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Abstract: The aim of this paper is to introduce and study new types of strong compactness,
modulo an ideal, called ρI-compactness and σI-compactness.

Several of their properties are presented and some effects of various kinds of functions on

them are studied. We compare this new spaces with other known types of strong compactness

modulo an ideal.
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1. Introduction and Preliminaries

This work is developed around the concept of compactness modulo an ideal,
which was introduced by Newcomb [13], and investigated among others by
Hamlett and Jancovic [6], Rancin [15] Gupta and Kaur [5]. Some classes of
strong compactness modulo an ideal were studied by Newcomb [13], Hamlett et
al. [7], Abad El Monsef [2], Nasef and Noiri [11], Nasef [12] and Hosny [8]. Also,
some classes of weak compactness, module an ideal, were studied by Gupta and
Noiri [4].

The purpose of this paper is to introduce and investigate the classes of ρI-
compact and σI-compact spaces. The behavior of this spaces under certain
kinds of functions also is investigated.

An ideal on a set X is a nonempty family I of subsets of X such that:
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(i) If B ∈ I and A ⊆ B ⊆ X, then A ∈ I.

(ii) If A ∈ I and B ∈ I, then A ∪B ∈ I.

For example, if X is a set and B ⊆ X, then the following sets are ideals on
X:

P(B) = {A ⊆ X : A ⊆ B} , If = {A ⊆ X : A is finite}

and

Ic = {A ⊆ X : A is countable} .

If (X, τ) is a topological space and I is an ideal on X, then (X, τ,I) is
called an ideal space.

A subset A of a space (X, τ) is said to be g-closed [10] if A ⊆ U whenever
A ⊆ U and U ∈ τ . It is clear that every closed set is g-closed, but the converse
is not true.

If (X, τ,I) is an ideal space, (Y, β) is a topological space and f : X → Y is
a function, then f (I) = {f (I) : I ∈ I} is an ideal on Y [13].

If (X, τ,I) is an ideal space, the set B = {U\I : U ∈ τ and I ∈ I} is a base
for a topology τ∗, finer than τ .

If (X, τ) is a topological space and A ⊆ X then A and int (A) will, respec-
tively, denote the closure and interior of A in (X, τ).

2. ρI-compact spaces

We recall that a subset A of an ideal space (X, τ,I) is said to be I-compact [13],
if for every open cover {Vα}α∈Λ of A by elements of τ , there exists Λ0 ⊆ Λ, finite,
such that A\

⋃

α∈Λ0

Vα ∈ I. The ideal space (X, τ,I) is said to be I-compact if

X is I-compact.

It is clear that (X, τ) is compact if and only if (X, τ, {∅}) is {∅}-compact,
and that if (X, τ) is compact then (X, τ,I) is I-compact.

Definition 2.1 If (X, τ,I) is an ideal space and A ⊆ X, A is said to be
ρI-compact if for every family {Vα}α∈Λ of open subsets of X, if A\

⋃

α∈Λ
Vα ∈ I

then there exists Λ0 ⊆ Λ, finite, such that A\
⋃

α∈Λ0

Vα ∈ I. The ideal space

(X, τ,I) is said to be ρI-compact if X is ρI-compact.

It is clear that (X, τ) is compact if and only if (X, τ, {∅}) is ρ {∅}-compact,
and that if (X, τ,I) is ρI-compact then (X, τ,I) is I-compact. The converse
is not true.
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Example 2.1 If X = [0,+∞), τ = {∅,X}∪{(r,+∞) : r ≥ 0} and I = If ,
then:

i) (X, τ,I) is I-compact, because if {Vα}α∈Λ is an open cover of X, then
there exists α0 ∈ Λ with Vα0

= X, and so X\Vα0
∈ I.

ii) (X, τ,I) is not ρI-compact, because X\
⋃

r>0
(r,+∞) = {0} ∈ I, but if

n is a positive integer and 0 < r1 < r2 < · · · < rn, then X\
n
⋃

i=1
(ri,+∞) =

X\ (r1,+∞) /∈ I.

In the example 3.1 we show a ρI-compact ideal space.

Definition 2.2 A subset A of an ideal space (X, τ,I) is said to be Ig-closed
if for every U ∈ τ , if A\U ∈ I then A ⊆ U .

It is clear that A is {∅} g-closed if and only if A is g-closed. We note that
if A is Ig-closed then A is g-closed. The converse is not true.

Example 2.2 1) IfX = R, τ = {∅,R}∪{(r,+∞) : r ∈ R}, I = {B : B ⊆ Q},
and if A = Q, then:

(a) A is g-closed because if U ∈ τ and A ⊆ U , then U = R and so A ⊆ U .

(b) A is not Ig-closed since A\ (0,+∞) ∈ I, but A = R * (0,+∞).

2) IfX = {0, 1, 2, 3}, τ = {∅, {0} , {1} , {0, 1} ,X}, I = {∅, {0} , {1} , {0, 1}}
and A = {2}, then A is Ig-closed because if U ∈ τ and A\U ∈ I, we have that
A ⊆ U , and so U = X and A ⊆ U .

Theorem 2.1 If (X, τ,I) is an ideal space and B is a base for τ , then
(X, τ,I) is ρI-compact if and only if for all family {Vα}α∈Λ of open sets in B,
if X\

⋃

α∈Λ

Vα ∈ I then there exists Λ0 ⊆ Λ, finite, with X\
⋃

α∈Λ0

Vα ∈ I.

Proof. (→) It is obvious.

(←) Let {Vα}α∈Λ be a family of non-empty open subsets of X such that
X\

⋃

α∈Λ

Vα ∈ I. For all α ∈ Λ there exists a family {Wαβ : β ∈ Λα} of elements

in B such that Vα =
⋃

β∈Λα

Wαβ.

Given that X\
⋃

α∈Λ

⋃

β∈Λα

Wαβ ∈ I and (X, τ,I) is ρI-compact, there ex-

ist Wα1β1
, Wα2β2

, ...,Wαrβr
such that X\

r
⋃

i=1
Wαiβi

∈ I. But X\
r
⋃

i=1
Vαi
⊆

X\
r
⋃

i=1
Wαiβi

, and so X\
r
⋃

i=1
Vαi
∈ I.
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Theorem 2.2 If (X, τ,I) is an ideal space, then the following statements
are equivalents:

(a) (X, τ,I) is ρI-compact.
(b) (X, τ∗,I) is ρI-compact.
(c) For any family {Fα}α∈Λ of closed subsets of X, if

⋂

α∈Λ
Fα ∈ I then

there exists Λ0 ⊆ Λ, finite, such that
⋂

α∈Λ0

Fα ∈ I.

Proof. It is clear that (a)↔ (c). Since τ ⊆ τ∗ we have that (b)→ (a).
(a)→ (b) We apply the Theorem 2.1. The set B = {U\I : U ∈ τ and I ∈ I}

is a base for τ∗.
Let {Vα}α∈Λ be a family of open subsets in B with X\

⋃

α∈Λ

Vα ∈ I. For

all α ∈ Λ there exist Wα ∈ τ and Iα ∈ I such that Vα = Wα\Iα. Since
X\

⋃

α∈Λ

Wα ∈ I, there exists Λ0 ⊆ Λ, finite, such that X\
⋃

α∈Λ0

Wα ∈ I. Now

X\
⋃

α∈Λ0

Vα ⊆

(

X\
⋃

α∈Λ0

Wα

)

∪
⋃

α∈Λ0

Iα ∈ I, and so X\
⋃

α∈Λ0

Vα ∈ I.

Thus (X, τ∗,I) is ρI-compact.

Next we study the behavior of some types of subspaces of a ρI-compact
space.

Theorem 2.3 If (X, τ,I) is ρI-compact and A ⊆ X is Ig-closed, then A
is ρI-compact.

Proof. Let {Vα}α∈Λ be a family of open subsets of X such that A\
⋃

α∈Λ
Vα ∈

I. Since A is Ig-closed, A ⊆
⋃

α∈Λ
Vα. Then X =

(

X\A
)

∪
⋃

α∈Λ
Vα and so

X\[
(

X\A
)

∪
⋃

α∈Λ

Vα] = ∅ ∈ I. Given that X is ρI-compact, there exists

Λ0 ⊆ Λ, finite, such that X\
⋃

α∈Λ0

Vα ∈ I or X\[
(

X\A
)

∪
⋃

α∈Λ0

Vα] ∈ I. In any

case X\[
(

X\A
)

∪
⋃

α∈Λ0

Vα] ∈ I. But X\[
(

X\A
)

∪
⋃

α∈Λ0

Vα] = A\
⋃

α∈Λ0

Vα, and

since A\
⋃

α∈Λ0

Vα ⊆ A\
⋃

α∈Λ0

Vα ∈ I, we have that A\
⋃

α∈Λ0

Vα ∈ I.

Theorem 2.4 If A and B are ρI-compact subsets of an ideal space (X, τ,I),
then A ∪ B is ρI-compact.

Proof. Let {Vα}α∈Λ be a family of open subsets such that (A ∪B) \
⋃

α∈Λ
Vα ∈

I. Since A\
⋃

α∈Λ
Vα ⊆ (A ∪B) \

⋃

α∈Λ
Vα and B\

⋃

α∈Λ
Vα ⊆ (A ∪B) \

⋃

α∈Λ
Vα then
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A\
⋃

α∈Λ
Vα ∈ I and B\

⋃

α∈Λ
Vα ∈ I, and so there exist Λ1 ⊆ Λ and Λ2 ⊆ Λ, finite,

with A\
⋃

α∈Λ1

Vα ∈ I and B\
⋃

α∈Λ2

Vα ∈ I. This implies that A\
⋃

α∈Λ1∪Λ2

Vα ∈ I

and B\
⋃

α∈Λ1∪Λ2

Vα ∈ I, and so (A ∪B) \
⋃

α∈Λ1∪Λ2

Vα ∈ I.

Theorem 2.5 Let (X, τ,I) be an ideal space and A ⊆ X. Suppose that for
all U ∈ τ , if A\U ∈ I then there exists B ⊆ X such that B is ρI-compact,
A ⊆ B and B\U ∈ I. Then A is ρI-compact.

Proof. Let {Vα}α∈Λ be a family of open subsets of X such that A\
⋃

α∈Λ

Vα ∈

I. There exists B ⊆ X such that B is ρI-compact, A ⊆ B and B\
⋃

α∈Λ

Vα ∈

I. There exists Λ0 ⊆ Λ, finite, with B\
⋃

α∈Λ0

Vα ∈ I. Since A\
⋃

α∈Λ0

Vα ⊆

B\
⋃

α∈Λ0

Vα we have that A\
⋃

α∈Λ0

Vα ∈ I.

Theorem 2.6 If (X, τ,I) is an ideal space, A ⊆B ⊆X, B⊆ A and A is I
g-closed then A is ρI-compact if and only if B is ρI-compact.

Proof. (→) Let {Vα}α∈Λ be a family of open subsets of X such that
B\

⋃

α∈Λ
Vα ∈ I. Then A\

⋃

α∈Λ
Vα ∈ I, and given that A is ρI-compact there ex-

ists Λ0 ⊆ Λ, finite, such that A\
⋃

α∈Λ0

Vα ∈ I. Since A is Ig-closed, A ⊆
⋃

α∈Λ0

Vα,

and so A\
⋃

α∈Λ0

Vα ∈ I. This implies B\
⋃

α∈Λ0

Vα ∈ I.

(←) Let {Vα}α∈Λ be a family of open subsets of X such that A\
⋃

α∈Λ
Vα ∈ I.

Given that A is Ig-closed, A\
⋃

α∈Λ

Vα = ∅ ∈ I, and this implies B\
⋃

α∈Λ

Vα ∈ I.

Since B is ρI-compact, there exists Λ0 ⊆ Λ, finite, with B\
⋃

α∈Λ0

Vα ∈ I. Hence

A\
⋃

α∈Λ0

Vα ∈ I.

The following theorem is consequence of [Theorem 2.2, [5]].

Theorem 2.7 Let (X, τ,I) be an ideal space such that (X, τ) is T2. If A
is a ρI-compact subset of X, then A is closed in (X, τ∗).

Theorem 2.8 Let (X, τ,I) be a ρI-compact space such that (X, τ) is T2.
If F and G are disjoint Ig-closed subsets of X, then there exist disjoint open
subsets U and V of X, such that F \ U ∈ I and G \ V ∈ I.
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Proof. The result is clear if F = ∅ or if G = ∅. Suppose that F 6= ∅ and
G 6= ∅.

Theorem 2.3 implies that F and G are ρI-compact subsets of X.
We choose g ∈ G, arbitrary but fixed.
For all f ∈ F there exist disjoint Uf ∈ τ and Vf ∈ τ such that f ∈ Uf

and g ∈ Vf . Given that F\
⋃

f∈F

Uf = ∅ ∈ I, there exists Fg ⊆ F , finite,

with F\
⋃

f∈Fg

Uf ∈ I. Let Tg =
⋃

f∈Fg

Uf and Wg =
⋂

f∈Fg

Vf . It is clear that

Tg ∩Wg = ∅.
Now, since that G\

⋃

g∈G

Wg = ∅ ∈ I and G is ρI-compact, there exists

G0 ⊆ G, finite, such that G\
⋃

g∈G0

Wg ∈ I.

Let U =
⋂

g∈G0

Tg and V =
⋃

g∈G0

Wg. We note that F\U =
⋃

g∈G0

(F\Tg) ∈ I

and G\V ∈ I.
Moreover, U ∩ V = ∅, because if u ∈ U ∩ V then there exists g1 ∈ G0 with

u ∈Wg1 and, since u ∈ Tg1 , we have that Tg1 ∩Wg1 6= ∅, contradiction.

Now we study the behavior of ρI−compactness under certain types of func-
tions.

Theorem 2.9 If (X, τ,I) is ρI-compact, f : (X, τ)→ (Y, β) is a continuous
function and if J =

{

B ⊆ Y : f−1 (B) ∈ I
}

then:
(1) J is an ideal on Y .
(2) (Y, β,J ) is ρJ -compact.

Proof. (1) Suppose that A ⊆ B ⊆ Y and B ∈ J . Since f−1(A) ⊆ f−1(B) ∈
I, then f−1(A) ∈ I, and so A ∈ J .

Now, if A ∈ J and B ∈ J , then f−1 (A) ∈ I and f−1 (B) ∈ I, and then
f−1 (A ∪B) = f−1(A) ∪ f−1 (B) ∈ I. This implies that A ∪B ∈ J .

(2) Let {Vα}α∈Λ be a family of open subsets of Y such that Y \
⋃

α∈Λ
Vα ∈ J .

Since X\
⋃

α∈Λ

f−1(Vα) = f−1

(

Y \
⋃

α∈Λ

Vα

)

∈ I and (X, τ,I) is ρI-compact,

there exists Λ0 ⊆ Λ, finite, with f−1

(

Y \
⋃

α∈Λ0

Vα

)

= X\
⋃

α∈Λ0

f−1(Vα) ∈ I.

Thus Y \
⋃

α∈Λ0

Vα ∈ J .

Theorem 2.10 If (X, τ,I) is ρI-compact and f : (X, τ) → (Y, β) is a
biyective continuous function, then (Y, β, f(I)) is ρf (I)-compact.
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Proof. Let {Vα}α∈Λ be a family of open subsets of Y such that Y \
⋃

α∈Λ
Vα ∈

f (I). There exists I ∈ I with Y \
⋃

α∈Λ
Vα = f (I). Then I = f−1 (f(I)) =

X\
⋃

α∈Λ

f−1 (Vα) ∈ I. Given that (X, τ,I) is ρI-compact, there exists Λ0 ⊆ Λ,

finite, with f−1

(

Y \
⋃

α∈Λ0

Vα

)

= X\
⋃

α∈Λ0

f−1 (Vα) ∈ I. Thus Y \
⋃

α∈Λ0

Vα =

f

(

f−1

(

Y \
⋃

α∈Λ0

Vα

))

∈ f (I).

If f : X → Y is an inyective function and J is an ideal on Y , then the set
f−1(J ) =

{

f−1 (J) : J ∈ J
}

is an ideal on X [13].

Theorem 2.11 If f : (X, τ) → (Y, β) is a biyective open function and
(Y, β,J ) is ρJ -compact, then

(

X, τ, f−1 (J )
)

is ρf−1(J )-compact.

Proof. Let {Vα}α∈Λ be a family of open subsets of X such that X\
⋃

α∈Λ
Vα ∈

f−1 (J ). There exists J ∈ J with X\
⋃

α∈Λ
Vα = f−1 (J). Then Y \

⋃

α∈Λ
f (Vα) =

f
(

f−1 (J)
)

= J ∈ J , and given that (Y, β,J ) is ρJ -compact then there exists

Λ0 ⊆ Λ, finite, with f

(

X\
⋃

α∈Λ0

Vα

)

= Y \
⋃

α∈Λ0

f (Vα) ∈ J . This implies that

X\
⋃

α∈Λ0

Vα ∈ f−1 (J ).

3. σI-compact spaces

In this section we present a strong form of ρI-compactness. Some properties of
these spaces are also presented.

Definition 3.1 If (X, τ,I) is an ideal space and A ⊆ X, A is said to be σI-
compact if for every family {Vα}α∈Λ of open subsets of X, if A\

⋃

α∈Λ

Vα ∈ I then

there exists Λ0 ⊆ Λ, finite, such that A ⊆
⋃

α∈Λ0

Vα. The ideal space (X, τ,I) is

said to be σI-compact if X is σI-compact.

We note that if (X, τ,I) is an ideal space and (X, τ∗,I) is σI-compact,
then (X, τ,I) is σI-compact, and that (X, τ,I) is σI-compact if and only if
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for any family {Fα}α∈Λ of closed subsets of X, if
⋂

α∈Λ
Fα ∈ I then there exists

Λ0 ⊆ Λ, finite, such that
⋂

α∈Λ0

Fα = ∅.

It is clear that (X, τ) is compact if and only if (X, τ, {∅}) is σ {∅}-compact,
and that if (X, τ,I) is σI-compact then (X, τ,I) is ρI-compact, and (X, τ) is
compact.

Example 3.1 (1) Let X = Z+, τ = {A ⊆ X : X\A is finite} ∪ {∅} and I
= If . Then:

(a) The ideal space (X, τ,I) is ρI-compact, because if {Fi}i∈Λ is a family of
closed subsets of X with

⋂

i∈Λ

Fi ∈ I, then there exists i0 ∈ Λ such that Fi0 6= X.

Thus Fi0 ∈ I.

(b) The ideal space (X, τ,I) is not σI-compact, because if Fn = {1, 2, ..., n}

then Fn is a closed subset of X and
∞
⋂

n=1
Fn = {1} ∈ I, but if n1, n2,...,nr ∈ Z+

then
r
⋂

k=1

Fnk
6= ∅.

(2) If τ is the usual topology for R, and I = {A : A ⊆ R}, then (R, τ) is not
compact, but (R, τ,I) is, evidently, ρI-compact.

(3) If τ is the usual topology for X = [0, 1] and I = {∅, {1}}, then (X, τ)
is compact but (X, τ,I) is not ρI-compact. In fact, if Vn = [0, 1− 1/n), for
all integer number n ≥ 2, then X\

⋃

n≥2
Vn = {1} ∈ I, but if k ∈ Z+ and

n1, n2, ..., nk are integer numbers with 2 ≤ ni, for all i ∈ {1, 2, ..., k}, then

X\
k
⋃

i=1
Vni

/∈ I.

In the example 4.1 we show a σI-compact ideal space.

Theorem 3.1 If (X, τ,I) is an ideal space and B is a base for τ , then
(X, τ,I) is σI-compact if and only if for every family {Vα}α∈Λ of ope sets in
B, if X\

⋃

α∈Λ

Vα ∈ I then there exists Λ0 ⊆ Λ, finite,such that X =
⋃

α∈Λ0

Vα.

Proof. (→) It is obvious.

(←) Let {Vα}α∈Λ be a family of non-empty open subsets of X such that
X\

⋃

α∈Λ

Vα ∈ I. For all α ∈ Λ there exists a family {Wαβ : β ∈ Λα} of elements

in B such that Vα =
⋃

β∈Λ

Wαβ.
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Given that X\
⋃

α∈Λ

⋃

β∈Λα

Wαβ ∈ I and (X, τ,I) is σI-compact, there ex-

ist Wα1β1
,Wα2β2

, ...,Wαrβr
such that X =

r
⋃

i=1
Wαiβi

. But X =
r
⋃

i=1
Wαiβi

⊆

r
⋃

i=1
Vαi
⊆ X, and so X =

r
⋃

i=1
Vαi

.

Next we study the behavior of some types of subspaces of a σI-compact
space.

Theorem 3.2 If (X, τ,I) is σI-compact and A ⊆ X is Ig-closed, then A
is σI-compact.

Proof. Let {Vα}α∈Λ be a family of open subsets of X such that A\
⋃

α∈Λ
Vα ∈

I. Since A is Ig-closed, A ⊆
⋃

α∈Λ
Vα. Then X =

(

X\A
)

∪
⋃

α∈Λ
Vα and so

X\[
(

X\A
)

∪
⋃

α∈Λ
Vα] = ∅ ∈ I. Given that X is σI-compact, there exists

Λ0 ⊆ Λ, finite, such that X =
(

X\A
)

∪
⋃

α∈Λ0

Vα. Then A = A ∩ [
(

X\A
)

∪
⋃

α∈Λ0

Vα] = A ∩
⋃

α∈Λ0

Vα ⊆
⋃

α∈Λ0

Vα.

Theorem 3.3 If A and B are σI-compact subsets of an ideal space (X, τ,I),
then A ∪B is σI-compact.

Proof. Let {Vα}α∈Λ be a family of open subsets such that (A ∪B) \
⋃

α∈Λ
Vα ∈

I. Since A\
⋃

α∈Λ
Vα ⊆ (A ∪B) \

⋃

α∈Λ
Vα and B\

⋃

α∈Λ
Vα ⊆ (A ∪B) \

⋃

α∈Λ
Vα then

A\
⋃

α∈Λ
Vα ∈ I and B\

⋃

α∈Λ
Vα ∈ I, and so there exist Λ1 ⊆ Λ and Λ2 ⊆ Λ, finite,

such that A ⊆
⋃

α∈Λ1

Vα and B ⊆
⋃

α∈Λ2

Vα. This implies that A ⊆
⋃

α∈Λ1∪Λ2

Vα and

B ⊆
⋃

α∈Λ1∪Λ2

Vα, and so A ∪B ⊆
⋃

α∈Λ1∪Λ2

Vα.

Theorem 3.4 Let (X, τ,I) be an ideal space and A ⊆ X. Suppose that for
all U ∈ τ , if A\U ∈ I then there exists B ⊆ X such that B is σI-compact,
A ⊆ B and B\U ∈ I. Then A is σI-compact.

Proof. Let {Vα}α∈Λ be a family of open subsets of X such that A\
⋃

α∈Λ
Vα ∈

I. There exists B ⊆ X such that B is σI-compact, A ⊆ B and B\
⋃

α∈Λ
Vα ∈ I.

There exists Λ0 ⊆ Λ, finite, with B ⊆
⋃

α∈Λ0

Vα, and so A ⊆
⋃

α∈Λ0

Vα.
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Theorem 3.5 If (X, τ,I) is an ideal space, A ⊆ B ⊆ X and B ⊆ A then:
(1) If A is g-closed and σI-compact, then B is σI-compact.
(2) If A is Ig-closed and B is σI-compact, then A is σI-compact.

Proof. (1) Let {Vα}α∈Λ be a family of open subsets ofX such that B\
⋃

α∈Λ
Vα ∈

I. Then A\
⋃

α∈Λ
Vα ∈ I, and given that A is σI-compact, there exists Λ0 ⊆ Λ,

finite, such that A ⊆
⋃

α∈Λ0

Vα. Since A is g-closed, A ⊆
⋃

α∈Λ0

Vα, and this implies

B ⊆
⋃

α∈Λ0

Vα.

(2) Let {Vα}α∈Λ be a family of open subsets of X such that A\
⋃

α∈Λ
Vα ∈ I.

Given that A is Ig-closed, A\
⋃

α∈Λ
Vα = ∅ ∈ I, and this implies B\

⋃

α∈Λ
Vα ∈ I.

Since B is σI-compact, there exists Λ0 ⊆ Λ, finite, with B ⊆
⋃

α∈Λ0

Vα. Hence

A ⊆
⋃

α∈Λ0

Vα.

The following theorem is consequence of Theorem 2.7.

Theorem 3.6 Let (X, τ,I) be an ideal space such that (X, τ) is T2. If A is
a σI-compact subset of X, then A is closed in (X, τ∗).

Now we study the behavior of σI−compactness under certain types of func-
tions.

Theorem 3.7 If (X, τ,I) is σI-compact, f : (X, τ) → (Y, β) is a contin-
uous suryective function and if J =

{

B ⊆ Y : f−1 (B) ∈ I
}

then (Y, β,J ) is
σJ -compact.

Proof. In the proof of Theorem 2.9 we show that J is an ideal on Y . Let
{Vα}α∈Λ be a family of open subsets of Y such that Y \

⋃

α∈Λ

Vα ∈ J . Since

X\
⋃

α∈Λ
f−1(Vα) = f−1

(

Y \
⋃

α∈Λ
Vα

)

∈ I and (X, τ,I) is σI-compact, there

exists Λ0 ⊆ Λ, finite, such that X =
⋃

α∈Λ0

f−1(Vα). Given that f is suryective

we have Y =
⋃

α∈Λ0

Vα.

Theorem 3.8 If (X, τ,I) is σI-compact and f : (X, τ) → (Y, β) is a
biyective continuous function, then (Y, β, f(I)) is σf (I)-compact.
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Proof. Let {Vα}α∈Λ be a family of open subsets of Y such that Y \
⋃

α∈Λ
Vα ∈

f (I). There exists I ∈ I with Y \
⋃

α∈Λ
Vα = f (I). Then I = f−1 (f(I)) =

X\
⋃

α∈Λ

f−1 (Vα) ∈ I. Given that (X, τ,I) is σI-compact, there exists Λ0 ⊆ Λ,

finite, with X =
⋃

α∈Λ0

f−1 (Vα). Since f is suryective, Y =
⋃

α∈Λ0

Vα.

Theorem 3.9 If f : (X, τ) → (Y, β) is a biyective and open function, and
(Y, β,J ) is a σJ -compact space, then

(

X, τ, f−1 (J )
)

is σf−1(J )-compact.

Proof. Let {Vα}α∈Λ be a family of open subsets of X such that X\
⋃

α∈Λ

Vα ∈

f−1 (J ). There exists J ∈ J with X\
⋃

α∈Λ
Vα = f−1 (J). Then Y \

⋃

α∈Λ
f (Vα) =

f
(

f−1 (J)
)

= J ∈ J , and given that (Y, β,J ) is σJ -compact then there exists
Λ0 ⊆ Λ, finite, with Y =

⋃

α∈Λ0

f (Vα). This implies that X =
⋃

α∈Λ0

Vα.

4. ρI-compactness and σI-compactness are new strong forms of
I-compactness

Other types of strong compactness modulo an ideal have been previously de-
fined: βI-compactness, γI-compactness, SI-compactness, and αI-compactness.

It is known that γI-compactness⇒ βI-compactness⇒ SI-compactness⇒
αI−compactness ⇒ I−compactness.

In this section we show that ρI-compactness and σI-compactness are really
new classes of strong I-compactness.

We recall that if (X, τ) is a topological space and A ⊆ X, then:

1) A is said to be α− open [14] if A ⊆ int
(

int(A)
)

.

2) A is said to be β − open [1] if A ⊆ int
(

A
)

.

3) A is said to be γ −open [3] if A ⊆ int
(

int(A)
)

∪ int
(

A
)

4) A is said to be semi −open [9], or simply S-open, if A ⊆ int(A).

5) If (X, τ,I) is an ideal space, and if z ∈ {α, β, γ, S} then A is said to
be zI-compact if for every cover {Vi}i∈Λ of A by z-open subsets of X, there
exists Λ0 ⊆ Λ, finite, with X\

⋃

i∈Λ0

Vi ∈ I. The space (X, τ,I) is said to be

zI-compact if X is zI-compact.
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The concepts of αI-compactness, βI-compactness, γI-compactness and
SI-compactness are due to Nasef and Noiri [11], Hosny [8], Nasef [12] and
Abd El-Monsef et al. [2], respectively.

The following example shows that, for all z ∈ {α, β, γ, S}, σI-compactness
; zI-compactness, and then ρI-compactness ; zI-compactness.

Example 4.1 Suppose that X = R+, τ = {∅,X,X\Z+} ∪ {Vn : n ∈ Z+},

where Vn =
n−1
⋃

k=0

(k, k + 1), and I = {A : A ⊆ (0, 1)}. Then we have that:

(1) The ideal space (X, τ,I) is σI-compact.

If {Uα}α∈Λ is a family of open subsets of X such that X\
⋃

α∈Λ
Uα ∈ I, there

exists α0 ∈ Λ with 1 ∈ Uα0
, and so Uα0

= X.

(2) (X, τ,I) is not αI-compact.

If An = (0, n), for all n ∈ Z+, then int (An) = An\ (An ∩ Z+), int (An) =

X, int
(

int (An)
)

= X and so An is α-open.

Moreover, X =
∞
⋃

n=1
An but if n1, n2, ..., nm ∈ Z+ we have that X\

m
⋃

k=1

Ank
/∈

I.

Finally, we show an example of a γI-compact space which is not σI-
compact. This implies that, for all z ∈ {α, β, γ, S}, zI-compactness ; σI-
compactness.

Example 4.2 Let τ be the topology on Z given by:

V ∈ τ if and only if, for all n ∈ Z, if n ∈ V then [n]2 ∈ V , where [n]2 = 0 if
n is even, and [n]2 = 1 if n is odd.

Let I = {A : A ⊆ Z\ {0, 1}}. We have that:

(1) (Z, τ,I) is not σI-compact, because (Z, τ) is not compact.

Z =
∞
⋃

n=1
{0, 1,−n, n} and {0, 1,−n, n} ∈ τ , for all n ≥ 1.

(2) B ⊆ Z is γ-open if and only if B is open.

It is clear that if B is open, then B is γ-open.

Suppose that B is not open. There exists N ∈ B with [N ]2 /∈ B.

If N is even and 1 ∈ B then int
(

int(B)
)

= 2Z + 1 = int(B), where

2Z+ 1 = {2n + 1 : n ∈ Z}.

If N is even and 1 /∈ B then int
(

int(B)
)

= ∅ = int(B).
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If N is odd and 0 ∈ B then int
(

int(B)
)

= 2Z = int(B), where 2Z =

{2n : n ∈ Z}.

If N is odd and 0 /∈ B then int
(

int(B)
)

= ∅ = int(B).

Thus B is not γ-open.
(3) (Z, τ,I) is γI-compact.
If {Bi}i∈Λ is an open cover of Z, there exist i0 ∈ Λ and i1 ∈ Λ, such that

0 ∈ Bi0 and 1 ∈ Bi1 . Then Z\(Bi0 ∪Bi1) ∈ I.

Question. There is a γI-compact space (X, τ,I) which is not ρI-compact?
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