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"It doesn’t matter how beautiful your theory is

it doesn’t matter how smart you are

if it doesn’t agree with experiment, its wrong

in that simple statement

is the key of science"

Richard Feynman−Gyorgyi

"Research is to see what everybody

else has seen, and to think

what nobody else has thought."
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Abstract

Physical exercise (PE) contributes to achieving a successful rehabilitation program and re-

habilitation processes assisted through social robots. However, the amount and intensity of

exercise needed to obtain positive results are unknown. Several considerations must be kept

in mind for PE implementation in rehabilitation as monitoring of patients’ intensity, which

is essential to avoid extreme fatigue conditions, which may cause physical and physiologi-

cal complications. Machine learning models have been implemented to fatigue management

but limited in practice due to the lack of understanding of how an individual’s performance

deteriorates with fatigue accumulation; that can vary based on the physical exercise, environ-

ment, and individual’s characteristics. As a first step toward realizing the human-centered

approach to artificial intelligence and expert systems, this master thesis lays the foundation

for a data analytic approach to managing fatigue in walking tasks. The proposed framework

capitalizes on continuously collected human performance data from wearable sensor technolo-

gies. It establishes criteria for a feature and machine learning algorithm selection for fatigue

management, classifying four fatigue diagnoses state. Based on the proposed framework and

a large number of test sets used during the evaluation of the classifiers, we have shown that

(i) the random forest model presented the best performance with an average accuracy of

≥ 98% and an F-score of ≥ 93%, this model was comprised of ≤ 16 features; and (ii) the

prediction performance was analyzed by limiting the sensors used from four IMUs to two

or even one IMU with an overall performance of ≥ 88%; hence, only one wearable sensor

is needed for fatigue detection. This research presents an initial approach to a promising

tool for physical rehabilitation, and regarding classification accuracy, it presents remarkable

results according to the literature. We provide links to our data and code as supplementary

materials to encourage future work in this crucial area.

Keywords: Fatigue diagnosis; classification models; inertial measurement units; Physical

rehabilitation, walking rehabilitation; physical exercise.
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Chapter 1

Introduction

The work presented in this document focuses on the development and preliminary validation

of a fatigue identification model based on the individuals’ exercise performance assessment.

The main aim of the model is to classify four fatigue diagnosis stages (low, medium, high, and

very high) for walking tasks, widely used in physical rehabilitation. Additionally, this thesis

presents the framework for developing a fatigue identification classifier based on exercise

performance and, a preliminary study aimed at validating the performance of the developed

model in 25 healthy subjects.

This chapter introduces the main motivations and research objectives that lead to the de-

velopment of this work. The main contributions, publications and the organization of this

document are presented.

1.1 Motivation

Exercise rehabilitation during or after medical treatment is considered adequatee to restore

physical and psychological function [2,3]. Recent reviews highlight some benefits provided by

physical exercise used as a therapeutic measure. Physical exercise contributes to achieving

and maintaining therapeutic goals and improving quality of life, physical functioning, func-

tional capacities, muscle strength, emotional well-being, and even reducing depression and

1



2 Chapter 1. Introduction

anxiety and increase self-esteem. Additionally, it can lower the risk of heart disease, diabetes,

cancer, stroke, reduce the risk of orthopedic problems, recover mobility of limbs, strengthen

the immune defense (influenza), among others [4, 5]. In this context, physical exercise can

affect people’s health conditions in many ways; hence, the American Health Association es-

tablished physical exercise as one of the main components for improving people’s health and

decreasing morbidity and mortality levels [6].

Although these positive health-related outcomes of regular physical exercise are well doc-

umented, the amount and intensity of exercise needed to obtain these positive results are

unknown [7, 8]. Several considerations must be kept in mind for its implementation in re-

habilitation. For instance, elderly patients have more severe impairments and comorbidities

than younger patients; therefore, the rehabilitation needs of the older population are dif-

ferent from those of younger patients [2]. The same occurs with individuals with different

diseases. Consequently, an essential question when prescribing exercise is the optimal thera-

peutic dose required to produce a specific health benefit according to the individuals’ needs?.

Typically, when considering exercise dose about health outcomes, exercise is characterized

by type, intensity, and volume (session duration and frequency) according to each patient’s

age, weight, fitness level and pathologies [9]. Recent studies have shown that intensity is the

most relevant feature in prescribing physical exercise [10] because it determines the amount

of energy expenditure and can be seen as the "dose" of the prescription [11]. Controlling

exercise intensity avoids overtraining patients, affecting their rehabilitation and even causing

health consequences (i.e., physical, or physiological complications) [12,13].

Some successful rehabilitation programs have been explored to supervise the exercise intensity

during therapies by monitoring the patient’s fatigue state [2, 14–17]. Fatigue has generally

been defined as a subjective state of tiredness or exhaustion and the reduction of capacity

for regular activity [18]. Additionally, it is defined as the inability of the muscles to maintain

the required level of strength during exercises. It can also result in the deterioration of



health in the long term, including work-related musculoskeletal disorders [19], chronic fatigue

syndrome [20] and compromised immune function [21]. Therefore, fatigue is a common

concern among clinicians and individuals who participate in physical activities based on

training or rehabilitation [18]. An essential first step in managing fatigue is the rapid and

accurate detection of its occurrences. However, there is no scientifically accepted method to

identify it because of the wide range of factors that can produce fatigue.

Therefore, nowadays, artificial intelligence systems appear as a complementary and further

alternative to monitoring and identifying fatigue [22,23]. These models presented a significant

potential for clinical scenarios because they provide an objective indicator of fatigue. Because

these methods only considered two fatigue states, i.e., fatigued; or non-fatigued state, which

limits the accurate monitoring of the user’s exhaustion during therapy, these models restricts

the possibility to determine the adequate "dose" (i.e., intensity) of the individuals to produce

a specific health benefit according to their individuals’ needs. Thus, the use of these models

limits the improvement of the user’s performance during therapy. Within this context, as

a first step, this project proposes a framework for developing a fatigue identification model

based on the individuals’ exercise performance assessment to classify four fatigue diagnosis

stages (low, medium, high, and very high). The fatigue diagnosis stages allow clinicians to

pinpoint the hazard directly. They can then prescribe interventions from a large number

of options, including assigning rest breaks (which can reduce the level of fatigue before

it reaches potentially dangerous levels); or redesigning the activity (which can eliminate

the development of fatigue) [22]. Likewise, four fatigue stages accurately monitor patients’

fatigue conditions during exercise to avoid any injuries or affect rehabilitation. In this manner,

patients, researchers, and clinical staff could benefit from the outcomes of this thesis and the

overall SORCAR project (explained below): as they seek to understand better and provide

a more efficient rehabilitation process.
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1.2 Background

This thesis is developed in the context of the research project "Human-Robot Interaction

Strategies for Rehabilitation based on Socially Assistive Robotics" (SORCAR) supported by

the Ministry of Science, Technology, and Innovation MinCiencias (grant 801-2017), as well

as, internal funding from the Colombian School of Engineering Julio Garavito (ECIJG). The

SORCAR project is primarily led by Prof. Dr. Marcela C. Múnera and, Prof. Dr. Carlos A.

Cifuentes (professors at the Department of Biomedical Engineering and head of the Center

for Biomechatronics at ECIJG). The research team of this project is formed by a cooperation

network comprising both national and international research groups and institutions.

The main goal of the SORCAR project is to extend the functionalities and capabilities of

Socially Assistive Robotics systems (SAR), such as the development of advanced sensing

strategies that allow the implementation of robust and reliable measuring devices useful in

clinical scenarios. Likewise, this project focuses on the development and validation of inter-

action strategies applied in clinical scenarios. In this regard, the establishment of appropriate

interaction between the user, the robotic platform, and the environment is required. To this

end, it is essential to explore the implementation of the Human-Robot interface (HRi) to

determine the user’s condition and provide assistance through social interaction. The HRi

should have a social interaction module, which are strategies implemented to provide motiva-

tion, feedback, or another type of assistance based on the user’s condition. The above can be

done by measuring several essential parameters implemented in physical rehabilitation, such

as physiological and exercise intensity parameters. An example of the SORCAR project’s

HRi is presented in Figure 1.1. It is possible to appreciate the specific user’s parameters

used in the monitoring and control module, which correspond to cardiovascular parameters

and exercise intensity parameters, as well as, the social interaction which is related to the

patient’s condition, during the execution of physical training.
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Figure 1.1: General model of the human-robot interface SORCAR project. This model
considers two main components: (i) a Human-Robot interface (HRi) designed to retrieve all
relevant information from the therapy, and (ii) an interaction module that will be able to
provide feedback to the users regarding their performance and the therapy conditions, based
on the information obtained from the patient.

According to the above and within the scope of the SORCAR project, this master thesis

seeks to develop and validate a fatigue identification model based on the individuals’ exercise

performance to classify four fatigue diagnosis stages (low, medium, high, and very high). The

purpose is to control and monitor the patients’ fatigue conditions through the measurement

of the patient’s physiological and exercise intensity parameters during exercise to avoid any

injuries or affect the rehabilitation process. A great application of this model could be

its implementation in the SAR systems using HRi, because this could provide continuous

monitoring and feedback on the patient’s performance, allowing to control the intensity and

the correct execution of the exercise. Similarly, alerts could be generated when the patient

presents high fatigue levels or variation in exercise performance parameters. This is very



6 Chapter 1. Introduction

promising for clinical scenarios and would help to avoid overtraining patients, affecting their

rehabilitation and even causing physical or physiological complications.

1.3 Objectives

Considering the main motivations of this project, it is proposed to develop a machine learn-

ing model to estimate the patient’s fatigue condition, based on physiological and exercise

performance parameters obtained from healthy subjects. This model could allow clinicians

to pinpoint the hazard directly; and then prescribe interventions to reduce or avoid fatigue.

Thus, this project seeks to provide a robust fatigue classifier; and understand how an indi-

vidual’s performance deteriorates with fatigue accumulation in a walking task. In order to

achieve the project proposal the following objectives are defined.

1.3.1 General Objective

The primary objective of this thesis is to develop and evaluate a system to estimate the

patient’s fatigue condition in walking exercises which is one of the most implemented exercises

in physical rehabilitation.

1.3.2 Specific Objectives

• To perform a systematic review of literature to understand the estimation of associated

fatigue in aerobic exercise during rehabilitation scenarios.

• To design a system to estimate the user’s fatigue condition through monitoring exercise

performance features and physiological parameters, for a aerobic exercise according to

the systematic review.

• To perform an evaluation study, to validate the system’s performance.

1.4 Contributions

The key contributions of this work are framed in the main activities of the SORCAR project.

Specifically in the development and validation of strategies applied in clinical scenarios. The



fulfillment of this master thesis is accompanied by a series of technical and scientific contri-

butions presented as follows:

1. The design and implementation of a framework for developing a fatigue identification

model based on the individuals’ exercise performance assessment to classify four fatigue

diagnosis stages.

2. The design and development of an experimental protocol for the validation of the

machine learning techniques.

3. A public repository of the code and data implemented in this work to encourage adop-

tion in practice and further investigations by researchers.

1.5 Publications

The work presented in this thesis has been reported to the scientific community employing

the following publications:

1. (Journal Article) Pinto-Bernal, Maria J., Cifuentes, C.A.; Perdomo, O.; Rincón-

Roncancio, M.; Múnera. (2021). "A Data-Driven Approach to Physical Fatigue Man-

agement Using Wearable Sensors to Classify Four Diagnostic Fatigue States" Sensors

21, no. 19: 6401.https://doi.org/10.3390/s21196401

2. (Journal Article) Aguirre, A., Pinto, M.J, Cifuentes, C.A., Perdomo, O., Díaz, C.A.R.;

Múnera, M. (2021). "Machine Learning Approach for Fatigue Estimation in Sit-to-

Stand Exercise". Sensors 21, no. 15: 5006.https://doi.org/10.3390/s21155006

3. (Journal Article - Under review) Alvarez, P., Tello, A., Pinto, M.J, Cifuentes, C.A.,

Perdomo, O. Díaz; Rincón-Roncancio, M.; Múnera, M. (2021). "Fatigue estimation

using wearable sensors in physical exercise in cycle ergometer". Sensors Journal.

https://doi.org/10.3390/s21196401
https://doi.org/10.3390/s21155006
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4. (Book Chapter) Pinto, M.J, Aguirre, A., Cifuentes, C.A., Múnera, M. (2020). Wear-

able Sensors for Monitoring Exercise and Fatigue Estimation in Rehabilitation. Internet

of Medical Things: Paradigm of Wearable Devices, CRC Press.

1.6 Document Organization

This master thesis document is structured as follows:

• Chapter 1 presents the main motivations and research goals of this work. Additionally,

this chapter describes the research project in which this thesis is framed, defining the

critical contributions of this thesis.

• Chapter 2 introduces the context of physical exercises and their modulation in reha-

bilitation programs and, the different strategies or alternatives for fatigue estimation.

• Chapter 3 describes the current state of the machine learning techniques used to

estimate fatigue. This chapter also addresses the literature review concerning the most

representative systems implemented on fatigue estimation.

• Chapter 4 presents a detailed structure of the framework designed for the fatigue

classification model. This chapter also describes the dataset construction focused on

the most relevant feature related to walking exercises.

• Chapter 5 addresses the validation study focused on assessing the performance of the

proposed fatigue classifier in healthy subjects.

• Chapter 6 summarizes and highlights the main conclusions and remarks of this works.

This chapter also proposes a set of future works to address with the fatigue classifier,

regarding the integration with the HRi in SAR systems.



Chapter 2

Physical Exercise: Rehabilitation

Scenarios

Historically, patients with chronic diseases were recommended to rest and avoid physical

activity [24]. However, excessive rest and lack of physical activity decondition and, reduce

functional capacity and quality of life [25]. Current medical opinion has changed to the belief

that patients should be encouraged to engage in physical activity during rehabilitation [24],

considering that most chronic diseases affect the patients’ physical function. In this way,

exercise rehabilitation during or after medical treatment is considered an effective means

of restoring physical and psychological function. This chapter concisely describes the main

components of physical exercise and the main conditions that affect it. This chapter, it is

also presented a summary of the conventional techniques for fatigue estimation.

2.1 Physical Exercise

Before analyzing the benefits of Physical exercise (PE), it is essential to define PE precisely.

Indeed, PE is a term often incorrectly used interchangeably with physical activity PA that is

"any bodily movement produced by skeletal muscles that require energy expenditure" [26].

9
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Then, PA includes any motor behavior such as daily and leisure activities, and it is considered

a determinant lifestyle for general health status [27]. Instead, PE is "a sub-classification of

PA that is planned, structured, repetitive, and has as a final or an intermediate objective the

improvement or maintenance of one or more components of physical fitness" [26].

Cardiology was the first medical specialty in which physical exercise rehabilitation was im-

plemented and evaluated [28]. PE is now commonly prescribed in cardiac patients and is

integral to the rehabilitation program. Psychological, social, and physical benefits of physical

exercise after myocardial infarction, coronary artery bypass grafting, heart transplantation,

and stable congestive heart disease are well-documented [29,30]. Based on the above, nowa-

days, rehabilitation treatment includes exercise to enable patients to decrease limitations and

facilitate post-treatment exercise performance. Regular physical exercise has the potential

to affect people’s health conditions in many ways. Physical exercise can mitigate the effects

of pathological fatigue (oncology rehabilitation) [31, 32], improve the cardiac system capa-

bility (cardiac rehabilitation) [33,34], improve the respiratory system capability (pulmonary

rehabilitation) [35, 36], recover joint strength after a surgery (musculoskeletal rehabilita-

tion) [37, 38], lower the risk of stroke, diabetes, cancer, and reduces the risk of orthopedic

problems (osteoporosis) [39, 40]. Therefore, exercise-based rehabilitation is an essential for

cardiac, oncology, and orthopedic patients toward improved health and a physically active

lifestyle.

At present, physical exercise therapy is being considered for approval as a prescribed medi-

cation by the Food and Drug Administration in the USA [41, 42]. The key features of such

approval would necessarily include efficacy for the specific condition, effectiveness in the tar-

get population, recommended dosing for the designated outcome, mechanisms of action, and

the safety or adverse event profile as illustrated in Table 2.1. Just as pharmacological thera-

pies and dietary modifications are individualized for the patient, similarly, a tailored physical

activity program could be prescribed for treatment, once approved.



Efficacy
Does it cause a specific health benefit as demon-
strated by adequately designed randomized con-
trolled trials?

Effectiveness

Is the specified benefit obtained by a reasonable
percentage of the persons who undertaking the
prescribed exercise regimen? Who will be the re-
sponders and the non-responders?

Dose

What dose of exercise provides a meaningful bene-
fit for this specific condition? The prescribed dose
needs to be defined in terms of type, intensity, fre-
quency, and duration

Mechanism of action

What changes in structure or function caused by
the exercise are responsible for the specified health
benefit? In a therapy such as an exercise, there
may be multiple mechanisms for a single health
benefit.

Potential adverse events

What are the medical risks associated with the
prescribed dose of exercise? What are the med-
ical contraindications to the prescribed exercise,
and what adjustments in dosing must be made for
specific populations to reduce adverse events?

Table 2.1: Criteria required by the Food and Drug Administration of the USA to approve
physical exercise as a prescribed medication [41,42]

In consequence, several considerations must be kept in mind for PE implementation in re-

habilitation. PE is characterized by type, intensity, and volume (session duration and fre-

quency) according to the age, weight, fitness level, and pathologies of each patient [9]. Recent

studies have shown that intensity is the most relevant feature in prescribing PE in rehabili-

tation [10,43] because it determines the amount of energy expenditure. It can be seen as the

"dose" of the prescription [11]. Controlling exercise intensity avoids over-training patients,

affecting their rehabilitation and even suffer health consequences (i.e., physical or physiolog-

ical complications) [12, 13, 44]. In this context, it is essential to clarify the meaning of the

various terms associated with physical activity and exercise for consistent interpretation of

exercise intensity in the context of dose-response issues.
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2.2 Exercise therapy: characterizing the dose

An important question when prescribing exercise is the optimal therapeutic dose required to

produce a specific health benefit is? Typically, when considering exercise dose concerning

health outcomes, intensity is a critical factor in response to exercise to achieve these outcomes

[17]. Intensity is the magnitude of the increase in energy expenditure necessary to perform

the activity (aerobic or endurance exercise) or the force produced by the muscle contractions

(resistance or strength exercise) [17,45].

• Aerobic exercise (prevalence of oxidative metabolic pathway) involves large muscle

groups in dynamic activities that substantially increase in heart rate and energy ex-

penditure. Regular participation in aerobic exercise improves the function of the car-

diovascular system and skeletal muscles, leading to central and peripheral adaptations

that increase endurance performance.

• Anaerobic exercise (glycolytic and phosphagens pathways) involves very high-intensity

exercise that uses glycogen and phosphocreatine stores for the most of the energy

provided.

• Resistance exercise is an anaerobic training explicitly designed to increase muscular

strength, power, and endurance by varying the resistance; the number of times the

resistance is moved in a single set of exercises; the number of sets performed; and the

rest interval between sets.

Considering the above, the intensity has been used to classify the physical exercise in three

groups: low-intensity exercises that are composed of soft activities which demand low en-

ergy cost (50% of the maximal heart rate (HRmax)), and are usually used for patients with

extreme risk conditions [11]; moderate-intensity exercises that contemplate non-stopped ac-

tivities with a long duration that require a low or moderate effort around 50% to 75% of



the patient’s HRmax [11]; and high-intensity exercises that are workouts that alternate hard-

charging intervals with short duration (15s to 5 minutes) that increase the HRmax up to 85%

to 100% with a recovery period of equal or longer duration than the work interval [11, 46].

Regarding prescribing exercise, moderate-intensity training is the most implemented in the

rehabilitation process because it involves large muscle groups in dynamic activities that result

in substantial increases in heart rate and energy expenditure [47,48]; allowing improvements

in the cardiovascular system and skeletal muscle function [46,49,50]. Likewise, high-intensity

exercises have become more attractive since providing more significant changes in specific

metabolic pathways associated with aerobic metabolism, and improved functional capaci-

ties [51, 52]. The main challenge for the implementing these exercises is the difficulties in

managing the intensity that makes their prescription a complex task [13,46,53].

The intensity then is a crucial factor in the responsiveness to exercise for achieving health

outcomes. Not only does intensity play a significant role in producing favorable adaptations

to exercise, but it also has a significant role in the various health risks produced by increases

in exercise [17]. Therefore, to achieve a successful rehabilitation program, measuring param-

eters that can facilitate data analysis and interpretation of the intensity performed [54, 55].

Additionally, providing experts with relevant data about the patient allows them to guide a

safe and optimized rehabilitation process. Several methods have been explored to supervise

the exercise intensity during therapies by monitoring of the patient’s fatigue state [2,14–17].

Fatigue is generally defined as a subjective state of tiredness or exhaustion, and the reduction

of capacity for regular activity [18]. Fatigue is a common concern among clinicians and

individuals who participate in physical activities based on training or rehabilitation [18]. In

the same way, fatigue is defined as the inability of the muscles to maintain the required level

of strength during exercise. Fatigue also results in the deterioration of health in the long

term, including work-related musculoskeletal disorders [19], chronic fatigue syndrome [20]

and compromises immune function [21]. An essential first step in managing fatigue is the
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rapid and accurate detection of its occurrences. However, there is no scientifically accepted

method to identify it because of the wide range of factors that can produce fatigue.

2.3 Fatigue detection techniques

Diverse fatigue detection techniques have been studied and used in rehabilitation that can be

divided into two main categories: qualitative and quantitative. The first category, qualitative

methods, are centered around the use of subjective scales of fatigue perception or fatigue

surveys [56–58]. Whereas the second category, quantitative approaches, is based on the use

of one or more sensor technologies to model changes in human performance.

2.3.1 Qualitative methods

As highlighted above, fatigue is a subjective experience, and it can be presented in different

ways. Some questionnaires ask patients about their perceived tiredness level according to a

pre-established ordinal numeric scale [59, 60], where the lower number represents a state of

absence of fatigue. The higher number represents a state of extreme fatigue, i.e., the person

does not feel able to continue with the activity [57]. Therefore, several perception scales have

been developed and even modified according to their application [61]; divided into two main

categories: one-dimensional and multidimensional scales [62].

One-dimensional fatigue scales are easier to use and contemplate one fatigue type, typically,

patient’s fatigue severity. In this regard, these scales are widely implemented during physical

exercise rehabilitation [63], composed of different items to assess fatigue in a different time

or social conditions. Several one-dimensional scales have been proposed considering the

different rehabilitation scenarios as illustrated in Table 2.2 [62]. These questionnaires have

an ordinal point scale to determine the level of fatigue according to the patient’s answer.

On the other hand, the multidimensional fatigue scale differs from the one-dimensional scale.



Mainly because these scales seek to analyze different fatigue factors and experiences such as

duration, daily pattern, cognitive, behavioral, social, and the effect on daily activities, instead

of only considering the intensity. The multidimensional scales are composed of more than one

item and implemented to evaluate fatigue before or after the rehabilitation procedure [62,63].

The most common multidimensional scales are also illustrated in Table 2.2.

Perception
scale Scale Factors Program Item

number
Point val-
ues

One-dimensional

Fatigue Severity
Scale [64] Physical Physical rehabil-

itation 9 from 1 to 7

Borg CR10 [65] Physical Physical rehabil-
itation 10 from 1 to

10

Fatigue Assess-
ment Scale [66] Physical

Oncology re-
habilitation,
Parkinson’s
disease, and
post-stroke
recovery

10 from 0 to 4

Brief Fatigue In-
ventory [67] Physical Oncology reha-

bilitation 9 from 0 to
10

Multidimensional

Fatigue
Scale [68]

Physical,
Mental

Oncology reha-
bilitation, Mul-
tiple Sclerosis,
Parkinson’s dis-
ease, Neurologic
rehabilitation,
Stroke recovery

7 from 1 to 4

Multidimensional
Fatigue Inven-
tory [68]

Physical,
Mental,
General,
Reduce ac-
tivity and
motivation

Oncology reha-
bilitation 20 from 1 to 5

Modified Fa-
tigue Impact
Scale [69]

Physical,
Cognitive,
Psycho-
social

General physical
rehabilitation 21 from 0 to 4

Table 2.2: One-dimensional and multidimensional perception scales to evaluate fatigue in
rehabilitation procedure

In general terms, the most common subjective scale implemented considering these two cat-

egories is ten points Borg Rating of Perceived Exertion scale (Borg CR10), a 10-point scale



16 Chapter 2. Physical Exercise: Rehabilitation Scenarios

composed of only 1 item; where the lower number represents a state of absence of fatigue,

and the higher number represents a state of extreme fatigue [70]. The Borg scale is easy

to use and is related to physiological parameters (e.g., heart rate or blood lactate) used for

fatigue identification [57]. However, several studies have illustrated that perception scales

present subjectivity since specific fatigue symptoms may vary depending on existing patholo-

gies, environmental factors, and physical conditions. However, the understanding of how an

individual’s performance changes throughout rehabilitation is limited; the qualitative meth-

ods do not always represent the actual intensity has led to a decrease in reliability [57, 71].

Likewise, it is essential to highlight that these questionnaires are not suitable for real-time

since they are not scalable and are potentially disruptive. For instance, consider a situation

where there are 20 patients in the rehabilitation center, and their fatigue ratings are mea-

sured every five minutes. The administration of surveys in this situation would require a

large number of surveyors and would disrupt the patient’s rehabilitation [22].

2.3.2 Quantitative methods

To overcome the limitations presented in Section 2.3.1, and considering that continuous mon-

itoring is essential for patients with chronic diseases during physical sessions, it is preferred

to estimate the exercise intensity based on metrics obtained directly from the patients [11].

Therefore, quantitative approaches such as physiological parameters and exercise perfor-

mance have been proposed [20, 72–75]. Regarding physiological parameters measurement,

one of their applications is the indirect estimation of fatigue. The three parameters most

related to fatigue are explained below [21,76–78].

• Oxygen uptake (VO2) represents the oxygen consumption that the body takes up

and utilizes the exercising muscle [79]. This outcome is widely used in exercise physi-

ology. It is considered as one of the best ways to quantify the patient’s fatigue because



it represents a linear relationship with the energy cost [80]. During exercise, the VO2

increases exponentially until it reaches the point where oxygen supply matches oxygen

demand, and then it stabilizes [79]. However, the VO2 measurement requires com-

plex instrumentation that makes it a technical problem, especially in rehabilitation

therapies. Hence, it is generally used for research scenarios [81].

• Heart rate is one of the most used physiological parameters to control fatigue due to

its measurement facility and the linear relationship with VO2 [82]. This methodology

generally consists of monitoring the heart rate reserve, which is the difference between

the HRmax rate and the resting heart rate [11]. The HRmax can be estimated using

a stress test or a clinical test that assesses the body’s physiological behavior during

different exercises [83]. Nevertheless, there are more practical ways that consider some

subject’s characteristics (e.g., the age and the gender) to get an HRmax approximation.

One of the most implemented is Tanaka’s formula, which uses the user’s age (in years),

as is shown in equation 5.1 [84].

HRmax = 206.9− (0.7 ∗ age) (2.1)

• Blood lactate is one of the most often measured parameters during clinical exercise

testing and, performance testing of athletes [85]. Clinicians need to understand the

pathological response as well as the typical response to exertion. In response to pro-

gressive incremental exercise, lactate will increase exponentially [86]. An individual’s

endurance performance is well correlated with their blood lactate [85]; hence, lactate

monitoring increases the confidence of healthcare personnel in assessing the patient’s

effort in physical therapies [86]. The blood lactate should be measured directly in-

stead of estimated from other acid-base variables; therefore, it requires getting a blood

sample, and a specialized instrument, which is not always easy to use during physical

therapies [87]. Besides, it is required to monitor this parameter constantly for getting
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a good interpretation [87,88].

Although the physiological parameters are considered accurate in measurement technique

terms, they present difficulties monitoring in real-time due to their measurement process.

In addition, they may present different behaviors depending on the exercise type performed

(i.e., moderate or high-intensity exercise), which makes it difficult to relate them to the

fatigue level. Regardless of the exercise type performed, (i) fatigue affects movement and gait

characteristics as impaired motor control and postural instability [23,77]; and (ii) the exercise

performance has a directly proportional relationship with fatigue [89]. Several methods for

monitoring fatigue through exercise performance have been implemented using ambulatory

sensors (e.g., electromyography and inertial sensors) or non-ambulatory sensors (e.g., motion

analysis system) to identify when an event exists outside the typical pattern, which supports

the rehabilitation process and the activities performance monitoring [90].

• Electromyography (EMG) is considered the gold standard to detect muscular fa-

tigue considering that it directly asses the bio-electrical muscles function [91,92]. This

method consists measures the electrical activity generated during muscle contraction,

and relaxation [93]. The methodology is to attach electrodes to the muscles to register

electrical potentials [94]. These potentials are directly related to muscular strength,

which allows estimating the effort and evaluating the performance of the exercise [95].

Nevertheless, these electrical signals are affected by the impedance of the skin and the

electrodes’ location. Therefore, an initial normalization process is required to avoid

these problems leading to low adaptability [96, 97]. Consequently, the EMG process-

ing is a complex task to execute in real-time since it requires power and frequency

analysis [98] to identify fatigue progression. Therefore it inhibits their daily usage for

real-time fatigue detection.

• Inertial measurement units (IMUs) are reliable and cheap sensors that are used

to capture a person’s acceleration and motion data in real scenarios without the use



of external sources, or devices [99–101]. The IMU is essentially the combination of

two components: accelerometers and gyroscopes; with them, this device can measure

gravitational force, speed, and orientation. Likewise, with the combination of these

components, it is possible to assess the activity performance through estimations of

the kinematic and spatiotemporal parameters [102], and motion analysis [99] (e.g., gait

features [103]). Although it is possible to identify the person’s fatigue level using these

sensors. Considering that the kinematic study in fatigue is still an early topic, the use

of other physiological parameters like blood lactate [104], EMG [105] , or even perceived

level of fatigue [106] are widely used to corroborate the results.

• The motion analysis system is widely used in fatigue estimation due to its high

accuracy and robustness in the measurement of the kinematic parameters. The mo-

tion analysis system is based on infrared cameras to estimate the position of reflective

markers to segment an object or an individual and measures variables such as position

and orientation [51]. These systems can measure a many kinematic parameters, and

according to the kinematic model, implemented estimate specific characteristics of each

movement or exercise, which has led to its high applicability in these areas [107]. Motion

analysis is widely used in fatigue estimation due to its high accuracy and robustness

in measuring the kinematic parameters. Muscular fatigue affects movement and gait

characteristics as impaired motor control, and postural instability [77]. The aim of

using these devices is to quantify and measure these different parameters. Likewise,

identify when an event exists outside the typical pattern to help in the rehabilitation

process, and the performance of the activities [108]. However, motion capture systems

often require unique setups, making them better suited for controlled environments;

they also present certain limitations in terms of their sophisticated instrumentation

and their high-cost [109].

Note that the use of these methodologies to evaluate the exercise performance depends heavily
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on the exercise type used [110]. For instance, if an exercise is performed on a treadmill, the

commonly evaluated parameters are the cadence, width, length of step, and duration of each

gait phase, among others [111]. In other words, the parameters and characteristics to be

evaluated depend on each exercise and must be sure to avoid errors or uncertainties in the

measurements.

As this chapter has already pointed out, humans’ performance changes as a function of a

person’s individual characteristics (e.g., age, gender, fitness level, and injury history), time

(which can be manifested through detrimental performance due to fatigue and improved

performance due to learning effects) and degree of exercise difficulty. Therefore, to enhance

fatigue estimation, artificial intelligence systems in optimizing and transforming human per-

formance have been implemented as a further alternative to monitor and understand how

an individual’s performance deteriorates with fatigue accumulation [22, 23]. These models

appear complementary to collected human performance data from the diverse detection tech-

niques (i.e., qualitative or quantitative approaches) that classify fatigue levels. Thus, Chapter

3 describes the current state of the use of artificial intelligence systems to identify fatigue.



Chapter 3

Current State of Machine Learning

models for Fatigue Estimation

3.1 Introduction

Managing fatigued patients is an important issue; it is a precursor to many detrimental

short-term and long-term health outcomes. The short-term effects include discomfort, low-

ered strength, and a diminished motor control function [112]. In a clinical environment,

those short-term effects lead to reduced performance, quality of session rehabilitation and

increased incidence of injuries [113]. The problem of estimation of the actual physical load

and fatigue appeared from older times [114], and nowadays, it has evolved to concrete chal-

lenges [115–117], especially in the context of human-machine and machine-human interac-

tions [118]. In older times, the technical side of the problem was related to limitations of

data monitoring, collecting, processing, and representing by the available tools. Nevertheless,

the rapid development of information and communication technologies allows us to expand

the scope of sensors and actuators, which have already become standard devices of ordinary

devices [119].

21
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Recent investigations have therefore shown that machine learning (ML) models appear as a

complementary alternative for working with fatigue databases due to the facility that they

give in the analysis of each feature; considering that ML models are a vital technique that

has demonstrated the ability to translate large health data-sets into actionable knowledge.

In general, the use of these models could improve patient safety [118, 119], improve quality

of care [120], and reduce healthcare costs [121,122]. Hence, these models enable the creation

of tools that can classify fatigue levels based on the data extracted for each patient. ML

models to classify fatigue have been demonstrated to be more efficient and give a wide range

to explore the features within the data set.

Even though machine learning has a lot of demonstrated benefits, the successful utilization

of machine learning requires a great effort from human experts, given that no algorithm can

achieve good performance on all possible problems [123]. Even though healthcare researchers

are familiar with clinical data, they still often lack the machine learning expertise necessary

to apply these techniques to significant data sources. Healthcare researchers can and do work

with expert data scientists [124], but the interactive process generally takes both parties a lot

of time and effort. Given the above and considering that there is not a method established

to measure the fatigue as mentioned in Chapter 2, it is challenging to devise and deploy

machine learning solutions as the whole exercise begins with a lengthy data provisioning

process, continues with finding the right collaborators, and involves a continuous back-and-

forth between (ML) experts and domain experts. They lead to a slow assessment of the

fatigue measures’ reliability, validity, and usefulness for the physician and the researcher,

given the few reviews to draw such information.

Considering the potential of automatic recognition, its challenges, and its contribution to

the rehabilitation field, the present review presents recent studies that employed machine

learning algorithms to identify fatigue. The review focuses on evaluating the pros and cons

off each machine learning system to establish selection criteria for the most suitable solution



based on the specific requirements. Specifically, the literature was reviewed to answer the

main research questions: (i) Which is the most appropriate method to measure fatigue?; (ii)

What are the most appropriate ML methods to recognize fatigue?; (iii) What are the methods

that improve fatigue recognition?. To the best of the author’s knowledge, no previous works

on the state-of-the-art address this comparative analysis; this analysis highlights strategy

capable of performing intelligent, accurate, rapid, and cost-effective clinical fatigue analysis.

3.2 Experimental Section

3.2.1 Search Strategy

The comprehensive electronic literature search was conducted in Web of Science Direct,

IEEE, BMC, and PubMed on studies from 2000 onward. In this electronic search, the follow-

ing keywords were included: [“fatigue” OR “exhaustion" OR "tiredness”] AND [“evaluation”

OR “measure” OR "estimate"] AND [“exercise" OR "activity" OR "training” OR "rehabili-

tation"] AND [“feature selection methods”]. In addition, wildcard symbols, such as hyphens

or inverted commas, were used to consider all possible variations of root words. To avoid

missing critical studies, a cross-referencing was applied from each article found during the

electronic search.

3.2.2 Data Extraction

The search results yielded titles of articles. Articles whose titles did not fit the research

topic or did not respond to the study questions were excluded. The titles and abstracts of

all included studies were checked for relevance concerning the research topic. Publications

included in this systematic review were downloaded into Mendeley for screening. To make the

review readable and focused on the author’ intention, as claimed in the introduction section, a
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data extraction was conducted based on major themes: (i) fatigue measurement environment;

(ii) fatigue measurement technique; and, (iii) performance of fatigue measurement. To this

end, Table 3.1 extracted the data related to fatigue detection technique, description of the

involved feature, applied machine learning algorithms, and main results.

All the information extracted from the selected studies served as the benchmark to broaden

and discuss the concepts of the issues in question. A descriptive and comparative analysis

was performed since the identified data were insufficient for a meta-analysis.

3.2.3 Inclusion Criteria

Articles obtained through these searches were evaluated using the title and abstract. The

articles were included in this systematic review when they met the following criteria: (i) the

study must be focused on physical fatigue measure; (ii) it must include at least an experiment,

a pilot study or a trial with at least one group of participants constituted homogeneously; (iii)

implemented machine learning approaches to identify fatigue or exhaustion; (iv) accomplished

classification using normalized or non-normalized features extracted from biomechanical data,

such as spatiotemporal parameters, kinematics, kinetics and physiological indexes; (v) applied

feature selection methods only as a pre-processing technique for the classification stage; (vi)

implemented at least one fatigue or intensity regulation; (vii) were written in English. Works

that explored cross-validation methods and other strategies to improve machine learning

performance were also included. In addition, we did not impose constraints regarding sample

size (number of subjects, number of trials, or number of strides) or the dimension of the

features dataset. Finally, we excluded conference proceedings when a journal article published

by the same authors with the same contents was already included.



3.2.4 Search strategy field

The electronic search of the previously-mentioned database identified a total of 1094 published

studies. Of these, 287 were included based on the first, and second inclusion criteria (See

Figure 3.1) After reading the titles there were 147 potentially relevant articles were left, and

after removing duplicates, 75 articles remained for abstract review. Regarding the application

of inclusion/exclusion criteria 34 studies remained for full-text reading. Finally, 10 suitable

adequate quality reviews were identified, and all of them are included and discussed in the

following paragraphs.

3.2.5 Assessment of methodological quality

The methodological quality of the articles was assessed using the AMSTAR method (A

MeaSurement Tool to Assess Systematic Reviews). This method was initially developed to

evaluate the methodological quality of systematic reviews [125], but it is also used to evaluate

the quality of individual clinical studies.

It comprises 11 concise criteria; each criterion is given a score of 1 if it is met or a score of 0

if it is not met, or if it is unclear or not applicable. The individual scores are then added to

give a final score. An AMSTAR score of 8 − 11 implies high quality, 4 − 7 medium quality,

and 0− 3 poor quality.

3.3 Results and Discussion

Table 3.1 synthesizes the physical activities in which fatigue is detected, fatigue detection

technique, features dataset, classifier and recognition results of the ten collected studies that

applied feature selection methodologies in fatigue recognition. These studies are the outcome
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Figure 3.1: the PRISMA flow diagram for the systematic review detailing the database
searching, the number of abstracts screened and the full texts retrieved



of the search strategy carried out in this literature review, which considered studies published

since the year 2000 that exclusively involved feature selection methods as pre-processing in

machine learning approaches for fatigue detection and analysis.

Table 3.1: A summary of fatigue modeling research

Begin of Table

Research
Physical

activity

Fatigue detec-

tion technique

Features

description
Classifiers Results

Aguirre

et al.

(2021) [23]

Sit-to-stand

3D optical track-

ing, HR, Borg

Scale.

32 kinematic

and temporal

parameters

for each

stand-to-

stand cycle

RF, ANN,

SVM, LR,

KNN.

The best classifica-

tion (83.2% of accu-

racy) was achieved

using all features

in the RF classi-

fier, meanwhile the

worst classification

(66.6% of accuracy)

was performed us-

ing KNN classifier.

Mamman

et al.

(2020) [22]

Manufacturing

task

IMUs, HR, Borg

Scale.

53 statistical

and biome-

chanical

parameters

SVM, RF,

LR, PLR.

Maximum accu-

racy (85.0%) was

reached using 7

to 53 features

with RF classifier.

The worst accu-

racy (62.4 %) was

achieved using LR

classifier.



28 Chapter 3. Current State of Machine Learning models for Fatigue Estimation

Continuation of Table 3.1

Research
Physical

activity

Fatigue detec-

tion technique

Features

description
Classifiers Results

Ulinskas

et al.

(2018) [126]

Office work
Keystroke dy-

namics template

Statistical

character-

istics of

keystroke

data. Linear

discriminant

analysis se-

lect the most

relevant

features.

SVM

SVM achieved an

average daytime

fatigue recogni-

tion accuracy of

98.11.%

Gordienko

et al.

(2017) [122]

Phsyical load

HR, BCI, ac-

celerometer,

muscle move-

ments monitor.

12 Spatial,

temporal and

combined

metrics

LRM,

DNN

DNN correctly clas-

sified the fatigue

state in training

section.

Mamman

et al.

(2017) [127]

Manufacturing

task

IMUs, HR, Borg

Scale.

217 de-

scriptive

statistics and

kinematic

parameters.

PLR.

Maximum accu-

racy (79.0%) was

accomplished using

16 features.



Continuation of Table 3.1

Research
Physical

activity

Fatigue detec-

tion technique

Features

description
Classifiers Results

Zhang

et al.

(2014) [128]

Walking
3D optical track-

ing, IMUS.

The gen-

eral features

include all

possible

spatial and

temporal

information

from the raw

signals.

SVM

Accuracy of 96%

was reached in

distinguishing

the two gait pat-

terns (fatigue and

no-fatigue).

Karg et al.

(2014) [129]
Squats

3D optical track-

ing, Subjective

scale.

99 spatial

and temporal

parameters

HMM, LR.

HMM was more

accurate than lin-

ear regression with

79% the accuracy.

Lee et al.

(2009) [130]
Walking

3D optical track-

ing.

6 lower body

kinematic

parameters

including

ranges of

motion and

path lengths

from the

phase por-

traits were

used.

LDA, Sta-

tistical test

LDA provides a

92.5% accuracy of

classification



30 Chapter 3. Current State of Machine Learning models for Fatigue Estimation

Continuation of Table 3.1

Research
Physical

activity

Fatigue detec-

tion technique

Features

description
Classifiers Results

Karg et al.

(2008) [131]
Walking

3D optical track-

ing.

19 PCA and

FT were used

to classify

the gait of

normal and

exhausted

walkers

LDA,

SVM,

kNN, NB

The NB classifier

achieved a recogni-

tion rate of 68%.

Yoshino

et al.

(2004) [132]

Walking

Subjective

scale, EMG,

Accelerometers.

Seven gait

and phys-

iological

parameters

LR

The correlation

coefficient between

the fatigue level

predicted and the

subjective fatigue

level obtained was

around 77%.

End of Table

SVM = support vector machines, RF = random forest, LR = logistic regression, DNN = deep

learning neural network, LMR = linear regression model, PLR = penalized logistic regres-

sion, HMM = hidden markov models, LDA = linear discriminant analysis, kNN = k-nearest

neighbors, NB = naive bayes.

Studies developed to classify fatigue using machine learning models differ in several aspects.

They can change based on fatigue, the type of movement performed, and the sensors used

to analyze fatigue. In the same way, the literature on physical fatigue detection in clinical

environments can be classified into (i) exhaustion detection and (ii) partial fatigue detection.



In the first group, studies attempted to identify high/extreme fatigue that results in an in-

ability to generate muscle forces and, consequently, an individual’s performance decrease and

inability to perform the physical activity [102, 128, 129, 131]. The other studies focused on

detecting fatigue without reaching exhaustion, where individuals can still perform their phys-

ical activity at a diminished level [22,122,126,127,130,132]. Since exhaustion in the physical

activity is often on localized fatigue, the associated literature [102,122,128–133] were charac-

terized as focusing on one physical activity only (e.g., walking, sit-to-stand, physical load or

squats), were primarily utilizing 3D motion capture system, EMG/EEG, accelerometers or

IMUs, were used to model the individual’s performance. Only two studies developed models

to focus on a more complex task [22,127], which utilized IMUs and heart rate monitors.

Overall, these systems implemented quantitative approaches that used one or more sensor

technologies to model changes in human performance. The utilized sensor technologies in-

clude: (i) heart rate (HR) sensors to measure heart-rates, which are indicative of whole-body

fatigue [22,102,122,127]; (ii) inertial measurement units (IMUs), which are cheap and reliable

sensors that are used to capture a person’s acceleration and motion data [22,122,127,132,134];

(iii) electroencephalography (EEG), used to measure brain activity, which is vital in detect-

ing mental fatigue [122]; (iv) electromyography (EMG), used to assess muscle activity and

localized fatigue [132]; and (v) 3D optical tracking, which is utilized for motion capture and

human modeling. Note that some of these technologies are not suitable for daily field im-

plementation. Specifically, EEG and EMG are invasive, which inhibits their daily usage for

real-time fatigue detection. Moreover, motion capture systems often require unique setups,

which make them better suited for controlled environments. Meanwhile, Heart rate or IMUs

sensors are easy to adapt and use in rehabilitation environments, providing a practical and

valuable tool for the health staff [100,101]; note that the above answers to the first research

question raised in this review.

On the other hand, six studies used a subjective fatigue scale to reference of the individuals’
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fatigue perception in contrast to their implemented fatigue detection method [22,102,126,127,

129,132]. Ulinskas et al. [122] stated that considering a subjective scale as a reference makes

it challenging to control the subjective fatigue factors and thus, not always have entirely

reliable results. In addition, Gordienko et al. [122] showed that using only subjective scales

to classify fatigue does not have promising results, whereas using objective parameters or

the combination of these two methods improves the accuracy and reliability of the classifiers

significantly.

Finally, even if the fatigue models presented have been proposed to classify fatigue, none of

them except for [102] has been able to classify fatigue in more than two groups. In other

words, they only evaluated two fatigue conditions," non-fatigue" and" fatigue," which were

generally obtained in two separate steps; in the first step, the participants have no fatigue,

while in the second step, fatigue is induced to the participants.

These models presented a significant potential for clinical scenarios because they provide

an objective indicator of the fatigue. However, they considered only two fatigue states,

i.e., fatigued or non-fatigued state limits the accurate monitoring of the user’s exhaustion

during therapy, restricts the possibility to determine the adequate "dose" (i.e., intensity)

of the individuals to produce a specific health benefit according to their individuals’ needs,

and thus limits improve the user’s performance during therapy. On the other hand, from a

detailed literature review, we could not answer the second reach question because we could

not identify any article that discussed or established the best classifier for identifying and

diagnosing fatigue. The above may be attributed to the lack of understanding of how an

individual’s performance deteriorates with fatigue accumulation, which can vary based on

user conditions and physical activity.

Considering the above and as a first step, in this master thesis, we focus on occupational

fatigue since it is: (i) a precedent to exhaustion and (ii) more aligned to the clinical environ-

ment in advanced physical rehabilitation. As the second step, this work proposes a framework



for developing a fatigue identification model based on the individuals’ exercise performance

assessment to classify four fatigue diagnosis stages (low, medium, high, and very high) as

presented in Chapter 4. The fatigue diagnosis stages allow clinicians to pinpoint the haz-

ard directly. They can then prescribe interventions from a large number of options, such

as assigning rest breaks (which can reduce the level of fatigue, and thus, avoiding reaching

potentially dangerous levels of fatigue); or activity redesign (eliminating the development of

fatigue) [22].

Four fatigue stages accurately monitor patients’ fatigue conditions during exercise to avoid

injuries or affect the rehabilitation process. To this end, our framework benefits from the

advances and widespread use of wearable sensors for data collection. These sensors offer an

individualized insight into the individuals’ performance and present a unified performance

benchmark that does not depend on process cycle time (essential for real-time scenarios).

Furthermore, our proposed framework is evaluated monitoring fatigue in walking tasks since

(i) localized muscle fatigue is a potential risk factor for injury or falls as muscle fatigue

adversely affects proprioception, movement coordination, and muscle reaction times, leading

to postural instability and gait alterations [106,132–135]; therefore, gait patterns associated

with fatigue may help in the assessment of fatigue-related fall risks or injuries in various

environments; and (ii) moderate-intensity training as walking exercises are one of the most

used in physical rehabilitation process due to improving cardiovascular system, and skeletal

muscle function [46,48–50].

3.4 Conclusions

Physical fatigue is a significant safety concern in rehabilitation environments, and monitoring

physical fatigue is essential to prevent an accident, injury occurrences, and a successful pro-

gram rehabilitation. The utilization of predictive models for physical fatigue modeling can
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better understand the physiology and psychology of fatigue. This literature review covers

the state-of-the-art on machine learning approaches and their respective fatigue detection

methodologies. The reviewed methods may vary based on fatigue detection techniques and

the features used. Likewise, the ML implementation varies based on supervised and unsuper-

vised learning; linearity and non-linearity models; the possibility of leading to over-fitting or

not; division of classification in training and test phases or not; and the necessity of defining

split criteria or not.

Fatigue stated detection is a powerful automatic tool that may provide an objective analysis

and constant monitoring of the patient’s rehabilitation, thus avoiding injuries and affectations

to their process. Recent studies have evidenced that wearable sensory systems provide these

data sets given their potential for long-term and free setting applications and time and cost-

effectiveness.

From this literature analysis, we verify that proper and reliable fatigue recognition should

involve several phases. The first phase is feature extraction to characterize the fatigue state.

Second, methods of feature normalization may be applied to achieve a more robust classifica-

tion. Then, feature selection methods are implemented to select the most significant features

to distinguish the classes based on the dependence of classifier performance on the number

and type of features. The next stage before the classification algorithm is to form the train-

ing and testing data sets through cross-validation procedures. Cross-validation methods also

prevent over-fitting and generalize the classifier performance. The implementation of these

three methodologies answers the third search question raised in this review since these are

reliable tools that improve the performance of fatigue recognition.

In summary, automatic recognition of fatigue through machine learning algorithms is likely to

offer an objective and prompt assessment of the subject’s clinical status. Hence, it provides a

potential patient’s monitoring and improves their physical rehabilitation program. However,

the classifiers models were implemented only to determine whether the user is fatigued or



not fatigued, limiting the accurate monitoring of the user’s exhaustion during therapy and

restricting the possibility of prescribing interventions according to the patient’s needs. In

this context, the classification model presented in this work determines four states of fatigue

(low, medium, high, very high) to improve monitoring and intervention prescription, allowing

clinicians to assign adequate rests and training intervals for each patient to avoid injury.



Chapter 4

Proposed framework for physical fatigue

management using wearable sensors1

Figure 4.1 presents an overview of the proposed framework for managing physical fatigue.

The first phase is comprised of fourth main steps: (i) sensor selection, where practitioners

should identify appropriate sensors for fatigue detection; (ii) data preprocessing and feature

generation, where the sensors’ data are prepared for analysis and generated the dataset; (iii)

model construction and validation, where statistical and data analytic models are trained for

distinguishing between the four fatigue states (non-fatigued, low-fatigue, moderate-fatigue,

high-fatigue); (iv) data analysis, where the classifier models are evaluated based on accuracy,

precision, recall and F-score. The outcome from phase 1 is the selection of an appropriate

model for prospective analysis. The subset of features/predictors most frequently used in

predicting the fatigue state is identified in the second phase. Likewise, in this phase, the

classifier is evaluated by constraining the number of sensors used.

1This chapter is mostly based on the following journal article:
Pinto-Bernal, Maria J., Cifuentes, C.A.; Perdomo, O.; Rincón-Roncancio, M.; Múnera. (2021). "A Data-
Driven Approach to Physical Fatigue Management Using Wearable Sensors to Classify Four Diagnostic Fa-
tigue States" Sensors 21, no. 19: 6401.https://doi.org/10.3390/s21196401
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Figure 4.1: A flowchart that illustrates an overview of the proposed method [1].
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4.1 Phase 1: Fatigue detection

4.1.1 Sensor selection

The first step is to identify the metrics and the characteristic used based on the selected

physical exercise critical to the quality of the process/product. Note that the methodologies

presented in Chapter 2 to evaluate the exercise performance depend heavily on the exercise

type used [110]. In other words, the parameters and characteristics to be evaluated depend

on each exercise and must be sure to avoid errors or uncertainties in the measurements. For

instance, if an exercise is performed on a treadmill, the commonly evaluated parameters are

the cadence, width, length of step, and duration of each gait phase, among others [111].

The above means identifying (i) the exercise, (ii) the clinical scenario, (iii) the parameters

that change their behavior upon fatigue while exercising. An essential part of this is talk-

ing with clinicians or patients to understand the likelihood of fatigue and its associated

symptoms. This helps isolate the type of fatigue being experienced. Along with interviews,

literature review, historical data on injuries should be evaluated to determine the body parts

that experience higher rates of injury. The result of this stage is an understanding of how

an individual’s performance changes throughout rehabilitation and which body parts are

essential to be monitored during their physical rehabilitation.

Based on these metrics and the information gathered in the first step, the measurement means

can be identified. It can include (i) the use of wearable or camera-based sensors, (ii) the use

of physiological parameters, and (iii) the use of subjective scales of fatigue perception. The

choice of approach would depend on the budget, intensity of exercise, and clinical environ-

ment. Considering the advantages and disadvantages of these systems presented in Chapter

2, Cavuoto and Megahed [136] discussed several fatigue indicators and reported that these in-

dicators could be monitored using pervasive wearable sensors. Likewise, in a follow-up works,



Maman et al. [22, 127] showed that four IMU sensors (located at the ankle, hip, torso, and

wrist) coupled with a heart rate sensor could be used to detect fatigue in different tasks. We

suggest using these wearable sensors for fatigue detection. More importantly, our framework

presents a systematic approach to answer the question: "what are the gains associated with

wearing an extra sensor?" In essence, this question attempts to quantify whether the hassle

and cost associated with wearing an extra sensor can be justified with a significant/practical

improvement in fatigue detection.

4.1.2 Data preprocessing

The first step in analyzing data is to ensure that the data is correct and cleaned. Therefore,

the fourth primary cleaning step was proposed. First, the gyroscope and accelerometer

outputs were treated with a second-order low-pass filter Butterworth for noise removal [137,

138]. Second, the collected data was visualized to check any additional erroneous data (e.g.,

faulty sensor values (too high and too low)), i.e., data that were not corrected through

the automated filtering in the previous step. Third, the data from the different sensors

were synchronized and any observations captured outside of the experimental window were

eliminated. Fourth, the data was partitioned using a non-overlapping time window, where the

selection of the length of the time window depended on the identification of each participant’s

gait event.

Considering that gait presents a repetitive behavior, an automated procedure was imple-

mented to detect each participant’s gait cycle. Specifically, the process consisted of deter-

mining each heel-strike event by detecting the second minimum value in the angular velocity

signals of each stride time. This process outcome is represented in Figure 4.2, where a sam-

ple of each heel strike of the corresponding signal from a participant’s test record can be

observed. In addition, a zoom of a signal part is presented in Figure 4.2, where gait events

detection throughout the angular velocity of an inertial sensing system over two gait cycles
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can be appreciated [139]. The selection of the correct threshold value was carried out as

in [140], whose study validated all possible thresholds of the gait cycle within a range, and

whose limits were visually established from signals acquired in a preliminary analysis.
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Figure 4.2: Heel strike detection using an inertial detection system on a participant’s test
record. The zoom part represents two gait cycles and the identification of each gait phase:
TO = Toe-Off (first dashed line), MS = Mid-Swing (second dashed line) and HS = Heel
Strike (third dashed line) [1].

Regarding feature generation two IMUs were attached at the participants’ foot instep and

around L5-S1 to measure the acceleration associated with a person’s dynamic motion (spa-

tiotemporal and kinematic parameters). These features capture the intensity and spread,

commonly used in the fatigue detection literature [141–143]. Likewise, two more Shimmer3

were used and configured to obtain EMG signals in four muscles (tibialis anterior, rectus

femoris, biceps femoris, and gastrocnemius) to register electrical potentials [94]. These po-

tentials are directly related to muscular strength, which allows estimation the effort and

evaluating the participants’ exercise performance [95]. The description of the proposed fea-

tures is provided in Table 4.1. Note that these features are calculated for each time window,

i.e., for each gait cycle.



It is essential to highlight that feature variability caused by each participant’s physical con-

dition makes it difficult to directly compare the volunteer registers, which requires a nor-

malization of the data according to each initial subject performance [150–152]. All features

extracted were normalized by dividing them with the corresponding initial value (see equa-

tion 4.1). Note that the test number zero of each volunteer was taken as a reference since

it was considered that the volunteer did not have fatigue, which was corroborated with the

blood lactate, the Borg CR10 scale, and the multidimensional fatigue inventory questionnaire.

Fi = (
Fi

Freference

) (4.1)

where Fi corresponded to each feature extracted in each time window and Freference is the

average of the first ten-time window values of the test number zero where volunteers were

not fatigued.

4.1.3 Model construction and validation

In machine learning, there are several ways of data partitioning for experimentation. The

most popular methods are typically referred to as training/test partitioning or cross-validation

[153,154]; both were implemented in this research to evaluate the best classifier performance.

The training/test partitioning typically involves partitioning of the data into a training set

and a test set in a specific ratio, e.g., 70% of the data are used as the training set and

30% of the data are used as the test set. This data partitioning can be done randomly or

fixed. The fixed way is typically avoided (except when order matters) as it may introduce

systematic differences between the training set and the test set, which leads to sampling

representativeness issues. To avoid such systematic differences, the random assignment of

instances into training and test sets is typically used [154,155].
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Cross-validation is conducted by partitioning a data set into n folds (or subsets), followed

by an iterative combination of the folds into different training and test sets. In other words,

each of the n folds is, in turn, used as the test set at one of the n iterations, while the rest

of the folds are combined as the training set [156]. A typical approach to cross-validation

is dividing the dataset into ten folds, where the models are selected based on the aver-

age/median prediction performance across ten non-overlapping test datasets. The literature

suggests that 10-fold cross-validation may reduce the variation between the train and test

performance [157]. However, cross-validation is generally more expensive in terms of compu-

tational cost than training/test partitioning.

Regarding the selection of the machine learning models, several classification methods are

viable candidates for utilization in fatigue prediction. However, our framework’s perspective,

makes it, impossible to predetermine which methods will work best for fatigue prediction in

walking tasks. Because these methods are data-driven and thus, are application-dependent,

i.e., dependent on the exercise, extracted features, sensors, scenarios, etc. Several methods

were applied during our preliminary analysis of the data to develop the fatigue prediction

model. The models evaluated included: logistic regression (LR), decision trees (DT), k-

nearest neighbors (KNN), support vector machine (SVM), naive Bayes (NB), linear discrim-

inant (LDA), artificial neuronal network (ANN), and random forest (RF). The open-source

python library "scikit-learn" [158] was used to execute a quick general training for these

classifiers. Afterward, according to the accuracy metric, and due to their relatively poor per-

formance LDA, and NB were eliminated. Hence, our case study focused on using the best six

classification models (LR, KNN, SVM, RF, ANN, and DT), adjusted and retrained, by mod-

ifying their training hyperparameter automatically through computational iterations. For a

detailed introduction on the classifier mentioned above, the following paragraphs provide a

brief explanation of each classification model.

A statistical model such as LR attempts to build a relationship among the input variables



and response employing parametric methods. In other words, it uses a logistic function to

model conditional probability. Hence, LR is a supervised learning algorithm technique where

the probability of a dichotomous outcome is a function of the predictors/features [127, 159].

Although LR is a simple yet effective classification algorithm, its performance can vary sig-

nificantly with sparse data [127]. Moreover, non-parametric approaches such as KNN, SVM,

and ANN, are commonly used in human performance modeling applications [160–163]. KNN

is a simple classifier, an easy-to-implement supervised machine learning algorithm that can

solve classification and regression problems. The algorithm assumes that similar things are

near each other; therefore, it requires the computation of the distance of the unlabeled object

to all the labeled objects in the training set [164]. Regarding the SVM classifier, which is a

supervised learning method that uses kernel functions for data classification and regression

analysis, its methodology consists of using a hyperplane to separate one-dimensional data

to a high-dimensional space from a given labeled data set [165, 166] to identify the optimal

hyperplane to classify the given data with minimum error [166].

The ANN classifier, is a supervised machine learning classifier that seeks to classify an ob-

servation as belonging to some discrete class based on inputs. This classifier is a set of

connected input-output networks in which weight is associated with each connection. It con-

sists of one input layer, one or more intermediate layers, and one output layer. Learning of

neural networks is performed by adjusting the weight of the connection. By updating the

weight iterative, the performance of the network is improved [167]. Finally, concerning DT

model is a kind of a flowchart where each node represents a test, and the successive children

represent the outcomes of the test. Each of the leaf nodes depicts the labels of the resulting

class. The ensemble classification algorithm; utilizes trees as base classifiers in the RF model

to generate many classifiers and aggregate their results via voting. It means that each tree

in the random forest spits out a class prediction and the class with the most votes becomes

our model’s prediction. The premise of this method is that combining a large number of

single classifiers allows for a more diverse representation of the data and consequently a more
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accurate prediction [22,168,169].

4.1.4 Data Analysis

Developments in machine learning classifiers from imbalanced data have been mainly moti-

vated by numerous real-life applications since it faces the problem of the unequal represen-

tation of the data [170]. Most of the machine learning models used for classification have

been designed around the assumption of an equal examples distribution for each class [171].

This means that an incorrect model application may focus on learning the characteristics of

the abundant observations only, neglecting the examples from the minority class increasing

false positives. However, whether is a slight imbalance, i.e., the distribution of examples is

uneven by a small amount in the training dataset (e.g., 4:6) is often not a concern [172,173].

In this context, to evaluate the performance of the proposed fatigue detection models it was

essential to consider the following performance measures.

Recall or true positive rate (TPR) that captures the ability to detect the fatigued cases, i.e.,

it quantifies the number of positive class predictions made of all positive examples in the

dataset; which is computed as follows

Recall =
True Positive

True Positive+ False Negative
(4.2)

where a true positive (TP) is considered if the classifier prediction and the reference value

match; otherwise, such classification is regarded as a false positive (FP), i.e., the number

of registers that belong to other groups and were wrongly estimated. Likewise, accuracy,

presents the percentage of correct classifications made by a given model (Equation 4.3, where

n represents the entire amount of data).



Accuracy =
1

n
(

TP + TN

TP + FN + FP + FN
) (4.3)

where the non-fatigue state is similarly detected by classifier and reference signal correspond

to true negative (TN); otherwise, they have been accounted for by false negatives (FN).

Precision, which quantifies the number of positive class predictions that belong to the positive

class, was measured as follows

Precision =
TP

TP + FP
(4.4)

The F-score (Equation 4.5) was the last metric, which provides a single score that balances

precision and recalls concerns in one number.

F1microscore =
Precision ∗Recall

Precision+Recall
∗ 2 (4.5)

4.2 Phase 2: Feature selection and dimension reduction

Once the best prediction model is identified, it is essential to consider that an critical aspect

for technology adoption is usability. When the number of potential features/predictors is

large, the computational complexity for model training increases. Feature reduction is typi-

cally applied to reduce the computational burden. In general, models are more interpretable

if the number of features is smaller, which could (i) equalize or even increase the performance

metrics of the classifier by removing unnecessary features from the data; and (b) an increased

generalization capability [174]. In the context of our framework, usability can be measured

using a total number of features selected; therefore we hypothesize that the chosen prediction

model will have a relatively low number of features. Considering that the proposed framework
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enables the diagnosis of fatigue and the recommendation of an appropriate intervention. The

feature selection/reduction was performed through univariate statistical approaches where

the features selection was based on their relationship to the response and their prediction

performance. From this step, practitioners can understand which features affect fatigue and

how they are associated with changes in the potential classifier. Therefore, any unchanged

features in the fatigued and non-fatigued states should be removed. That suggests the result

would be a more interpretable fatigue classifier with relatively large prediction performance,

i.e., an optimal fatigue detection classifier with a low false alarm rate.



Table 4.1: Features generated

N° Feature Description Ref.
0 gait_mean_acce Average gait acceleration
1 gait_std_acce Average gait acceleration std
2 gait_max_acce Average gait maximum acceleration
3 gait_var_acce Average gait acceleration variance
4 gait_median_acce Average median gait acceleration
5 gait_energy_acce Average gait acceleration energy
6 gait_entropy_acce Average gait acceleration entropy
7 gait_kurtosis_acce Average gait acceleration kurtosis
8 gait_maxfreq_acce Average gait acceleration maxfreq
9 gait_stdfreq_acce Average gait gyro stdfreq
10 gait_mean_gyro Average gait angular velocity mean
11 gait_std_gyro Average gait angular velocity std
12 gait_max_gyro Average gait maximum angular velocity
13 gait_var_gyro Average gait angular velocity variance
14 gait_median_gyro Average median gait angular velocity
15 gait_energy_gyro Average gait angular velocity energy
16 gait_entropy_gyro Average gait angular velocity entropy
17 gait_curtosis_gyro Average gait angular velocity kurtosis
18 gait_maxfreq_gyro Average gait angular velocity maxfreq
19 l2_mean_acce Average ts acceleration [55], [142],
20 l2_std_acce Average ts acceleration std [144], [145]
21 l2_max_acce Average ts maximum acceleration [141], [146],
22 l2_var_acce Average ts acceleration variance [147], [148],
23 l2_median_acce Average ts acceleration velocity [149], [133],
24 l2_energy_acce Average median ts acceleration energy [129].
25 l2_entropy_acce Average ts acceleration entropy
26 l2_kurtosis_acce Average ts acceleration kurtosis
27 l2_maxfreq_acce Average ts acceleration maxfreq
28 l2_stdfreq_acce Average ts acceleration maxfreq std
29 l2_mean_gyro Average ts angular velocity mean
30 l2_std_gyro Average ts angular velocity std
31 l2_max_gyro Average ts maximum angular velocity
32 l2_var_gyro Average ts angular velocity variance
33 l2_median_gyro Average median ts angular velocity
34 l2_energy_gyro Average ts angular velocity energy
35 l2_entropy_gyro Average ts angular velocity entropy
36 l2_Kurtosis_gyro Average ts angular velocity kurtosis
37 l2_maxfreq_gyro Average angular velocity maxfreq
38 l2_stdfreq_gyro Average ts angular velocity maxfreq std
39 rms_gastro RMS envelope of the gastrocnemius signal
40 rms_tibilisAnterior RMS envelope of the tibilis anterior signal
41 rms_rectusFemoris RMS envelope of the rectus femoris signal
42 rms_bicepsFemoris RMSenvelope of the biceps femoris signal

Ref. = References; ts = torso swing; std = standard deviation; Maxfreq = maximun frequency;
stdfreq = frequency standard deviation; RMS = root-mean-square.



Chapter 5

Experimental Trials and Validation 1

The study has been divided into: a proposed framework for a fatigue classifier to develop and

assess the fatigue estimation models as presented in Chapter 4, and an experimental setup

to obtain the corresponding dataset. To this end, this chapter presents the experimental

protocol implementation, as well as the validation of the six classification strategies to auto-

matically identify four fatigue diagnosis levels (low-fatigue, moderate-fatigue, high-fatigue,

and very high-fatigue) in walking exercise through several experiments with healthy patients;

by monitoring 43 kinematic/temporal and biomechanical features.

5.1 Experimental setup

The experimental protocol was performed to quantify the detection success ratio of the

fatigue classifiers. A total of 24 healthy subjects (14 males, 10 females, 21.75 ± 1.16 years

old, 1.71 ± 0.09 m) performed the study. The subjects performed regular physical and

1This chapter is mostly based on the following journal article:
Pinto-Bernal, Maria J., Cifuentes, C.A.; Perdomo, O.; Rincón-Roncancio, M.; Múnera. (2021). "A Data-
Driven Approach to Physical Fatigue Management Using Wearable Sensors to Classify Four Diagnostic Fa-
tigue States" Sensors 21, no. 19: 6401.https://doi.org/10.3390/s21196401
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had no known physical or cognitive disability, injuries, pain, or any impediment perming

exercise (see Table 5.1 for further information). The participants enrolled in this study, must

not present any fatigue state, i.e., they had to be in a non-fatigued state to avoid affecting

their test performance. To this end, five different types of fatigue: general fatigue, physical

fatigue, mental fatigue, reduced motivation, and reduced activity, were prior assessed using

the "multidimensional fatigue inventory" [175] questionnaire. All subjects presented non-

fatigued conditions, and were informed about the scope and purpose of the experiment.

Written consent was obtained from each of them before the study. The Ethics Committee

of the Colombian School of Engineering Julio Garavito, Bogota, Colombia approved the

protocol (See Appendix A).

Table 5.1: Summary of participants’ descriptive data (M ± SD). BMI, body mass index.

Gender Age [Years Old] BMI [kg/m2] Walking Speed [m/s]

Male 21.83 ± 1.40 22.84 ± 2.90 0.18 ± 0.37
Female 21.64 ± 0.74 22.25 ± 3.09 0.18 ± 0.35

Volunteers were first instructed to perform three 10m tests at a self-selected speed to deter-

mine their average overground speed, which was successively set on a treadmill (NIZA RX

K153D-A-3, SportFitness, Bogota, Colombia). Participants were equipped with four Shim-

mer3 (Shimmer, Dublin, Ireland) IMUs units, one located on their foot dominant instep and

one located around the center of L5-S1 with a sample rate of 128 Hz. The remaining two

units were configured with a sampling rate of 512 Hz to obtain EMG signals in four mus-

cles (tibialis anterior, rectus femoris, biceps femoris, and gastrocnemius) of the participant’s

dominant leg. One IMU was located on the outer lateral part of the thighs and one on the

calves’ outer side with elastic bands. The EMG signal was recorded from a pair of Ag–AgCl

electrodes (interelectrode distance 3 cm) after cleansing the skin with alcohol. In addition,

participants were equipped with Zephyr HxM BT (Medtronic, Ireland) on their chest with

an elastic band, with a sample rate of 1 Hz. The selection of the Zephyr BT sensor is based

on accuracy, reliability, cost, availability, and comfort [176, 177]. The experimental setup
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described is illustrated in Figure 5.1.
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Figure 5.1: Experimental setup. Each participant was instrumented on their dominant side
with an IMU placed on the dorsal side of their foot and with an IMU placed on their spine
between L2 and S1. Two more IMUS are located on each thigh and shank with different
electrodes in the tibialis anterior, rectus femoris, biceps femoris, and gastrocnemius. Partic-
ipant’s heart rate was captured using the Zephyr sensor located on their chest [1].

Participants were then asked to walk for at least 120s on the already configured treadmill at

a zero-degree inclination, where different parameters were assessed. The first two parameters

directly indicate the fatigue level: Blood Lactate concentration ([La−]) and a perceptive

fatigue scale using the Borg CR10. Therefore, they were used as reference values to diagnose

and classify the participants’ fatigue levels. At the same time, kinematic/spatiotemporal

parameters, and EMG signals were recorded. Afterward, a participants’ fatigue inducement

was carried out. Volunteers had to perform as fast as possible a physical exercise circuit

composed of four exercises: high knees, jumping jacks, squats, and short runs. At the end of

the physical exercise circuit the participants returned to the treadmill, and the whole process

was repeated. Note that the data acquisition, only started once the self-selected speed was

reached, and the treadmill speed was only reduced after all data were acquired to prevent



data capture during the transient state.

The above was repeated four times to increase the participants’ fatigue level. The difference

between each round was the execution time of the physical circuit that increased progressively.

In other words, the time corresponding to the performance of each exercise increased by 15s

each round; for the first time each exercise is performed for the 30s, the second round for

45s, the third round for the 60s, and the last round for 75s. If the participants’ HR overcame

90% of the HRmax, or a 10 Borg value was notified, the test was immediately concluded. The

entire experiment, including donning/doffing times related to instrumentation procedures

and walking tasks, was completed within 60 min for all volunteers.

It is worth highlighting that to get an approximation of each volunteer’s HRmax, the Tanaka’s

formula using the user’s age (in years) was implemented as is shown in equation 5.1. Tanaka

equation is recommended for healthy individuals such as those involved in this study because

this equation significantly overpredicts maximal HR. Therefore, for people who present some

diseases is recommendable to adapt this method using exercise testing [178].

HRmax = 206.9− (0.7 ∗ age) (5.1)

Regarding the measured parameters, they were measured every time that the participant

returned to the treadmill. The blood lactate sample was taken from the participant’s earlobe

with a new lancet. The blood was collected with a new test strip, and finally, the strip was

inserted into the Lactate Pro2 (Arkray, Japan) to measure the blood lactate level. Likewise,

the Borg CR10 scale was obtained by asking the volunteer how tired they felt according to

the scale. Table 5.2 was used to explain the values meaning to each volunteer according to

the four fatigue levels (low, moderate, high, very high). The participant was also instructed,

only to focus on the total effort sensation and not on shortness of breath or muscle pain.

As described previously, blood lactate level and Borg CR10 scale were used as a reference
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Table 5.2: Borg scale description and classification

Borg CR10 value Description Classification
0 No exertion at all

Low1 Very easy
2 Easy
3 Somewhat moderate

Moderate4 Moderate
5 Somewhat hard
6 Hard

High7 Very Hard
8 Very Very Hard
9 Extremely hard Very High10 Maximum exertion

and based on the hypothesis that the volunteers were taken from a rest or zero state to a

maximum fatigue state. A linear correlation between these variables was carried out. To

this end, the blood lactate level was normalized for each volunteer by dividing it with the

corresponding initial value (see equation 4.1), considering that the [La−]’s behavior increase

exponentially during incremental exercise [179–181]. In contrast, Borg CR10 increment is

linearly associated with an increase in exercise intensity [60, 181]. The relationship between

these variables was approximated using a correlation. Specifically, a linear regression was

conducted using least-squares methods as suggested in previous studies [182–186] (See Figure

5.2). From this correlation (p=0.9302), it was possible to corroborate the fatigue state of

each participant dividing it into four states.

5.2 Results

Table 5.3 summarizes the samples numbers of the four fatigue states. The "Low" class

presents most of the registers with 32.65%, followed by "Moderate" with and "High" classes

with similar proportions (26.41% and 25.08% ). "Very High" class has the lowest value,

with a difference of 10% between "Moderate" and "High" classes; and a difference of 16.70%
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Figure 5.2: Borg scale and blood lactate values expressed as a function of the trials.

regarding "Low" class. The difference between the classes represents an imbalanced dataset.

Table 5.3: Data distribution in the dataset according to each fatigue state.

Class Number of samples

Very High 463 (15.86%)
High 732 (25.08%)

Moderate 771 (26.41%)
Low 953 (32.65%)

Total 2919 (100%)

The predictive performance of the six models is summarized in Table 5.4. The table shows

the mean for each of the four metrics. The reported results are based on 2919 dataset samples

from the respective partitioning method: training/test (i.e., 80% of the data was used as the

training set, and 20% of the data was used as a test set). A higher value is desired for the first

three numeric columns, since it reflects a better prediction performance. Note that since the

data set obtained is imbalanced, it could cause an increase of the false positives. F-score was

considered as the most relevant feature for the performance classifier selection. Moreover,

Table 5.4 reports the parameters and the performance of the six classifiers implemented. The
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logistic regression (LR) classifier implements the large-scale bound-constrained optimization

as a penalty algorithm (solver = newton-cg), and a value of 1000000 for its inverse of regular-

ization strength learning parameter (C = 1000000). Using Euclidean distance, the k-nearest

neighbor (KNN) method classified the registers by a majority vote of its nearest elements

with 3 neighbors (K = 3). Decision tree (DT) method using the function to ensure the

quality of a split (criterion = entropy), tree depth to control the size of the tree to prevent

overfitting (max depth = 12), can create arbitrarily small leaves (min samples split = 11) and

guarantees that each leaf has a minimum size (min samples leaf = 4), avoiding low-variance,

over-fit leaf nodes in regression problems. The support vector machine (SVM) with a radial

basis function kernel (kernel = balanced) and a constrain value of 64 (C = 64). The artificial

neuronal network with a stochastic gradient-based optimizer (solver=adam), 100, 100, and

100 as hidden layer sizes (HLS = (100, 100, 100)), activation function for the hidden layer

(activation = tanh), learning rate schedule for weight updates (learning rate = constant),

and regulation term parameter (alpha = 0.0001). Finally, the best model is a random forest

classifier with 100 estimators (n estimators = 100), which means that the model integrates

100 decision tree models to merge their prediction. Note that all the hyperparameters used

for the generation of the classifier are presented in Table 5.4, allowing their easy replication.

The next step is to analyze how the prediction performance varies while limiting the number

of features or the number of sensors used in the study. The random forest method was

selected to analyze the effect of removing features according to the highest performance

metric reported in Table 5.4. The results of this approach are presented in Table 5.5, where

(i) feature reduction using all sensors, and (ii) when features are limited to those from one

and two sensor combinations.

Figure 5.3 presents the box plot of each reliability metric for the six machine learning imple-

mented methods. Hence, each method contains four box plots, where the middle horizontal

line represents the median value, the four quartiles are contained by the vertical lines, and



Table 5.4: Mean performance of the classification methods for fatigue detection in walking
task. Bold values show the best score for each performance metric

Model Hyperparameters Accuracy Precision Recall F1-Score

RF estimators = 100 0.965 0.931 0.929 0.928

ANN

activation = tanh
solver = adam

HLS = (100,100,100)
alpha = 0.0001

learning_rate = ’constant’
max_iter = 1000

0.949 0.896 0.898 0.894

SVM
kernel = rbf

class_weight =’balanced’
C=64

0.907 0.809 0.809 0.806

DT

criterion = entropy
max depth = 12

min samples split = 11
min samples leaf = 4

0.907 0.806 0.805 0.804

KNN neighbors = 3 0.908 0.807 0.805 0.804

LR solver = newton-cg
C = 1000000 0.822 0.626 0.624 0.620

Table 5.5: Mean performance of the random forest model for fatigue detection in walking
task using feature reduction and different sensors combinations. The best-performing model
is in bold.

Sensors Estimators Features Accuracy Precision Recall F1-Score

60 25 0,965 0,934 0,928 0,930
Thigh (EMG), 40 16 0,965 0,932 0,927 0,929
Shank (EMG), 80 13 0,960 0,921 0,916 0,917
L5-S1,Foot 80 11 0,963 0,926 0,925 0,925

100 8 0,946 0,895 0,883 0,888
L5-S1, Foot 80 17 0,940 0,883 0,876 0,879

L5-S1 80 16 0,839 0,678 0,658 0,664
Foot 80 19 0,921 0,856 0,827 0,838

the boxes and the black dots are atypical data. It can be seen that the RF method always

presents the highest values, showing the lowest dispersion and, therefore, the lowest variance.
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The confusion matrix obtained from the best three RF classifiers models with feature re-

duction implemented after exploring in a grid search manner is shown in Figure 5.4, where

along the x-axis are listed the true class labels and along the y-axis are the class prediction.

Along the first diagonal are the correct classifications, whereas all the other entries show

misclassifications.
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The features reduction used was essential to consider the feature importance properties for the



initial RF model. The feature importance property measures a relative weight value to each

feature, representing a direct relationship with the importance of the corresponding feature

for this classical machine learning model. Figure 5.5 presents a cumulative graph representing

the relative importance values obtained for each feature, sorted from the highest to the lowest

values.
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5.3 Discussion

The determination of the four fatigue states was achieved using qualitative methods such

as the Borg scale and, as quantitative methods using blood lactate measurement. This

last parameter was the most considered and used to measure the performance and fatigue of

individuals. It is because, in response to progressively increasing exercise, lactate will increase

exponentially. An individual’s endurance performance is well correlated with their blood
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lactate [85]; therefore, lactate monitoring increases the confidence of healthcare personnel

in assessing the patient’s effort in physical therapies [86]. In other words, blood lactate is a

direct indicator of fatigue. This, in turn, makes the fatigue classification model more accurate

and reliable, since the data delivered by the sensors are directly related to what is happening

physiologically with the user.

The heart rate was not considered a feature in the classification models considering that this

variable is more related to controlling the intensity of the exercise rather than determining

the individual’s physical fatigue (i.e., it is not directly proportional to the individual’s fatigue

state) [82]. For instance, given a scenario where the individual is exercising at a constant

speed or execution, the HR may remain stable and the individual may be experiencing a

level of fatigue, which is not reflected in the measurement, and vice versa. The second reason

for not considering HR was bearing in mind that it is determined by different variables such

as age, the physical condition of the individual, comorbidities, and gender; therefore, when

standardizing this variable it may cause a degree of uncertainty [187,188].

According to the dataset distribution presented in Table 5.3, the main difference between

classes was 16.79%, which is considered a slight imbalance, and it is acceptable for data

analysis and training computational models [172,173]. Considering the report by Fernandez

et al. [171], that slight imbalance can often be treated like a common classification predictive

modeling problem as long as true negatives are considered. The selection of the best model

was performed mainly based on the F-score.

Fourth main observations from the predictive performance of our six models presented in

Table 5.4 need to be highlighted. First, as expected from the preliminary analysis, the classi-

fiers implemented with training/test presented a higher performance in all metrics than the

classifiers implemented with cross-validation. Hence, a simple train-test split is sufficient for

larger datasets. Second, the performance of the five models, except for the LR classifier, is

relatively high with an overall average F-score greater than 80.4%. Third, according to the



literature review, it was expected that the LR classifier presented a better performance given

the positive results obtained with this classifier in previous studies [22, 127, 132]. However,

this model presented the lowest performance with a 62% F-score, not representing an optimal

or good classifier. This can be associated with two main factors: (i) these studies considered

only two fatigue conditions: fatigue or non-fatigued, whereas this work contemplated four

fatigue states. Therefore, our work increased the probability of failing in the estimation and

suggested that this classifier performed better for binary classifications problems. (ii) To the

lack of understanding of how an individual’s performance deteriorates with fatigue accumu-

lation, which can vary based on user conditions, physical activity, features extracted, and

fatigue detection technique. Therefore, it is essential to have a general framework for fatigue

estimation classifiers as presented in Chapter 4 to guide the implementation, evaluation, and

continuous improvement of fatigue monitoring in rehabilitation scenarios regardless of phys-

ical activity or user conditions. Fourth, the RF model presented the best performance in

all features with an overall of 92% considered as an optimum classifier for the fourth states

estimation fatigue in walking tasks.

Once the best prediction model is identified, the next logical research question examines how

the prediction performance varies while limiting the number of features and sensors used. To

evaluate this question, we utilize the random forest model since Table 5.4 showed that it had

the highest mean accuracy, precision, recall, and F-Score compared to the other classifiers. A

list of predictive/important features was established from most important to least important

(see Figure 5.5) and a feature reduction was applied to have a more interpretable classifier.

Table 5.5 reports the prediction results when features are limited to 25, 16, 13, 11, and 8.

From the results in Table 5.5, one can see that the prediction performance does not vary

significantly as the number of features’ is reduced. Some even match the RF performance

utilizing all features (i.e., 43 features). Considering that the RF model presented a similar

performance among 23, 16, and 11 features, their confusion matrix was analyzed to observe

the prediction performance in two minority classes, i.e., very high and high fatigue states.
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These predictions are more interesting and valuables since they are essential to avoid any

risk in rehabilitation scenarios. The RF classifier presented fewer misclassifications between

the low and minority classes with 16 features illustrated in Figure 5.4(b). Based on this

observation, it is recommended to use the RF classifier with 16 features with an overall of

91.5% in all features. While the prediction performance is almost the same, the unnecessary

features from the data were removed, optimizing computational costs and running time.

Moreover, a smaller number of features facilitates the interpretation of the model, which is

essential in fatigue identification and diagnosis phases.

Regarding the prediction performance variation, while limiting the sensor used, it is also

reported in Table 5.4. Note that the sensors used to measure EMG are removed consider-

ing it that EMG is invasive, complicating its daily usage for real-time fatigue detection as

highlighted in Chapter 2. Hence, the characteristics obtained by the EMG sensor were not

considered. This means that the main features that detected fatigue were eliminated accord-

ing to the sensor used. As expected without EMG measurements the classifier presented

a performance reduction since these features presented great importance in fatigue detec-

tion (see Figure 5.5). However, the classifier performance remains positive using two sensors

(IMUS placed on footstep and around L2-S1) with an F-score of 88% and an overall average

of 94%. Similarly, using one IMU located in the footstep has a performance of 84% and an

overall average of 92%. Based on this observation, it suggests using only the IMU located on

foot. While the prediction performance is almost the same, the costs incurred by the clinics

are much lower, and the usability of the system by using only one sensor is significantly

improved. These results are comparable with the studies that proposed fatigue estimation

models during walking tasks [130–132, 134], which have shown accuracy values among 77%

and 92%; with only two fatigue conditions, fatigued and no-fatigued state. Besides, these

studies [130, 131, 134] use motion capture systems as fatigue detection techniques that often

require special setups, which make them better suited for controlled environments than real

rehabilitation scenarios.



Considering these observations, one can indicate three main contributions. First, the frame-

work proposed has shown higher detection performance (with fewer features), and detecting

four fatigue diagnosis states in walking tasks; that allow clinicians to monitor the patient

better, pinpoint the hazard; and prescribe and manage interventions according to each indi-

vidual’s needs. Second, the insights from the fatigue identification phase of our framework

can be used to inform sensor placement and selection. Third, and more importantly, our

framework presents a systematic approach that can answer the question: “what are the gains

associated with wearing an extra sensor?” In essence, this question is left open to the re-

searchers and practitioners to attempt to quantify whether the hassle and cost associated

with wearing an extra sensor can be justified with a significant/practical improvement in

fatigue detection when developing models for detecting/managing fatigue in other settings

or their target application. The results and data used in this study can be accessed through

the following link https://figshare.com/projects/Fourth_fatigue_diagnosis_states/

119580. These codes can be used to develop predictive physical fatigue models.

The implementation of our proposed model requires an understanding of the specific features

selected in the features reduction process. Significant features contributing to the determi-

nation of physical fatigue in this model include:

• EMG RMS signals (features 41,42,39,40) represent the square root of the average

power of the EMG signal for a given period. Decrease overtime of these signals led to

the detection of muscle fatigue.

• Gait Acceleration Mean (feature 0) reflects the mean duration of each gait cycle.

The fatigued musculoskeletal system is less able to attenuate heel strike-initiated shock

waves, which could be observed as an increase in the amplitude of the acceleration

measured at the foot. If the mean gait cycle time increased significantly with elapsed

walking time indicates that the individual is fatigued.

https://figshare.com/projects/Fourth_fatigue_diagnosis_states/119580
https://figshare.com/projects/Fourth_fatigue_diagnosis_states/119580
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• Gait Acceleration Median (feature 4) The median value for each gait cycle accel-

eration.

• Spine Acceleration Mean (features 19 and 29) represents the torso acceleration

over each gait cycle. These features show that if participants kept consistent torso

movement over gait cycles, it likely corresponds to their walking behavior and is less

likely to report physical fatigue.

• Spine Acceleration Median (features 33 and 23) measures the central tendency

of the torso acceleration distribution. Whereas the participant maintains a high level

of spine acceleration, then they are more likely to feel physically fatigued.

• Gait Maximum Acceleration (features 2 and 12) as the gait cycle time increases

significantly with increasing fatigue, gait acceleration decreases. If the participant

reduces their walking speed generated a decrease in peak gait acceleration is generated

indicating that the participant is fatigued.

The selected features for the best model for physical fatigue detection were shown in Fig-

ure 5.5. They are consistent with previous studies that have used IMUs for monitor-

ing physical activity. Common features computed from the acceleration signal are the

mean [23, 141, 142, 144, 146] ,and variance or standard deviation [23, 142, 147, 189] and the

entropy and energy of the data [23,102].

Concerning the results using only one IMU located around the center of L5-S1, according to

the literature review, it was expected to have a better classifier performance considering that

the torso is the body part commonly used for physical fatigue detection and development

models as reported in the following studies [22,127,130–132]. Specifically, Mamman et al. [22]

reported that one IMU on the torso was enough to detect fatigue in manual material handling

environments. However, our results differ from this results. Although that the mean back

rotational position was selected as a mainly important feature for the classifier, as illustrated



in Figure 5.5 with features numbers 19, 33, 29, and 23. The results showed that the accuracy

and F-score were reduced to 88% and 66%, respectively using only the IMU on the torso;

which is not promising. The above may suggest that (i) the features extracted from this

sensor differ from other related studies; hence, the feature extraction methods influenced

the classification performance, and should be improved. (ii) The use of a single sensor

placed at L5-S1 in walking tasks may not be sufficient and consequently, the classifier’s

performance decreases significantly. (iii) The fourth fatigue diagnoses states may increase

the probability of failing in fatigue estimation using this sensor considering only two fatigue

diagnostic conditions presented in the previous studies. Therefore, in future work, it is

suggested to revise the obtained features to improve the performance of the classification

model.

Similarly, it was obtained that the mean back rotational position was selected as a mainly

important feature as illustrated in Figure 5.5 with features numbers 19, 33, 29, and 23.

Moreover, Mamman et al. [22] reported that IMU located the torso was enough for detecting

fatigue in manual material handling environments. However, the features utilized differ from

the features extracted in this work. The above may suggest three things: (i) the feature

extraction methods influenced the classification performance; hence, features extraction with

this sensor needs to be improved; (ii) the use of only one sensor placed on L5-S1 in walking

tasks the classifier performance decrease significantly; and (iii) fourth fatigue diagnoses states

may increase the probability of failing in fatigue estimation concerning only two fatigue

diagnoses conditions. Therefore, as future work, it is suggested to review the characteristics

obtained to improve the performance of the classification model.

On the other hand, there are a few limitations that must be acknowledged for this study.

First, the sample size is small due to the confinement caused by the COVID19, bio-safety

protocols, and the time required for each participant. However, the sample size is consistent

with other studies focused on lab-based modeling of physical fatigue presented in Table 3.1.
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Second, the effect of different demographic variables (i.e., age, sex, physical condition) needs

to be explored in future models of physical fatigue due to all volunteers were healthy people;

and the features may show different behaviors and patterns with patients, or other groups

with various physical conditions. Third, the evaluation of our framework’s performance

was limited to focused lab experiments. Future studies should evaluate how this framework

performs in clinical scenarios.



Chapter 6

Conclusions and Future works

As discussed throughout this thesis, physical fatigue is a significant safety concern in re-

habilitation environments, and monitoring patients’ intensity is essential to avoid extreme

fatigue conditions, which may cause physical and physiological complications. Therefore, it

is required to monitor the patient’s condition during their physical rehabilitation to prevent

accident and injury occurrences and contribute to the success of their rehabilitation program.

An essential first step in managing fatigue is the rapid and accurate detection of its occur-

rences. However, considering fatigue is a subjective experience and the wide range of factors

that can produce fatigue, there is no scientifically accepted method to identify it. Several

studies have been carried out to propose indirect and direct methods for quantifying fatigue,

such as qualitative methods centered around using subjective fatigue scales and quantitative

approaches to monitor users’ physiological parameters and exercise performance.

Three main aspects are considered (i) the understanding of how an individual’s performance

changes throughout rehabilitation are limited; hence, the qualitative methods do not always

represent the actual intensity has led to a decrease in reliability; (ii) physiological parameters

present difficulties to monitor in real-time due to their acquisition processes; and (iii) the

novelty and potential of the fatigue estimation method based on exercise performance. In

65
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this master’s thesis, patient exercise performance monitoring was selected and implemented

for fatigue estimation using computational models.

Machine learning models have been implemented for fatigue management but are limited in

practice due to the lack of understanding of how an individual’s performance deteriorates

with fatigue accumulation; that can vary based on the physical exercise, environment, and

individual’s characteristics. Hence, as the main contribution of this master thesis, an inte-

grated framework was proposed with the main steps for developing a fatigue classification

model regardless of the type of exercise performed. This classification model contemplates

using a few features to facilitate its interpretation, which is essential in identifying and di-

agnosing fatigue, primarily through visual analytical approaches that allow practitioners to

identify risks that need to be addressed through an appropriate intervention strategy.

The experimental studies made possible to implement and evaluate six classifiers models

that determined four fatigue stages instead of only designating if the user is fatigued or

not fatigued, as previous studies have presented. The above allows to improve the fatigue

monitoring and enable clinicians to prescribe an optimal therapeutic dose according to the

individual’s needs avoiding injuries and affectations to the process. The best classifier per-

formance obtained greater accuracy, even though identifying four fatigue states increases the

error probability. In particular, an accuracy of 96% and an F-score of 93% were obtained

with a random forest model, generating an optimal classifier. Note that the determination

of the four fatigue states was achieved using blood lactate measurement. This parameter

was the most used to measure the performance and fatigue of individuals, thus being a di-

rect indicator of fatigue. This makes the method more accurate and reliable since the data

delivered by the sensors are directly related to what happens physiologically with the user.

The classifier performance model was also analyzed to check the number of features and

sensors used in future real-time applications. The dimensionality of data is vital to optimizing

computational costs and running time. In addition, with fewer features, the total number of



sensors required to estimate them could be reduced. The results showed that the classifier

could use a single sensor, maintaining 94% and 92% accuracy and F-score, respectively.

Therefore, clinicians will also be more inclined to adopt the framework if it requires fewer

sensors since it will: (i) cheaper; for example, requiring one or two IMU instead of four,

would reduce the cost; (ii) make the process less invasive to the patient; (iii) reduce the time

needed for the patient to wear and strap all the sensors.

As a future work and considering the main goal of the SORCAR project, a great application

would be to implement this physical fatigue detection model in SAR systems. In essence, the

system is proposed to be composed of one sensor interface, aiming to measure all features

relevant to the RF classifier. The interface architecture comprises different nodes (e.g., sensor

and SAR nodes) to adequately handle the difference in sampling rates and the amount of

information acquired by the system. In the case of the sensor interface, the output of each

node is the data processed, and for the SAR node is the corresponding behavior and feedback.

The data from the sensors would be stored in a database to be analyzed online to manage

the interaction of the SAR with the user.

The SAR’s behaviors should be designed considering three situations [190, 191] (e.g., mo-

tivation, warning, and emergency, which are triggered depending on the data provided by

the interface) while monitoring the users’ performance. The aim is to positively influence

the constant monitoring of users’ performance and provide feedback to motivate them while

the physical exercise intensity and the correct exercise execution are controlled. Besides,

SARs’ should be designed to communicate with the therapists if an emergency event occurs

during therapy (e.g., physical fatigue above the maximum allowable level, dizziness or any

parameter is out of normal). The aforementioned allows for a successful rehabilitation pro-

gram through continuous patient monitoring and providing feedback to clinicians about the

patient’s performance to avoid overtraining, which can affect their rehabilitation and even

suffer physical, or physiological complications. It should be emphasized that this proposal is
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also applicable to other robot-assisted physical exercise scenarios since this model allows a

close measurement of users’ physiological events.



Appendix A

Ethics committee approval

In this appendix the original version of the Ethics Committee of the Colombian School of
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Author and year of study
Was the study ques-
tion or objective clearly
stated
Was the study popula-
tion clearly and fully de-
scribed
Were the subject compa-
rable
Was the procedure
clearly described
Was the data extraction
fully described
Were the outcomes
measures clearly de-
fined, valid, reliable and
implemented consis-
tently across all study
participants
Was the measure of
follow-up adequate
Were the statistical
methods well described?
Were the results were de-
scribed
Quality rating (Good,
Fair, Poor)
Score

Table B.1: Assessment of studies using NIH Quality Assessment



Glossary

ECIJG In Spanish Escuela Colombiana de Ingeniería Julio Garavito.

EEG Electroencephalography.

EMG Electromyography.

HR Heart rate.

HRmax Heart rate maximum.

HRi Human-Robot interface.

IMU Inertial measurement unit.

IMUs Inertial measurement units.

MinCiencias In Spanish Ministerio de Ciencia, Tecnología e Innovación.

ML Machine learning.

PA Physical Activity.

PE Physical Exercise.

SORCAR Human-Robot Interaction Strategies for Rehabilitation based on Socially Assis-

tive Robotics.

USA United States of America.
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