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ABSTRACT

We investigate a definition of quantum Wasserstein distance of two
states based on their couplings on the product algebra as in the
classical case. A detailed analysis of the two qubit model leads to a
formal definition fulfilling some minimal requirements. It also shows
that a clear-cut definition, by direct generalization of the classical one,
is not achievable.
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1. Introduction

Let (M, d) be a separable metric space. The reader can think of a subset of a Euclidean
space with the Euclidean distance to fix the ideas. Denote byP1(M) be the collection of all
probability measures μ onM for which

∫
M d(x, z)dμ(x) < ∞ for some (and hence for all

by Proposition 11.8.1 of [8]) z ∈ M.
The classical Wasserstein distance of two probability measures μ, ν ∈ P1(E) is defined

by

W(μ, ν) = inf
ϑ∈�(μ,ν)

∫
M×M

d(x, y)dϑ(x, y)

where �(μ, ν) is the set of all probability measures ϑ onM × M with marginals μ and ν,
i.e. such that for all Borel subsets A,B ofM

ϑ(A × M) = μ(A), ϑ(M × B) = ν(B).

The Kantorovich–Rubinstein theorem (see [8] Section 11.8 for a proof) provides another
representation forW(μ, ν)

W(μ, ν) = sup
{ ∫

M
fd(μ − ν)

∣∣∣∣ |f (x) − f (y)| ≤ d(x, y) ∀x, y,∈ M
}

i.e. the supremum is over all f with Lipschitz constant not bigger than 1.
It is well-known (see [11]) that, for a finite set M, W(μ, ν) is equivalent to the total

variation distance ‖μ − ν‖TV; more precisely

dmin‖μ − ν‖TV ≤ W(μ, ν) ≤ diam(M) ‖μ − ν‖TV (1)
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where dmin(M) = min{d(x, y) | x �= y}, diam(M) = max{d(x, y) | x, y ∈ M}.
Notions corresponding toWasserstein distance appeared in several fields in mathemat-

ics (see [13] introduction, Chapters 1 and 8). This investigation aims at finding a good
quantum analogue of the Wasserstein distance. The norm distance for normal states (as
linear functionals on a von Neumann algebra) is the appropriate quantum generalization
of the total variation distance of probability measures, therefore a good quantum analogue
of the classicalWasserstein distance should be equivalent to the total variation distance for
systems with finite degrees of freedom.

Our interest in the Wasserstein distance for quantum states is motivated by [3,4,6,7,14,
15] where several different analogues of this notion have been proposed and none emerged
as a good, universal, concept as in the classical case.

In Zyczkowski and Slomczynski [14,15] define a Monge distance between quantum
states of some special classes (coherent and number states, for instance) as theWasserstein
distance between the corresponding Husimi distributions of quantum optics. In Biane and
Voiculescu [4] investigate the free noncommutative analogue of the classical Wasserstein
distance between two probability measures. In D’Andrea and Martinetti [6] discuss the
relationship between theWasserstein distance between probability distributions on a met-
ric space, arising in the study of Monge-Kantorovich transport problem, and the spectral
distance of noncommutative geometry. In [7] the author defines the cost-distance between
two density matrices as the classical Wasserstein of the corresponding two probability
distributions on a suitable quotient space with cost given by the geodesic distance on this
space. Concepts arising from these investigations do not fully reflect the meaning of this
distance in classical probability.

In this paper we investigate possible direct generalizations of the classical definition
based on minimization of a functional on all possible couplings. Following the usual path
for finding extensions of classical probabilistic notions in quantum probability, see e.g. the
introduction of [2] for quantum Markov chains and the introduction of [10] for entropy
production), we list below a few minimal requirements that ought to be fulfilled by any
candidate:

(1) it should be a distance,
(2) it should be equivalent to the norm distance for states on a finite dimensional von

Neumann algebra because the classical Wasserstein distance is equivalent to the
norm distance on finite probability spaces by (1), and

(3) its restriction to states on a maximal abelian subalgebra should coincide with their
classicalWasserstein distance because classical probability spaces arise in a quantum
model by considering observables, i.e. random variables, belonging to an abelian
subalgebra and restrictions of states to this subalgebra.

The case study of two q-bit states shows that it is possible to define such a distance.
However, one has to give up the classical idea of looking for the minimum of a single
functional. This seems due to the presence of many incompatible observables contrary to
what happens in classical models. As a result, mimicking of the classical definition seems
unfeasible.

The paper is organized as follows. In Section 2 we analyse the case of a two-point
probability space {−1,+1} in the quantum language. Additionally, we show that the
Wasserstein distance of two probability measures in {−1,+1} is the same distance if
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the defining functional is minimized over all possible quantum couplings. Moreover,
we give a formal definition of Wasserstein distance for quantum states, with the above
three properties, however, minimizing three functionals. In Section 3 we show how some
reasonable choices of a single functional for minimization do not lead to a good definition.

2. The classical case in the quantum language

We begin by considering the simplest case of two probability measures on a two-point
space {−1,+1}, say, and two probability densities μ, ν

1
2

(
1 − a, 1 + a

)
,

1
2

(
1 − b, 1 + b

)

with −1 ≤ a, b ≤ 1. We analyse this simple case because, on one hand if a notion admits
a reasonable non-commutative analogue the translation should be transparent at least in
the simplest situation, on the other hand non-commutative analogues of finite probability
spaces already reveal non-trivial features ([1,5] and also [12], Chapter 1).

In this caseW(μ, ν) is twice the total variation distance

‖μ − ν‖TV = 1
2

∑
j

∣∣μj − νj
∣∣ = 1

2
|a − b|

because, for any function f : {−1,+1} → R, since μ1 − ν1 = −(μ−1 − ν−1),

f ( − 1)(μ−1 − ν−1) + f (1)(μ1 − ν1) = (
f (1) − f ( − 1)

)
(μ1 − ν1)

= (
f ( − 1) − f (1)

)
(μ−1 − ν−1)

and |f (1) − f ( − 1)| ≤ 2 = |1 − ( − 1)| by the condition on the Lipschitz norm.
A little thought shows that a convenient parametrization of densities on {−1,+1} ×

{−1,+1} with the above marginals is

ϑ( − 1,−1) = 1
4
(1 − a − b + c), ϑ(1,−1) = 1

4
(1 + a − b − c),

ϑ( − 1, 1) = 1
4
(1 − a + b − c), ϑ(1, 1) = 1

4
(1 + a + b + c),

where c is a real parameter such that the above four numbers, that sum up to 1, are
non-negative, i.e. such that

1 + c ≥ |a + b|, 1 − c ≥ |a − b|,
namely

|a + b| − 1 ≤ c ≤ 1 − |a − b|. (2)
(Note that |a+ b| − 1 ≤ 1− |a− b| because |a+ b| + |a− b| = 2max{|a|, |b|} ≤ 2). The
above joint density can be viewed as a coupling of μ and ν depending on the constant c.

Clearly, in this case
∫

{−1,+1}×{−1,+1}
|x − y|dθ(x, y) = 2

(
θ( − 1, 1) + θ(1,−1)

) = (
1 − c

)
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so that, taking into account (2), we findW(μ, ν) = |a − b|.
It is instructive to see how to tackle the problem in the quantum language. We refer to

P.-A. Meyer’s book [12], chapter 1, for definitions and notations on two-level quantum
systems.

The above probability measures are represented by two statesμ, ν on the algebraM2(C)

of 2 × 2 complex matrices.

μ = 1
2
(1 + aσ3), ν = 1

2
(1 + bσ3) (3)

where 1 is the 2 × 2 identity matrix and σj are the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

States onM2(C) ⊗ M2(C) with μ and ν as marginals are parametrized by ([9] formula
(4))

ρ = 1
4

⎛
⎝14 + aσ3 ⊗ 1 + b1 ⊗ σ3 +

3∑
i,j=1

cijσi ⊗ σj

⎞
⎠ (4)

where 14 = 1⊗1 is the identitymatrix onC
2⊗C

2 and (cij)1≤i,j≤3 are nine real parameters
subject to certain constraints for positivity ofρ thatwedonot need in the present discussion
(see [9] discussion on positivity of 4× 4 matrices as (4) in Section 2 and [9] formula (32)).

Looking at the above formula it becomes clear that quantum coupling is much more
complex. Moreover, constraints on numbers cij are very difficult to handle because they
are expressed by nonlinear functions. Nevertheless, for a pair of classical states, we can still
solve the minimization problem in a simple way discovering a new feature of the quantum
framework: the minimum point is not unique as in the classical case even if the minimum
value is the same.

If we consider the Euclidean distance in the classical functional for minimization
∫
E×E

d(x, y)dϑ(x, y) =
∑
i,j=±1

|i − j|ϑ(i, j),

thinking of the function (i, j) → |i − j| as the multiplication operator

∑
i,j=±1

∣∣i − j
∣∣Eii ⊗ Ejj =

∣∣∣∣∣∣
∑
i=±1

iEii ⊗ 1 −
∑
j=±1

1 ⊗ jEjj

∣∣∣∣∣∣ = |σ3 ⊗ 1 − 1 ⊗ σ3| ,

where E−1
−1,E

1
1 are one-dimensional projectors such that E−1

−1 + E11 = 1, becomes

tr
(|σ3 ⊗ 1 − 1 ⊗ σ3|ρ

)
.

The above discussion makes it clear that σ3 ⊗ 1 and 1 ⊗ σ3 play the role of position
observables of the first system and second system.
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A little computation yields

tr
(|σ3 ⊗ 1 − 1 ⊗ σ3|ρ

) = (1 − c33),

showing that we are essentially looking for minima of the same function as in the classical
case.

Choosing the basis e−, e+ of C
2

e− =
(

0
1

)
, e+ =

(
1
0

)

and the basis e+ ⊗ e+, e+ ⊗ e−, e− ⊗ e+, e− ⊗ e− of C
2 ⊗ C

2 a long but straightforward
computation shows that ρ is represented by the density matrix 1/4 times

⎛
⎜⎜⎝

1+a + b + c33 c31 − ic32 c13 − ic23 d − is′
c31 + ic32 1+a − b − c33 s + id′ −c13 + ic23
c13 + ic23 s − id′ 1−a + b − c33 −c31 + ic32
d + is′ −c13 − ic23 −c31 − ic32 1−a − b + c33

⎞
⎟⎟⎠ (5)

where
s = c11 + c22, s′ = c12 + c21, d = c11 − c22, d′ = c12 − c21.

Here, from non-negativity of the diagonal elements, we recover the classical condition (2)

|a + b| − 1 ≤ c33 ≤ 1 − |a − b|. (6)

Therefore, we fix c33 = 1 − |a − b| and show that we can choose the other parameters cij
in such a way that ρ is positive semi-definite.

Suppose, to fix the ideas, that a ≤ b. The other case can be dealt with the same way. The
diagonal element 1 + a − b − c33 vanishes, the positive semi-definiteness of ρ implies

c13 = c23 = 0, c31 = c32 = 0, c12 = c21, c11 + c22 = 0,

and the density becomes

1
2

⎛
⎜⎜⎜⎝

1 + a 0 0 c11 − ic12
0 0 0 0

0 0 b − a 0
c11 + ic12 0 0 1 − b

⎞
⎟⎟⎟⎠ (7)

which is clearly positive semi-definite whenever

c211 + c212 ≤ (1 + a)(1 − b).

We summarize this conclusion in the following
Proposition 1: The minimum value of

tr
(|σ3 ⊗ 1 − 1 ⊗ σ3|ρ

)
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on the convex set of all states ρ with given marginalsμ, ν is |a− b|. In particular it coincides
with the classical Wasserstein distance of the probability densities (3).

It is worth noticing that minimum points are not unique, even if both states are pure
i.e. a = ±1, b = ∓1, and are entangled states unless c11 = c12 = c21 = c22 = 0.

Remarks.

(1) In view of analysing arbitrary states, note that, if the quantity to minimize was
1 − (c33 + c11 + c22) we would find, in general, a strictly smaller minimum value.

(2) For all p > 0, a simple computation yields

|σ3 ⊗ 1 − 1 ⊗ σ3|p = 2p−1|σ3 ⊗ 1 − 1 ⊗ σ3|.
Therefore, considering a power p, the final result only changes by a multiplicative
constant.

Minimizing (1 − c33) we get |a3 − b3|. Thus, by a permutation of the axes, minimizing
(1 − cjj) we get |aj − bj|. A general pair of two qubit states can be represented by

μ = 1
2
(1 + a1σ1 + a2σ2 + a3σ3), ν = 1

2
(1 + b1σ1 + b2σ2 + b3σ3) (8)

where a = (a1, a2, a3), b = (b1, b2, b3) are real vectors in the unit sphere of R
3, i.e.

a21 + a22 + a23 ≤ 1, b21 + b22 + b23 ≤ 1.

As a consequence, a possible formal definition of the ‘quantum’W(μ, ν) distance is

W(μ, ν) =
3∑

j=1

(
inf
ρj

tr
(|σj ⊗ 1 − 1 ⊗ σj|ρj

))
(9)

where each infimum is over the set of all states ρj with marginals μ, ν. In this way you get

3∑
j=1

|aj − bj|

and, by changing the definition to

Wp(μ, ν) =
⎛
⎝ 3∑

j=1

(
inf
ρj

tr
(|σj ⊗ 1 − 1 ⊗ σj|ρj

))p
⎞
⎠

1/p

(10)

for p = 2 we get the trace norm because

|μ − ν|2 = 2−2 |(a − b) · σ |2 = ‖a − b‖2 1

where ‖a − b‖ = (
∑3

j=1 (aj − bj)2)1/2 is the Euclidean distance. It follows that |μ − ν| =
‖a − b‖ 1/2 and so

tr
(|μ − ν|) = ‖a − b‖ = W2(μ, ν).
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Remarks.

(1) (Heuristics)By theuncertaintyprinciple components of a state alongnon-commutative
variables (observables) can not be measured simultaneously. Formulae (9) and (10)
seem reminiscent of this physical obstruction which as no classical counterpart.
An experimenter trying to measure the difference between two states observes the
values of a set of maximal observables and the result will depend on this choice. In
the classical case there is a single maximal observable and so a single functional to
minimize.

(2) Note that

σ3 ⊗ 1 − 1 ⊗ σ3 = (
(σ3 + 1) ⊗ 1 − 1 ⊗ (σ3 + 1)

)
= 2

(|e+〉〈e+| ⊗ 1 − 1 ⊗ |e+〉〈e+|) .

Therefore, if the system space ismultidimensional, the obvious generalization seems
minimization of

2tr
(∣∣ |ej〉〈ej| ⊗ 1 − 1 ⊗ |ej〉〈ej|

∣∣2 ρj

)
for a suitable collection of vectors (ej)j on states ρj with the given marginals.

3. Two qubit quantum states

Formulae (9) and (10) define a distance fulfilling the requirements 1, 2 and 3 stated in
the introduction, however, adopting this definition, we have to give up the classical idea
of minimizing a single functional. This section is aimed at convincing those classical
probabilists who are left with a bad taste in their mouths that some reasonable choices of
a single functional do not work.

In the attempt to find a single functional, getting rid of summation over j and mini-
mization on different states in (10) one would be tempted to try to minimize over all states
ρ with given marginals

max
v∈R3

tr
(|v · σ ⊗ 1 − 1 ⊗ v · σ |2 ρ

) = max
v∈R3

〈
v,

(
21 − (c + cT)

)
v
〉

namely the biggest eigenvalue of
(
21 − (c + cT)

)
(where cT denotes the transposematrix).

This choice is motivated by the analogy with the classical case where one minimizes the
probability of finding different values in the position observable in the first and second
factor. Here, however, there are several non commuting observables, therefore one may
consider one dimensional projections (1 + v · σ)/2 with v a vector in the unit sphere
(v ∈ R

3, ‖v‖ = 1 and compute the probability of finding different values in the first and
second factor for observables in the abelian algebra of observables commuting with v · σ .
Since the orthogonal projection of (1 + v · σ)/2 is (1 − v · σ)/2 this is

1
4
tr

((
1 + v · σ

) ⊗ (1 − v · σ) + (
1 − v · σ

) ⊗ (1 + v · σ)ρ
)

= 1
2
tr

((
1 ⊗ 1 − v · σ ⊗ v · σ

)
ρ
) =

〈
v,

(
21 − (c + cT )

)
v
〉
.

Therefore we try to minimize, for instance,
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(1) the biggest probability of finding different values

max
v∈R3

〈
v,

(
21 − (c + cT)

)
v
〉

(11)

namely the biggest eigenvalue of
(
21 − (c + cT)

)
,

(2) the ‘average probability’ of finding different values
∫
S3

〈
v,

(
21 − (c + cT )

)
v
〉
dv

(here the integral is with respect to the normalized Haar measure on the sphere)
namely, since ∫

S3
v2j dv = 1

2
,

∫
S3
vjvkdv = 0 for j �= k

we find ∫
S3

〈
v,

(
21 − (c + cT )

)
v
〉
dv =

3∑
j=1

(
1 − cjj

)
, (12)

(3) the sum of probabilities of finding different values in three orthogonal directions
(the analogue of the choice of [4] Section 1.1 for the analogue in free probability)
yields twice the same functional.

However, none of the above choices work even for commuting states. Indeed, for a = b,
after minimization over all choices of c leaving ρ positive semi-definite, we would like to
find the value 0. This does not happen because:

(1) in the former case this would imply 1 − cjj ≤ 0 for all j, thus, by positive semi-
definiteness of the matrix (5), we immediately see that this implies c33 = 1 and so
c12 = c21, c11 + c22 = 0 which is incompatible with c11 ≥ 1, c22 ≥ 1.

(2) (and 3.) in the latter cases 3− (c11 + c22 + c33) = 0 implies c11 + c22 = 3− c33, but
positivity of the inner 2 × 2 block of (5) also implies

(1 − c33)2 ≥ (c11 + c22)2 + (c12 − c21)2 ≥ (c11 + c22)2 = (3 − c33)2

This inequality is equivalent to c33 ≥ 2. However, positivity of diagonal elements of
the matrix (5) implies 1 − c33 ≥ |a − b| ≥ 0, i.e. c33 ≤ 1 which is in contradiction
with c33 ≥ 2.

Another possible attempt is minimization of

tr
(|v · σ ⊗ 1 − 1 ⊗ v · σ | ρ)

(13)

for a unit vector v parallel to b − a (for b �= a and v = e3 for b = a). This choice,
surprisingly, works when components of a and b orthogonal to b − a are ‘small’ with
respect to b − a. In a more precise way, we have the following
Theorem 2: Suppose 0 < ‖b − a‖ < 2 and let v = (b − a)/‖b − a‖. Then the minimum
of

tr
(|v · σ ⊗ 1 − 1 ⊗ v · σ | ρ)

(14)
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on all states ρ with marginals (8) is ‖b − a‖ if and only if

‖a − 〈a, v〉 v‖2 = ‖b − 〈b, v〉 v‖2 (15)
≤ ‖b − a‖ (

(1−〈b, v〉∨〈a, v〉 ) ∧ (1+〈a, v〉∧〈b, v〉 )
)

where r ∨ s (resp. r ∧ s) denotes the maximum (resp. minimum) of the real numbers r, s.

Proof: By a change of coordinates in R
3, exchanging the roles of a and b if necessary, we

can suppose that
‖b − a‖ = (b3 − a3), a2 = b2 = 0 (16)

and, as a consequence, a1 = b1. The coupling coefficients matrix (cij)1≤i,j≤3 will also
change the new coordinates, and a little computation, as in the previous section, shows
that

tr
(|v · σ ⊗ 1 − 1 ⊗ v · σ | ρ) = (1 − c33) (17)

The state ρ is represented by the density matrix 1/4 times
⎛
⎜⎜⎝

1+a3 + b3 + c33 b1 + c31 − ic32 a1 + c13 − ic23 d − is′
b1 + c31 + ic32 1+a3 − b3 − c33 s + id′ a1 − c13 + ic23
a1 + c13 + ic23 s − id′ 1−a3 + b3 − c33 b1 − c31 + ic32

d + is′ a1 − c13 − ic23 b1 − c31 − ic32 1−a3 − b3 + c33

⎞
⎟⎟⎠

where s = c11 + c22, s′ = c12 + c21, d = c11 − c22, d′ = c12 − c21. A necessary condition
for the above matrix to be positive semi-definite clearly is 1 − a3 − b3 − c33 ≥ 0, namely
1 − c33 ≥ b3 − a3 = ‖b − a‖.

We now show that, if c33 = 1 − (b3 − a3), it is possible to choose the other coefficients
cij so as to get a positive semi-definite matrix. First of all, since a diagonal matrix element
is zero, all the matrix elements on the same row and column must be zero i.e., recalling
that b1 = a1,

c32 = c23 = 0, c13 = a1, c31 = −a1, c11 + c22 = 0, c12 = c21.

Now, neglecting the zero row and the zero column, and putting c11 = x, we remain with
the 3 × 3 matrix

1
2

⎛
⎝ 1 + a3 a1 x

a1 b3 − a3 a1
x a1 1 − b3

⎞
⎠ (18)

which is positive semi-definite if and only if all the principal minors, namely the diagonal
elements, the determinants of the 2 × 2 matrices

(
1 + a3 a1
a1 b3 − a3

)
,

(
b3 − a3 a1

a1 1 − b3

)
,

(
1 + a3 x

x 1 − b3

)
(19)

and the determinant of the matrix itself are non-negative. Now, recalling −1 ≤ a3 ≤ 1
and b3 − a3 ≥ 0, the matrix (18) turns out to be positive semi-definite if and only if

a21 ≤ (b3 − a3)(1 + a3), a21 ≤ (b3 − a3)(1 − b3), x2 ≤ (1 + a3)(1 − b3) (20)
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and its determinant, which is 1/8 times,

−(b3 − a3)x2 + 2a21x + (b3 − a3)(1 − b3)(1 + a3) − a21(2 − b3 + a3) (21)

is non-negative. The discriminant of this second order polynomial in x is 1/4 times

a21 − a21(b3 − a3)(2 − b3 + a3) + (b3 − a3)(1 − b3)(1 + a3)

= a21
(
1 − b3 + a3

)2 + (b3 − a3)(1 − b3)(1 + a3)

and so it is also non-negative. The determinant of the 3×3 matrix (18) is non-negative for
all x in the interval [x1, x2] determined by the roots x1, x2 of the second order polynomial
(21). It turns out that we can find an x such that the 3 × 3 matrix (18) is positive semi-
definite if and only if the intervals [−((1 + a3)(1 − b3))1/2, ((1 + a3)(1 − b3))1/2] and
[x1, x2] have non-empty intersection.

Note that the second order polynomial (21) has at least a positive root since−(b3−a3) <
0 and 2a21 ≥ 0 so that x2 > 0. Moreover, if we evaluate it at±((1+ a3)(1− b3))1/2 we find

±2a21((1 + a3)(1 − b3))1/2 − a21(2 − b3 + a3)

= −a21
(
(1 + a3)1/2 ∓ (1 − b3)1/2

)2 ≤ 0 (22)

Therefore both ±((1 + a3)(1 − b3))1/2 lie outside the open interval ]x1, x2[ and we can
find and x for which the matrix (18) is positive semi-definite, namely an x such that
|x| ≤ ((1 + a3)(1 − b3))1/2 and (21) is non-negative, the in the following cases.

(1) x2 ≤ ((1+a3)(1−b3))1/2. This happens if and only if themiddle point a21/(b3−a3)
of the interval [x1, x2] satisfies a21/(b3 − a3) ≤ ((1 + a3)(1 − b3))1/2 which is (15).

(2) x1 = ((1 + a3)(1 − b3))1/2. In this case the determinant of the 3 × 3 matrix (18)
vanishes irrespectively of a1, moreover 1 + a3 = 1 − b3 by (22) and positive semi-
definiteness of the three 2×2 diagonal blocks holds if and only if a21 ≤ (b3−a3)(1+
a3) = (b3 − a3)(1 − b3) = (b3 − a3)(1 − b3) = (b3 − a3)((1 + a3)(1 − b3))1/2

which is again (15).

The proof is completed noting that

(b3 − a3)
(
(1 − b3) ∧ (1 + a3)

) ≤ (b3 − a3)((1 − b3)(1 + a3))1/2

and so also the three 2×2matrices (19) and the 3×3matrix (18) are positive semi-definite,
if and only the inequality (20) holds.

The next negative result shows that, for v = (b − a)/‖b − a‖, by minimizing (13) it is
impossible to obtain a norm which is equivalent to the total variation norm.
Theorem 3: With the notation of Theorem (2), v = (b − a)/‖b − a‖, there exists no
positive constant κ , independent of a, b, such that

‖b − a‖ ≤ min
ρ

tr
(|v · σ ⊗ 1 − 1 ⊗ v · σ | ρ) ≤ κ‖b − a‖

for all a, b in the unit ball of R
3.
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Proof: By a change of coordinates in R
3, as in the proof of Theorem 2, exchanging the

roles of a and b if necessary, we can suppose that (16) holds.
If a constant κ satisfying the above inequality existed, it would be bigger than 1.

Moreover, by non-negativity of the second diagonal element of ρ, from (17) we get the
constraint 1 − c33 ≤ κ(b3 − a3).

Theorem 2 suggests that something may go wrong when a1 = b1 is big and b3 − a3 is
small. For this reason, we now consider two states depending on a parameter ε > 0 small
enough with

a1 = b1 = 1 − ε, b3 = ε

2
, a3 = −ε

2
.

The reader can easily check that, for any ε ∈ (0, 3−√
7)we find states which do not satisfy

(15).
The state ρ is represented by the density matrix 1/4 times

⎛
⎜⎜⎝

1 + c33 1 − ε + c31 − ic32 1 − ε + c13 − ic23 d − is′
1 − ε + c31 + ic32 1 − c33 − ε s + id′ 1 − ε − c13 + ic23
1 − ε + c13 + ic23 s − id′ 1 − c33 + ε 1 − ε − c31 + ic32

d + is′ 1 − ε − c13 − ic23 1 − ε − c31 − ic32 1 + c33

⎞
⎟⎟⎠

where s = c11 + c22, s′ = c12 + c21, d = c11 − c22, d′ = c12 − c21.
Now, since 1 − c33 ≤ κ(b3 − a3) = κε, the matrix

⎛
⎜⎜⎝

1 + c33 1 − ε + c31 − ic32 1 − ε + c13 − ic23 d − is′
1 − ε + c31 + ic32 (κ − 1)ε s + id′ 1 − ε − c13 + ic23
1 − ε + c13 + ic23 s − id′ (κ + 1)ε 1 − ε − c31 + ic32

d + is′ 1 − ε − c13 − ic23 1 − ε − c31 − ic32 1 + c33

⎞
⎟⎟⎠

has to be positive definite, for some choice of cij with i �= 3, j �= 3, for all ε ∈ (0, 1). A
lengthy computation shows that its characteristic polynomial is

λ4 − 2(κε + 1 + c33)λ3 +
(

− (3 + c33)(1 − c33) − 2
∑

(i,j)�=(3,3)

c2ij

+ 4 (2 + κ(1 + c33))ε + (κ2 − 5)ε2
)

λ2 + l.o.t.

where l.o.t. are lower order terms in λ. Now, we have to consider only coefficients cij(ε) (we
emphasize here dependence on the given marginal states, i.e. on ε) in such a way that ρ is
positive semi-definite. By positivity of diagonal elements of ρ we have−1 ≤ c33(ε) ≤ 1−ε.

Note that, the λ3 coefficient is strictly negative for ε > 0. Since the four real eigenvalues
of the above 4 × 4 Hermitian matrix must be nonnegative, by the well-known Descartes’
rule of signs of roots of polynomials (the number of positive roots of a polynomial is either
equal to the number of sign differences between consecutive nonzero coefficients, or is less
than it by an even number), the coefficient of λ2 must be non-negative i.e. our choice of
cij(ε) must satisfy

(3 + c33(ε))(1 − c33(ε)) + 2
∑

(i,j)�=(3,3)

c2ij(ε) ≤ 4(2 + κ(1 + c33(ε)))ε + (κ2 − 5)ε2
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for ε in a right neighbourhood of 0, in particular, since c33(ε) ≤ 1 − ε,

(3 + c33(ε))(1 − c33(ε)) + 2
∑

(i,j)�=(3,3)

c2ij(ε) ≤ ε
(
4(2 + κ(2 + ε)) + |κ2 − 5|ε) .

As a consequence
lim

ε→0+ c33(ε) = 1, lim
ε→0+ cij(ε) = 0,

for all (i, j) �= (3, 3). Positive semi-definiteness of the 2 × 2 left-upper corner of ρ implies

(
1 − ε + c31(ε)

)2 + c32(ε)2 ≤ (1 + c33(ε))(1 − c33(ε))

and letting ε → 0+ we find the contradiction 1 ≤ 0.
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