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Abstract 
Determining the optimal storage assignment for products in a dedicated 
warehouse has been addressed extensively in the Facility Logistics 
literature. However, the process of implementing a particular storage 
assignment given the current location of products has not received much 
attention in the existing literature. Typically, warehouses use downtime or 
overtime to remove products from their current location and move them to 
the suggested location. This work presents the Rearrange-While-Working 
(RWW) policy to optimize the process of rearranging a dedicated 
warehouse. The RWW policy seeks to relocate products in a warehouse 
from the initial arrangement to the optimal arrangement while serving a 
list of storages and retrievals. This study considers three scenarios: (1) 
when there is only one empty location in the warehouse and the material 
handling equipment (MHE) is idle (i.e. reshuffling policy); (2) when there 
is only one empty location in the warehouse under the RWW policy; (3) 
when there are multiple empty locations in the warehouse under the RWW 
policy. In the first case, the MHE can make any movement desired as it is 
idle. In the other cases, the movements correspond to a list of storages and 
retrievals that need to be served. In these cases it is assumed that products 
can only be moved when they are requested. After being used, they are 
returned to the warehouse. Several heuristics are presented for each 
scenario. The proposed heuristics are shown to perform satisfactorily in 
terms of solution quality and computational time. 

 
1. Introduction and Literature Review 
 
An important operational decision in warehouses is to determine the best storage location 
for each product in order to minimize the total material handling effort (or cost). This 
problem is known in the literature as the storage location assignment problem (SLAP). 
The SLAP can be classified according to the amount of information that is known about 



 

the arrival and departure of the products stored in the warehouse: (1) item information 
(SLAP/II), (2) product information (SLAP/PI), or (3) no information (SLAP/NI) [1].  

The SLAP/II problem assumes that the complete information about the arrival and 
departure times of individual items is known. A commonly used policy for the SLAP/II is 
the Duration-of-Stay (DOS) policy where items with the expected shortest visit are 
assigned to the most desirable locations [2].  

In the SLAP/PI the information available is at the product level (instead of the item 
level, where items are instances of products). At the same time, products may be 
classified into product classes, typically according to physical characteristics or 
requirements. The SLAP/PI seeks to assign product classes to storage locations. After 
product classes are assigned to storage locations, the item location within its class is 
determined by simple rules (e.g. randomly). As described by Haussman et al. [3], the 
special case where the number of classes equals the number of products (n) is called 
Dedicated (or Fixed Slot) Storage as each product would have a specific set of storage 
locations for storage. If there is only one class, the storage policy is referred to as 
Randomized or Floating Slot as any item could go to any storage location. On the other 
hand, when the number of classes is between two and n-1, it is known Class-Based 
Storage. A commonly used policy for the SLAP/PI is to assign classes with small cube-
per-order index (COI) [4] to the most desirable locations. 

In the SLAP/NI, no information is available on the characteristics of the arriving 
items. Hence, only simple storage policies can be developed (e.g. Closest-Open-
Location). For more details regarding existing studies addressing the SLAP problem the 
reader is referred to [1, 5].  

The SLAP problem can be further classified as static or dynamic. In the static version 
of the problem the material flows are assumed constant over the planning horizon. On the 
other hand, the dynamic version continuously adjusts storage assignments based on 
material flows. Most of the existing literature focuses on the static version of the problem 
[1]. An interesting compromise was proposed by Christofides and Colloff [6] (warehouse 
rearrangement), Linn and Wysk [7-8] (restoring policy), and Muralidharan et al. [9] 
(shuffling). The basic idea in all of them is to relocate items during idle times in order to 
actualize the storage location assignment. Clearly, at some point the optimal SLAP 
configuration will change due to seasonality and life cycles of products. At this point, a 
new SLAP configuration is determined and idle times are used to update the warehouse 
configuration. Christofides and Colloff [6] proposed a two-stage algorithm to sequence 
item movements to minimize the material handling effort required to rearrange the 
products in a dedicated warehouse. Linn and Wysk [7-8] suggested a restoring policy for 
Automated Storage / Retrieval Systems (AS/RSs) using Class-Based Storage where idle 
times are used to move fast-moving items closer to the I/O. The authors do not provide 
details or computation results. Muralidharan et al. [9] formulated the problem of updating 
the warehouse configuration under Class-Based Storage for AS/RSs as a Precedence 
Constrained Selective Asymmetric Travelling Salesman Problem. Given the 
computational complexity of the problem, the authors proposed two heuristics: Shuffling 
with Nearest Neighbor Heuristic (SNN) and Shuffling with Insertion (SI). Based on 



 

simulation results the authors conclude that using idle times to update the warehouse 
(AS/RS) configuration increases the AS/RS operating efficiency. 

In this study we seek to update the configuration of a dedicated warehouse while 
serving orders. We do not rely on idle times to move products. Instead, when an item is 
retrieved, its storage location is changed in order to systematically update the warehouse 
arrangement. We assume that the initial (current) and final (i.e. optimal SLAP) storage 
location assignments are known. Hence, the problem is to move the items from an initial 
location to a final location by only moving those items that are required in the orders 
being served. For example, assume that an order includes an item that is stored in a pallet 
that will be retrieved by an AS/RS. The pallet is retrieved, and upon picking from the 
pallet, it is stored in a different location than the one held originally. The proposed 
Rearrange-While-Working (RWW) strategy assumes the problem is static (as we 
compute the final SLAP arrangement once and then implement it). Clearly, if one 
resolves the SLAP problem continuously the proposed strategy could solve the dynamic 
SLAP problem. 

Although the work presented in this paper applies to any general warehouse with one 
material handler, we assume an AS/RS for convenience (for details on AS/RS the reader 
is referred to [10]). The remainder of this paper is organized as follows: Section 2 
presents and solves the case where there is exactly one empty storage space in the AS/RS 
(warehouse) and the rearrangement will occur during an idle time (or overtime). Section 
3 discusses the case where there is one empty location in the AS/RS and the 
rearrangement will occur while the AS/RS is serving orders. Section 4 presents the case 
where there are multiple empty locations and the rearrangement will occur while the 
AS/RS is serving orders. Lastly, Section 5 presents the conclusions. 
 

2. One Empty Location - AS/RS Idle 
 
In this Section we consider an AS/RS that serves a rack that has one empty location and 
while idle. The AS/RS will move the products in order to rearrange the rack from the 
current product arrangement to a final (SLAP optimal) arrangement. Notice this is a 
special case of the problem solved by Christofides and Colloff [6] where there is only one 
empty space.  

Consider the product arrangement in the 3×3 racks shown in Figure 1. The left rack 
contains the initial (or current) product arrangement while the right rack contains the final 
arrangement. Let matrix A and B be associated with these racks such that A(1,1) = 6 and 
B(1,1) = 1. Notice that product 1, currently in position (1,2) needs to be moved to 
position (1,1) in the rack. The zero in A(3,2) and B(3,3) represent the empty location. 

 

 

 



 

 

1 2 3 1 2 3

1 6 1 7 1 1 2 3

2 5 2 8 2 4 5 6

3 4 0 3 3 7 8 0
 

Figure 1: The Initial and Final Product Location in a Rack. 

 
Any item can be moved to the empty location. Graphically, this movement would be 

equivalent to exchanging the location of the item with the empty location. Figure 2 
presents the natural movement required to move items 6 and 8 to their final locations. 
The S/R machine moves from the I/O (assumed in the lower-left corner) to location (2,2), 
picks up item 8 and moves it to location (3,2), travel empty to location (1,1) to pick up 
item 6 and moves it to location (2,3). A similar process can be used to relocate the 
remaining items. 

 
1 2 3 1 2 3 1 2 3

1 6 1 7 1 6 1 7 1 0 1 7

2 5 2 8 2 5 2 0 2 5 2 6

3 4 0 3 3 4 8 3 3 4 8 3

g

 
Figure 2: S/R Machine Path to Relocate Items 6 and 8. 

 
 

2.1 Solving the Case with One Empty Location - AS/RS Idle 

The problem of minimizing the material handling effort required to move from rack A to 
rack B during idle time (i.e. the S/R can move any item desired) can be found by using 
Dynamic Programming or by the algorithm in [6]. Unfortunately, as shown by 
Muralidharan et al. [9] this problem is NP-Complete. Hence, some heuristic approaches 
are considered to solve this problem.  

The proposed heuristics only consider moving those items that are not in their final 
position. These items, if possible, will be moved to their final storage location without 
any intermediate steps. Every time an item is moved to its final storage location, the 

A B 



 

problem is reduced until all items have reached their final storage location. If no items 
can be moved directly to their final location the heuristics decide how to proceed. 

 
2.1.1 Heuristic 1 (H1): Evaluate all possible movements to the empty location 
 
This heuristic will start by moving the item whose final destination is the initial location 
of the empty space. It continues until the location of the empty space coincides with the 
location of the empty space in the final arrangement. At this point the heuristic will 
branch to consider moving each item that is not in its final destination. In each branch the 
heuristic continues moving the item whose final destination is the current location of the 
empty space. If the location of the empty space once again coincides with its final 
location, another set of branches are generated. The solution will be the branch that yields 
the minimum cost. 

 
2.1.2 Heuristic 2 (H2): Maximum Index 
 
In this heuristic, instead of branching when the location of the empty location coincides 
with its final location, the item closest to the I/O in the horizontal axis is moved to the 
empty location. In case of a tie, choose the item closest to the I/O in the vertical axis. 
Evidently, this rule is arbitrary. However, it is expected to be faster than H1.  
 
2.1.3 Heuristic 3 (H3): Closest Item 
 
This heuristic is different from H2 in that the item to be selected (to move to the empty 
location if the empty location is in its final location) is the one closest to the empty space. 
 
2.1.4 Heuristic 4 (H4): Closest to its Final Location 
 
In this heuristic, the item selected (to move to the empty location if the empty location is 
in its final location) is the one that is closest to its final location (shortest distance from its 
destination). 
 

2.2 Experimental Results and Analysis 

To determine the best heuristic for the one empty location operating during idle time, a 
design of experiments was conducted. The factors were size of the rack (at levels 9, 100, 
400) and the rack organization (i.e. percent of items not in their final location, at levels 
0%, 50%, and 85%). Five replicates of each instance complete the experiment. It was 
assumed that the S/R machine takes 1 unit of time to move horizontally and vertically. 
The travel time for the S/R machine is assumed Chebyshev. The instances were randomly 
generated using VBA and coded in MATLAB 8.0. The experiments were run in a Dell 
Core 2 vPro 4 GB of memory and an AMD Turion 2.1 GHz processor. An ANOVA 



 

considering including three co-variants (R2 = 98.8%) suggest that H1 is statistically better 
(at a 99% level) than the other heuristics in terms of solution quality, followed by H3. 
However, in terms of solution time H1 is not able to solve large problems (400 locations). 
Hence, for practical purposes, H3 is the preferred heuristic.  

 
3. One Empty Location and Using RWW 
 
This Section explores the scenario where the rack has exactly one empty location (n-1 
items) and uses the Rearrange-While-Working (RWW) policy. In other words, the moves 
performed by the AS/RS are limited to those in a list of items to be retrieved. 
Furthermore, the sequence in which the AS/RS can move the items is also dictated by the 
list. The sequence of the list is assumed known. Consider the initial and final 
arrangements in Figure 1. Now, assume that the AS/RS is expected to serve the following 
list of k orders {8,1,7,2,6,5, 3,1,7}. This means that the AS/RS must retrieve item 8, then 
item 1, and so on. We assume that the item will return to the rack as soon as it has been 
retrieved. Therefore, the AS/RS will retrieve item 8 (as it is the first in the list), we 
assume a picker will pick from the pallet and it will be returned to the rack. At this point, 
since there is only one open space, there are two options: return the item to its original 
position or move it to the empty space. After storing item 8, the process is repeated with 
the remainder items in the list. Notice that the approached followed could be described as 
a block sequencing approach. 
 
3.1 Solving the Case with One Empty Location - RWW  

Since the possible AS/RS movements are limited to items in the list, some items might 
never be requested. Also, since the position of the empty space depends on the specific 
order in which items are requested, the expected time to reach the final arrangement is 
very long. Clearly, the biggest challenge for this problem is to determine if a particular 
movement takes the configuration of the rack closer to the final configuration of the rack. 
Notice that in this scenario items are likely to be moved to a location other than its final 
location. Therefore, it is very likely that the rack configuration after serving one list of 
orders is neither the initial nor the final configuration. Hence, one needs to be able to 
quantify how close to the final rack configuration is a particular product arrangement. In 
other words, given two rack configurations one needs to determine which one is closer to 
the final configuration.  

In this study we propose using H3 (from Section 2.1.3) to evaluate how close is a 
particular configuration to the final one. Clearly, by doing this we implicitly assume that 
the moves will be performed during idle time (as assumed by H3). If this is possible (i.e. 
use downtime to perform reshuffles), then the proposed Rearrange-While-Working policy 
is used in combination with the “shuffling” concept [6-9].  

To explicitly enumerate the solution space one needs to consider 2k combinations (for 
each of the k items in the order, consider moving to current location or moving to empty 



 

space). Each of the 2k combinations can then be evaluated using H3 to determine which is 
closer to the final configuration. (H3 is used instead of the optimal solution or H1 in 
order to be able to evaluate the 2k combinations.) The best solution is the combination 
that minimizes the time to serve the k orders plus the time to take the resulting 
configuration to the final configuration using idle time. This solution is optimal if indeed 
the RWW policy will be combined with the optimal shuffling sequence during idle times. 
Henceforth, we use the term “optimal” to refer to the solution evaluated using H3, 
although we recognize it is not necessary optimal. The following sub-Sections present 
four heuristic methods to optimize the Rearrange-While-Working policy when there is 
only one empty location. In general, we propose to evaluate candidate solutions for Case 
2 (one empty location under RWW) using the solution from Case 1 (1 empty location 
with ASRS idle).  

 
 
3.1.1 Heuristic 5 (H5): Recognizing Repeated Items  
 
This heuristic finds the first order to be repeated in the list and treats it as a sub-problem. 
All combinations of this sub-problem are evaluated using H3 and the best one is 
implemented. Then, the next order to be repeated after the sub-problem is treated as the 
subsequent sub-problem, until all decisions are made. In Figure 3 there are 13 items in 
the list of orders (to be served from left to right). The first item to be repeated is item 1. 
All possible combination of this sub-problem (that includes 7 items) is explored and 
evaluated. Then the next five items are identified for the second sub-problem, and so on.  

 

 
2

7 4 5 2 7

1 2 3 5 4 8 1

2

1

7 4 5 2 7

5 2 7 2
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Figure 3: Concept of H5 - Recognizing Repeated Orders Heuristic. 
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3.1.2 Heuristic 6 (H6): Greedy 
 
In this heuristic one evaluates both possibilities for the first order in the list and 
implements the better one. This process continues for the remaining items in the list of 
orders. Hence one only evaluates 2k options.  
 
3.1.3 Other Heuristics 
 
Case 2 can also be solved using Steepest Descent Heuristic (H7) and Genetic Algorithm 
(H8). In general, these heuristics can be applied by deciding if an item will return to its 
current location after it has been retrieved, or if it will be relocated to the empty space. 
 
3.2 Experimental Results and Conclusions 
 
To determine the best heuristic for the one empty location under the RWW policy, a 
design of experiments was conducted. The factors were size of the rack (at levels 9, 100, 
400), rack organization (i.e. percent of items not in their final location, at levels 0%, 50%, 
and 85%), the size of the list of orders (at levels k=10, 25, 50), and item distribution in 
list (at levels uniform, where all items are equally likely to be in list, a case where some 
items have a 15% higher probability of being selected, and lastly a case where some 
items are 25% more likely to be selected). As before, five replicates of each instance 
complete the experiment and it was assumed that the S/R machine takes 1 unit of time to 
move horizontally and vertically according to Chebyshev distance. The experiments were 
generated in Visual Basic for Applications (VBA). The heuristics were coded in 
MATLAB 8.0 and the experiments were run in a Dell Core 2 vPro 4 GB of memory and 
an AMD Turion 2.1 GHz processor. An ANOVA (R2 = 99.7%) suggest that H8 (GA) is 
statistically better (at a 99% level) than heuristics H6 (Gradient) and H7 (Steepest 
Descent). The solution time for the optimal solution and for Heuristic 5 (Recognizing 
Repeated Orders) exceeded 3 days for instances greater than 100 locations. Hence, we 
were not able to solve these instances. Clearly, these solution methodologies are not 
practical for industrial implementation. In the small instances, the best of 5 GA runs (H8) 
found the optimal solution in eleven of the twelve instances. For seven of the instances all 
GA runs found the optimal solution. For larger instances we were unable to identify the 
optimal solution. In terms of solution time, H8 (GA) solved all problems in less than one 
minute. In general, it is clear that H8 (GA) is the preferred solution methodology for the 
one empty location under the RWW policy. The second best heuristic, able to solve all 
instances of the problem, is the Steepest Descent heuristic (H7). 

4. Multiple Empty Locations Using RWW  
 
This Section explores the scenario where the rack has multiple empty locations and uses 
the rearrange-while-working policy. Theoretically, one should find the best empty 



 

location for each item. However, given the complexity of the problem it is infeasible to 
consider all empty location. Instead, the proposed approach is to only consider returning 
the item to its original location or moving it to the open location closest to its final 
location. Clearly, this is analog to the case solved in Section 2 for which Genetic 
Algorithms (H8) proved to be a good solution methodology. Hence, we modify H8 to 
consider the closest empty location to the items final location and use it to solve the case 
with multiple empty locations. To compare our results, we also modify the second best 
heuristic for the one empty location under rearrange-while-working policy (i.e. Steepest 
Descent Heuristic, H7).  
 
4.1 Experimental Results and Conclusions 
 
To determine the best heuristic for the multiple empty locations under the RWW policy, a 
design of experiments was conducted. The factors were size of the rack (at levels 9, 100, 
400), number of empty locations (5%, 20%, 40%), rack organization (at levels 0%, 50%, 
and 85%), the size of the list of orders (at levels 10, 25, 50), and item distribution in list 
(at levels uniform, 15% and 25%). Five replicates of each instance complete the 
experiment. It was assumed that the S/R machine takes 1 unit of time to move 
horizontally and vertically according to Chebyshev distance.  The experiments were 
generated in VBA. The heuristics were coded in MATLAB 8.0 and the experiments were 
run in a Dell Core 2 vPro 4 GB of memory and an AMD Turion 2.1 GHz processor. An 
ANOVA suggest that H8 (GA) is statistically better (at a 99% level) than heuristic H7 
(Steepest Descent) in terms of solution quality. In terms of runtimes, on average, H7 ran 
faster than H8.  

 
5. Conclusions 
 
This paper introduces the rearrange-while-working (RWW) policy, which seeks to 
organize a warehouse by relocating items as they are retrieved and re-stored in a 
warehouse according to a (production or order) list. The proposed RWW policy can be 
used in parallel with existing “shuffling” policies while the equipment is idle. Three cases 
were studied in this paper: (1) one empty location with idle equipment; (2) one empty 
location with RWW; and (3) multiple empty locations with RWW. A total of eight 
heuristics were tested for the three cases studied. In the one empty location with idle time 
the closes item heuristic (H3) was preferred. For the one empty location with RWW and 
the multiple locations with RWW the Genetic Algorithm approach (H8) was preferred. 
More details regarding the proposed RWW policy are available in Carlo and Giraldo 
[11]. 

The proposed RWW policy could be used to solve the static or dynamic SLAP 
problem. For the static SLAP problem, the optimal arrangement is computed and the 
RWW is used to implement it using a block scheduling approach. For the dynamic case, 



 

after performing each movement the SLAP problem is solved and the proposed solution 
methodologies are used to determine the next movement.  
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