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Abstract: The aim of this paper is to introduce and study new types of strong compactness,
modulo an ideal, called pZ-compactness and cZ-compactness.

Several of their properties are presented and some effects of various kinds of functions on
them are studied. We compare this new spaces with other known types of strong compactness
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1. Introduction and Preliminaries

This work is developed around the concept of compactness modulo an ideal,
which was introduced by Newcomb [13], and investigated among others by
Hamlett and Jancovic [6], Rancin [15] Gupta and Kaur [5]. Some classes of
strong compactness modulo an ideal were studied by Newcomb [13], Hamlett et
al. [7], Abad El Monsef [2], Nasef and Noiri [11], Nasef [12] and Hosny [8]. Also,
some classes of weak compactness, module an ideal, were studied by Gupta and
Noiri [4].

The purpose of this paper is to introduce and investigate the classes of pZ-
compact and oZ-compact spaces. The behavior of this spaces under certain
kinds of functions also is investigated.

An ideal on a set X is a nonempty family Z of subsets of X such that:

Received: October 6, 2015 (© 2016 Academic Publications, Ltd.
Published: February 15, 2016 url: www.acadpubl.eu



482 N.R. Pachén

(1) If BeZand AC B C X, then A € 7.
(i) f A€ Z and B € Z, then AUB € T.

For example, if X is a set and B C X, then the following sets are ideals on
X:
PB)={ACX:ACB}, Z;={AC X: Ais finite}

and
Z.={A C X : Ais countable} .

If (X,7) is a topological space and Z is an ideal on X, then (X, 7,7) is
called an ideal space.

A subset A of a space (X, 7) is said to be g-closed [10] if A C U whenever
A CU and U € 7. It is clear that every closed set is g-closed, but the converse
is not true.

If (X,7,7) is an ideal space, (Y, ) is a topological space and f: X — Y is
a function, then f(Z) ={f (I): I € Z} is an ideal on Y [13].

If (X,7,7) is an ideal space, the set B={U\I : U € 7 and I € Z} is a base
for a topology 7*, finer than .

If (X, 7) is a topological space and A C X then A and int (A) will, respec-
tively, denote the closure and interior of A in (X, 7).

2. pZ-compact spaces

We recall that a subset A of an ideal space (X, 7,7) is said to be Z-compact [13],
if for every open cover {V,,} 5 of A by elements of 7, there exists Ag C A, finite,

such that A\ |J V, € Z. The ideal space (X, 7,Z) is said to be Z-compact if
aclMg
X is Z-compact.

It is clear that (X, 7) is compact if and only if (X, 7,{@}) is {&}-compact,
and that if (X, 7) is compact then (X, 7,7Z) is Z-compact.

Definition 2.1 If (X,7,7) is an ideal space and A C X, A is said to be

pL-compact if for every family {V4} 5 of open subsets of X, if A\ |J V, €T
aEA
then there exists Ag C A, finite, such that A\ |J V, € Z. The ideal space
aENg

(X, 7,7) is said to be pZ-compact if X is pZ-compact.

It is clear that (X, 7) is compact if and only if (X, 7,{@}) is p {&}-compact,
and that if (X, 7,7) is pZ-compact then (X,7,7) is Z-compact. The converse
is not true.
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Example 2.1 If X = [0, +00), 7 = {&, X} U{(r, +00) : » > 0} and Z = Zy,
then:
i) (X,7,Z) is T-compact, because if {V,},c, is an open cover of X, then
there exists ap € A with V,,, = X, and so X\V,, € 7.
i1) (X,7,7) is not pZ-compact, because X\ |J (r,+o00) = {0} € Z, but if
r>0

n

n is a positive integer and 0 < r; < 1y < - -+ < 1y, then X\ { (5, +00) =
i=1

X\ (r1,+00) ¢ T.

In the example 3.1 we show a pZ-compact ideal space.

Definition 2.2 A subset A of an ideal space (X, 7,7) is said to be Zg-closed
if for every U € 7, if A\U € T then A C U.

It is clear that A is {@} g-closed if and only if A is g-closed. We note that
if A is Zg-closed then A is g-closed. The converse is not true.

Example 2.2 1) If X =R, 7 = {&,R}U{(r,+00) : r € R}, T = {B: B C Q},
and if A = Q, then:

(a) A is g-closed because if U € 7 and A C U, then U =R and so A C U.

(b) A is not Zg-closed since A\ (0,+00) € Z, but A =R ¢ (0, +00).

2)If X ={0,1,2,3}, 7 = {@,{0},{1},{0,1} , X}, 7T = {@,{0}, {1},{0,1}}
and A = {2}, then A is Tg-closed because if U € 7 and A\U € Z, we have that
ACU,andsoU =X and ACU.

Theorem 2.1 If (X,7,7) is an ideal space and B is a base for T, then
(X, 1,7) is pZ-compact if and only if for all family {Vi} .o of open sets in B,
if X\ U Va €T then there exists Ao C A, finite, with X\ | V. €Z.

aEN aENg
Proof. (—) It is obvious.
(«) Let {Vo},en be a family of non-empty open subsets of X such that

X\ U Va €Z. For all a € A there exists a family {W,5: 8 € Ay} of elements

acA
in B such that V, = |J Wag.
ﬁeAa
Given that X\ |J U Wap € Z and (X,7,7) is pZ-compact, there ex-
OtEAﬁEAa

2

T T
ist Waig1, Waspss -y Wa,p, such that X\ J Wy,5, € Z. But X\ U Vo, C
i=1 =1

X\ ‘LiJl Wa, 8, and so X'\ ‘91 Vo, € L.
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Theorem 2.2 If (X, 7,7Z) is an ideal space, then the following statements
are equivalents:

(a) (X,7,T) is pZ-compact.

(b) (X,7*,7) is pZ-compact.

(c) For any family {F,},cp of closed subsets of X, if (| Fo € T then

acl
there exists Ao C A, finite, such that (| F, € L.
aclMg
Proof. 1t is clear that (a) <+ (¢). Since 7 C 7" we have that (b) — (a).

(a) — (b) We apply the Theorem 2.1. Theset B={U\I:U € 7 and I € 7}
is a base for 7*.
Let {Va}aea be a family of open subsets in B with X\ J V, € Z. For

a€EN
all @« € A there exist W, € 7 and I, € T such that V,, = W,\I,. Since
X\ U Wa € Z, there exists Ag C A, finite, such that X\ |J W, € Z. Now
a€EN a€lg
X\ U VaC|X\ UWa|U U IneZ,andso X\ U V,eT.
aclo acAo aclo aclog

Thus (X, 7*,7) is pZ-compact.

Next we study the behavior of some types of subspaces of a pZ-compact
space.

Theorem 2.3 If (X, 7,Z) is pI-compact and A C X is Zg-closed, then A
18 pL-compact.

Proof. Let {Va},cp be a family of open subsets of X such that A\ |J V, €
a€cl
Z. Since A is Zg-closed, A € |J Vo. Then X = (X\A) U U Vi and so
acA acA

X\[(X\A) U U Va] = @ € Z. Given that X is pZ-compact, there exists
acA

Ao C A, finite, such that X\ |J Vo €Zor X\[(X\A)U U V] € Z. In any
a€log a€No
case X\[(X\A)U U Va] € Z. But X\[(X\A)uU U Vo] =4\ U Vi, and
aElg aclp a€log

since A\ | Vo C A\ U Va €7, we have that A\ |J V, €Z.

aEg aclp a€lg

Theorem 2.4 If A and B are pZ-compact subsets of an ideal space (X, T,T),
then A U B is pZ-compact.

Proof. Let {V4},ca be a family of open subsets such that (AU B)\ U V, €
acl
Z. Since A\ J Vo C(AUB)\ U Vo and B\ J Vo C(AUB)\ U V, then
acN acA aEN acA
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A\ U Vo €T and B\ |J V, € Z, and so there exist A; C A and Ay C A, finite,
a€cl acA
with A\ J Vo €Z and B\ |J V, € Z. This implies that A\ |J V,€Z

acAr acNo acAN1UA2
and B\ |J Vo€Z,andso(AUB)\ U VaeTl.
acN1UA2 acN1UA2

Theorem 2.5 Let (X, 7,7) be an ideal space and A C X. Suppose that for
al U € 71, if A\U € T then there exists B C X such that B is pZ-compact,
AC B and B\U € Z. Then A is pZ-compact.

Proof. Let {Va},cp be a family of open subsets of X such that A\ |J V, €

acA

Z. There exists B C X such that B is pZ-compact, A C B and B\ |J V, €
aEN

Z. There exists Ag C A, finite, with B\ |J Vo, € Z. Since A\ |J Vo C
a€lNg a€o

B\ U V., we have that A\ | V, €Z.

aclMg acNo

Theorem 2.6 If (X,7,7) is an ideal space, A CB CX, BC A and A is T
g-closed then A is pZ-compact if and only if B is pZ-compact.

Proof. (=) Let {Va},cp be a family of open subsets of X such that

B\ |J Vo €Z. Then A\ |J V, € Z, and given that A is pZ-compact there ex-
acl ach

ists Ag C A, finite, such that A\ J V, € Z. Since Ais Zg-closed, AC |J V,,

- aclo acho
and so A\ |J V, € Z. This implies B\ | V. €Z.
aElo a€No
(¢) Let {V4},ca be afamily of open subsets of X such that A\ |J V, € T.
acA

Given that A is Zg-closed, A\ |J V, = @ € Z, and this implies B\ |J V, € .
acA acl
Since B is pZ-compact, there exists Ag C A, finite, with B\ |J V, € Z. Hence

aENg
A\ U Vo el

aENo

The following theorem is consequence of [Theorem 2.2, [5]].

Theorem 2.7 Let (X, 7,Z) be an ideal space such that (X, 1) is To. If A
is a pZ-compact subset of X, then A is closed in (X, 7).

Theorem 2.8 Let (X,7,Z) be a pZ-compact space such that (X, 1) is Ts.
If F and G are disjoint T g-closed subsets of X, then there exist disjoint open
subsets U and V of X, such that F\ U€Z and G\ Ve€T.
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Proof. The result is clear if F' = @ or if G = &. Suppose that F' # @ and
G #@.

Theorem 2.3 implies that F' and G are pZ-compact subsets of X.

We choose g € G, arbitrary but fixed.

For all f € F there exist disjoint Uy € 7 and Vy € 7 such that f € Uy
and g € Vy. Given that F\ |J Uy = @ € Z, there exists F;, C F, finite,

fer
with F'\ | Uf € Z. Let Ty = |J Uy and Wy, = [\ Vy. It is clear that
fEF, feFy feFy
T, W, = 2.
Now, since that G\ |J Wy, = @ € T and G is pI-compact, there exists
geG
Go C G, finite, such that G\ |J W, € Z.
g€Go
Let U= () Tyand V= |J W, We note that F\U = |J (F\Ty) € Z
geGo g€Go geGo
and G\V € T.

Moreover, U NV = &, because if u € U NV then there exists g1 € Gy with
u € Wy, and, since u € T}, we have that Ty, N W, # &, contradiction.

Now we study the behavior of pZ—compactness under certain types of func-
tions.

Theorem 2.9 If (X, 7,Z) is pZ-compact, f: (X,7) — (Y, ) is a continuous
function and if T ={B CY : f~'(B) €I} then:
(1) J is an ideal on'Y .
(2) (Y,B,T) is pJ -compact.

Proof. (1) Suppose that AC B CY and B € J. Since f~}(A) C f71(B) €
Z, then f71(A) €Z, and so A€ J.
Now, if A € J and B € J, then f~1(A) € Z and f~!(B) € Z, and then
Y (AUB) = f~YA)u f~1(B) € Z. This implies that AU B € J.
(2) Let {Vo} e be a family of open subsets of Y such that Y\ (J V, € J.
a€cl

Since X\ U f1(Va) = f1 (Y\ U Va> € Z and (X, 7,7) is pZ-compact,
acl acl

there exists Ag C A, finite, with f1 (Y\ U Va> =X\ U fHVa) €T
a€lo a€o

Thus Y\ U Vo€ J.

aclNo

Theorem 2.10 If (X,7,Z) is pZ-compact and f : (X,7) — (Y,B) is a
biyective continuous function, then (Y, 3, f(Z)) is pf (Z)-compact.
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Proof. Let {Va},cp be a family of open subsets of Y such that Y\ (J Vi, €
acl

f(Z). There exists I € T with Y\ U Vo, = f(I). Then I = f~1(f(1)) =
aeA

X\ U 1 (V,) € . Given that (X,7,7) is pZ-compact, there exists Ag C A,
a€cl

finite, with f=! [ Y\ (U Va> =X\ U f'(Vo) €Z. ThusY\ | Vo =

aENg aclo a€lg

f <f1 <Y\ g Va)) € f(@).

If f: X — Y is an inyective function and 7 is an ideal on Y, then the set
fYJ) = {ffl (J):J e j} is an ideal on X [13].

Theorem 2.11 If f : (X,7) — (Y,5) is a biyective open function and
(Y, B,T) is pJ -compact, then (X, 7, f~1 (7)) is pf (T )-compact.

Proof. Let {Va},eca be afamily of open subsets of X such that X\ (J V, €
a€cl

f7H(J). There exists J € J with X\ J Vo= f~1(J). Then Y\ U f(V,) =
acA acA
f(f71(J)) =J € J, and given that (Y, 5, J) is pJ-compact then there exists

Ao C A, finite, with f <X\ U Va> =Y\ U f(Va) € J. This implies that

a€lo a€Ng
X\ U Vaef ()

aENo

3. oZ-compact spaces

In this section we present a strong form of pZ-compactness. Some properties of
these spaces are also presented.

Definition 3.1 If (X, 7,7) is an ideal space and A C X, A is said to be 0Z-

compact if for every family {V4 },c, of open subsets of X, if A\ |J V,, € Z then
aEA
there exists Ag C A, finite, such that A C |J V,. The ideal space (X, 7,7) is
aENg
said to be oZ-compact if X is oZ-compact.

We note that if (X,7,7Z) is an ideal space and (X,7*,7) is oZ-compact,
then (X,7,7) is oZ-compact, and that (X, 7,7) is cZ-compact if and only if
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for any family {F},c, of closed subsets of X, if (| F, € Z then there exists
acA
Ag C A, finite, such that () F, = &.
aclMg
It is clear that (X, 7) is compact if and only if (X, 7, {@}) is 0 {&}-compact,
and that if (X, 7,7) is oZ-compact then (X, 7,Z) is pZ-compact, and (X, 7) is
compact.

Example 3.1 (1) Let X =Z", 7={AC X : X\A is finite} U {@} and T
= Zy. Then:

(a) The ideal space (X, 7,T) is pZ-compact, because if {F;},, is a family of
closed subsets of X with (] F; € Z, then there exists ig € A such that F;; # X.

1EA
Thus F;, € I.
(b) The ideal space (X, 7,7) is not 0Z-compact, because if F,, = {1,2,...,n}

o0
then F,, is a closed subset of X and () F, = {1} € Z, but if ny, ns,...,n, € Z*
n=1

s
then () F,, # 9.
k=1

(2) If 7 is the usual topology for R, and Z = {A : A C R}, then (R, 7) is not
compact, but (R, 7,7) is, evidently, pZ-compact.

(3) If 7 is the usual topology for X = [0,1] and Z = {@, {1}}, then (X,7)
is compact but (X, 7,7) is not pZ-compact. In fact, if V;, = [0,1—1/n), for

all integer number n > 2, then X\ J V,, = {1} € Z, but if k € Z" and
n>2
ni,M,...,ny are integer numbers with 2 < n;, for all i € {1,2,...,k}, then

k
X\U W, ¢Z.
i=1
In the example 4.1 we show a oZ-compact ideal space.

Theorem 3.1 If (X,7,7) is an ideal space and B is a base for T, then
(X,7,Z) is oZ-compact if and only if for every family {Va},cp of ope sets in

B, if X\ U Va € T then there exists Ag C A, finite,such that X = |J Va.
acN aclp

Proof. (—) It is obvious.

(«) Let {Vo},en be a family of non-empty open subsets of X such that

X\ U Va €Z. For all a € A there exists a family {W,5: 8 € Ay} of elements
agl
in B such that V,, = |J Wag.
BEA
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Given that X\ U U Wag € Z and (X, 7,7) is oZ-compact, there ex-
aEN e,

T T
ist Waqp1, WanBas s Wa, 8, such that X = |J Wy,5,. But X = |J Wy,s C

U Ve, CX,andso X = | V.

i=1 =1

Next we study the behavior of some types of subspaces of a oZ-compact
space.

Theorem 3.2 If (X, 7,7) is 0Z-compact and A C X is Lg-closed, then A
18 o L-compact.

Proof. Let {V4},ca be afamily of open subsets of X such that A\ J V, €
acA
Z. Since A is Zg-closed, A C |J Va. Then X = (X\A) U U V, and so
acA a€cl
X\[(X\A) U U Va] = @ € Z. Given that X is oZ-compact, there exists
aEA

Ao C A, finite, such that X = (X\A)U |J Va. Then 4 = AN [(X\A) U

aENo
LJ V&]iif@(\ LJ V@ c LJ V&.
acNo aclNg acNo

Theorem 3.3 If A and B are cZ-compact subsets of an ideal space (X, T,T),
then AU B is oZ-compact.

Proof. Let {V4},ca be afamily of open subsets such that (AU B)\ |J Va €
aEA
Z. Since A\ U Vo € (AUB)\ U Vo and B\ U Vo C(AUB)\ U V, then
a€cl
A\ U Va e Iand B\ U Va € I and so there ex1st A1 C A and Ay C A, finite,
acA acA
such that AC |J Voand BC |J V,. Thisimplies that AC |J V, and
acN [ASV) a€AN1UA2
BC U Vigandso AUBC |J V..

acN1UA2 a€AN1UA2

Theorem 3.4 Let (X, 7,7) be an ideal space and A C X. Suppose that for
al U € 7, if AA\U € T then there exists B C X such that B is oZ-compact,
AC B and B\U € I. Then A is cZ-compact.

Proof. Let {V4},c, be a family of open subsets of X such that A\ (J V, €
a€cl
Z. There exists B C X such that B is 0Z-compact, A C B and B\ |J V, € Z.
acA
There exists Ag C A, finite, with BC |J V,,andso AC |J Vi,.
a€lg a€Ng
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Theorem 3.5 If (X,7,7) is an ideal space, AC B C X and B C A then:
(1) If A is g-closed and oZ-compact, then B is oZ-compact.
(2) If A is Zg-closed and B is cZ-compact, then A is oZ-compact.

Proof. (1) Let {V4} e be afamily of open subsets of X such that B\ |J V, €

acl
Z. Then A\ |J V, € Z, and given that A is oZ-compact, there exists Ay C A,
aEA
finite, such that A C |J V. Since A is g-closed, A C |J Va, and this implies
a€lg a€o
BC U Va
aclMo
(2) Let {V4},ca be a family of open subsets of X such that A\ (J V, € T.
acl
Given that A is Zg-closed, A\ |J V, = @ € Z, and this implies B\ |J V, € Z.
aEN a€EA
Since B is oZ-compact, there exists Ag C A, finite, with B C |J V,. Hence
acNg
AC U Vi
aclNo

The following theorem is consequence of Theorem 2.7.

Theorem 3.6 Let (X, 7,7) be an ideal space such that (X,7) is Ty. If A is
a oZ-compact subset of X, then A is closed in (X, 7).

Now we study the behavior of 0Z—compactness under certain types of func-
tions.

Theorem 3.7 If (X,7,7) is oZ-compact, f : (X,7) — (Y,5) is a contin-
uous suryective function and if J = {BCY : f~1(B) € I} then (Y,53,7) is
o J -compact.

Proof. In the proof of Theorem 2.9 we show that J is an ideal on Y. Let
{Va}aen be a family of open subsets of Y such that Y\ |J V, € J. Since

a€cl
X\ U UV, = 1 (Y\ U Va> € 7 and (X,7,7) is 0Z-compact, there
a€cl acl
exists Ag C A, finite, such that X = |J f~'(Va). Given that f is suryective

aclMg
we have Y = J Vi.

aclMg

Theorem 3.8 If (X,7,Z) is oZ-compact and f : (X,7) — (Y,5) is a
biyective continuous function, then (Y, B, f(Z)) is o f (Z)-compact.
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Proof. Let {Va},cp be a family of open subsets of Y such that Y\ (J Vi, €
acl

f(Z). There exists I € T with Y\ U Vo, = f(I). Then I = f~1(f(1)) =
acN
X\ U f 1 (V,) € Z. Given that (X, 7,Z) is oZ-compact, there exists Ag C A,
a€cl
finite, with X = |J f~!(V4). Since f is suryective, Y = J V.
a€ho acho

Theorem 3.9 If f: (X,7) — (Y, ) is a biyective and open function, and
(Y,8,7) is a 0T -compact space, then (X, 7,1 (J)) is o f~1(J)-compact.

Proof. Let {Va},eca be afamily of open subsets of X such that X\ (J V, €
acA
f7H(J). There exists J € J with X\ J Vo= f~1(J). Then Y\ U f(V,) =
acA acA
f(f1(J)) =J € J, and given that (Y, 3,7) is 0J-compact then there exists

Ao C A, finite, with Y = |J f(V,). This implies that X = |J V,.

a€lo a€Ng

4. pZ-compactness and 0Z-compactness are new strong forms of
Z-compactness

Other types of strong compactness modulo an ideal have been previously de-
fined: BZ-compactness, vZ-compactness, SZ-compactness, and aZ-compactness.
It is known that yZ-compactness = SZ-compactness = SZ-compactness =
aZ—compactness = Z—compactness.
In this section we show that pZ-compactness and cZ-compactness are really
new classes of strong Z-compactness.

We recall that if (X, 7) is a topological space and A C X, then:
1) A is said to be o — open [14] if A C int (mt(A))

2) A is said to be 8 — open [1] if A C int (A).

3) A is said to be v —open [3] if A C int (mt(A)) Uint (A)

)
)
)
4) A is said to be semi —open [9], or simply S-open, if A C int(A).

5) If (X,7,7) is an ideal space, and if z € {a,,7,5} then A is said to

be zI-compact if for every cover {V;},c, of A by z-open subsets of X, there

exists Ag C A, finite, with X\ |J V; € Z. The space (X,7,Z) is said to be
i€\o
zZ-compact if X is zZ-compact.
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The concepts of aZ-compactness, SZ-compactness, yZ-compactness and
SZ-compactness are due to Nasef and Noiri [11], Hosny [8], Nasef [12] and
Abd El-Monsef et al. [2], respectively.

The following example shows that, for all z € {a, 8,7, S}, 0Z-compactness
# zZ-compactness, and then pZ-compactness # zZ-compactness.

Example 4.1 Suppose that X = R", 7 = {2, X, X\ZT}U{V,, :n € Z*},
n—1

where V,, = J (k,k+1),and Z={A: AC(0,1)}. Then we have that:

(1) The ideal space (X, 7,Z) is oZ-compact.

If {Ua}pep is a family of open subsets of X such that X\ J U, € Z, there
a€EN
exists g € A with 1 € U,,, and so U,, = X.

(2) (X,7,7) is not aZ-compact.
If A, = (0,n), for all n € Z*, then int (4,) = A,\ (4, NZT), int (4,) =
X, int (z’nt (An)> = X and so A, is a-open.

o0
Moreover, X = |J

n=1

m

Ay, but if ny,ng, ..., npy € ZT we have that X\ J A,, ¢
k=1

I.

Finally, we show an example of a yZ-compact space which is not oZ-
compact. This implies that, for all z € {a,3,7,S}, zZ-compactness # oZ-
compactness.

Example 4.2 Let 7 be the topology on Z given by:

V e 7 if and only if, for all n € Z, if n € V then [n], € V, where [n], = 0 if
n is even, and [n], = 1 if n is odd.

Let T={A: A CZ\{0,1}}. We have that:

(1) (Z,7,7) is not oZ-compact, because (Z, T) is not compact.
[e.e]

Z= U {0,1,—n,n} and {0,1, —n,n} € 7, for all n > 1.
n=1

(2) B C Z is y-open if and only if B is open.

It is clear that if B is open, then B is y-open.

Suppose that B is not open. There exists N € B with [N], ¢ B.

If N is even and 1 € B then int (W) = 27 + 1 = int(B), where
2Z+1={2n+1:n € Z}.

If N is even and 1 ¢ B then int (W) = @ = int(B).
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If N is odd and 0 € B then int (mt(B)) — 97 = int(B), where 27 =

{2n:n € Z}.

0e

If N is odd and 0 ¢ B then int (mt(B)) = @ = int(B).

Thus B is not y-open.

(3) (Z,7,T) is yZ-compact.

If {B;};c, is an open cover of Z, there exist i9p € A and i; € A, such that
Bi, and 1 € B;,. Then Z\(B;, U B;;) € Z.

Question. There is a yZ-compact space (X, 7,Z) which is not pZ-compact?
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