δnm′

where, for instance m′ = m+ 1 if m+ 1 6= n and m′ = m− 1 if m+ 1 = n.
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Since x is self-adjoint, by Proposition 7, we have

∣

∣

∣xnme
it(κn−κm) − xmne

−it(κn−κm)
∣

∣

∣

2
= 2

∣

∣

∣ℑ(xnmeit(κn−κm))
∣

∣

∣

2

≤ 2|xnm|2 ≤ 2d(n,m′)2 ‖δnm′ (x)‖2

and the max{·, ·} term is dominated by ‖δnm (x)‖2. The estimate of the norm
‖δnm (P ∗

t xPt)‖ now follows from the elementary inequality (r + s)1/2 ≤ r1/2 +
s1/2 for all r, s ≥ 0.

Lemma 11. For all selfadjoint x ∈ Doff and all t ≥ 0 we have

‖P ∗
t xPt‖LIPd

≤ 2
√
2 (2 + r) e−ct ‖x‖LIPd

where c is given by (11) and

r = sup
n 6=m

max

{

d(m,m+ 1)

d(n,m)
,
d(m,m− 1)

d(n,m)

}

Proof. Note that, for all n 6= m, we have

‖δnm (P ∗
t xPt)‖

d(n,m)
≤ 2

√
2 e−ct

(‖δnm (x)‖
d(n,m)

+
d(n,m′)
d(n,m)

‖δnm′ (x)‖
d(n,m′)

)

≤ 2
√
2 e−ct

(

1 +
d(n,m′)
d(n,m)

)

‖x‖LIPd

≤ 2
√
2 e−ct

(

1 +
d(n,m) + d(m,m′)

d(n,m)

)

‖x‖LIPd

≤ 2
√
2 e−ct

(

2 +
d(m,m′)
d(n,m)

)

‖x‖LIPd
.

The conclusion is now immediate.

Remark 5. It is worth noticing here that if the set V = N and the distance
is d(n,m) = |n−m|, then r = 1.

Given the structure of generic QMS T is clear that T restricted to D de-
fines a classical semigroup Tt satisfying an inequality with classical Wasserstein
curvature σd Moreover:

Proposition 12. Let T be a generic QMS and let

k := min
n 6=m

{

µn + λn + µm + λm
2

∧ σd
}

.
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Suppose that

r = sup
n 6=m

max

{

d(m,m+ 1)

d(n,m)
,
d(m,m− 1)

d(n,m)

}

<∞

then
‖Tt(x)‖LIPd

≤ (4
√
2 + 1 + 2

√
2 r)e−tk‖x‖LIPd

for all t > 0 and for all x ∈ B(h), x selfadjoint.

Proof. Let E : B(h) 7→ D, where D is the diagonal subalgebra and E⊥ :=
I − E : B(h) 7→ Doff then, by Lemma 11 and propostion 4, we obtain that

‖Tt(x)‖LIPd
≤ ‖Tt(E(x))‖LIPd

+ ‖Tt(E⊥(x))‖LIPd

≤ e−σdt‖E(x)‖LIPd
+ ‖P ∗

t E⊥(x)Pt‖LIPd

≤ e−σdt‖x‖LIPd
+ 2

√
2(2 + r)e−ct‖E⊥x‖LIPd

≤ e−σdt‖x‖LIPd
+ 2

√
2(2 + r)e−ct(‖E(x)‖LIPd

+ ‖x‖LIPd
)

≤ (4
√
2 + 1 + 2

√
2 r)e−(σd∧c)t‖x‖LIPd

with c = 1
2 min{λn + µn + λm + µm|n 6= m}.

Using the las sentence it follows that if

k := min
n 6=m

{

µn + λn + µm + λm
2

∧ σd
}

.

and

r = sup
n 6=m

max

{

d(m,m+ 1)

d(n,m)
,
d(m,m− 1)

d(n,m)

}

<∞

then taking y = x
(4
√
2+1+2

√
2 r)e−tk

we obtaint that

Wd(T∗t(ρ1),T∗t(ρ2))
= (4

√
2 + 1 + 2

√
2 r)e−tk sup

‖x‖LIPd
≤1
tr(ρ1 − ρ2)Tt (y)

≤ (4
√
2 + 1 + 2

√
2 r)e−tk sup

‖Tt(y)‖LIPd

tr(ρ1 − ρ2)Tt (y)

≤ (4
√
2 + 1 + 2

√
2 r)e−tk sup

‖x‖LIPd
≤1
tr(ρ1 − ρ2)Tt (x)

= (4
√
2 + 1 + 2

√
2 r)e−tkWd(ρ1, ρ2),
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i.e., for all ρ1, ρ2 states in B(h) and for all t > 0

Wd(T∗t(ρ1),T∗t(ρ2)) ≤ (4
√
2 + 1 + 2

√
2 r)e−tkWd(ρ1, ρ2) (13)

i.e., in other words, we obtain the following corollary

Corollary 13. Let T be a generic QMS and let

k := min
n 6=m

{

µn + λn + µm + λm
2

∧ σd
}

.

Suppose that

r = sup
n 6=m

max

{

d(m,m+ 1)

d(n,m)
,
d(m,m− 1)

d(n,m)

}

<∞

then
Wd(T∗t(ρ1),T∗t(ρ2)) ≤ (4

√
2 + 1 + 2

√
2 r)e−tkWd(ρ1, ρ2)

for all states ρ1, ρ2.
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