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Abstract: We study decoherence-free subspaces in a type of Quantum Markov Semigroups

called continuous-time open quantum random walks on graphs. We measure the temporary

changes of quantum correlations using geometric quantum discord with bures distance under

some assumptions about the semigroup. In particular, we characterize the decay of correlations

to zero, showing that turns out to be closely related with the structure of decoherence-free

subspace.
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1. Introduction

Continuous-time open quantum random walks (COQRW) on graphs were in-
troduced using the continuous-time limits of open quantum random walks in
[19]. It was shown that the limit processes are represented by Quantum Markov
Semigroups (QMSs) T = (Tt)t≥0, i.e., T is a weakly∗-continuous semigroup of
completely positive, identity preserving, normal linear maps on the von Neu-
mann algebraB(h) of all linear bounded operators on a given complex separable
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Hilbert space h. QMSs are a non-commutative extension of Markov semigroups
defined in classical probability, they represent an evolution without memory of
a microscopic system in accordance with the laws of quantum physics and fit
into the framework of open quantum systems (see [12], [13]). The semigroup T
corresponds to the Heisenberg picture in the sense that given any observable x,
Tt(x) describes its evolution at time t. In this way, given a density matrix ρ, its
dynamics (Schrodinger picture or predual semigroup) is given by the semigroup
T∗t(ρ), where tr(ρTt(x)) = tr(T∗t(ρ)x).

Several aspects of temporal evolutions described by COQRWs have been in-
vestigated. By example in [2], and [19], relationship with non-Markovian gener-
alized Lindblad master equations is studied. In [6] (in a particular class of CO-
QRWs) convergence to a steady state regardless of the initial state when a graph
is connected is showed. In this work we are interested in study decoherence-free
subspaces in continuous-time open quantum random walks on graphs.

Decoherence occurs when a quantum system interacts with its environment
in an irreversible way. Decoherence and noise ([4, 14, 15, 20, 21, 25] and refer-
ences therein) typically affect quantum features of a state over its time evolu-
tion, however it may be possible to find states with a unitary evolution in some
“good” portion of a system.

Two main approaches to decoherence of open quantum systems have been
proposed in the literature; both are based on quantum Markov semigroups.

Blanchard and Olkiewicz [3], starting from an algebraic setting, defined
environment induced decoherence and found many physical models where the
system algebra decomposes as the direct sum of two pieces: a subalgebra, called
the decoherence-free algebra, where the semigroup acts homomorphically, a Ba-
nach subspace where the semigroup action is purely dissipative (see e.g. papers
[4, 5] and the references therein) and vanishing as time tends to infinity. The
decoherence-free subalgebra was later characterised in [11, 13] as the commu-
tant (or generalised commutant for unbounded operators) of certain families
of operators arising form the GKSL (Gorini-Kossakowski-Sudarshan-Lindblad)
representation of the generator. In particular, decoherence-free subalgebras of
COQRWs were studied in [10].

In the approach to decoherence proposed by Lidar et al. [15, 8] registers
of a quantum computer are modeled by a quantum open system on a finite-
dimensional Hilbert space h. The time evolution of states is described by a
predual semigroup T∗ on the Banach space of trace class operators on h. Given
that, for a quantum computer to execute a quantum algorithm efficiently, it
needs to evolve by unitary quantum dynamics, in this aprroach, is defined a
particular sector where a quantum algorithm is executable: the decoherence-
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free subspaces.

A subspace hf of h is decoherence-free if the time evolution of states ω
supported in hf is given by ω → e−itKωeitK for some self-adjoint operator K on
hf.

Decoherence-free subspaces were identified in [8] (see also [24]) under some
physical (somewhat implicit) assumptions, we refer to [15] for an introduction to
the theory of decoherence-free subspaces with a lot of examples and applications
to protection of quantum information.

Lidar et al. papers, however, are concerned only with finite-dimensional

systems and focus on explicit physical models. Moreover, his method essen-
tially depends on the choice of an orthonormal basis at the outset. This basis is
determined by the spectral analysis of the coefficients of the GKSL generator of
the quantumMarkov semigroup. As a result, this method cannot be extended to
infinite dimensions, or to the case of continuous spectra and unbounded coeffi-
cients of the GKSL-generator. In [1] they look at the decoherence-free subspace
issue from a mathematical point of view and study the following problem: given
a quantum Markov semigroup on the algebra B(h) with generator represented
in a generalised GKSL form, characterising its decoherence-free subspaces for
a possibly infinite dimensional Hilbert space h. We use this approach by study
decoherence-free subspaces and temporary changes of quantum correlations in
COQRWs.

The structure of the paper is as follows. Section 2 contains the definition
of decoherence-free subspaces for any QMSs and some preliminary remarks.
In Section 3 we introduce COQRW on graphs and we study his decoherence-
free subspace. The temporary change of quantum correlations using geometric
quantum discord with bures distance under some assumptions about the semi-
group is presented in Section 4.

2. Decoherence-Free Subspaces

Fron now on, we denote the von Neumann algebra of all bounded operators on
the Hilbert space h by B(h). We recall that an state ω on B(h) is a positive,
trace-one, operator on h, in particular it is a clase trace operator on h. The
support supp(ω) of ω is the closed subspace of h generated by eigenvectors with
strictly positive eigenvalues.

Definition 1. A subspace hf of h is called decoherence-free (DF) if there
exists a self-adjoint operator K on hf such that for all state ω with support in
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hf we have
T∗t(ω) = e−itKω eitK (1)

for all t ≥ 0. From now on, we will call that K is associated with hf .

Note that a self-adjoint operator K on hf can always be extended to the
whole Hilbert space h, therefore DF subspaces could be defined in an equivalent
way with a self-adjoint operator K on h leaving the subspace hf invariant. In a
more precise way, for an unbounded K, this means that e−itK(hf) ⊆ hf for all
t ∈ R. Moreover, note that a DF subspace is necessarily closed with respect to
the norm topology of h.

Remark. COQRW on graphs are a particular case of predual semigroup of
a QMS, where the generator L∗ of predual semigroup has a well-known rep-
resentation. In general , any generator of a QMS is described by the Gorini-
Kossakowski-Sudarshan-Lindblad (GKSL) form

L∗(ρ) = ρG∗ +
∑

s≥1

LsρL
∗
s +Gρ, (2)

for all state ρ on B(h), where

G = −1

2

∑

s≥1

L∗
sLs − iH,

Ls,H ∈ B(h) wit H selftadjoint, (Ls)s≥1 is a finite or infinite sequence and the
series

∑
s≥1 L

∗
sLs converge strongly .(See [18], theorem 3.16, pag 271.)

Remark. Recall that the operators Lℓ,H ∈ B(h) in a GKSL representation of
L are not unique, we may, for instance, translate each Lℓ by adding multiples
zℓ1 of the identity operator 1, with

∑
ℓ |zℓ|2 < ∞. In this way we obtain another

GKSL representation of L with L′
ℓ = Lℓ+zℓ1 and H ′ = H+(2i)−1

∑
ℓ≥1(z̄ℓLℓ−

zℓL
∗
ℓ ). We refer to [18] p.272–273 for a detailed discussion on this subject.

Using the structure in the generator of semigroup is possible to give neces-
sary and sufficient conditions to find DFs of an arbitrary QMS. This sentence
is true when the coefficients of L∗ are bounded operator and its also true in the
not bounded case. We present the result in the bounded case. (General result
is founded in [1], proposition 7 ).

Theorem 2. A subspace hf is a DF subspace with associated self-adjoint
operator K, if and only if in any GKSL representation of L by means of oper-
ators Lℓ, G there exist complex numbers λℓ (ℓ ≥ 1) and a real number r such
that

∑
ℓ≥1 |λℓ|2 < ∞ and
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1. Lℓ u = λℓ u for all u ∈ hf and ℓ ≥ 1,

2. (G+ iK)u = −(12
∑

ℓ≥1 |λℓ|2 + ir)u for all u ∈ hf.

Proof. Consider the GKSL representation of the generator L and hf is a DF
subspace with associated operator K.

By the well-known polarisation identity (1) also holds for ω = |u〉〈v| with
u, v ∈ hf. Differentiating we have

−i[K, |u〉〈v|] = G|u〉〈v| +
∑

ℓ

|Lℓu〉〈Lℓv|+ |u〉〈v|G∗. (3)

If v = u, for all w ∈ h orthogonal to u we find

∑

ℓ

|〈w,Lℓu〉|2 = 0, (4)

it follows that u is an eigenvector of all Lℓ, i.e. Lℓu = λℓ(u)u for λℓ(u) ∈ C.

The identity (4) for w ∈ hf also yields

λℓ(u)〈w, u〉 = 〈w, pfLℓpfu〉 = 〈pfL∗
ℓpfw, u〉

i.e. pfL
∗
ℓpfw = 0 if 〈w, u〉 = 0 and pfL

∗
ℓpfu = λℓ(u)u otherwise, showing that

the operator pfLℓpf is normal.

We now prove that eigenvalues λℓ(u) do not depend on the choice of the
vector u ∈ hf. Note, first of all, that eigenvectors u, v in hf of pfLℓpf with
different eigenvalues λℓ(u) 6= λℓ(v) are orthogonal since

λℓ(v)〈v, u〉 = 〈pfL∗
ℓpfv, u〉 = 〈v, pfLℓpfu〉 = λℓ(u)〈v, u〉.

Since, the Hilbert space h being separable, the spectrum of pfLℓpf is at most
countable, hence totally disconnected. The function on the unit sphere of hf

u → 〈u,Lℓu〉 = λℓ(u)

is continuous and so its range must be connected. It follows that the function
u → λℓ(u) is constant.

Now, rewriting (3) as

|(G + iK)u〉〈v| + |u〉〈(G + iK)v|+
∑

ℓ

|λℓ|2 |u〉〈v| = 0, (5)
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we see that u and v are also eigenvectors for G+ iK. The eigenvalues z(u) and
z(v) fulfill the identity

(
z(u) + z(v) +

∑

ℓ

|λℓ|2
)
|u〉〈v| = 0, (6)

hence z(u) + z(v) +
∑

ℓ |λℓ|2 = 0 for all u, v ∈ hf. Taking u = v we see that

z(u) = −ir(u)− 1

2

∑

ℓ

|λℓ|2

for some r(u) ∈ R. Finally, replacing this in (6), we see that r(u) must be
independent of u ∈ hf.

Conversely, suppose that 1. and 2. hold, then we compute immediately

−i [K, |u〉〈v| ] = L∗(|u〉〈v|)

for all u, v ∈ hf. Since hf is K-invariant, replacing u, v by

e−i(t−s)Ku, e−i(t−s)Kv ∈ hf

the above relationship also holds for
∣∣e−i(t−s)Ku〉〈e−i(t−s)Kv

∣∣ and we have,

d

ds
T∗s
(
e−i(t−s)K|u〉〈v|ei(t−s)K

)

=T∗s
(
(L∗+i[K, ·])(e−i(t−s)K |u〉〈v|ei(t−s)K

)

=0.

Therefore
T∗t (|u〉〈v|) = e−itK |u〉〈v| eitK

and hf is decoherence-free.

Remark. The above result shows that, translating the operators Lℓ by −λℓ,
we find another GKSL representation of L with L′

ℓ = Lℓ − λℓ1 and H ′ =
H + (2i)−1

∑
ℓ(z̄ℓLℓ − zℓL

∗
ℓ). In this way, since

∑
ℓ≥1(L

′
ℓ)

∗L′
ℓ vanishes on hf,

we find as self-adjoint operator K associated with hf the generator of the one-
parameter group originating from the action of the semigroup in the new GKSL
representation of L.

This theorem provides a recipe for finding DF subspaces. First of all look
for common eigenspaces for all the operators Lℓ, then, translate Lℓ to Lℓ −λℓ1
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with eigenvalues λℓ finding a new GKSL representation of the generator L. The
intersection of common eigenspaces of all the operators Lℓ is now the common
kernel of all the operators Lℓ−λℓ1. Finally check that the operator G founded
in the new GSKL representation of L leaves the common kernel invariant and
is anti self-adjoint on this subspace.

Remark. A K-invariant subspace of a DF subspace is itself a DF subspace,
therefore we will be interested in maximal DF subspaces.

3. COQRWs: Some Properties and Associated Decoherence-Free

Subspaces

In this section we describe the model, some properties and DFs of COQRWs.

Let G be a graph such that the set of vertexes is given by V = {1, . . . , d},
with d ≥ 2. To each vertex j ∈ V we associate an element ej in the canonical
basis of Cd, moreover, all vertex in V have degrees of freedom given, in this
article, by the simplest space C2 equipped with an orthonormal basis (fj)j=1,2,
therefore the dynamic is describe by operators in h = C

2 ⊗ C
d in the following

way: for all j,m ∈ V such that j 6= m, we fix Bmj ∈ M2(C) standing for the
effect of passing from the vertex m to the vertex j. We also define the sum of
all the effects when one leaves the vertex m

B∗
mmBmm :=

∑

j 6=m

B∗
mjBmj . (7)

Proposition 3.

Ker(Bmm) =
⋂

j 6=m

Ker(Bmj)

for all m ∈ V.

Proof. x ∈ Ker(Bmm) if and only if Bmmx = 0 if and only if x ∈
Ker(B∗

mmBmm) if and only if

∑

j 6=m

B∗
mjBmjx = 0,

if and only if
∑
j 6=m

‖Bmjx‖2 =
∑
j 6=m

〈Bmjx,Bmjx〉 = 0 if and only if Bmjx = 0 for

all j 6= m if and only if x ∈
⋂

j 6=m

Ker(Bmj).
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The continuous-time open quantum random walk (COQRW) is the predual
semigroup T∗ = (T∗t)t≥0 acting on the set of class–trace operator I(h) defined
in h = C

2 ⊗ C
d, its Lindblad generator is given by

L∗(ρ) = ρG∗ +
∑

j,m∈V ;j 6=m

LmjρL
∗
mj +Gρ, (8)

for all ρ ∈ I(h), where

Lmj = Bmj ⊗ |ej〉〈em|, j 6= m

G = −iH − 1

2

∑

j 6=m

L∗
mjLmj = −iH − 1

2

k∑

m=1

B∗
mmBmm ⊗ |em〉〈em|

with H = H∗ bounded operator in h.

Remark. Let B : C2 → Rang(B), P : Cd → Rang(P ) be linear operators then

Ker(B ⊗ P ) =
(
Ker(B)⊗ C

d
)
⊕
(
C
2 ⊗Ker(P )

)
(9)

(see theorem 2.19 in [9]).
We denote {em}⊥ to the orthogonal subespace of subspace generated by

em.

Proposition 4.

⋂

j∈V

[(Ker(Bmj)⊗ C
d)⊕ (C2 ⊗ {em}⊥)] =



⋂

j∈V

Ker(Bmj)⊗ C
d


⊕ (C2 ⊗ {em}⊥)

for all m ∈ V.

Proof. We take

∆1 :=
⋂

j∈V

[(Ker(Bmj)⊗ C
d)⊕ (C2 ⊗ {em}⊥)]

and

∆2 :=



⋂

j∈V

Ker(Bmj)⊗ C
d


⊕ (C2 ⊗ {em}⊥).
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Given m ∈ V, its clear that ∆2 ⊂ (Ker(Bmj)⊗C
d)⊕(C2⊗{em}⊥) for all j ∈ V

then ∆2 ⊂ ∆1.

Moreover, ∆1 ⊂ (Ker(Bmj)⊗C
d)⊕(C2⊗{em}⊥) for all j ∈ V then ∆1 ⊂ ∆2.

A description of decoherence-free subspace for COQRW is obtained by ap-
plying Theorem 2, Proposition 3, Proposition 4, and equality (9).

Theorem 5. Let hf be DF subspace of COQRW and

V0 := {i ∈ V;Bij = 0 ∀j 6= i}

then

hf =
⋂

m∈V−V0

[(Ker(Bmm)⊗ C
d)⊕ (C2 ⊗ {em}⊥)]

with K = H associated self-adjoint operator.

Proof. First note that the only eigenvalue of an operator

Lmj = Bmj ⊗ |ej〉〈em|

with m 6= j and Bmj 6= 0 is 0. Indeed, if we suppose that exist u =
∑

k,s uksfk⊗
es eigenvector of Lmj with eigenvalue associated λ 6= 0 then

λ
∑

k,s

uksfk ⊗ es = λu = Lmju =
∑

k,s

uksBmjfk ⊗ |ej〉〈em|es

=
∑

k

ukmBmjfk ⊗ ej

so λ
∑

k,s uks〈fk ⊗ es, fr ⊗ em〉 = 0 for all m 6= j, i.e., λurm = 0 for all r and
m 6= j. Thus u =

∑
k ukjfk ⊗ ej hence

λu = λ
∑

k

ukjfk ⊗ ej = Lmju =
∑

k

ukjBmjfk ⊗ |ej〉〈em|ej = 0

then u = 0 (we suppose λ 6= 0 ) and by other hand, if u is eigenvector then
u 6= 0, this is a contradiction. Therefore λ = 0.

Second,by (9) note that

⋂

m,j∈V
m6=j

Ker(Lmj) =
⋂

m∈V−V0

j∈V

Ker(Lmj) =
⋂

m∈V−V0

j∈V

Ker(Bmj ⊗ |ej〉〈em|)
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=
⋂

m∈V−V0

j∈V

(Ker(Bmj)⊗ C
d)⊕ (C2 ⊗Ker(|ej〉〈em|)

=
⋂

m∈V−V0

j∈V

[(Ker(Bmj)⊗ C
d)⊕ (C2 ⊗ {em}⊥)].

Finally, we see that if u ∈ ⋂
m,j∈V
m6=j

Ker(Lmj) then L∗
mjLmju = 0 for all

m 6= j. Taking K = H we otain

(G+ iK)u = i(−H +K)u = 0.

Applying Theorem 2 with K = H we obtain that .

hf =
⋂

m∈V−V0

j∈V

[(Ker(Bmj)⊗ C
d)⊕ (C2 ⊗ {em}⊥)]

Using Propositions 3 and 4 it follows that

hf =
⋂

m∈V−V0

j∈V

[(Ker(Bmj)⊗ C
d)⊕ (C2 ⊗ {em}⊥)]

=
⋂

m∈V−V0

⋂

j∈V

[(Ker(Bmj)⊗ C
d)⊕ (C2 ⊗ {em}⊥)]

=
⋂

m∈V−V0





⋂

j∈V

Ker(Bmj)⊗C
d


⊕ (C2 ⊗ {em}⊥)




=
⋂

m∈V−V0

(Ker(Bmm)⊗ C
d)⊕ (C2 ⊗ {em}⊥)

Remark. Theorem 5 establish the sectors, where a quantum algorithm describe
by COQRWs on graphs is executable.

Hereinafter, we study some properties of COQRWs when H = 0, in this
case, we obtain that

G = −1

2

∑

j 6=m

L∗
mjLmj = −1

2

k∑

m=1

B∗
mmBmm ⊗ |em〉〈em|.
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Writing any ρ in h = C
2⊗C

V as a block matrix with respect to the canonical
basis of B(CV) then we obtain

ρ =
∑

p,q∈V

ρ̃pq ⊗ |eq〉〈ep|, ρ̃pq ∈ M2(C). (10)

We call diagonal subspace, and denote it by D the subspace generated by the
elements Xkk⊗|ek〉〈ek| withXkk ∈ M2(C). Let E : B(h) → D be the conditional
expectation with range D defined by

E(x) =
∑

k

Xkk ⊗ |ek〉〈ek| (11)

and let E∗ be the predual map on trace class operators with range

E∗(ρ) =
∑

k∈V

ρ̃kk ⊗ |ek〉〈ek| (12)

i.e., E∗ : I(h) → D∗ where

D∗ :=

{
σ ∈ I(h);σ =

∑

k∈V

σ̃kk ⊗ |ek〉〈ek|, σ̃kk ∈ M2(C)

}
.

By equality (10) and positivity of σ, it follows the positivity of σ̃pp ∈ M2(C)
for all p ∈ V. Moreover, tr(σ) = 1 if and only if

∑
p
tr(σ̃pp) = 1, then

σ =
∑

p∈V

cpσpp ⊗ |ep〉〈ep|+
∑

p 6=q

σpq ⊗ |eq〉〈ep| (13)

with cp := tr(σ̃pp) ≥ 0 for all p ∈ V, ∑
p
cp = 1, σpp := 1

cp
σ̃pp (if cp > 0)

states in C
2 and σpq := σ̃pq ∈ M2(C) for all p 6= q.

Therefore

D∗ =



σ ∈ I(h);σ =

∑

p∈V

cpσpp ⊗ |ep〉〈ep|,
∑

p

cp = 1, σpp ∈ I(C2)





and I(h) = D∗ ⊕D∗off with D∗off = E⊥
∗ (I(h)), E⊥

∗ := I − E∗.
Additionally, we obtain that if COQRWs has null-Hamiltonian, that is, his

generator is given by (8) with H = 0 then

L∗(ρ) =− 1

2

∑

j 6=m

(B∗
jjBjjρjm + ρjmB∗

mmBmm)⊗ |ej〉〈em| (14)
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− 1

2

∑

m

cm(B∗
mmBmmρmm + ρmmB∗

mmBmm)⊗ |em〉〈em| (15)

+
∑

m

∑

j 6=m

cjBjmρjjB
∗
jm ⊗ |em〉〈em| (16)

hence L∗(D∗) ⊂ D∗ y L∗(D∗off ) ⊂ D∗off then T∗t(D∗) ⊂ D∗ y T∗t(D∗off ) ⊂
D∗off for all t ≥ 0, i.e., D∗ and D∗off are T∗-invariants, equivalently

T∗t ◦ E∗ = E∗ ◦ T∗t, T∗t ◦ E⊥
∗ = E⊥

∗ ◦ T∗t (17)

for all t ≥ 0.

4. Temporary Change in Quantum Correlations

In this section we measure temporary changes in quantum correlations us-
ing geometric quantum discord with Bures distance when COQRWs has null-
Hamiltonian, that is, his generator is given by (8) with H = 0. In particular,
we characterize the decay of correlations to zero, showing that turns out to be
closely related with the structure of decoherence-free subspaces.

The Bures distances between states ρ1, ρ2 ∈ I(h) with h = C
2 ⊗C

d is given by

dB(ρ1, ρ2) =
[
2
(
1−

√
F (ρ1, ρ2)

)]1/2
, where F (ρ1, ρ2) is the fidelity between

ρ1 and ρ2, F (ρ1, ρ2) =
[
tr
([√

ρ2ρ1
√
ρ2
]1/2)]2

and geometric quantum discord

with Bures distance of a state ρ ∈ I(h) has been defined as

DD∗
(ρ) := dB(ρ,D∗)

2 = min
σ∈D∗

dB(ρ, σ)
2 = 2

(
1−

√
FD∗

(ρ)
)

with FD∗
(ρ) := max

σ∈D∗

F (ρ, σ) (see [16],[17],[22],[23]).

The Bures distance can be used to bound from below and above the trace
distance d1(ρ, σ) = tr(|ρ− σ|) (see [7]) as follows:

dB(ρ, σ)
2 ≤ d1(ρ, σ) ≤

[
1−

(
1− 1

2
dB(ρ, σ)

2

)2
]1/2

(18)

Theorem 6. Let T be a COQRW with null-Hamiltonian then the follow-
ing assertions are equivalent:
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(a)

hf =
⋂

m∈V−V0

[(Ker(Bmm)⊗ C
d)⊕ (C2 ⊗ {em}⊥)]

with at most a unique m ∈ V − V0 such that Ker(Bmm) 6= 0.

(b) lim
t→0

DD∗
(T∗t(ρ)) = 0 for all state ρ.

(c) {ρ; supp(ρ) ⊂ hf} ⊂ {ρ;T∗t(ρ) = ρ, for all t ≥ 0} ⊂ D∗.

Proof. First note that B∗
mmBmm are positive-semidefinite matrices then

there exist unitary matrices Um such that

B∗
mmBmm = UmDmU∗

m

with Dm diagonal matrix where his elements (dim)i=1,2 are non-negative.
Let m 6= j, with m, j ∈ V,̺ ⊗ |em〉〈ej | ∈ D∗off . Using equation (14) we

obtain that

L∗(̺⊗ |em〉〈ej |) = −1

2
(B∗

mmBmm̺+ ̺B∗
jjBjj)⊗ |em〉〈ej |

= −1

2
(UmDmU∗

m̺+ ̺UjDjU
∗
j )⊗ |em〉〈ej |.

In particular, taking ̺ = UmZU∗
j for an arbitrary operator Z = (Zrs)r,s=1,2 ∈

M2(C), we obtain

L∗(̺⊗ |em〉〈ej |) = −1

2
(UmDmZU∗

j + UmZDjU
∗
j )⊗ |em〉〈ej |

= Um

[
−1

2
(DmZ + ZDj)

]
U∗
j ⊗ |em〉〈ej |.

and recursively, we get

Ln
∗ (̺⊗ |em〉〈ej |) = Umδ

(n)
jm (Z)U∗

j ⊗ |em〉〈ej | for all n ∈ N, (19)

where δjm(Z) := −1
2(DmZ + ZDj) and δ

(n)
jm = δjm ◦ δjm ◦ . . . ◦ δjm︸ ︷︷ ︸

n times

. Hence

T∗t(̺⊗ |em〉〈ej |) = Umetδjm(U∗
m̺Uj)U

∗
j ⊗ |em〉〈ej |.

Since δjm(Z) = −1
2(DmZ + ZDj) = (−1/2(dpm + dqj)Zpq)pq then δ

(n)
jm (Z) =

((−1/2)n(dpm + dqj)
nZpq)pq and therefore

etδjm(Z) = (exp[(−1/2)t(dpm + dqj)]Zpq)pq for all t ≥ 0. (20)
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By (4) and (20), we obtain that

T∗t(̺⊗ |em〉〈ej |) = Um

[(
e−

1

2
t(dpm+dqj )(U∗

m̺Uj)pq

)
pq

]
U∗
j ⊗ |em〉〈ej | (21)

with dpm ≥ 0, dqj ≥ 0 for all m, j ∈ V, m 6= j and p, q ∈ {1, 2}, for any ̺ ∈ M2(C)
and t ≥ 0.

If we suppose that

hf =
⋂

m∈V−V0

[(Ker(Bmm)⊗ C
d)⊕ (C2 ⊗ {em}⊥)]

with at most a unique m ∈ V − V0 such that Ker(Bmm)
6= 0, then Ker(B∗

mmBmm) 6= 0 (by equation (7) and proposition 3) with
B∗

mmBmm 6= 0 (m ∈ V −V0) therefore exists at most a unique m ∈ V such that
B∗

mmBmm can have at most one zero eigenvalue, i.e.,exists at most a unique
m ∈ V and exists at most a unique p ∈ {1, 2} such that dpm = 0 and dqj > 0 for
all (j, q) 6= (m, p). By (21) it follows that

lim
t→∞

T∗t(̺⊗ |em〉〈ej |) = 0 for any ̺ ∈ M2(C), m, j ∈ V, m 6= j,

equivalently

lim
t→∞

‖T∗t(̺⊗ |em〉〈ej |)‖ = 0 for any ̺ ∈ M2(C), m, j ∈ V, m 6= j, (22)

where ‖ · ‖ is the operator norm.
Give a arbitrary state

ρ =
∑

k∈V

ckρkk ⊗ |ek〉〈ek|+
∑

k 6=r

ρkr ⊗ |er〉〈ek|,

then
E⊥(ρ) =

∑

k 6=r

ρkr ⊗ |er〉〈ek|.

Using (17), (18) and (22), we see that

DD∗
(T∗t(ρ)) ≤ dB(T∗t(ρ), E∗(T∗t(ρ)))2 ≤ d1(T∗t(ρ), E∗(T∗t(ρ)))

= d1(T∗t(ρ),T∗t(E∗(ρ))) = tr(T∗t(E⊥
∗ (ρ)))

=
∑

k 6=r

tr(T∗t(ρkr ⊗ |er〉〈ek|))
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≤ 2d
∑

k 6=r

‖T∗t(ρkr ⊗ |er〉〈ek|)‖ −−−→
t→∞

0

then (a) ⇒ (b).

Now, If we suppose that lim
t→0

DD∗
(T∗t(ρ)) = 0 for all state ρ. In particular,

if we take ρ such that T∗t(ρ) = ρ for all t ≥ 0 then DD∗
(ρ) = 0, therefore

ρ ∈ D∗
dB where D∗

dB is the closure of D∗ with respect to Bures distance. By

inequality (18), it is easy to see D∗
dB = D∗ and that

{ρ; supp(ρ) ⊂ hf} ⊂ {ρ;T∗t(ρ) = ρ, for all t ≥ 0}

therefore ρ ∈ D∗, then (b) ⇒ (c).

If {ρ; supp(ρ) ⊂ hf} ⊂ {ρ;T∗t(ρ) = ρ, ∀t ≥ 0} ⊂ D∗ and exists m, j ∈ V−V0,
m 6= j such that Ker(Bmm) 6= 0 and Ker(Bjj) 6= 0 then exist drm eigenvalue of
B∗

mmBmm and dsj eigenvalue of B∗
jjBjj such that drm = dsj = 0, dlm > 0 if l 6= r,

and dkj > 0 if k 6= s. Using (21), we see that

T∗t(̺⊗ |em〉〈ej |) = X + Yt

X = Um[(U∗
m̺Uj)rs|fr〉〈fs|+ (U∗

m̺Uj)sr|fs〉〈fr|]U∗
j ⊗ |em〉〈ej |, (23)

Yt = Um[
(
e−

1

2
t(dlm+dkj )(U∗

m̺Uj)lk

)
lk
|fl〉〈fk|

+
(
e−

1

2
t(dlm+dkj )(U∗

m̺Uj)kl

)
kl
|fk〉〈fl|]U∗

j ⊗ |em〉〈ej |,

where T∗t(X) = X for all t ≥ 0 and lim
t→∞

Yt = 0. We take ̺ such that

(U∗
m̺Uj)rs 6= 0 and (U∗

m̺Uj)sr 6= 0 (24)

then

X = lim
t→∞

T∗t(̺⊗ |em〉〈ej |) ∈ Doof∗ ∩ {ρ;T∗t(ρ) = ρ, ∀t ≥ 0}

⊂ Doof∗ ∩D∗ = 0.

By (23), we obtain that (U∗
m̺Uj)sr = (U∗

m̺Uj)rs = 0. This is a contradiction
with (24) . Therefore exist at most a uniquem ∈ V−V0 such that Ker(Bmm) 6=
0, then (c) ⇒ (a).
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