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Abstract
The lack of public charging infrastructure has been one of the main barriers preventing
the technological transition from traditional vehicles to electric vehicles. To accelerate this
technological transition, it is necessary to elaborate optimal charging station location
strategies to increase the user confidence, and maintain investment costs within accept-
able levels. However, the existing works for this purpose are often based on multipath
considerations or multi‐objective functions, that result in taxing computational efforts for
urban transportation networks. This article presents a heuristic methodology for urban
transportation networks, that considers the deployment of the charging stations for
coverage purposes, and the fulfilment of user preferences and constraints as two sepa-
rated processes. In this methodology, a Reallocation Algorithm is formulated to prioritize
the selection of Locations of Interest, and to reduce the number of stations with over-
lapping covering areas. The methodology results are compared to those drawn from a
Greedy Algorithm based on a multipath consideration, in an extensive metropolitan
transportation network. The results show that the proposed methodology significantly
reduce the computational time required for solving the location problem, and further-
more, allows for similar results to those obtained when considering k ¼ 2 and k ¼ 3
deviation paths.

1 | INTRODUCTION

The continuous worldwide effort to reduce greenhouse gas
emissions has translated into a large adoption of electric ve-
hicles (EVs), reaching a fleet of over five million vehicles [1].
This growing tendency has enhanced the development of more
reliable batteries and charging infrastructure to allow larger
vehicle ranges and a faster charging process [2]. In fact, most
EV users can charge their vehicles at home, and the range
autonomy from most batteries are suffiencient to carry out
practically any daily activity [3]. However, the lack of a fast
public charging infrastructure is considered to be one of the
main barriers for the adoption of EVs, as it causes ‘range
anxiety’, especially when it comes to long‐distance or inter‐city
trips [4, 5].

Based on the previous premise, it is essential to carry out a
proper charging infrastructure location and quantification
to allow a comfortable technological transition for users.

However, as EVs can be charged at home, it is possible that the
rate of use of these facilities will be marginal. Thus, it is not
only necessary to satisfy the range requirements from users but
also to avoid unfeasible investment costs [6].

There are various criteria to define the location of public
charging infrastructure, among the most relevant ones are
those that involve socioeconomic, environmental, technolog-
ical, and urban aspects [7–9]. The local mobility patterns are a
key feature to be taken into account in the aforementioned
criteria. This means that in order to guarantee the financial
sustainability of these facilities, their location has to consider
the main subcentres of urban activities, and its accessibility for
users [10, 11]. Moreover, user preferences for charging stations
with higher charging power, connection points, charger
compatibility, among other characteristics, have proven to
substantially affect their use rate [5].

Multiple methodologies have been developed to properly
locate EV charging stations, with a special focus on the
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development of mathematical optimization models [12].
However, from this point of view there are two important
considerations: First, it is known that large transportation
networks result in taxing computational efforts, and thus, often
require heuristic methods or genetic algorithms for their so-
lution. On the other hand, when optimization models include
constraints related to the user preferences, they tend to result
in multi‐objective functions, making the problem more diffi-
cult to solve [13–16].

This paper presents a novel charging station location
methodology, where the location of the facility, and the user
preferences and constraints fulfilment are treated as decoupled
processes. In this way, an initial location based on a given
criterion is first proposed, and then refined to better match the
user requirements in terms of charging power, comfort, and
probability of connection. This process is carried out while
maintaining distances deviations from the original solution
within acceptable levels. The refinement process is carried out
through a new heuristic algorithm called Reallocation Algo-
rithm, which is aimed at prioritizing the selection of Locations
of Interest that provide more suitable conditions for users, and
also at reducing the number of overlapping coverage areas
from stations.

This decoupled consideration avoids multi‐objective for-
mulations, and also reduces the computational effort experi-
enced by classical k‐deviation‐paths considerations by allowing
the problem to be formulated only through k ¼ 1.

The methodology is applied in a case study of a real urban
transportation network of a city with 7.2 million inhabitants,
and 380 km2 [17], where the subcentres of urban activities,
such the main corridors, malls locations, exit routes, and high‐
income areas of the city are considered.

The results obtained from the proposed methodology us-
ing the Reallocation Algorithm are contrasted with the results
drawn from an implemented Greedy Algorithm which is based
on a classical k‐deviation path consideration, comparing the
computational time and the final number of planned charging
stations. It is important to point out that in this paper the
deviations paths are related only to distance, and not to the
travelling time, as traffic flow conditions have been previously
proposed to not have an influence on the charging station
location [18].

In summary, the contributions of this paper are the
following: (i) a Reallocation Algorithm that reduces the
computational time needed to solve optimization problems with
user constraints, (ii) a strategy for the location of fast public
charging infrastructure on a city of 7.2 million inhabitants and
380 km2, (iii) a sensitivity analyses that determines how selecting
main subcentres of urban activity as fixed charging station lo-
cations affects the final location strategy.

The paper is organized as follows: in Section 2, a literature
review on the topic of charging station location is presented.
Section 3 introduces the proposed methodology to carry out
the charging station location in urban environments, and the
description of the proposed Reallocation Algorithm. Section 4
describes the urban transportation network used as case study,
along with the study assumptions. In Section 5, the results

from the proposed methodology in the case study application
are drawn, and finally, Section 6 presents the conclusions and
discussion on the key findings.

2 | LITERATURE REVIEW

The charging stations location problem has been studied
widely in recent years. This problem can be classified as a
subset of the facility location problem, and can be grouped
into three main categories: the P‐median problem, the P‐centre
problem, and the covering problem [19, 20]. The P‐median
problem tries to allocate p charging stations minimizing the
average distance between demand nodes and the nearest
charging stations [21], while the P‐centre problem locates p
charging stations to minimize the deviation distances for
drivers [22]. Finally, the covering problem locates the charging
stations to maximize the total population served within a
maximum distance or time criterion [23, 24].

Regardless of the approach used for the location of electric
chargers, it is necessary to model the behaviour of the agents
related to these facilities, such as EV users, charging stations
owners and the electric network operator. For instance, authors
in [16] model the behaviour of EV users suggesting that their
preference for a charging station can be affected by their
location at a given moment due to traffic flow conditions. The
previous authors suggest that the location and capacity of
charging station have influence on EV users. However, authors
in [18] assumed that the EV users always prefer the charging
station destination and route that reduce their cost. Therefore,
their charging station selection may not be influenced by traffic
conditions.

Authors in [25] propose that the behaviour of charging
station owners can be modelled depending on the market
structure as independent companies pursuing economic ben-
efits through their investment on charging stations or indi-
vidual‐owned service. In [26] the authors modelled the
charging stations like ‘chain stores’, and in [25] the independent
owners are considered as the main body of the charging station
investment. These models can include some costs consider-
ations regarding the construction, operation, and maintenance
of the facility.

In [27], a charging station location model named Multipath
Refuelling Location model is proposed and solved using
Greedy algorithms to locate charging stations in the Sioux Falls
network and in the state of South Carolina. The k‐deviation
paths considerations were used to reduce the number of
required facilities, and consequently the investment cost. Other
studies suggest that a multipath approach might not be a
suitable technique for urban areas represented by large size
graphs as routing complexity grows exponentially with the
number of nodes [28]. Nonetheless, only considering a mini-
mum path scenario can result in a significant number of
contiguous stations whose proximity result in overlapped
covering areas.

Other aspects to be considered for the charging station
location problem are the objective function and the algorithm
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used to solve the optimization problem. In literature objective
functions from linear to multi‐objective functions can be
found, in most cases to model cost functions [13–15]. These
cost functions can be associated to the cost of EV users, cost
of charging station owners, or cost of network operators [16].

Other works use classic optimization algorithms to solve
this particular location problem, for example in [29, 30] it is
formulated as a mixed‐integer linear problem and solved by
deterministic branch‐and‐bound method. However, the
charging stations location problem is a NP‐hard problem
[13, 31], and thus, the use of heuristic methods and artificial
intelligence algorithms have become some of the most recur-
rent solving techniques [27, 32]. In [16] the problem is
formulated as MINLP and solved using genetic algorithm
technique. In [25] a bi‐level optimization model is transformed
to a single‐layer model using Karush‐Kuhn‐Tucker optimality
conditions, and an improved dynamic differential evolution
algorithm solved each layer.

Newer optimization models consider aspects such as the
charging power demand, the public infrastructure re-
quirements, and target market constraints [18, 33, 34]. More-
over, authors in [16] assumed aspects such as urban roads, city
zones, and electric substation locations. To solve this problems
the authors propose different approaches such as Bi‐level
problem, Multi‐Objective function, Monte Carlo simulation,
Nash Equilibrium, Chicken Swarm, Genetic Algorithm tech-
niques, Chemical Reaction Optimization [15, 18, 26, 33, 35].

3 | METHODOLOGY

This section presents the methodology used to optimally locate
charging stations (CS) in urban environments. As a key part of
this methodology, it is necessary to carry out a characterisation
of the transportation network and user mobility patterns to
identify aspects such as the network topology, expected vehicle
ranges, an identification of the most common origin and
destination locations, along with possible driving routes and
potential charging stations. As shown in Figure 1 the Reallo-
cation Algorithm is incorporated as the final step of the pro-
posed methodology.

As first step, and to obtain a proper location strategy, an
understanding of the urban transportation network is required.
To this end, the key features that define the mobility patterns
of the transportation network users should be characterised;
this can be achieved by modelling the network as a graph of N
nodes, with and identification of the common origins ( bO) and
destinations (bD) of the EV users, potential charging station
locations (bS), and the graph lines (δ) are clearly identified. This
graph modelling allows to carry out an origin destination
routing process (O‐D routing), which should provide as result
the k‐deviation paths that connect each O‐D pair (dRod ).

The graph topology along with the set of O‐D routes are
used as input data for the implementation of a heuristic al-
gorithm to draw a preliminary set of charging station locations
(I). Finally, the Reallocation Algorithm is applied to refine the
solution in order to give a better match to user preferences,

and to reduce the number of overlapping stations, obtaining
the final set of bT selected charging stations.

The Origin‐Destination routing (O‐D routing) is carried
out to identify the travelling route between an origin and a
destination node, along with the cost of covering the route; it is
essential to point that O‐D travelling routes should be
composed by potential charging stations [27]. This process can
be considered as a k‐shortest path problem, and thus, it can be
addressed through different techniques such as Dijkra's,
Bellman Ford's, Floyd‐Warshall's, or Yen's algorithms [27].

The following sections describe the proposed methodol-
ogy to carry out the preliminary selection of the required
charging stations and the developed Reallocation Algorithm.

3.1 | Preliminary selection of charging
stations

In the proposed methodology, the preliminary selection of
charging stations is carried out through heuristic methods with
the purpose of avoiding the high computational effort that
results from traditional optimization models [32].

The selection of the heuristic method should be based on
an optimization criterion (e.g. cost, coverage, charge duration,
profit, etc.), a transportation network characterization, and a
suitable O‐D routing consideration depending on the number
of nodes composing the graph. Particularly, in urban scenarios
the characterization of the transportation network should also
take into account a proper spatial zonification of the main
corridors, and possible user preferences that could lead to a
more realistic selection of O‐D pairs [36]. Accordingly, the

F I GURE 1 Methodological proposal to locate charging stations
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summarized methodology proposed to carry out the selection
of the heuristic method, and consequently, the preliminary
location of the charging stations is depicted in Figure 2.

3.2 | Reallocation Algorithm

This section describes the proposed Reallocation Algorithm,
which is formulated to reduce the number of overlapping
charging stations by considering a coverage radius for each
facility, and contemplating the possibility of reallocating some
stations into Locations of Interest which might be better suited
to fulfil the customers’ requirements.

However, in order to do so, there are two critical steps to
follow. First, it is necessary to characterize the level of rele-
vance of the planned charging stations as this will ultimately
dictate which stations remain after the reallocation process.
This characterization should contemplate how the facility
conditions match the user preferences. For example, stations
with the higher charging power and number of available
connection points, should be considered as the more relevant
facilities as they allow a faster charging and connection.

On the other hand, it is necessary to carry out a proper
coverage area assignation for each of the charging stations,
mainly because this feature has a direct influence on the
number of overlapping facilities.

To fulfil the previous requirements the Reallocation Al-
gorithm was designed to follow the methodology depicted in
Figure 3.

Note that the algorithm consists of three main blocks,
which are the weight assignation block for the planned
charging stations, the coverage radius computation block, and
finally, the reallocation block. The previously mentioned blocks
will be explained in detail in the following sections

3.2.1 | Weight assignation block

In this article the relevance level of the stations is assessed by
proposing a weighted index that considers three key features of
the user preferences. These are: the charging station power
(which defines the length of the charge), the number of
connection points (which increases the probability of a faster
connection), and the facility comfort (which is associated to
the activities that the user can carry out during charging pe-
riods). These parameters are used to define a Station Weight
index as shown in Equation (1).

SWi ¼ μP;i � ωP þ μS;i � ωS þ μC;i � ωC ð1Þ

where SWi is the Station Weight Index of the ith station, with a
value comprehended in the range of 0 to 1. Terms μP,i, μS,i,
and μC,i stand for the Power Index, the Size Index, and the
Comfort Index, respectively; these terms describe a given
charging station condition in each of its aspects in comparison
to the best possible facilities. On the other hand, ωP, ωS, and

ωC are relative weights in the range from 0 to 1 for the facility
Power Index, Size Index, and Comfort Index, respectively.
These last terms indicate the relevance of factors μP, μS, and
μC during SW computation.

The proposed calculation procedures for μP,i are shown in
Equations (2) and (3), for μS,i in Equations (4) and (5), and for
μC,i in Equations (6) and (7).

μP;i ¼
CSPi

MSP
ð2Þ

MSP ¼maxðCSP1;CSP2;⋯CSPn;⋯ Þ ð3Þ

μS;i ¼
NCPi

MCP
ð4Þ

MCP ¼maxðNCP1;NCP2;⋯NCPNÞ ð5Þ

F I GURE 2 Preliminary deployment methodology

F I GURE 3 Reallocation Algorithm methodology
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μC;i ¼
CCi

MSC
ð6Þ

MSC ¼maxðSC1; SC2;⋯SCNÞ ð7Þ

where MSP is the maximum charging power connection from
all chargers, MCP the highest number of connection points
found in a facility, and MSC the highest comfort index from all
subcentres of urban activity with a charging station. CSPi
represents the charging power of the ith station, NCPi its
number of connection points, and CCi stands for its comfort
index. Note that μP,i, μS,i, μC,i are also comprehended in the
range from 0 to 1 since the reference patterns are the stations
with the best respective conditions.

As for the Comfort Index (μC,i), since it is a fully quali-
tative measure, a value of 1 is suggested for charging stations
with barely any side activities offered, a value of 2 to locations
with food courts or similar, and a value of 3 for facilities inside
a mall parking spot.

It is important to point out that while the power, size and
comfort indexes can variate for each station, the terms ωP, ωS,
and ωC remain constant for all facilities.

According to the previous indexes and terms description,
the full weight assignation block works as follows:

Algorithm 1 Weight assignation block

1: Let I be the set of planned stations.
2: Set indexes ωP, ωS, and ωC.
3: Set powers CSPi, connection points NCPi, and comfort

condition CCi ∀i ∈ I.
4: Compute MSP, MCP, and MSC using Equations (3), (5),

and (7)
5: Compute μP,i, μS,i, and μC,i using Equations (2), (4), and

(6) ∀i ∈ I.
6: Compute SWi using Equation (1) ∀i ∈ I.

It is important to point out that since Locations of Interest
are expected to provide conditions that better match to user
preferences, the charging stations at these spots should have
higher SW indexes than regular street stations.

3.2.2 | Coverage radius assignation block

The calculation of a proper coverage radius of the stations is a
fundamental aspect to take into account [37], however, this
matter requires two considerations. First, the reallocation will
cause the facility to be moved from its original location. How-
ever, the distance a charging station is moved should not surpass
the travel distance a user is willing to detour to charge in the new
location.

This maximum detour distance can be related to the vehicle
range; however, urban distances are often short in comparison
to current EV ranges [3], and the coverage area of the charging
stations would change depending on the EV regional park.
Another option is to generate a Minimum Distance Matrix

between the adjacent nodes of the network transportation
graph, and carry out a percentile analyses. This last method
would allow to set coverage areas that depend only on the
transportation network characteristics regardless of the
considered EVs.

Another aspect to consider is that similar to the SW index
described in Section 3.2.1, the coverage radius assignation
should contemplate features regarding the user preferences.
Consequently, more relevant stations should have a greater
coverage area than minor facilities. SW index is combined with
the maximum detour distance to compute the coverage radius
of a given station as it is shown in (8).

CRi ¼mdd � SWi ð8Þ

Where CRi is the coverage radius of the ith station, andmdd is
the maximum detour distance. Note that even if a charging
station matches ideal conditions for all indicators from Sec-
tion 3.2.1, the maximum value that SWi can take is 1. Thus, a
driver will never detour further than mdd.

According to the previous indexes and terms description,
the full weight assignation block works as follows:

Algorithm 2 Radius coverage block

1: Let I be the set of planned stations.
2: Generate Minimum Distance Matrix between connected

nodes in the transportation graph.
3: Set mdd as the kth percentile of the Minimum Distance

Matrix.
4: Compute CRi using Equation (8) ∀i ∈ I.

3.2.3 | Reallocation block

The objective of the Reallocation Block is to eliminate stations
with overlapping areas. A station is considered to be over-
lapped if it is located inside the coverage area of another fa-
cility. The general process consists in forming groups of
overlapping charging stations and selecting the one with the
highest weight to represent all the stations in the group; this
process is to be repeated until there are no more overlapping
stations.

Several considerations have to be taken during the previous
process. Particularly, the station to which a group is reduced
should not be considered for any further reallocation as this
could result in distances greater than the maximum detour
distances. On the other hand, it is possible that after applying
the reallocation block there will be routes with less stations
than needed to cover their energetic requirements; thus, to
make the Reallocation Algorithm solution completely feasible,
it is necessary to consider that the driver will take a deviation
from its original path to charge the EV if the battery level
reaches a certain threshold, and will not wait until a charging
station is found on the route.

Based on the previous considerations the reallocation
block works as follows:
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Algorithm 3 Reallocation block

1: Let I be the preliminary set of stations.
2: Let T be the final set of stations.
3: Let MDA be the Minimum Distance Matrix between all

nodes.
4: Let mmd be the maximum detour distance.
5: Let SWi be the Station Weight Index ∀i ∈ I.
6: Let CRi be the coverage radius ∀i ∈ I.
7: Set V ¼ {∅}.
8: Select the station k with the highest SW s.t k ∈ I and add

it in set V.
9: Compute distance from k to j asMDA(k, j) ∀j ∈ I s.t j ≠ k.
10: Set distance from k to j as MDA(k, j) ∀j ∈ I s.t j ≠ k.
11: Add j to V ∀j s.t MDA(k, j) ≤ mmd.
12: Select the station with the highest SW inV and add it on

T. If multiple stations have the highest SW randomly select one.
13: Remove all stations in V from set I.
14: If I ¼ ∅ then T is the final set of stations. Else go back

to step 7.

Note that in the Reallocation Block the facility with the
highest weight of each group is selected as part of the final set
of charging stations, while all the stations on its cluster are
eliminated from set I. On the other hand, the selected station is
also eliminated from I to prevent it to be moved since it can
still be part of another cluster.

4 | CASE STUDY

The methodology described in Section 3 was applied to pro-
pose a charging station deployment strategy in the city of
Bogota, Colombia. In this case study the preliminary selection
of charging stations was carried out by implementing the
Greedy Algorithm presented in [27] to then use this results as
input data in the Reallocation Algorithm depicted in Section
3.2. The following sections describe the procedure of the
Greedy Algorithm implemented, and the urban transportation
network topology of the case study.

4.1 | Transportation network description

According to a 2018 social regional census, the city of Bogota has
a population of 7.2 million inhabitants distributed in 380 km2 of
built‐up area.Moreover, themetropolitan area constitutes a total
of 17 municipalities with different grades of integration.

The spatial distribution of the city activities in Bogota is
in the influence area of the city main road corridors and
matches the some of the areas with highest incomes [38]. In
this study Bogotá is considered to be divided into Trans-
portation Analyses Zones (TAZs) [39], which are territorial
areas defined by economic and social conditions, connectivity
with other zones, land use, size, among other characteristics.
Particularly even though the social‐economic condition of
these TAZs does not consistently reflect the population

income level, it does give a starting point to elaborate a
residential classification [40].

The corridor network was modelled by representing the
above mentioned TAZs as centroids using TRANSCAD
software, obtaining a graph composed by 960 arcs and 601
nodes. The graph attributes are related to the topology of the
main corridors, some secondary and tertiary corridors, and the
intersections by which they are connected.

Based on criteria such as the TAZs social‐economic level,
industrialisation level, malls, and exit routes, the main sub-
centres of urban activity were selected from the TAZs as po-
tential origins and destinations, obtaining a total of 37 nodes,
which generate 1330 O‐D pairs combinations. From these 37
centroids, 12 were selected as Locations of Interest, based on
criteria such as the EV users preferences for places of easy
accessibility, and that can provide multiple services [38, 40].

Figure 4 presents the general TAZs distribution on the
main road corridors, along with the selected O‐D nodes rep-
resented by the blue shaded areas, and the Locations of In-
terest with the red areas.

The graph was set up to consider every TAZ as a possible
charging station location, and the graph arcs values were related
to the minimum distance between nodes. These distances were
also generated using TRANSCAD software, and were organised

F I GURE 4 TAZs distribution on the main network mesh
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in a MinimumDistance Matrix; the terms of this matrix take the
value of the minimum distance between TAZs centroids (δi,j) if
these nodes are directly connected; otherwise they are assumed
as a sufficient large number. It is important to clarify for sizing
proposes, that the minimum distance between connected TAZs
is 0.19 km, the average is 4.25 km, and themaximum is 39.47 km.

4.2 | Heuristic method selection and
implementation

To carry out the preliminary selection of charging stations the
Greedy Algorithm presented in [27] was implemented. This
algorithm carries out an iterative weighted selection process by
locating the minimum number of stations needed to cover the
energetic expense of all the travelling routes considered.
Weights are assigned to each potential station depending on
how many times the facility is needed to cover different routes;
a route is covered if the vehicle can reach its final destination
by using some, or all of the deployed stations throughout the
route in any of the considered k‐shortest paths. The charging
station with the highest weight is placed in the graph, and the
process is repeated until every route is covered.

This heuristic method was designed to minimise the
charging infrastructure investment. However, if no investment
distinction is considered between the possible facilities, the
objective becomes minimising the number of deployed sta-
tions, and consequently the investment cost. The process for
this matter is shown in Figure 5, where bI represents the final
set of selected charging stations, bO refers to the origin nodes,
bD to the destination nodes, δ represents the value of the graph
edges, CB is used to represent the battery capacity of the
vehicle, ℓ is the remaining capacity of the battery at a certain
node, R(Oi, Dj) is the optimal route between an origin node
Oi, and a destination node Dj, which is stored in the set br . The
term λ represents the battery level at which a station is needed,
and P stands for the node where a charging station is required
to cover the energy expense between an O‐D pair, and μ is a
charge level to which the EV reaches once it stops in a charging
station.

4.3 | Assumptions

The case study was divided into two scenarios; in Scenario A
the results obtained by combining the shortest path with the
proposed Reallocation Algorithm are compared to the results
drawn from considering k ¼ 2 and k ¼ 3 shortest paths
computed through Yen's Algorithm [41]. In Scenario B, all the
Locations of Interest were assumed to be obligatory charging
station locations and only the shortest path was considered;
since these locations match the main road corridors this
consideration can be more convenient for users.

The assumed EV battery capacity corresponds to the
specifications of the most sold EV in the Colombian market;
this vehicle has a battery capacity of 30 kWh, which translates
into an approximate 200 km range. Starting SoCs of 20%,

22.5%, and 25% of the selected vehicle battery capacity were
considered. It will be shown in Section 5 that since the EV
ranges are substantially higher than the average graph distances
a small change in the initial SoC can drastically affect the
charging station locations.

During the implementation of the Greedy Algorithm
described in Section 4.2 it was assumed that a charging station
will be located at a node if the EV remaining range is below
3 km. Also it was assumed that if an EV charges at a Location
of Interest it will reach a 25% of the battery full capacity over
its current SoC. Else, if it charges in an ordinary station it will
charge an additional SoC of 10%; these values represent critical
conditions as they are lower than those that would be expected
from a usual charging process.

During the Reallocation Algorithm implementation the
relative weight of the power index (ωP) was set to 0.5, of the

F I GURE 5 Greedy Algorithm implementation for the preliminary
charging station location
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TABLE 1 Charging power, number of connections, and comfort index assignation

Charging Power Connection Points Comfort Index

Locations of Interest Random selection between 50 kW, 75 kW, and 100 kW Random selection between 6 and 10 Fixed value of 3

Remaining locations Random selection between 50 and 75 kW Random selection between 3 and 5 Random selection between 1 and 2

F I GURE 6 Charging station spatial location for
starting SoC of 20%

TABLE 2 Routing computational time for each shortest as percentage of k ¼ 1

Shortest Path

k ¼ 1 k ¼ 2 k ¼ 3

Computational time (% of k ¼ 1) 100 1100 2000
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size index (ωS) to 0.3, and of the comfort index (ωC) to 0.2.
In the radius assignation block was assumed as the 50th
percentile of the distances between connected TAZs, which
correspond to 2.2 km. The power, number of connection and
comfort index assignation for the charging stations is shown
in Table 1.

Finally, in order to validate if the deployment obtained
from the algorithm implementation still represents a feasible
solution to cover the energy route expenses, it was assumed
that the vehicle owner will search for a nearby station once the
EV SoC reaches a SoC level of 20%, equivalent to a remaining
EV range of 40 km; after the EV is charged the user will return
to the original route.

5 | RESULTS

To study the k‐shortest path consideration effect on the O‐D
routing complexity, the computational time of the first three
shortest paths (k ¼ 1, k ¼ 2, and k ¼ 3) between OD nodes
were compared as a percentage value of the time of k ¼ 1. As
shown in Table 2 for this feature the time expended for k ¼ 2
and k ¼ 3 were approximately 11 and 20 times the value of
k ¼ 1.

The preliminary charging station location was obtained by
applying the Greedy Algorithm from Section 4.2 to the case
study network transportation graph, resulting in the spatial
distribution depicted in Figures 6–8. It is important to recall

F I GURE 7 Charging station spatial location for
starting SoC of 20%
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that these deployment strategies constitute the input data for
the Reallocation Algorithm.

Note from Figure 6 that considering k ¼ 2 and k ¼ 3 cause
a slight reduce the number of required charging stations for a
starting SoC of 20%. However, this is not the case for higher
SoC values; as shown in Figures 7 and 8, the deployment
strategy for k ¼ 1 and k ¼ 2 becomes even more similar when
considering a starting SoC of 22.5%, and becomes identical for
k ¼ 1, k ¼ 2, and k ¼ 3 for a starting SoC of 25%

The similarity of the deployment strategies for higher SoC
values is explained by the thoroughly transportation network
modelling, which resulted in a graph where no significant
routes deviations appear between k ¼ 1, k ¼ 2, or k ¼ 3.
Moreover, the paths have common nodes in the early stages of
their O‐D routes. Due to the low starting SoC consideration,
charging stations tend to be deployed in these early route
nodes; after a charging event at this spots it is feasible to cover
an O‐D pair without further charges.

Table 3 presents the results summary for the number of
required facilities for each SoC level, along with the number of

locations of interest selected as part of the deployment strategy.
It can be noted that a slight increment on the starting SoC
caused a significant reduction on the number of charging
stations required.

The previous deployment strategies with k ¼ 1 for each
level were used as input data for the Reallocation algorithm
implementation. Figure 9 depicts the algorithm results in terms
of the spatial distribution for each SoC level, and Table 4
compares the original deployment strategies to those obtained
from the algorithm implementation.

Figure 9 shows that the Reallocation Algorithm substan-
tially reduced the number of overlapping stations in Figures 6–
8 with k ¼ 1, which is quantified as a 18%, 11%, and 19% for
starting SoCs of 20%, 22.5%, and 25%, respectively, reaching a
similar number of planned stations to the one considered with
k ¼ 3. Also, the Locations of Interest selected as part of the
initial deployment strategy remained after the algorithm
application due to their high initial weight assignation.

To validate the Reallocation Algorithm results it was eval-
uated if the driver can reach his travel destination after taking
the required deviation to charge the EV. Table 5 presents the
number of routes on which the driver was required to take
deviations, along with the statistics related to the minimum,
mean and maximum additional travelled distance.

Note from Table 5 that all routes with deviations were
covered for all starting SoCs. It is important to point out that
the additional travelled distance corresponds to the totality of
the round trip. As the values are below the maximum detour
distance this shows that a proper coverage radius selection
can limit the number and distance of deviation routes that the
user has to take to reach the new location of the charging
stations.

In Scenario B, a sensitivity analyses is carried out by
assuming all Locations of Interest as fixed locations for
charging stations. These new locations were added to the set of
selected facilities from Scenario A when only k ¼ 1 was
considered. This scenario allows to verify how fixed selections
of charging stations might affect the original solution.

The spatial distribution of the new charging station loca-
tions is depicted in Figure 10 for each SoC considered.

The statistical results of the previous results are presented
in Tables 6 and 7.

Table 7 shows that considering the Locations of Interest as
part of the deployed stations did not affect the number of
required deviations, and neither caused significant increments
on the minimum, mean, and maximum detour distance.

F I GURE 8 Charging station spatial location for starting SoC of 25%
for k ¼ 1, k ¼ 2, and k ¼ 3

TABLE 3 Preliminary number of charging stations for all SoC levels

Starting SoC (%)

Number of CS CS at LoI

k ¼ 1 k ¼ 2 k ¼ 3 k ¼ 1 k ¼ 2 k ¼ 3

20 34 32 32 1 0 1

22.5 26 22 22 1 0 0

25 16 16 16 1 1 1
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F I GURE 9 Reallocation Algorithm results in
Scenario A

TABLE 4 Deployment strategy for all
SoC levels after RA application ‐–Scenario A

Results before RA Results after RA

CS Reduction (%)Starting SoC (%) Number of CS CS at LoI Number of CS CS at LoI

20 34 1 28 1 18

22.5 26 1 23 1 11

25 16 1 13 1 19
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TABLE 5 RA validation in Scenario A – covered routes and required deviations

Starting SoC (%) Routes with Deviations Routes Covered Total Number of Deviations Min/Mean/Max Additional Distance (km)

20 3 3 3 2.4/1.6/3.1

22.5 5 5 5 2.8/2.6/3.2

25 2 2 2 2.8/2.8/2.7

F I GURE 1 0 Reallocation Algorithm results in
Scenario B
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6 | CONCLUSIONS

An Optimal EV charging station location methodology was
proposed in this article to carry out a charging station infra-
structure deployment in urban transportation networks by
decoupling the covering problem from the user preferences
and constraints. A developed Reallocation Algorithm was
proposed to reduce the number of overlapping stations and to
give priority to the selection of Locations of Interest as part of
the deployment strategy based on preferences from users.

The Reallocation Algorithm allowed a reduction of the
required number of charging stations in the range of 11%–19%
when only considering the charging stations required to cover
the energetic expense of the route, and 13%–17% when
considering that all locations of interest are selected as charging
stations. This was achieved while maintaining deviation trav-
elling distances within an acceptable range. It is important to
point out that the reduction could have been taken further with
a higher coverage radius, nonetheless, this would have resulted
in a significant increase in the additional distance a driver is
required to travel to find a charging station. Thus, this could
not reduce range anxiety in users.

The case study results showed that considering only the
shortest path (k ¼ 1) reduced the elapsed time for the routing
process in the rate of 91%–95% in comparison to k ¼ 2 and
k ¼ 3 considerations respectively. Moreover, the proposed
Reallocation Algorithm proved to obtain similar strategies as
those that could result from multipath considerations.

On the other hand, the case study results shown that an
increment of 5% on the starting SoC led to a reduction of 53%
in the number of stations needed to cover the O‐D route's
energetic expenses. Thus, high starting SoC considerations do
not contribute to the public charging stations’ deployment
objective of reducing range anxiety in users.
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