
THÈSE DE DOCTORAT DE

˙
L’ÉCOLE NATIONALE SUPÉRIEURE
MINES-TÉLÉCOM ATLANTIQUE BRETAGNE
PAYS DE LA LOIRE - IMT ATLANTIQUE
DÉLIVRÉE CONJOINTEMENT AVEC
ESCUELA COLOMBIANA DE INGENIERÍA
“JULIO GARAVITO”

ÉCOLE DOCTORALE NO 602
SPIN: Sciences pour l’Ingénieur et le Numerique
Spécialité: Computer Science

Par

Wilmer GARZÓN-ALFONSO
Secure distributed workflows for
biomedical data analysis

Thèse présentée et soutenue à Nantes, le 30 août 2023
Unité de recherche : Laboratoire des Sciences du Numérique de Nantes (LS2N)

Rapporteurs avant soutenance :

M. Eddy CARON Professeur, École Normale Supérieure de Lyon (France)
M. Jorge DUITAMA Professeur, Universidad de los Andes (Colombia)

Composition du Jury :
Président : Mme. Françoise BAUDE Professeure, Université Côte d’Azur (France)
Examinateurs : Mme. Françoise BAUDE Professeure, Université Côte d’Azur (France)

M. Mauricio SOLAR Professeur, Universidad Técnica Federico Santa María (Chile)
Dir. de thèse : M. Mario SÜDHOLT Professeur, IMT Atlantique (France)
Co-dir. de thèse : M. Daniel BENAVIDES Professeur, Escuela Colombiana de Ingeniería “Julio Garavito” (Colombia)

Invité(s) :

M. Alban GAIGNARD Research Engineer at L’institut du Thorax in Nantes (France)





ABSTRACT

Title: Secure distributed workflows for biomedical data analysis

Keywords: Distributed biomedical analyses, fully distributed collaborations, workflow specifi-

cation language, multi-site analyses, distributed workflow analyses.

Abstract: In recent years, the amount of
biomedical data collected and stored has
grown significantly. Analyzing these extensive
amounts of data can no longer be done by
individuals or single organizations. Thus, the
scientific community is creating global collab-
orative efforts to study these data. However,
biomedical data is subject to several legal and
socioeconomic restrictions hindering the pos-
sibilities for research collaboration.

In this thesis, we first investigate and show
that researchers require new tools and tech-
niques to address the restrictions and needs
of global scientific collaborations over geo-
distributed biomedical data. In particular, we
identify three kinds of constraints related to
global collaborations, namely, technical, legal,
and socioeconomic constraints. We also in-
vestigate the state of the art of current tools for
distributed global biomedical analyses, includ-
ing tools using machine learning techniques,
and show their limitations.

From these findings, we propose Fully Dis-
tributed Collaborations (FDC), which are re-
search endeavors that harness means to ex-
ploit and analyze massive biomedical infor-
mation collaboratively while respecting legal
and socioeconomic restrictions. Here, we in-
vestigate the concept, properties, and features
of FDCs, as well as the architectural require-
ments and security and privacy needs. As
a first example of the design of FDC-based

tools, we propose a fully distributed machine
learning strategy. The strategy considers a
random forest training algorithm where mul-
tiple geo-distributed sites, with their own pri-
vate data, compute a global model collab-
oratively without sharing private information.
The proposed algorithm, called MuSiForest,
improves over other existing multi-site forest
approaches by ameliorating computation time
and reducing the amount of shared data while
having a training precision close to that of cen-
tralized random forest techniques.

Finally, we investigate how workflow sys-
tems have been widely used to specify
biomedical data analyses, and we show the
current limitations of those tools. We show
how they offer limited means to define, de-
ploy, and execute multi-site studies in today’s
distributed infrastructure while respecting data
ownership and privacy restrictions. We then
propose FeDeRa, a language to specify, de-
ploy, and execute FDC-compliant multi-site
scientific workflows. The language is enriched
with abstractions to deploy analysis in geo-
distributed cloud infrastructures and with ab-
stractions to define complex workflow patterns
across multi-site boundaries. FeDeRa sup-
ports dataflow programming and declarative
concurrency natively. We also present the im-
plementation of a runtime engine supporting
the execution of FeDeRa workflows and ex-
periments deployed on cloud infrastructure.

3



RÉSUMÉ

Titre: Flux de travail distribués sécurisés pour l’analyse des données biomédicales

Mot clés: Analyses biomédicales distribuées, collaborations entièrement distribuées, langage

de spécification de flux de travail, analyses multi-sites, analyses de flux de travail distribuées.

Résumé: Ces dernières années, la quantité
de données biomédicales collectées et sto-
ckées a considérablement augmenté. L’ana-
lyse de ces grandes quantités de données
ne peut plus être effectuée par des indivi-
dus ou des organisations uniques. Ainsi, la
communauté scientifique crée des efforts de
collaboration mondiaux pour étudier ces don-
nées. Cependant, les données biomédicales
sont soumises à plusieurs restrictions légales
et socio-économiques entravant les possibili-
tés de collaboration en recherche.

Dans cette thèse, nous étudions et mon-
trons d’abord que les chercheurs ont be-
soin de nouveaux outils et techniques pour
répondre aux restrictions et aux besoins
des collaborations scientifiques mondiales
sur les données biomédicales géodistribuées.
En particulier, nous identifions trois types
de contraintes liées aux collaborations mon-
diales, à savoir les contraintes techniques,
juridiques et socio-économiques. Nous étu-
dions également l’état de l’art des outils ac-
tuels d’analyses biomédicales globales distri-
buées, y compris les outils utilisant des tech-
niques d’apprentissage automatique, et mon-
trons leurs limites.

À partir de ces résultats, nous propo-
sons des collaborations entièrement distri-
buées (FDC), qui sont des efforts de re-
cherche qui exploitent des moyens pour ex-
ploiter et analyser de manière collaborative
des informations biomédicales massives tout
en respectant les restrictions légales et socio-

économiques. Ici, nous étudions le concept,
les propriétés et les fonctionnalités des FDC,
ainsi que les exigences architecturales et les
besoins en matière de sécurité et de confiden-
tialité. Comme premier exemple de conception
d’outils basés sur FDC, nous proposons une
stratégie d’apprentissage automatique entiè-
rement distribuée. La stratégie considère un
algorithme de formation de forêt aléatoire
où plusieurs sites géo-distribués, avec leurs
propres données privées, calculent un modèle
global en collaboration sans partager d’infor-
mations privées. L’algorithme proposé, appelé
MuSiForest, s’améliore par rapport aux autres
approches forestières multi-sites existantes en
améliorant le temps de calcul et en rédui-
sant la quantité de données partagées tout en
ayant une précision d’apprentissage proche
de celle des techniques forestières aléatoires
centralisées.

Enfin, nous étudions comment les sys-
tèmes de workflow ont été largement utilisés
pour spécifier les analyses de données bio-
médicales, et nous montrons les limites ac-
tuelles de ces outils. Nous montrons comment
ils offrent des moyens limités pour définir, dé-
ployer et exécuter des études multi-sites dans
l’infrastructure distribuée d’aujourd’hui tout en
respectant la propriété des données et les
restrictions de confidentialité. Nous proposons
ensuite FeDeRa, un langage pour spécifier,
déployer et exécuter des workflows scienti-
fiques multi-sites conformes à la FDC. Le lan-
gage est enrichi d’abstractions pour déployer

4



Résumé

l’analyse dans des infrastructures cloud géo-
distribuées et d’abstractions pour définir des
modèles de flux de travail complexes à tra-
vers les frontières multi-sites. FeDeRa prend
en charge la programmation par flux de don-
nées et la concurrence déclarative de manière

native. Nous présentons également l’implé-
mentation d’un moteur d’exécution supportant
l’exécution des workflows FeDeRa et des ex-
périmentations déployées sur une infrastruc-
ture cloud.

5



RESUMEN

Título: Flujos de trabajo distribuidos y seguros para análisis de datos biomédicos

Palabras Clave: Análisis biomédicos distribuidos, colaboraciones totalmente distribuidas, len-

guaje de especificación de flujo de trabajo, análisis multi sitio, análisis de flujo de trabajo dis-

tribuido.

Resumen: En los últimos años, la cantidad
de datos biomédicos recopilados y almacena-
dos ha crecido significativamente. El análisis
de estas grandes cantidades de datos ya no
puede ser realizado por individuos u organi-
zaciones individuales. Por lo tanto, la comuni-
dad científica está creando esfuerzos de cola-
boración global para analizar estos datos. Sin
embargo, los datos biomédicos están sujetos
a varias restricciones legales y socioeconómi-
cas que dificultan las posibilidades de colabo-
ración en investigación.

En esta tesis, primero investigamos y mos-
tramos que los investigadores requieren nue-
vas herramientas y técnicas para abordar las
restricciones y necesidades de las colabora-
ciones científicas globales sobre datos biomé-
dicos geo distribuidos. En particular, identifi-
camos tres tipos de restricciones relacionadas
con las colaboraciones globales, a saber, res-
tricciones técnicas, legales y socioeconómi-
cas. También investigamos el estado del arte
de las herramientas actuales para análisis bio-
médicos globales distribuidos, incluidas herra-
mientas que utilizan técnicas de aprendizaje
automático, y mostramos sus limitaciones.

A partir de estos hallazgos, proponemos
colaboraciones totalmente distribuidas FDC
(definido en inglés como Fully Distributed Co-
llaborations), como esfuerzos de investigación
que aprovechan los medios para explotar y
analizar información biomédica de forma ma-
siva y colaborativa respetando las restriccio-

nes legales y socioeconómicas. Nosotros in-
vestigamos el concepto, las propiedades y las
características de los sistemas FDC, así co-
mo los requisitos de arquitectura y las nece-
sidades de seguridad y privacidad. Como pri-
mer ejemplo del diseño de herramientas ba-
sadas en FDC, proponemos una estrategia de
aprendizaje automático completamente distri-
buida. La estrategia considera un algoritmo de
entrenamiento de bosque aleatorio donde va-
rios sitios distribuidos geográficamente, man-
tienen sus propios datos privados, entrenan
un modelo global en colaboración sin compar-
tir información privada. El algoritmo propues-
to, llamado MuSiForest, mejora con respecto
a otros enfoques existentes de bosques multi
sitio al mejorar el tiempo de cómputo y redu-
cir la cantidad de datos compartidos mientras
tiene una precisión de entrenamiento cercana
a la de las técnicas centralizadas de bosques
aleatorios.

Finalmente, investigamos cómo los siste-
mas de flujo de trabajo se han utilizado am-
pliamente para especificar análisis de datos
biomédicos y mostramos las limitaciones ac-
tuales de esas herramientas. Mostramos có-
mo ofrecen medios limitados para definir, im-
plementar y ejecutar estudios de sitios múl-
tiples en la infraestructura distribuida actual,
respetando la propiedad de los datos y las
restricciones de privacidad. A continuación,
proponemos FeDeRa, un lenguaje para espe-
cificar, implementar y ejecutar flujos de traba-

6



Resumen

jo científicos multi sitio compatibles con FDC.
El lenguaje está enriquecido con abstraccio-
nes para implementar análisis en infraestruc-
turas de nube distribuidas geográficamente y
con abstracciones para definir patrones de flu-
jo de trabajo complejos a través de límites de
múltiples sitios. FeDeRa admite la programa-

ción de flujo de datos y la concurrencia decla-
rativa de forma nativa. También presentamos
la implementación de un motor de tiempo de
ejecución que admite la ejecución de flujos de
trabajo y experimentos de FeDeRa implemen-
tados en la infraestructura de la nube.

7



ACKNOWLEDGEMENTS

Firstly, I would like to thank God for everything. Then, I would like to express my
sincere gratitude to my family for their unconditional support. My parents, María and
José, and my two wonderful daughters, Sharon Nalieth and Jael Mariana, for their
trust, patience, understanding, and sacrifice to go so far, and Clara for her perseverance
and support. Many thanks to my grandmother Ana for her incessant prayers and good
wishes. In memory of my grandparents: Jael, Samuel, and Pedro. To my brother Cristian,
and my whole family’s example and advice were essential to accomplishing my Ph.D.

I am extremely grateful to my supervisors: Professor Mario Südholt allowed me to
explore, experiment, and learn, while his advice empowered me to face challenges that
helped me overcome my limits. Professor Luis Daniel Benavides, for his constant help and
always being available to give me great advice to improve my research. I also want to
mention Alban Gaignard for his collaboration, recommendations, and knowledge sharing
to develop my research.

I also thank my alma mater, Escuela Colombiana de Ingeniería, and its directors board,
who supported the development of this thesis under cotutelle modality. In Escuela, Dr.
Eduardo Silva, who is in the afterlife, thanks for so much trust, and Alicia Guzmán, who
both supported me since my undergraduate studies. Myriam Angarita, thanks for your
trust to develop my Ph.D. studies. Finally, thanks to the entire community of the Escuela
for their support and Oswaldo Castillo for his encouragement to make this possible.

In Nantes, thanks also to the IMT Atlantique and STACK team, who made part of
my funding and gave me the fantastic opportunity to live in France and learn so many
beautiful things about its people, culture, and food. I also want to thank all my colleagues
for many moments of sharing in ‘FrenGlish’ and also for their productive contributions to
my work. Although my gratitude goes out to all of you, I want to thank Fatima-Zahra,
my temporary partner during my stay in France, for the guidance, advice, and willingness
to share with me during our lunches with the team members.

Finally, I would like to thank my friends near and far, especially: Samuel, Rosita,
Edgar, Vladimir, Paula, María, and Simon, because life in Nantes would not have been
half as fun without you.

8



TABLE OF CONTENTS

Abstract 3

Résumé 4

Resumen 6

Acknowledgements 8

Notations and Acronyms 13

List of figures 18

List of tables 19

1. Introduction 21
1.1. Context and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2. Contributions and structure of the thesis . . . . . . . . . . . . . . . . . . . 23
1.3. Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

I Related Work and Concepts 26

2. The Problem of Global Collaboration in Biomedical Analyses 27
2.1. Data Sharing, Privacy and Protection in Biomedical Analyses . . . . . . . 28

2.1.1. Biomedical Data Categories . . . . . . . . . . . . . . . . . . . . . . 29
2.1.2. Data-Privacy: Global Landscape . . . . . . . . . . . . . . . . . . . . 31
2.1.3. Guiding Principles for Data-Sharing . . . . . . . . . . . . . . . . . . 35

2.2. The ICAN project: a Case of Collaborative Biomedical Analyses . . . . . . 36
2.2.1. The IntraCranial ANeurysm ICAN project . . . . . . . . . . . . . . 37

2.3. Constraints on Biomedical Collaborations . . . . . . . . . . . . . . . . . . 38
2.3.1. Technical Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.2. Legal Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

9



TABLE OF CONTENTS

2.4. Extending I-CAN to EU and non-EU partners . . . . . . . . . . . . . . . . 40
2.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3. Distributed Biomedical Analyses 45
3.1. Distributed Biomedical Analyses . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.1. Biomedical problems, data analytic techniques, and tools . . . . . . 46
3.1.2. Support for Research Collaborations . . . . . . . . . . . . . . . . . 48

3.1.2.1. Workflow Description Language . . . . . . . . . . . . . . . 49
3.1.2.2. Experiment Reproducibility . . . . . . . . . . . . . . . . . 50
3.1.2.3. Workflow System’s Interoperability . . . . . . . . . . . . . 54

3.1.3. Distributed Architectural Features . . . . . . . . . . . . . . . . . . 56
3.1.3.1. Data and Computation Placement . . . . . . . . . . . . . 57
3.1.3.2. Privacy and security . . . . . . . . . . . . . . . . . . . . . 60
3.1.3.3. Architecture and Quality Attributes . . . . . . . . . . . . 61

3.1.4. Distributed Workflow Systems . . . . . . . . . . . . . . . . . . . . . 64
3.2. Machine Learning-Based Analysis . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.1. Understanding Supervised Learning . . . . . . . . . . . . . . . . . . 67
3.2.2. Ensemble Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2.2.1. Random Forests . . . . . . . . . . . . . . . . . . . . . . . 73
3.2.3. Multi-Site Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2.4. Distributed Machine Learning . . . . . . . . . . . . . . . . . . . . . 78

3.3. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

II Contributions 87

4. Fully Distributed Collaborations 91
4.1. The FDC concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.1.1. FDC Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.1.2. Data as first-class citizens . . . . . . . . . . . . . . . . . . . . . . . 95

4.2. FDC-based analyses supported . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3. The Architecture of FDCs . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4. Privacy and Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

10



TABLE OF CONTENTS

5. Fully Distributed Random Forests (MuSiForest) 101
5.1. Random Forests Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1.1. Training a Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.1.1.1. Building a Decision Tree . . . . . . . . . . . . . . . . . . . 103
5.1.1.2. Decision Tree Application . . . . . . . . . . . . . . . . . . 107

5.1.2. Estimating the Prediction Error . . . . . . . . . . . . . . . . . . . . 109
5.1.2.1. Metrics for Classification Models . . . . . . . . . . . . . . 109
5.1.2.2. Out-of-Bag (OOB) Error Estimation . . . . . . . . . . . . 111

5.1.3. Complexity of Random Forests . . . . . . . . . . . . . . . . . . . . 113
5.2. A Fully Distributed Random Forests Algorithm . . . . . . . . . . . . . . . 113

5.2.1. MuSiForest Methodology . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2.2. The MuSiForest Algorithm . . . . . . . . . . . . . . . . . . . . . . . 114

5.2.2.1. Local Model Construction . . . . . . . . . . . . . . . . . . 115
5.2.2.2. Model Aggregation . . . . . . . . . . . . . . . . . . . . . . 117
5.2.2.3. Evaluating the Collaborative Model . . . . . . . . . . . . . 121

5.3. Privacy-Preserving Bias Correction . . . . . . . . . . . . . . . . . . . . . . 122
5.3.1. Secure Data Containers (SDCs) . . . . . . . . . . . . . . . . . . . . 123
5.3.2. Secure Tree Data (STD) . . . . . . . . . . . . . . . . . . . . . . . . 125
5.3.3. Secure Validation Dataset (SVD) . . . . . . . . . . . . . . . . . . . 127

5.4. Architecture and Implementation . . . . . . . . . . . . . . . . . . . . . . . 129
5.4.1. Component-based Architecture . . . . . . . . . . . . . . . . . . . . 130
5.4.2. System Implementation . . . . . . . . . . . . . . . . . . . . . . . . 132
5.4.3. MuSiForest Topologies . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.4.3.1. Sequential Aggregation . . . . . . . . . . . . . . . . . . . . 134
5.4.3.2. Hierarchical Aggregation . . . . . . . . . . . . . . . . . . . 135
5.4.3.3. Fully Distributed Aggregation . . . . . . . . . . . . . . . . 136

5.5. Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.5.1. Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.5.2. The Grid’5000 testbed . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.5.3. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.5.4. Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.5.5. Bias-Correction Evaluation . . . . . . . . . . . . . . . . . . . . . . . 148
5.5.6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

11



TABLE OF CONTENTS

6. Workflow Language for FDCs (FeDeRa) 155
6.1. Workflow Languages for Biomedical Analyses . . . . . . . . . . . . . . . . 156

6.1.1. Distributed Workflow Languages . . . . . . . . . . . . . . . . . . . 156
6.1.2. Baseline Workflow Languages . . . . . . . . . . . . . . . . . . . . . 157

6.2. Workflow-based Machine Learning Analysis . . . . . . . . . . . . . . . . . 159
6.3. FeDeRa: Distributed and Declarative Workflows . . . . . . . . . . . . . . . 161

6.3.1. FeDeRa Language Features . . . . . . . . . . . . . . . . . . . . . . 162
6.3.1.1. Dataflow Programming . . . . . . . . . . . . . . . . . . . 163
6.3.1.2. Declarative Concurrency . . . . . . . . . . . . . . . . . . . 164

6.3.2. Syntax and Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.3.2.1. FeDeRa Instructions . . . . . . . . . . . . . . . . . . . . . 165
6.3.2.2. Transformational semantics of FeDeRa instructions . . . . 168
6.3.2.3. Specification of the Collaborative Scenario . . . . . . . . . 171

6.4. Architecture and Implementation . . . . . . . . . . . . . . . . . . . . . . . 174
6.4.1. Implementation overview . . . . . . . . . . . . . . . . . . . . . . . . 174
6.4.2. FeDeRa Runtime Architecture . . . . . . . . . . . . . . . . . . . . . 176
6.4.3. Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.5. Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.5.1. Expressiveness Level . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.5.2. Concurrency and Distribution . . . . . . . . . . . . . . . . . . . . . 186

6.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7. Conclusions 191
7.1. Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Glossary 197

Bibliography 201

12



NOTATIONS AND ACRONYMS

AI Artificial Intelligence
ANN Artificial Neural Networks
API Application Programming Interface
Bagging Bootstrap Aggregating
BATTs Biomedical Analytical Tools and Techniques
BestMdn Best Aggregated Model by Median
BestPerc Best Aggregated Model by Percentage
BLM Build Local Model
BWT Burrows-Wheeler transform
CCPA The California Consumer Privacy Act
CDPA The Virginia Consumer Data Protection Act
CMJoin Collaborative Model by Joining
CMMdian Collaborative Model by Median Precision
CMPerc Collaborative Model by Percentage
DBA Distributed Biomedical Analyses
DC Distributed Controller
DML Distributed Machine Learning
DNNs Deep Neural Networks
DP Differential Privacy
DT Decision Tree
DTE Testing Data Set
DTS Training Data Set
DWFS Distributed Workflow System
EBI European Bioinformatics Institute
FDC Fully Distributed Collaboration
FDC-RF Fully Distributed Random Forest
FDCs Fully-Distributed Collaborations
FeDeRa Fully and Enriched Language for Distributed Analysis

13



Notations and Acronyms

FHE Fully Homomorphic Encryption
FL Federated Learning
G5K Grid’5000 platform
GDPR General Data Protection Regulation
GPU Graphics Processing Units
GWA Genome-Wide Association studies
HE Homomorphic Encryption
HGP The Human Genome Project
ICAN The IntraCranial Aneurysms Project
IG Information Gain
inBag set In-bag data set
KNN K-Nearest Neighbor
MC Model Controller
MEO Model Evaluation and Outcomes
ML Machine Learning
MLP Multilayer Perceptron
MMD Merge Models
MPI Message Passing Interface
MuSiForest Multi-Site Random Forest
NCBI The National Center for Biotechnology Information
NGS Next-Generation Sequencing
oob set Out-of-bag data set
P2P Peer-to-peer
PCAWG The Pan-Cancer Analysis of Whole Genomes
RF Random Forest
RNA-Seq RNA-Sequencing
SC Site Controller
SDC Secure Data Containers
SMC Secure MultiParty Computation
SSS Single-Share Store
STD Secure Tree Data
SVM Support Vector Machine
SWFMSs Scientific WorkFlow Management Systems
VIM Variable importance
WDL Workflow Description Language

14



LIST OF FIGURES

2.1. Data privacy regulations in the global landscape . . . . . . . . . . . . . . . 31
2.2. Hospitals, data flows and processing sites of the ICAN project . . . . . . . 37
2.3. Data analyses process among Nantes and Rennes in the ICAN project . . . 38
2.4. Scenario for distributed processing analysis in Fully Distributed Collabo-

rations across four sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1. High-Throughput Sequencing (HTS) data analysis protocol (based on [De
+12]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2. General idea of the learning process approach. . . . . . . . . . . . . . . . . 68
3.3. Supervised and unsupervised learning. Supervised learning trains a model

to best separate two classes {+,−}. Unsupervised learning seeks to cluster
samples based on common features. . . . . . . . . . . . . . . . . . . . . . . 69

3.4. Bootstrapping strategy, from the initial dataset D with m records, then m

samples are selected with replacements to generate one bootstrapped data
set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5. Bagging strategy for training and evaluating multiple classifiers in an en-
semble learning model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.6. Representation of a data set, in two forms, by a decision tree with two
attributes (x1, x2) and one binary class {+,−}, and by decision boundaries. 72

3.7. Random Forests algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.8. Distributed Machine Learning aggregation strategies. . . . . . . . . . . . . 78
3.9. Horizontal Data Partitioning. . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.10. Vertical Data Partitioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1. FDC analysis between four cities distributed in two countries. . . . . . . . 93
4.2. FDC Machine Learning over multi-site workflows. . . . . . . . . . . . . . . 97
4.3. FDC Fully-Distributed Architecture. . . . . . . . . . . . . . . . . . . . . . 99

5.1. Decision tree modeling a data training process with thousands of genes,
multiple classes, and five paths from the root to leaves. . . . . . . . . . . . 108

15



LIST OF FIGURES

5.2. An illustration of OOB error estimation for each decision tree . . . . . . . . 112
5.3. Construction and evaluation of the RF model under Fully Distributed Col-

laborations. The process involves s sites. From each dataset a training
(DTR) and testing (DTE) set are generated that are used on the local and
collaborative models privately. . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4. Secure Data Container strategy to share partial data securely. . . . . . . . 123
5.5. Secure Tree Data strategy based on FHE to build each level tree securely. . 125
5.6. Bias-correction strategy based on a secure global validation dataset. . . . . 127
5.7. Architecture of the MuSiForest engine. . . . . . . . . . . . . . . . . . . . . 130
5.8. Execution Architecture the MuSiForest algorithm. . . . . . . . . . . . . . . 131
5.9. Diagram of deployment components among three sites. . . . . . . . . . . . 132
5.10. Sequential aggregation, each site builds the local model and shares it with

others until all sites participate sequentially. . . . . . . . . . . . . . . . . . 135
5.11. Hierarchical aggregation with one intermediate level, each site builds a local

model and shares with the intermediate sites. The intermediary collects the
models to the top and then shares the collaborative model with all sites. . 136

5.12. Example of Fully distributed aggregation, through peer-to-peer communi-
cation, the sites share the models until the participation of all results in
the collaborative version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.13. Grid’5000 (G5K ) nodes distribution. . . . . . . . . . . . . . . . . . . . . . 140
5.14. Experiments deployed with the participation of s sites versus the central-

ized training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.15. Comparison of metrics for collaborative and centralized models in 3 Sites. . 143
5.16. Comparison of metrics for the models: BestPercCollaborative (BCoM) and

Centralized (CeM) in different distributed scenarios. . . . . . . . . . . . . . 144
5.17. FScore metrics for collaborative and centralized models in different dis-

tributed settings (H:Hundreds, K:Thousands) based from Table 5.2. . . . . 146
5.18. Amount of data shared between collaborative models and moved raw data

in the centralized case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.19. Computational Time Training a Model: centralized versus collaborative

versions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.20. Comparison of local models per site versus the Secure Data Containers

(SDC) strategy for three sites. . . . . . . . . . . . . . . . . . . . . . . . . . 150

16



LIST OF FIGURES

6.1. Workflow for collaborative training between CO and FR (described in Sec-
tion 2.4). (BLM: Build a Local Model, GLM: Group Local Models, SLD: Share Local

Data, MMD: Merge Models, SLM: Share Local Models, SCM: Share Collaborative Mod-

els, MEO: Model Evaluation, REO: Receive Evaluation and Outcomes). . . . . . . . . 160
6.2. Dataflow representation between French and Colombian sites that share

information on one variable E. . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.3. Syntax of FeDeRa language. . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.4. A distributed machine learning scenario among three sites applying the

steps: Build a Local Model (BLM), Merge Models (MMD), and Model
Evaluation (MEO). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.5. FeDeRa analysis workflow among three sites from Figure 6.4 . . . . . . . . 168
6.6. FeDeRa compilation process. . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.7. Transformation of Single Share Store functionality . . . . . . . . . . . . . . 169
6.8. Implementation of the subscriber site to the dataflow variable varName as

Python code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.9. Implementation for binding a dataflow variable in Python code . . . . . . . 170
6.10. FeDeRa specification for the global conditions of the collaborative scenario

presented in Figure 6.1 (introduced on page 40) . . . . . . . . . . . . . . . 171
6.11. FeDeRa specification for Colombian site in the collaborative scenario illus-

trated in Figure 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.12. FeDeRa specification for French sites in the collaborative scenario presented

in Figure 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.13. Communication between two sites via the Single Share Store SSS. . . . . . 174
6.14. Example of a Wait-For-Graph (WFG) strategy for handling deadlocks be-

tween three sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.15. FeDeRa distributed runtime architecture. . . . . . . . . . . . . . . . . . . . 176
6.16. FeDeRa communication distributed architecture. . . . . . . . . . . . . . . . 177
6.17. Grid’5000 (G5K) nodes distribution with FeDeRa and FDC components. . 178
6.18. Sample of configuration file to deploy multi-site analyses on G5K . . . . . 178
6.19. Workflow to split a single input into four independent files on which word

frequencies are calculated output as a single file. . . . . . . . . . . . . . . . 180
6.20. Specification in Swift for the workflow analysis presented in Figure 6.19 . . 181
6.21. Specification in Snakemake for the workflow analysis presented in Figure 6.19182
6.22. Specification in Pegasus for the workflow analysis presented in Figure 6.19 183

17



LIST OF FIGURES

6.23. Specification in FeDeRa for the workflow analysis presented in Figure 6.19 184

18



LIST OF TABLES

3.1. Characterization of BATTs for genomic data analyses . . . . . . . . . . . . 47
3.2. Workflow description characteristics of the SWFMSs . . . . . . . . . . . . 50
3.3. Computational reproducibility characteristics in the SWFMSs . . . . . . . 53
3.4. Interoperability properties in the SWFMSs . . . . . . . . . . . . . . . . . . 55
3.5. A categorization of BATTs and SWFMSs according to our architectural

features proposed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6. Sequential and cluster-based BATTs for genomic data (complements Ta-

ble 3.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.7. Classification of SWFMSs according to the level of distribution offered. . . 64
3.8. Comparison of some Supervised Machine Learning models . . . . . . . . . 75

5.1. Confusion matrix for a binary classification problem. . . . . . . . . . . . . 110
5.2. Evaluation of the FScore metric for the trained models . . . . . . . . . . . 145
5.3. Description of each data set in each site experimented in the Secure Data

Containers’ strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

19





Chapter 1

INTRODUCTION

1.1. Context and Motivation

The amount of data collected continues to grow every day [Ste+15]. According to the
European Bioinformatics Institute (EBI) archive, at the end of 2020, raw data reached over
390 petabytes of data storage [Can+22]. Biotechnological advances like Next-Generation
Sequencing (NGS) technologies have contributed to this growth [PST11]. For example,
sequencing a whole genome nowadays requires only one day, in contrast to the more than
ten years invested in the Human Genome Project (HGP) between 1990 and 2003 [BT13].
Therefore, biomedical data, particularly genetic data, is voluminous and often too difficult
or costly to transfer, store at, and analyze on a single site [Pap+18a].

Today’s predominant architectural model for biomedical collaborative analyses consist
of centralizing the underlying data and performing analyses through supercomputers or
cluster infrastructures located at a single or a small number of organizations [Sch+10a].
Furthermore, this collaborative model is very restrictive and rigid. Recently, the need for
more widely distributed collaborations has been noted [BS18; Bou+19; PCA15; Li+16].
Several arguments favor a higher degree of distribution: more and more organizations
dispose of high-performance infrastructures for large-scale analyses, biomedical local data
should be kept private, and massive data transfers are too time-consuming. We refer to
biomedical analyses as those workflows composed of multiple steps, even distributed, to
analyze data from medical applications: images, medical records, and data resulting from
genomics analyses.

Approaches and tools for fully distributed collaborative biomedical analyses are rare
today. Most existing approaches and tools process data at individual or a small number
of locations using efficient frameworks for large-scale computations, such as MapReduce
[Cat+17a; Sal+16; Guo+18]. MapReduce-based frameworks like Hadoop and Spark are
highly efficient for distributed processing across a large number of machines orchestrated
by a central node. But, these frameworks have limitations when processing geographically

21



Introduction

distributed data while maintaining quality attributes such as scalability, consistency, and
performance [Dol+17b]. Similarly, workflow systems, another popular tool used in the
biomedical field, allow scientists to define analyses in terms of tasks as well as task depen-
dencies and dataflows [Liu+15]. They also frequently support portability across different
execution environments like grids and clusters [YB05; RB17]. But, current workflow sys-
tems do not support FDC scenarios because they are designed to cope with current state-
of-the-art infrastructure. They are also not designed to cope with the complex require-
ments of international biomedical cooperation, lacking mechanisms for decentralization,
distributed computations, and security/privacy requirements [PCA15].

These restrictions on computational capacity and processing mechanisms are com-
plemented by security/privacy requirements and data-sharing restrictions on biomedical
data. Security and privacy risks include data leakage and re-identification concerns [Are+18].
Therefore, different governments and official entities are trying to regulate biomedical data
sharing. A prime example is the General Data Protection Regulation (GDPR) [CC16],
implemented in 2018 by the European Union. The GDPR defines rules for the treatment
and sharing of personal data, including, among others, health data, genetic, and biometric
data.

In order to address these restrictions, we propose fully-distributed collaborations (de-
noted as FDCs) to process biomedical data. FDCs are research endeavors that harness
means to exploit and analyze massive biomedical information collaboratively over geo-
distributed infrastructures. Thus, FDCs require tools and techniques for collaboration
that can use advanced distributed (data and computation) architectures to cope with
complex socio-technical constraints and heterogeneous networks. FDCs promise to enable
more powerful biomedical analyses defined in distributed workflows operating over large
volumes of shared public and private data. FDC analyses will promote cooperation among
geo-distributed research groups or organizations, each typically subject to, possibly local,
constraints stemming from legal frameworks, security constraints, sensitive private data,
and locally-available infrastructures. Thus, FDCs require collaboration beyond traditional
social/legal ones, such as confidentiality agreements or copyrights contracts.

In this thesis, we propose an approach to analyze biomedical data in a fully distributed
setting. An FDC-based scenario implements a supervised learning algorithm to analyze
biomedical data collaboratively. The FDC scenario considers the global training of a Ran-
dom Forests model through the aggregation of models trained locally without sharing
data entirely [Liu+20b]. Random Forests [Bre99] is a popular learning model applied to

22



Introduction

biomedical data for classification and prediction problems [GPB11; CI12; Bou+12]. We
implement this FDC-based scenario and experiment with data resulting from the analysis
of genomic data. Additionally, we complement this algorithm with an enriched language
to specify instructions declaratively. The language syntax offers means to improve expres-
siveness and interpretability that are very useful for biomedical users.

1.2. Contributions and structure of the thesis

In this thesis, we provide the following contributions:

We motivate the use of FDC scenarios as an improvement of centralized biomedical
analyses. We show current limitations and constraints in the context of the ICAN
project [ANR19], a large collaborative project that involves 34 french hospitals
and research centers working together to understand the pathology of intracranial
aneurysms.

We present a taxonomy of tools and systems for distributed genomic data pro-
cessing. The taxonomy classifies from three different perspectives: (i) biomedical
problems being solved on genomic data, (ii) the tool support provided for biomedi-
cal analyses, and (iii) support for distributed cooperation, notably in terms of types
of distribution offered, interoperability properties, and reproducibility properties.

We propose theMuSiForest algorithm to build a collaborative model between mul-
tiple sites through different model aggregation strategies applying different security
levels. The algorithm supports the collaboration among several geo-distributed re-
search centers involving distributed biomedical data and computational infrastruc-
tures. Furthermore, the implementation offers some strategies to handle the bias in
the trained collaborative model sharing partial data securely.

We also propose declarative language to specify FDC-based analysis. The declara-
tive workflow language, FeDeRa, specifies collaborative biomedical analysis and is
implemented across multiple geo-distributed sites. Furthermore, the language adopts
concurrency and distributed mechanisms to mitigate current workflow language re-
strictions, enhancing the specification-level analysis definitions required by biomed-
ical users.

23



Introduction

Finally, we propose multi-site analyses executed in an international context between
Colombia and France to evaluate our algorithm and the proposed specification lan-
guage. Each site disposes of private data, and computing and storage infrastructures
at the different sites are heterogeneous. The collaborative analysis is defined as a
workflow over computations steps and data movements. The MuSiForest algorithm
is deployed among geo-distributed sites, and through collaboration, we train a col-
laborative model, which is evaluated against expensive and unfeasible centralized
training. Furthermore, we have specified this scenario with our declarative language
contrasting the expressiveness level and deployment mechanisms provided versus
some workflow languages.

This thesis comprises two parts in seven chapters:

Part I: The first part, we present the related work and basic concepts to comprehend the
thesis in two chapters. Chapter 2 presents relevant features in the problem of global
collaboration in biomedical analyses. We also present a motivational case based on
real biomedical scenarios. Next, Chapter 3 presents the state and concepts related to
distributed biomedical analyses with traditional analysis and based on Distributed
Machine Learning strategies.

Part II: The second part presents the three contributions of the thesis. First, chapter 4
presents Fully-Distributed Collaborations (FDCs) and their relevant processing fea-
tures. We then present a collaborative learning approach following the FDC concept
in Chapter 5. Thirdly, Chapter 6 describes the distributed workflow specification lan-
guage for biomedical analyses. Finally, we present the dissertation’s conclusion and
potential directions for future work in Chapter 7.

1.3. Publications

The thesis’s development has led to papers, some in revision and others in co-authorship,
through collaborative research on topics of interest in this dissertation.

Garzón, Wilmer and Benavides, Luis and Gaignard, Alban and Redon, Richard
and Südholt, Mario. (2022, July). A taxonomy of tools and approaches for dis-
tributed genomic analyses. Informatics in Medicine Unlocked.
https://doi.org/10.1016/j.imu.2022.101024

24

https://doi.org/10.1016/j.imu.2022.101024


Introduction

Sanabria-Ardila, M., Navarro, L. D. B., Diaz-Lopez, D., & Garzón-Alfonso, W.
(2020). A Semantic Framework for the Design of Distributed Reactive Real-Time
Languages and Applications. IEEE Access, vol. 8, pp. 143862-143880, 2020.
https://doi.org/10.1109/ACCESS.2020.3010697

Boujdad, F. Z., Gaignard, A., Südholt, M., Garzón-Alfonso, W., Navarro, L. D.
B., & Redon, R. (2019, May). On distributed collaboration for biomedical analyses.
CCGrid-Life 2019 Workshop on Clusters, Clouds and Grids for Life Sciences (CC-
GRID) (pp. 611-620). IEEE.
https://doi.org/10.1109/CCGRID.2019.00079

Garzón, Wilmer and Benavides, Luis and Gaignard, Alban and Redon, Richard
and Südholt, Mario. A Fully-Distributed Random Forest approach for biomedical
data analysis. (revision process).

25

https://doi.org/10.1109/ACCESS.2020.3010697
https://doi.org/10.1109/CCGRID.2019.00079


Part I

Related Work and Concepts

26



Chapter 2

THE PROBLEM OF GLOBAL

COLLABORATION IN BIOMEDICAL

ANALYSES

The volume of biomedical information collected is growing every day [Ste+15]. Individ-
uals or single organizations often can no longer analyze such amounts of data. Researchers
are thus organizing collaborative research efforts to address this issue. An example of such
an effort is the ICAN project [Bou+17; ANR19], a collaboration of more than 30 French
medical institutions in a research project that targets pathologies pertaining to intracra-
nial aneurysms. In the ICAN project, each participant shares large amounts of biomedical
data (including clinical records, medical images, and genomic data from the sequencing
of biological samples). Although multiple institutions provide data, the biomedical data
is analyzed by only a small number (2) of participating entities.

In this thesis, we consider biomedical analyses defined as distributed workflows em-
ployed to analyze data from medical applications: images, medical records, and data
resulting from genomics analyses, such as gene expression levels1. Analyzing this data,
even in a collaborative manner, will allow insights from complex and voluminous data
to help researchers and health professionals make evidence-based decisions to improve
human health.

Biomedical data is subject to more numerous and more severe limitations on data
sharing than most other kinds of information. Governments and other organizations are
frequently imposing regulations and policies to protect biomedical data, such as the Eu-
ropean Union’s General Data Protection Regulation (GDPR) [CC16]. However, such re-
strictions frequently make conducting research collaborations more difficult.

In this chapter we investigate how to address the data protection problem while provid-

1. Gene expression levels determine how genes are transcribed into functional gene products such as
functional RNA or proteins [Kor+14; Liñ+19].

27



IPart, Chapter 2 – The Problem of Global Collaboration in Biomedical Analyses

ing flexible means for distributed data analyses. In Sec. 2.1, we study the characteristics of
biomedical data, notably limitations pertaining to the privacy, protection, and the shar-
ing limitations of such data. In Sec. 2.2, we present the ICAN project in detail as a case
study how such affect research efforts. Section 2.3 highlights and classifies the problems
of research collaboration into three categories: technical constraints, legal constraints,
and socio-economic constraints. Section 2.4 discusses how another research collaboration
scenario among several geo-distributed parties may benefit from more flexible tools for
collaboration. Finally, Sec. 2.5 presents a conclusion.

2.1. Data Sharing, Privacy and Protection in Biomed-
ical Analyses

Sharing biomedical data presents considerable challenges due to its privacy and con-
fidentiality requirements compared to other data types. Governments and research orga-
nizations have promoted policies and practices to share data responsibly to meet these
requirements. For example, the Genomic Data Sharing (GDS) policy [Hea21] and the
Strategic Plan for Data Science (SPDS) [Hea+18], both proposed by the National In-
stitutes of Health (NIH) in the U.S. The GDS policy is an initiative to share genomic
data among NIH-funded projects. While the SPDS aims to interconnect data generated
from different NIH projects integrating and standardizing tools and algorithms to man-
age the data efficiently. Other research agencies have taken similar initiatives as ELIXIR-
EXCELERATE [ELI14], proposed in 2015 by ELIXIR, which seeks to integrate several
bioinformatics resources supporting research and development in the European commu-
nity. Other actors are governments or government-like entities that often define policies to
limit data sharing. The most relevant regulation is the EU’s GDPR [CC16] which defines
rules on sharing and processing data from Europeans. In the U.S, the California Consumer
Privacy Act (CCPA) [Leg] defines California residents’ privacy guarantees and protection
mechanisms. Therefore, collaborative biomedical data analyses must consider government
policies while favoring those practices defined by research funding agencies.

Data sharing regulations also limit international biomedical cooperations. A notable
example are Genome-wide association studies (Genome-Wide Association (GWA)) that
help scientists identify genes associated with a particular disease. GWAS operate on a
group of patients’ entire genome set (i.e., DNA), analyzing small variations called Single
Nucleotide Polymorphisms (SNPs). The GWAS catalog [Bun+19] contains a vast amount

28



2.1. Data Sharing, Privacy and Protection in Biomedical Analyses

of genomic data such as SNPs associations. It is managed by the NHGRI (National Hu-
man Genome Research Institute) and the EBI (European Bioinformatics Institute). The
data is hosted on central sites managed by them, but they facilitate the participation of
researchers by sharing and downloading statistical analyzes of genomic data. The General
Data Protection Regulation (GDPR) also restricts genomic data sharing such as those con-
tained in the GWAS catalog due to strict rules for de-identification and consent [Pel+20].
These restriction rules are motivated by case studies that have shown a direct linkage
with patients from GWAS data, such as analysis from summary statistics [Hom+08] or
quantitative traits [Im+12]. However, researchers have sought practices to promote in-
ternational cooperation taking into account data sharing restrictions as defining codes of
conduct for genomic data sharing [MK20]. The codes of conduct seek to respect regu-
lations to delegate genomic research institutes as those responsible for their control and
processing. Nevertheless, the definition of these codes has required a significant dedication
of time and resources because, in many cases, it is not clear how to resolve the differences
in data-sharing responsibilities between the parties [Uff+21].

2.1.1. Biomedical Data Categories

Many Data sharing regulations, such as the GDPR, define how data is shared based
on categories of biomedical data. Therefore, it is important to know the different types of
biomedical data because some of these regulations handle different types differently.

Personal Identifiable Data

Personal Identifiable Data (PID) is a set of information (attributes) that directly or
indirectly permits to identification a person, as defined by the GDPR Article 4. In the
U.S., this kind of data is known as Personal Identifiable Information (PII) [Lab21]. Some
examples of identifiable data are attributes such as name and identification number that
directly identify a person. However, other data, such as demographic information, also
permits the identification of individuals. For example, Sweeney et al.. [Swe00] identified
part of the U.S. population by combining demographic data such as gender, date of birth,
and zip code. They thus demonstrated that, while such data is not sensitive, it can be
used to determine a person’s identity.

29



IPart, Chapter 2 – The Problem of Global Collaboration in Biomedical Analyses

Sensitive Data

Sensitive data is a special case of personal data that should have a greater protec-
tion because it reveals sensitive information, and its disclosure is limited. The GDPR
in articles 9 and 10 defines various types of sensitive data such as racial/ethnic, genetic
and biometric data to identify a natural person uniquely, and information concerning
health data. Sensitive data is subject to specific processing according to GDPR condi-
tions. These conditions are a set of rules that apply to sensitive data before processing,
such as anonymizing, pseudonymizing, or encrypting the data whenever possible. The
GDPR suggests defining a data controller responsible for defining the methods and prac-
tices to process sensitive data. The controller is the principal researcher or the funding
entity that regulates how sensitive data should be processed. On the other hand, the data
processor is the one who processes them on behalf of the controller.

Anonymous Data

According to recital 26 of the GDPR, anonymous data does not lead to the identi-
fication of persons. The scope of the GDPR is outside of anonymous data. Therefore,
biomedical analyses must implement efficient anonymization methods to offer more free-
dom to process biomedical data collaboratively. These methods consider various strategies
and seek to keep the data anonymous.

De-identification methods. The first approach is based on de-identification strate-
gies seeking to avoid revealing a patient’s identity, such as removing patient identifiers
from data. The de-identification methods comply with HIPAA rules to preserve the pa-
tient’s identity. These rules suggest excluding specific identifiers from the data before
sharing. HIPAA rules recommend removing as many as 18 identifiers from the data, such
as patient names, demographic information, unique numbers like IDs or phones, and bio-
metric identifiers, including finger and voiceprints. Nevertheless, de-identifying patient
information does not always guarantee to keep the data secure because these methods
only partially anonymize the data.

Anonymization methods. These methods seek to preserve personal data by remov-
ing or encoding attributes that can lead to identifying a natural person. The application
of these techniques should maintain the inherent knowledge of the attributes of the data
set as far as possible. For example, anonymization techniques are inappropriate when
the analysis result seeks to guide or personalize a specific treatment because the data is

30



2.1. Data Sharing, Privacy and Protection in Biomedical Analyses

modified in an anonymized version.

Pseudonymous Data

Pseudonymization is a method to exchange the original value by a pseudonym. The
methods reduce the risk of sharing sensitive data. Regulations such as the GDPR promote
pseudonymization to preserve the intrinsic relationship between the attributes while allow-
ing researchers to extract knowledge from pseudonymous data (Article 4, GDPR [CC16]).
Pseudonymization methods are reversible and allow de-identification of the raw data. In
contrast, anonymization limits the reversion process because breaks the relationships be-
tween the attributes. A simple example of a pseudonymization algorithm might be to
change a patient’s first and last name to an encrypted numeric value, that is, replace
these two attributes with a pseudonym value.

Virginia Act (CDPA-2023)
Consumer Data Protection

California (CCPA - 2020)
Consumer Privacy Act

Vermont Act (2018)
Data Broker Regulation

Canada Act (CPPA - 2020)
Consumer Privacy Protection

Brazil Law (LGPD - 2020)
General Data Protection

Uruguay Law (URCDP - 2018)
Personal and Habeas Data Action

Argentina Act (PDPA - 2000)
Personal Data Protection

Chile Law (CHDP - 2018)
Privacy and Data Protection

Uganda Act (2019)
Data Protection and Privacy

Nigeria Act (2019), Data 
Protection Regulation

New Zealand (NZPA)
The Privacy Act 2020

South Africa (POPIA - 2020)
Protection of Personal Information

Kenya Act (2019)
Data Protection

Australia (APAA - 2018)
Privacy Amendment Act

Egypt Law (2020)
Personal Data
Protection

Saudi Arabia
(ECC - 2018) 
Essential 
Cybersecurity 
Controls

Kenya Bill (PDPB - 2019)
Personal Data Protection

Singapore (2018)
Cybersecurity Bill

Indonesia Law (2008)
Electronic information 
and transactions

Thailand Act (PDPA - 2019)
Personal Data Protection

Vietnam (2018)
Cybersecurity Law

Japan Act (APPI-2017)
Protection of Personal 
Information

China Act (PISS-2018)
Personal Information Security

South Korea Act (PIPA-2020)
Personal Information Protection

Turkey (2016)
Protection on Personal Data

UAE Law (2020)
Data Protection 

European Union (2018)
General Data Protection Regulation

Russia (2006)
Data Protection Law 

Israel (2017)
Data Security

Switzerland (2019)
Data Protection Law

Regulation
Implemented

under study
Regulation

Figure 2.1 – Data privacy regulations in the global landscape

2.1.2. Data-Privacy: Global Landscape

Figure 2.1 illustrates the most relevant protection regulations on data sharing world-
wide and the status of each one, implemented or under study. The information presented
comes from different sources such as data-privacy reports [Glo; Sana; Sanb; Map] and

31



IPart, Chapter 2 – The Problem of Global Collaboration in Biomedical Analyses

the website of each illustrated regulation. Some of these regulations are discussed in this
section.

The General Data Protection Regulation (GDPR)

In 2018, in Europe, the General Data Protection Regulation (GDPR) [CC16] was
proposed as the first data regulation worldwide. The GDPR defines directives and rules
concerning the data privacy of the personal data of European Union residents. The GDPR
has replaced the Data Protection Directive 95/46/E.C. [PC95] introduced in the E.U. in
1995. The evolution of the directive resulted from more than four years of work between
the European Parliament and the European Council.

The GDPR establishes good practices for handling personal data that lead to people’s
direct or indirect identification. These practices are proposed through nine principles:
legality, equity, transparency, purpose limitation, data minimization, accuracy, storage
limitation, integrity and confidentiality, and accountability. The main objective is to safe-
guard the privacy of European data, being strict with the free processing by laboratories
and companies.

GDPR has a world scope since it regulates how non-European research groups must
analyze European patient information. Therefore, international cooperations including re-
search teams and medical institutions must define protect-internal frameworks to respect
these regulations. The non-compliance with GDPR directives leads to penalties for com-
panies and research teams, such as monetary sanctions. The restriction also extends to
international websites that must strive for compliance with the GDPR. A notable case
was the Los Angeles Times newspapers that blocked European users’ access. In addition
to the legal impact, the GDPR recognizes the importance of implementing systems that
adopt these legal frameworks to regulate the sharing of personal data.

Data Privacy Laws in the U.S.

The U.S., in the 1970s, pioneered federal restrictions on how government entities access
data using database systems due to its popularity. Two decades later, the NIH has pro-
moted the collaborative analyses of biomedical data satisfying the privacy rules formalized
as part of the HIPAA (Health Insurance Portability and Accountability Act) [EAH18],
encouraging companies to adopt good handling practices. Additionally, each state is defin-
ing its regulations. For example, the California Consumer Privacy Act (CCPA) [Leg] gives
California residents the right to know what companies know about them, and they can

32



2.1. Data Sharing, Privacy and Protection in Biomedical Analyses

disagree when companies seek economic benefits from their data. CCPA was the first
state-level regulation in the United States and turned into effect on January 1, 2020.
The CCPA recognizes as personal information all information that makes it possible to
identify a California resident. Biomedical information such as biometric and health data
are part of this category. The law applies to California residents who act individually or
as a family but it excludes those who sell data in business contexts. However, residents
can know, suppress, and revoke prior consent on handling their data, in addition to other
rights, such as ensuring non-discrimination and personal safety. Entities that process data
of California residents must define good practices of applying the CCPA standard, thus
ensuring compliance and complete protection of the personal data of their residents.

Similarly, the Virginia Consumer Data Protection Act (CDPA) [Leg20b], will come
into 2022 and applies to all companies or institutions that manage the data of citizens
of Virginia state. The law is flexible and excludes all organizations except government,
financial, education, or research laboratories. The CDPA only considers direct personal
data of the person that leads to the identification omitting aside indirect data or derived
data. Genetic or biometric data are considered sensitive and therefore regulated. In ad-
dition, the law regulates the sale of personal data, such as exchanging personal data for
monetary gain by controlling the maximums permitted during annual transactions.

The Brazilian General Data Protection Law (BGDPL)

In South America, a relevant regulation is the Brazilian General Data Protection
Law [Rep18] in force since 2020. Brazilian law also covers companies and institutes that
process the personal data of their residents inside and outside Brazil. The BGDPL defines
personal information, similarly to GDPR, as any direct or indirect data that leads to the
identification of a person, including data processed electronically. The Brazilian regulation
extends the GDPR concerning research data and medical procedures, considering, among
others, that research teams must guarantee the anonymization of personal data when-
ever possible. Furthermore, data protection applies to the result of medical procedures
in Brazil. Regarding data transfer, it maintains the provisions of the GDPR. However,
it makes international sharing more flexible as long as an inter-institutional agreement
guarantees responsible comparison, respecting the privacy management established in
Brazilian law [EU20].

33



IPart, Chapter 2 – The Problem of Global Collaboration in Biomedical Analyses

The Act on the Protection of Personal Information (APPI)

The Act on the Protection of Personal Information (APPI) in Japan [JAP20], proposed
in 2017, follows the world’s concerns about data protection. The law applies to national
and foreign institutions that process data of Japanese citizens. The APPI and GDPR have
defined a reciprocal adaptation agreement on restrictions to protect their residents’ data
in each territory [Eur20; GG20]. The E.U. considers a security list of Japanese companies
that responsibly protect data, and reciprocally, Japan has created a list of trusted E.U.
companies. The APPI seeks to protect the personal data of living Japanese residents and
personal data such as race, social creed, and medical records. The processing of personal
data must be regulated, and the informed consent of each Japanese citizen must define the
scope. However, the regulation establishes an exception to consent in the different cases
determined by the government, such as protecting any risk to life or national security and
improving public health policies. The law focuses on commercial companies and defines
some as the notification or publication of the purpose of personal data through informed
consent.

The Protection of Personal Information Act (POPIA)

Finally, the Protection of Personal Information (POPIA) in South Africa [Rep20]
was enacted in 2020. POPIA regulates living persons’ data and considers data of juridic
persons domiciled in South Africa. It considers medical and biometric information as
personal data. However, POPIA does not refer to the handling of genetic data obtained
from biological samples or derived from genomic data. POPIA does not directly reference
data generated from scientific research or data obtained from the analysis for research
purposes. Unlike the GDPR, the law does not consider pseudonymization mechanisms.
The legislation does not indicate the transfer of cross-border data. The POPIA regulation
has significant gaps compared to others, nor does it indicate how foreign companies should
process data from their citizens.

Discussion

GDPR is the most complete regulation on data privacy and has been used as a ref-
erence worldwide. It was the first example of how data controllers and processors should
protect the data of citizens inside and outside a territory. Many countries have defined
less strict and vague regulations in this same direction. In contrast, state-level legislation

34



2.1. Data Sharing, Privacy and Protection in Biomedical Analyses

in Virginia prioritizes business interests such as sales and economic remuneration. On the
other hand, the legislation in China defines rules of common interests for the government
where the policies seem to serve a totalitarian purpose. To conclude, there is a diversity of
regulations, but many neglect specific policies on biomedical data, while others are quite
rigorous. Nevertheless, research organizations should promote practices for responsible
data sharing within international cooperations aligned with data privacy regulations, and
computational tools must be flexible enough to accommodate easily those considerations.

2.1.3. Guiding Principles for Data-Sharing

During the last few years, there has been a notable interest in sharing genomic data to
achieve remarkable advances in science for the benefit of human health. Sharing biomedical
data is governed by legal restrictions and a lack of interoperability protocols. The need to
share responsible data inspired the genomics research community to establish the Global
Alliance for Genomics and Health (GA4GH) in 2014 [Ter14]. The major goal of GA4GH is
to benefit genomics and health science through standard policies for sharing scientific data
responsibly. As part of GA4GH’s commitments, they have adopted the FAIR principles
to promote standard protocols in data sharing.

The FAIR Guiding Principles

The FAIR guiding principles provide guidelines to improve the findability, accessibility,
interoperability, and reuse of scientific data.

Findable: Advancement in research benefits when researchers can find data and
metadata from other scientific analyses. Finding the data should be an easy task
for scientists in an automated way. findable is one of the most important qualities
in FAIR principles for the consequences tasks after the discovery.

Accessible: The researchers must access the data found, possible through controlled
access with prior registration.

Interoperable: The data must be integrated with other data sources or external
applications to enable more extensive analyses due to the participation of different
sources. The data must follow standards that permit reuse and exchange with others.

35



IPart, Chapter 2 – The Problem of Global Collaboration in Biomedical Analyses

Reusable: The reusable data allows new findings or the refutation of previous re-
search results. Therefore, data and metadata must be annotated to be understood
by other researchers.

The FAIR principles ignore technology aspects of scientific data analyses. This respon-
sibility is delegated to the researchers and the entity responsible for financing the project.
Nonetheless, in 2016, the G20 member countries endorsed the principles as a relevant
guiding force for research data. Similarly, research funding entities have been motivated
to follow FAIR principles on research in scientific data. In addition, the FAIR principles
have been adopted in various international initiatives for managing and sharing biomedical
data. For example, the NIH Big Data to Knowledge (BD2K) initiative [Mar+14] adopts
the principles to maximize the use of biomedical data to extract knowledge (value added
to raw data) for individual researchers and the scientific community as a whole. Since the
NIH is a part of the world’s data ecosystem, this kind of effort between research project
funding organizations and policy-making entities will lead to standard models to manage
data and obtain new knowledge collaboratively. Similarly, in Europe, ELIXIR [ELI19]
comply with the FAIR principles as part of its effort for the efficient management of
biomedical data by publicly funded projects. All these efforts demonstrate the interest of
different entities to open data responsibly while promoting research.

2.2. The ICAN project: a Case of Collaborative Biomed-
ical Analyses

The volumes of biomedical data, in particular genomic data, have grown remark-
ably [Ste+15], such as the data collected in the EMBL-EBI (European Bioinformatics
Institute) archive, including clinical and genomic data [Can+22]. The EMBL-EBI reached
over 390 PetaBytes of raw data storage by the end of 2020, from approximately 70 PB in
2015 and 160 PB in 2018 [Coo+19]. The availability of such data presents new opportu-
nities and challenges to extract actionable insights from data for biomedical research.

Biomedical collaborations can have a global scope, such as the GWA studies, but are
also highly relevant in national and regional scenarios. One corresponding example is the
IntraCranial ANeurysm ICAN project [Bou+17] project in France. This project involves
34 collaborating French hospitals. Although the project is a French national effort financed
by the government, data sharing with non-project members is severely restricted by legal

36



2.2. The ICAN project: a Case of Collaborative Biomedical Analyses

restrictions and technical challenges. Part of these challenges can be mitigated by an
extension of the ICAN project’s distributed computing infrastructure supported by the
idea of multi-site analyses discussed in this thesis.

2.2.1. The IntraCranial ANeurysm ICAN project

The project aims at developing diagnostic and predictive tools for the risk of intracra-
nial aneurysm formation and rupture from three types of data [Bou+17]: clinical data
(data related to environmental risk factors are collected for each included patient), imag-
ing data (MRI/MRA data2 from imaging scans), and biological samples (blood samples
taken from each patient whose genetic information has been sequenced).

Hospitals
Providing data

Rennes

Nantes
University Hospital

Imaging Platform
 

Nantes
Sequencing and

 Images  Genetic  Clinical

Bioinformatics platform

Figure 2.2 – Hospitals, data flows and processing sites of the ICAN project

Figure 2.2 shows the parties involved in the project. The figure shows that most sites
provide three types of data, while only hospitals and research institutions in two cities
(Nantes and Rennes) ensure their processing and (intermediate) storage.

Figure 2.3 details the process performed on computing platforms (different clusters)
located in Nantes and Rennes. The medical images and their metadata are uploaded using
the Shanoir-NG (SHAring iN vivO Imaging Resources, Next Generation) neuroimage data

2. Types of magnetic resonance examinations: MRI (Magnetic Resonance Imaging) and MRA (Mag-
netic Resonance Angiography).

37



IPart, Chapter 2 – The Problem of Global Collaboration in Biomedical Analyses

Platform (BiRD)

Nantes
 

Nantes, Bioinformatics

Rennes, Imaging
University HospitalPlatform (Neurinfo)
- study coordination
- clinical data management

- medical imaging
database and

  genomic data analysis
- data integration process
- supervised classification

- medical imaging and

management

Genetic

M
edical Im

ages Clin
ic
al

 D
at

a

Data

Figure 2.3 – Data analyses process among Nantes and Rennes in the ICAN project

sharing platform [Bar+16], and these are managed and stored on an imaging platform
(Neurinfo) in Rennes. Subsequently, the images are transferred to Nantes. In Nantes, the
analysis occurs at two places: at the university hospital and on a supercomputing cluster
BiRD (Bioinformatics institute Research and Development) of an independent research
institution.

The BiRD platform also enables the analysis of transferred images and processes ge-
netic data. Genetic data is obtained on-site through High-Throughput Sequencing and
array genotyping techniques from biological samples sent by all hospitals. Thus, although
the ICAN project involves multiple hospitals, the data analysis process is performed at
only two sites. As discussed below, the project structure described above already poses
several technical, legal, and socioeconomic challenges, foremost related to data storage,
data sharing, and computational requirements. In addition, replicating the study abroad
or sharing data with other countries would require overcoming legal constraints and con-
sidering alternatives to centralizing storage and processing.

2.3. Constraints on Biomedical Collaborations

Similar to the ICAN project, real-world cooperations and the corresponding body of
scientific work in almost all of today’s cases are strongly limited. Most calculations are
implemented on infrastructure on a single site, and few data are effectively shared without
constraints, especially in international settings. There are multiple reasons for the current
restrictions, technical ones but also legal ones discussed below based on the ICAN project.

38



2.3. Constraints on Biomedical Collaborations

2.3.1. Technical Constraints

Biomedical cooperations are subject to significant technical challenges. For example,
the ICAN project requires processing large volumes of data and performing complex and
time-consuming computations. Therefore, the data is centralized and processed only in
two sites (illustrated in Figure 2.3) because the other sites do not dispose of the necessary
hardware and software infrastructures. The data volumes grow at least linearly with the
number of involved patients. In this context, storage, and communication bottlenecks
arise easily [Pap+18a], leading to major questions related to the localization/placement
of computation and data, notably for performance reasons.

Second, the ICAN project uses a simple distributed collaboration architecture because
data is generated at all sites but then centralized and processed at only two sites out of
34. More widely distributed architectures between the participating sites would have led
to larger distributed executions of analyses performing less data movements and thus
could have been more efficient and cost-effective. They could, however, not be employed
because of insufficient computational facilities at many sites. In general, current computa-
tional infrastructures and data storage methods lack support for the efficient distributed
processing of massive biomedical data [FHL14].

Third, because of its mostly centralized execution architecture, the ICAN project has a
simple architecture in terms of security and privacy where security services are delegated to
the infrastructure layer. However, in general, biomedical analyses must satisfy security and
privacy properties that are much stronger than those applicable to other domains and have
to be enforced in heterogeneous (computational and regulatory) environments [DCD03;
PCX11; CD05].

2.3.2. Legal Constraints

Biomedical data and the projects using them are most frequently subject to much
stronger legal restrictions, as described in the previous section. As already discussed,
some regulations are much stricter with biomedical data than others that consider it
just personal data. In addition to standard rules to ensure and preserve data privacy,
biomedical-related data must have stricter storage, transfer, and access control due to
sensitivity level restrictions.

The ICAN project is limited by French regulations that impose several constraints on
biomedical data sharing, even between institutions located inside the country, in addition

39



IPart, Chapter 2 – The Problem of Global Collaboration in Biomedical Analyses

to the restrictions defined by the GDPR. French regulations impose stringent constraints
on privacy preservation if data is shared with third parties: public cloud infrastructures
can only be used in exceptional circumstances and after undergoing specific accreditation
procedures. Currently, the ICAN partners are considering an extension to an international
partnership across and beyond the European Union. However, for more deeply integrated
cooperations, the regulatory situation becomes much more complicated because of the
different laws governing data privacy in general and health-related data in different coun-
tries. Since governments are aware of the potential benefits of such cooperations, they
have made efforts to regulate data privacy without affecting the flexibility of the research
initiatives [Fed+15].

2.4. Extending I-CAN to EU and non-EU partners

Collaborative analyses through international cohorts can help collect more information
about a disease, in particular aneurysm risks. However, the technical and legal restrictions
on moving human data are still more severe. As a continuation of the ICAN project, an
extension to EU and non-EU partners is currently in preparation.

With our partners from Nantes University Hospital, we have investigated the following
extension scenario, presented in the form of a distributed workflow:

1. In France, medical images are analyzed to select interesting patients,

2. The genetic information of the selected patients is shared with partners with whom
data-sharing agreements exist. Otherwise, learning models trained on local data can
be shared without sharing raw data.

3. In both cases, the shared information of these relevant genomes could build an
international study cohort for aneurysm research.

Figure 2.4 presents such an international cooperation as a distributed workflow analy-
sis, in the presence of data sharing restrictions on biomedical data. This scenario does not
stem from a real project but has been defined in terms of realistic constraints that apply
to international cooperations and has been validated by our medical partners. The figure
shows a workflow involving four sites, three in France, and one in Colombia, where each
site disposes of local data, and the computing and storage infrastructures at the different
sites are heterogeneous.

40



2.4. Extending I-CAN to EU and non-EU partners

Preprocess

AggData

AggModels

TrainModel

RecvModel

ApplyModel

GetResults

AggResults

Outputs

 S1       S2       S3      S4

WF Steps:

Security risks
moving data

Regional legal
restrictions

Partnership type:

- Regional

- International

S1

S2
S3

S4

Site4

Site3

Site2

Site1

FDC Data Analysis Workflow A Heterogeneus and Multi-site Architecture

Figure 2.4 – Scenario for distributed processing analysis in Fully Distributed Collabora-
tions across four sites

The analysis considers training models on local data. Local models are shared to build
a global model to determine the likelihood of a patient having a disease, such as an
aneurysm. The left part in Figure 2.4 shows a distributed multi-site workflow constructed
from nine steps, each represented by a different color. It aggregates local models by build-
ing a collaborative learning model [Liu+20b]. The analysis is defined as a workflow over
computations and data movements. On the right-hand side, the four sites are separated
into two groups according to region-specific rules governing the cooperation, such as data-
sharing restrictions, policies for data privacy protection, and data ownership. For example,
the sites located in France may share data as in the genomes of the patients in the ICAN
project. Similarly, European sites may cooperate under standard rules like the GDPR.
In this scenario, a collaborative analysis must also be compatible with Colombian data
protection law. Colombian law allows the transfer of personal data only to countries with
defined data protection standards [Col12], such as members of the European Union.

In addition, each site has different computing and network access capacities. Sharing
data on a central site is also inappropriate due to technical restrictions such as computing
capacity and bandwidth limitations. For example, the memory capacity required to train a
model is notably affected by the size of the data, and the execution time further increases
rapidly with increasing data size [Yu+12]. Moreover, transferring raw data versus trained
models makes a significant difference in terms of network capacity. For instance, 1.7 TB of

41



IPart, Chapter 2 – The Problem of Global Collaboration in Biomedical Analyses

data may lead to a trained (compressed) model of 400 MB [Can+16], which corresponds
to a noticeable reduction in the amount of data transferred.

The illustrated scenario avoids sharing raw data among sites, as it was required by the
prevailing models for data analysis. On the contrary, the multi-site scenario contemplates
training a model that shares only the data of learning models. These trained models
use much less space than raw data. Therefore, sharing models reduce data transfer by
at least 80% compared to moving raw data (as will be presented in Chapter 5). This
remarkable reduction impacts the transfer times and reduces the requirements for the
channel’s capacity.

Generally, such workflows have to respect numerous constraints, including data own-
ership, bandwidth limits, infrastructure heterogeneity, and availability, as well as security
risks. An FDC-based analysis workflow should facilitate the automation of such complex
workflow under the corresponding restrictions. Support for FDCs requires mechanisms
to deal with such constraints, and biomedical analysis tools should thus provide them.
From these considerations, we propose three architectural key features to support our
FDC approach:

Data and Computation Placement. Frequently moving complete datasets be-
tween sites is inefficient due to constraints on network capacity and bandwidth costs.
Alternatively, data can be processed locally and only partially transferred. Similarly,
different sites may share computational resources to optimize computations.

Privacy and Security. Distributed biomedical analyses must ensure strong secu-
rity and privacy properties, notably confidentiality and integrity properties through-
out the complete processes. However, delegating security checks to third parties, e.g.,
cloud providers, is frequently insufficient because of non-compliance with legal con-
straints and robust privacy requirements. Third parties provide other mechanisms
to address security and confidentiality, such as confidentiality agreements, but these
do not grant data privacy and confidentiality when data is moved to third-party
facilities.

Performance and Scalability. In multi-site scenarios, computational resources
and requirements may differ at each site. Thus, scaling biomedical computations
represents a serious challenge. Biomedical analysis tools designers have frequently
opted to rely on infrastructure scaling capabilities to address the issue, e.g., elastic
computing in the cloud.

42



2.5. Conclusions

We consider these three features fundamental for FDCs. This motivational case will
serve to present the thesis contributions. The approach proposed in this thesis is to support
biomedical analyses through distributed workflows that share models trained privately
from local data.

2.5. Conclusions

Data sharing goes beyond the data sets available for analysis. Effective sharing is
achieved by overcoming legal and technical restrictions on biomedical data to analyze
it collaboratively. The legal restrictions include regulations that strictly limit medical-
source data, and others define rules on personal data in a general way. The reference
regulation for many worldwide countries has been the GDPR which defines rules for the
treatment and sharing of personal data, including, among others, health data, in particular
genetic and biometric data. Meanwhile, research funding entities such as NIH promote
policies to share data responsibly, at least data corresponding to self-funded research
projects. In the same sense, strategies such as the FAIR principles have been defined to
promote more accessible biomedical data for the progress of science. Technical challenges
complement legal restrictions due to the size and time required to move large amounts of
data to a central site. A real biomedical case where such restrictions apply is the ICAN
project which involves the participation of multiple sites, but the analysis occurs in two
of them. The project will be favored by collaboration between medical sites interested in
understanding the pathology of intracranial aneurysms. The collaboration is focused on
collecting knowledge relevant from other patients to make remarkable progress in studying
the disease. We propose to analyze data through Fully-Distributed Collaborations (FDCs)
mitigating the restrictions on moving and sharing biomedical data. The FDC analyses
promise to improve biomedical analysis supported by distributed techniques that favor
multi-site collaborative research. The FDC-based analysis will dynamically coordinate
the execution of complete workflows exploiting and combining heterogeneous computing
facilities.

43





Chapter 3

DISTRIBUTED BIOMEDICAL ANALYSES

Biomedical data acquisition has reached surprising volumes in recent years, comparable
to astronomical data and social networks. Zachary et al. [Ste+15] estimate that genomic
data will require between 2 and 40 exabytes of storage capacity, exceeding astronomi-
cal data projections for 2025. This accelerated growth has created new data collection,
storage, analysis, and processing challenges. Analyzing and processing such amounts of
information poses big challenges to researchers and the infrastructure supporting the ex-
periments. Traditional centralized data analysis scenarios are no longer appropriate due
to the constraints discussed in the previous chapter.

In this chapter, we present a taxonomy of existing Biomedical Analytical Tools and
Techniques (BATTs) and classify them concerning three different essential criteria for
collaborative research focusing on distributed processing:

First, we study tools and techniques for genomic data analyses, such as SNP iden-
tification and gene expression analysis.

We then investigate how workflow systems support collaborative research regarding
workflow specification tasks, interoperability properties, and computational repro-
ducibility1.

Finally, we classify BATTs according to three architectural features identified in the
motivation section: data and computation placement support, privacy and security
properties, as well as scalability and performance properties.

Finally, as a complement to these BATTs, we examine proposals for distributed anal-
yses based on learning models, which have been widely used in recent years. Techniques
based on distributed learning emerged in the last decade and could mitigate some of the
technical and legal restrictions on collaborative research. However, it is a very active field
with diverse challenges that are discussed in this chapter.

1. Computational reproducibility refers to the system’s properties to ensure that experiments can be
executed repeatedly in different computational environments.

45



IPart, Chapter 3 – Distributed Biomedical Analyses

This chapter is structured as follows. Section 3.1 presents a taxonomy focusing on
tools and approaches for genomics data analyses. Section 3.2 introduces relevant Ma-
chine Learning concepts to understand the collaborative training process. We present, in
particular, current learning approaches based on the random forest model in multi-site
scenarios. Finally, Section 3.3 concludes the review process’s conclusions on distributed
biomedical analyses.

3.1. Distributed Biomedical Analyses

This section presents a taxonomy of existing Biomedical Analytical Tools and Tech-
niques (BATTs) for distributed genomic analyses. We have restricted the study of biomed-
ical analysis to genomics due to its importance in biomedical research, the vast amount
of unprocessed data that has been generated in recent years, and because we think it is
representative enough of the practices of research collaborations in the entire biomedical
field. We denote as biomedical analyses those supported by distributed workflows, that
is, formulated in terms of the execution of steps between multiple processing sites.

From tissue
collection

Reads
from HTS

technologies

biological procedures
and experiments

de novo
assembly

data
processing

Mapping
sequence

reads

Sequence
analysis

data
analysis

SNP
identification

Gene
expression

Figure 3.1 – High-Throughput Sequencing (HTS) data analysis protocol (based on [De
+12])

3.1.1. Biomedical problems, data analytic techniques, and tools

We classify the data analysis techniques and tools biomedical researchers use to solve
common problems when processing genomic data. Such processes can generally be repre-
sented by the High-Throughput Sequencing workflow, as shown in Figure 3.1, and consist
of three processing steps:

46



3.1. Distributed Biomedical Analyses

In the first stage, researchers prepare the tissue samples using biophysical and bio-
chemical methods (for more details on these methods, see [Kim19]). These samples
are then sequenced to create libraries of millions of reads sequences that are stored
in computer files (see [De +12] for a detailed explanation).

In the next stage, data processing, the reads are assembled to generate a genome
sequence. If the studied organism is not associated with any known genome, then
“de novo” assembly and sequence analysis techniques are used to search links with
some known species and better approximate the studied sequence. In contrast, if
a reference genome is available, the mapping sequence reads techniques are used to
generate the sequence.

Finally, the researchers have enough organized data to test biomedical hypotheses
through different genome data analyses in the third stage. For example, researchers
may study the relation of specific genes with particular diseases employing Single
Nucleotide Polymorphism (SNP) identification or Gene Expression Analysis.

Table 3.1 – Characterization of BATTs for genomic data analyses

Problem Analytic Technique BATT

Gene expression
analysis

Statistical methods

ExAtlas [SSK15]
Myrna [LHL10]
Sparkhit [HKS18]
SEQSpark [Zha+17]

Gene data sets YunBe [Zha+12a]

Clustering methods
VariantSpark [OBr+15]
Sparkhit

SNP
identification

Haplotype blocks CloudTSS [Hun+11]

Bayesian approaches
SOAPsnp [Li+09]
Crossbow [Lan+09]

Sequencing methods
Crossbow
GATK [McK+10]

p-value test BlueSNP [HTP13]

47



IPart, Chapter 3 – Distributed Biomedical Analyses

Gene expression is the process by which the instructions encoded in a gene are con-
verted into a functional product, such as a protein. Gene expression analysis is widely
used in modern biology to investigate the transcriptional behavior of systems and classify
diseased cells [Lov+12]. Microarray and RNA sequencing (RNA-Seq) are the most widely
used transcriptome methods. The microarray method is based on DNA hybridization rules
on a solid-based platform (i.e., a glass slide), and then the microarray is scanned to mea-
sure the expression of each gene. The RNA-Seq methods have further advantages due to
not being limited by the printed material on the microarray. Furthermore, RNA-Seq meth-
ods are becoming more popular due to the remarkable development of Next-Generation
Sequencing technologies (an extensive discussion on transcriptomic technologies is pre-
sented in [Zho+16]).

Nowadays, there are different analytic techniques for gene expression analysis, some of
them are classified in Table 3.1, but an extensive review of these is presented in [Gar+22].
These techniques must evolve for collaborative research to support processing such volu-
minous data and promote cooperation among geo-distributed research groups. Regarding
the computational architecture supported by the reviewed BATTs, they consider analyzing
data using sequential or parallel cluster-based strategies. These computational features
are discussed below, and the shortcomings reveal opportunities to improve processing
strategies, especially by distributing data and computations, notably as part of FDC
scenarios.

3.1.2. Support for Research Collaborations

Nowadays, global multi-party collaborations are crucial in multiple biomedical do-
mains, such as cancer treatment [Kuh+07]. Such collaborations require large geo-distributed
analyses to be applied to huge amounts of distributed data. Furthermore, they should be
reproducible to support independent validation by the biomedical community. In order to
support such collaborations, BATTs must provide mechanisms and abstractions for the
application of algorithms in distributed data and support the participation of independent
and partially competing researchers. Therefore, we argue that the appropriate tools must
possess at least the following three corresponding characteristics:

They must provide a workflow description language, providing a common interaction
language for users with different backgrounds.

48



3.1. Distributed Biomedical Analyses

They must provide explicit computational abilities means to reproduce experiments.
Thus, the definition must include enough information for other teams to replicate
the experiment based on computational settings.

The tools must provide interoperability mechanisms such as Application Program-
ming Interfaces (APIs).

In the following we investigate how Scientific Workflow Management Systems (SWFMSs),
popular tools in biomedical research, meet these research collaboration characteristics.

3.1.2.1. Workflow Description Language

The most common way of defining data-driven biomedical analyses is using workflow
description languages (WDLs). A workflow definition uses atomic tasks that perform
specific calculations on available data [Zha+12b; Atk+17] and the execution order of
(atomic and composed) tasks. The tasks may be executed sequentially or concurrently
depending on the definition of the WDL, the orchestration components available and
the infrastructure capabilities. The workflow is represented using a directed graph. The
nodes represent the tasks, and the edges represent the control flow. Biomedical analyses
also require the definition of data flows between tasks. Most data flow definitions are
implicit, that is, atomic tasks assume that their input data is ready for processing via the
corresponding data sources when their tasks are invoked. The input data for a specific task
may be prepared by the previous task. This is, however, not always the case: in general,
the workflow (control flow) edges represent data flows (or better data dependencies) only
implicitly.

The workflow specification form depends on each system and can be done in two ways:
by a graphical interface or textual. The specification form is relevant since end-users usu-
ally have limited technical capabilities, making it more accessible through graphic means.
For example, some workflow description languages provide a graphical user interface (see
Galaxy [Goe+10] and Kepler [Bar+10]), while others, such as Snakemake [KR12] and
Nextflow [Di +17], use scripting languages.

Table 3.2 shows the most important workflow systems, classified with respect to the
type of graph supported for the definition of the workflows, their user interface, and the
specification language used or generated by the tool. The column Workflow graph indi-
cates if the tool supports the definition of workflows using Directed acyclic graphs (DAG)
or Directed Cyclic Graphs (DCG). The user interface column indicates how the workflow

49



IPart, Chapter 3 – Distributed Biomedical Analyses

Table 3.2 – Workflow description characteristics of the SWFMSs

SWFM Workflow Graph User Interface Spec. Language
Galaxy cyclic graph graphic N/A
Kepler cyclic graph graphic XML-based
Knime acyclic graph graphic N/A
Nextflow acyclic graph textual Groovy-based
Pegasus acyclic graph textual XML-based
Swift cyclic graph textual Objective-C-based
Taverna acyclic graph both SCUFL-based
Triana cyclic graph graphic XML-based
Snakemake acyclic graph textual Python-based
Wings acyclic graph graphic OWL-based

definition is specified via a textual interface or a graphical one to represent the tasks
and the control flow. Finally, the Spec. Language column indicates the language used for
the specification or the language generated by the graphical tool to specify and store the
workflow. For example, Snakemake provides a scripting language that is built on Python.
Taverna [Wol+13] supports data flows expressed in terms of the Simple Conceptual Unified
Flow Language (SCUFL), an XML-based language. SCUFL provides three main abstrac-
tions: processors, data links, and restrictions applied during the workflow execution. The
Nextflow [Di +17] specification is based on the Groovy programming language, and its
syntax thus is Java-compatible. Finally, Wings [Gil+10] uses the Web Ontology Language
(OWL) to model tasks and workflow constraints. OWL was proposed by the World Wide
Web Consortium (W3C) and is a computational logic-based language for representing and
sharing computational ontologies.

3.1.2.2. Experiment Reproducibility

Experiment reproducibility is an important feature in any research field. It is essen-
tial for global research collaborations studying biomedical questions. However, designing
reproducible experiments with biological data has proven to be challenging. Some re-
searchers even claim that life sciences are experiencing a reproducibility crisis [Fry+15].
The non-reproducibility of experiments nowadays may lead to the rejection of otherwise
sound research papers. For example, in 2007, researchers from the M.D. Anderson Cancer
Center2 found inconsistencies due to data handling errors in an acclaimed paper on cancer

2. https://www.mdanderson.org/

50



3.1. Distributed Biomedical Analyses

treatment from the previous year [Hut10].
Since then, the research community has put a lot of pressure on researchers to en-

sure that their experiments and results are reproducible [HG13a]. Funding agencies, in
particular, have established policies to promote reproducibility, such as NIH guidance for
addressing rigor and reproducibility in their funded projects [Hea+21]. Similarly, the Eu-
ropean Union’s Horizon 2020 program has implemented measures to make research data
accessible for reproduction by others.

Executing analyses in distributed environments increases difficulties for the repro-
ducibility of experiments; for instance, distributed systems consist of many components
working together, and in those systems cause challenging problems such as heterogeneity,
scale, and instability [WCW08; Wan06]. In the case of FDC-based analyses, reproducibil-
ity is particularly challenging because multiple sites host executions, each potentially with
different, computing capacity, dynamically-changing topologies, security, and privacy pa-
rameters. These technical challenges limit the capacity of current tools to support the
reproducibility of geo-distributed analyses.

This section investigates the level of reproducibility provided by the workflow systems
that have been considered above. We start from two different reproducibility perspectives
advocated by various research initiatives, namely, computational reproducibility and ex-
periment reproducibility. We then then describe the approaches and present a taxonomy
to classify and understand the current state of the tools. We discuss computational repro-
ducibility putting a focus on three main relevant features: data provenance management,
support for the export of workflow components for reuse in another systems, and the
ability to document or modify analyses phases by means of annotations.

Several papers have evaluated the computational reproducibility in scientific work-
flows [Coh+17; SP15; GFI16; FBS12; LZ11]. These studies have concluded that for the
reproduction of data analysis experiments, researchers need at least three things: the
workflow description, the data, and the description of the technical configuration of the
experiment. The findings seem natural and sound; however, we argue that the last re-
quirement, technical configuration of the experiment, needs some discussion. In particular,
it is essential to note that the information of “technical configuration” is required for
performance comparisons and for the detection of possible sources of errors. However,
the reproduction of the analysis must be independent from the hardware and middleware
configuration. Workflows describe a computation performed over input data, and are, in
principle, independent from the hardware and middleware on which they are executed.

51



IPart, Chapter 3 – Distributed Biomedical Analyses

Thus, it is important to differentiate the configuration of the underlying hardware and
middleware (for example, the operating system) from that of the active components of
the analysis, for example, a deep learning engine.

Other researchers have studied reproducibility from a more abstract perspective, em-
phasizing experiment (analysis) reproducibility [Dee+09]. These researchers advocate for
a more general set of requirements for reproducibility: data provenance information, work-
flow exchange mechanisms, and workflow annotations. Data provenance information doc-
uments where data came from and what transformations it has suffered. The exchange
mechanisms describe the standards and methods supported to define workflows, and work-
flow annotations provide information about the execution of the scientific analysis. We
think that this last perspective is more suitable for the study of experiment reproducibil-
ity over FDCs. In particular, because it addresses the problem from the perspective of
knowledge transfer and abstract computations (workflows). In other words, it allows for
a suitably high-level description of the design and the execution of the scientific analy-
ses. Interestingly, these issues are similar to those commonly investigated in the software
development community, where design documentation and algorithm definition are cru-
cial for reproducibility. For instance, design documentation via annotations in the work-
flow, metadata to track transformation in scientific data sets, and standard platforms for
“code/experiment” sharing have already been studied by the software engineering com-
munity [Dee+09; Kar+18; Coh+17]. Industry standards and corresponding platforms,
such as myExperiment, BioSharing, and WorkflowHub, improve communication among
researchers and facilitate exchanging knowledge.

52



3.1. Distributed Biomedical Analyses

Table 3.3 – Computational reproducibility characteristics in the SWFMSs

SWFM Data Provenance WF Exchange Annotations

Galaxy Yes GA(v19), Format2 (>v19) Yes
Kepler Yes KAR Yes
Knime No KNWF No
Nextflow No NF No
Pegasus No DAX(v4.0) and YAML(v5.0) No
Swift Yes Swift Yes
Taverna Yes SCUFL Yes
Triana No XML No
Snakemake No Snakefiles No
Wings Yes RDF/SWRL Yes

Table 3.3 presents the three features that characterize the support for experiment
reproducibility in the SWFMSs. The first column indicates if the system provides some
data provenance mechanism. SWFMSs labeled with ‘Yes’ comply in some way with prac-
tices and recommendations, like those proposed by World Wide Web Consortium (W3C)
[Mor+13], or they provide some proprietary provenance strategy. For example, Taverna
represents metadata at the dataflow level based on the PROV3 language defined by W3C.
However, the information stored does not provide details of intermediate data during
the workflow analysis [SAG16]. On the other hand, Kepler records all details during the
workflow execution, including data evolution and step details. Provenance features also
enable researchers to debug transformations, e.g., to search for errors. However, there
are still many open challenges regarding data provenance; for example, incomplete data
provenance records limit the reproducibility of workflows [Kha+19].

The column “WF Exchange” shows the supported formats for exchanging workflow
definitions or their components. Pegasus abstractly describes the workflow using a DAX
format (Directed Acyclic Graph in XML) up to version 4.0, and the following versions use
a serialization format YAML. Galaxy is based on a format that is not readable and a more
recent, experimental one. In Taverna, the workflow and its components are represented
using the SCUFL language based on the XML format. Kepler exports the workflow com-
ponents to the Kepler Archive (KAR) file based on the JAR file format from Java. Knime

3. See https://www.w3.org/TR/prov-overview/ for information on PROV.

53



IPart, Chapter 3 – Distributed Biomedical Analyses

exports to format KNWF; it is a KNIME Workflow data based on an XML/JSON for-
mat. Nextflow has its own format that represents the specification of the workflow based
on the Groovy programming language. Swift, through the Swift language, represents the
workflows in a format based on C-like syntax. Triana defines the workflows using files
based on XML representing the name, specifications, and parameters. Snakemake uses
Snakefiles, Python-based rules including input and output data between them. Wings
expresses the workflow components and dependencies in workflow templates using the
Resource Description Framework (RDF) and the Semantic Web Rule Language (SWRL).
Finally, the table shows if a platform supports annotations in the workflow. Annotations
help scientists to understand the design of the experiment. For example, Taverna and
Galaxy provide means to annotate the workflow using free text or labels, in contrast to
Nextflow, which does not offer an annotation mechanism.

The table shows that support for experiment reproducibility is still limited in the
current workflow systems. In fact, in 2017, Kanwal et al. studied reproducibility and
provenance tracking in workflows for genomic analyses and pointed out that there is still
an incomplete understanding of reproducibility requirements, and thus a lack of support
on current tools. They also remarked the complexity of reproducibility of distributed
workflows as an open research problem. Similarly, other researchers have identified work-
flow decay [De +11; Zha+12b] due to volatile third-party resources, missing example
data, missing information about execution environments, and insufficient descriptions of
workflows as a complication for experiment reproducibility.

3.1.2.3. Workflow System’s Interoperability

We define interoperability as the ability of workflow systems to communicate with
other systems to exchange data, share functionality, or delegate responsibility. SWFMSs
may interoperate by providing language bindings or by exposing an API at runtime. Pro-
gramming language bindings allow scientists to use their preferred programming languages
to create complex analytical routines to extend, enhance, or leverage native functionality.
On the other hand, an exposed API helps scientists to interconnect several analytical
engines to delegate responsibilities to specialized hardware and software. For example,
a scientific workflow may execute most of its computations in local infrastructure and
delegate a specialized machine learning computation to a GPU cluster deployed in the
cloud.

In this section, we investigate interoperability mechanisms by identifying each tool’s

54



3.1. Distributed Biomedical Analyses

different programming language bindings and by studying the presence and reach of an
API exposed to be invoked at runtime. In particular, we have studied the presence of
REST APIs and the exposed functionality. Some tools provide APIs to support execution
monitoring, while others allow full control of the workflow life cycle (definition, debug-
ging, deployment, and execution). During the discussion, we use the term API to refer
mostly to the programming interface provided via libraries for specific languages (lan-
guage bindings). REST API refers to the functionality exposed at runtime using REST
web services.

Table 3.4 – Interoperability properties in the SWFMSs

SWFM Language Binding REST API capabilities

Galaxy Python, PHP, Java, JavaScript Low-level: interact with data,
runtime tools and WFs, handling
histories

Kepler Java, R No
Knime Python scripts via UI Interaction by UI for Extract,

Transform, and Load (ETL), and
score a model for analysis predic-
tion

Nextflow No No
Pegasus Python, Java, R Monitoring, defining and execut-

ing workflows.
Swift No No
Taverna Java scripts via UI Monitoring and executing work-

flows
Triana Java scripts via UI No
Snakemake Python No
Wings Java, Matlab, and Python scripts

via UI
No

Table 3.4 presents the classification of SWFMSs with respect to their interoperability
mechanisms. The second column, Language Binding, lists the programming languages that
are supported by each tool. A system with more language bindings is supposed to provide
better interoperability properties. For example, Galaxy provides Python, PHP, Java, and

55



IPart, Chapter 3 – Distributed Biomedical Analyses

JavaScript libraries, allowing researchers to define their analytical experiments in their
preferred language. Knime, on the other hand, supports the inclusion of Python scripts
as custom code in the workflow steps defined in their graphical user interface but does
not provide language bindings to use the tool from a programming language. Similarly,
Taverna and Triana enable customizing Java code through the graphical interface during
the workflow design. In contrast, Nextflow and Swift do not provide libraries to extend to
programming languages, and they use their proprietary specification language to define
workflows.

The third column, REST API, provides information on interoperability with external
sources through REST services. Galaxy’s API supports the interaction with external pro-
grams or libraries at runtime. The Galaxy API allows interaction with data sets, executing
and monitoring workflows, and monitoring relevant information. Secure communication
is achieved by supporting the HTTPS protocol. Galaxy is migrating the current version
of the API to an improved version supporting the standard of FastAPI4. Knime provides
interoperability mechanisms, although limitedly, through the licensed component Knime
Server. It enables calling web services as part of the workflow design by means of a graph-
ical interface. Knime performs ETL (Extract, Transform, Load) operations via REST
services and integrates with external visualization tools. Finally, Pegasus and Taverna
provide functionalities through REST web services to support monitoring, design, and
specification of workflows.

The table shows that interoperability mechanisms are limited in current workflow
systems. Other researchers have identified these shortcomings; see the research presented
in [EHT10; AIG12; Sil+17]. Sarah et al. [Coh+17] also identified interoperability between
workflow systems as an open challenge, suggesting a standard intermediate model between
the specification and execution layers to interoperate between different workflow systems.

3.1.3. Distributed Architectural Features

We now investigate the support of BATTs for the architectural features required to
address fully distributed collaborations. Concretely, we will investigate how the current
tools address data and computation placement, privacy and security, and performance and
scalability.

4. https://fastapi.tiangolo.com/

56



3.1. Distributed Biomedical Analyses

3.1.3.1. Data and Computation Placement

Analyzing large amounts of data scattered over several sites requires transferring the
data to a single site for analysis, delegating computations to the sites where data is stored,
or a hybrid solution that partially distributes storage and computations. The choice of
the strategy to use depends entirely on the specific context of the collaboration.

Table 3.5 – A categorization of BATTs and SWFMSs according to our architectural fea-
tures proposed

Name Paradigm D/C Placement Privacy and
Security

Perform & Scalability

Data Computation Architecture Abstraction

Taverna Workflow loc+, ext dynamic + distribut explicit
Galaxy Workflow loc+, ext dynamic + distribut explicit
Kepler Workflow loc++ dynamic ++ distribut explicit
Knime Workflow local static delegated distribut explicit
Nextflow Workflow loc+, ext dynamic delegated distribut delegated
Pegasus Workflow loc+, ext static ++ distribut delegated
Swift Workflow loc++, ext dynamic delegated distribut delegated
Triana Workflow loc++ dynamic delegated distribut delegated
Snakemake Workflow loc+, ext dynamic delegated distribut delegated
Wings Workflow loc+ static delegated distribut minimal
Sparkhit MapReduce loc++ dynamic delegated PCluster explicit
Crossbow MapReduce loc+ static delegated PCluster delegated
MetaSpark MapReduce loc++ static delegated PCluster explicit
CloudBurst MapReduce loc+ static delegated PCluster explicit
Halvade MapReduce loc+ static delegated PCluster delegated
DistMap MapReduce loc+ static delegated PCluster delegated
Myrna MapReduce loc+ static delegated PCluster delegated
SparkBLAST MapReduce loc++ static delegated PCluster delegated
K-mulus MapReduce loc static delegated PCluster delegated
CloudSW MapReduce loc++ static delegated PCluster explicit
SOAPsnp Sequential loc local N/A standalone N/A
S–MART Sequential loc local N/A standalone N/A
CAFE Sequential loc local N/A standalone N/A
The first column refers to a platform supported based on MapReduce or workflow system. Data
placement covers three strategies: only local data, allocation by a simple partition strategy
(+), and dynamic allocation of data (++). Computing placement allocates resources to process
data before execution (static) or reallocate during execution (dynamic). Privacy and Security
cover three mechanisms: a simple (delegated in the cloud or locally), complement delegate
security with own functionalities (+), and advanced strategies (++). Finally, the architecture
implemented and the abstraction level supported by each one, explicit or delegated.

57



IPart, Chapter 3 – Distributed Biomedical Analyses

The problem of allocating storage, bandwidth, and computational resources to opti-
mize the performance of a specific scientific workflow has been amply studied generally for
cluster and grid computing settings. A common strategy is to address the problem of data
placement in order to minimize total data transfer cost and optimize the execution time
(computation time) in a given architecture, as proposed, for instance, by Van Huang and
Chuanhe [VC11] as well as by Cope et al. [Cop+09]. In contrast, Li et al. [Li+16] claim that
such cost minimization strategies are insufficient and propose a two-stage approach, first
preallocating datasets to specific data centers during workflow build-time, and then dy-
namically distributing newly generated datasets at runtime. Other authors have proposed
other heuristics to address the placement problem [Ebr+15; Zha+16; Che+21; Xie08].
However, finding the optimal data placement strategy is an NP-hard problem [LD11].
Studies on computation placement are rare: very few approaches address the problem of
selecting the best computation facility for a given task, and most rely on cloud environ-
ments guaranteeing the availability of (almost) arbitrary computational resources required
by collaborative scenarios. Similarly, studies relying on MapReduce and workflow systems
lack the functionality necessary for multi-site processing [Dol+17b; PCA15]. Therefore,
current approaches are not appropriate for FDCs for biomedical analyses for two reasons:

They do not support geo-distributed architectures that constitute a much more
complex setting for computation and data placement [PCA15; Liu+18; Pin+16;
Liu+17].

They do not consider the larger set of constraints of biomedical applications that
involve legal and socio-economic constraints.

This problem is manifest because most BATTs harness partitioning data simply by
distributing equal chunks among multiple nodes. Data is often loaded onto a single node
and then split into chunks stored and distributed on a cluster of nodes using random-
ization strategies [Xie+10]. Table 3.5 starts by classifying the BATTs according to the
paradigm and data location type offered. For example, Halvade or BioPig use such strate-
gies based on Hadoop. Others use different frameworks, notably Spark, but use similar
data and computation placement strategies. Sparkhit [HKS18] can process data from dif-
ferent clusters located in three geographic regions, but the data needs to be moved to one
place. MetaSpark [Zho+17], SparkBlast [Cas+17], VariantSpark [OBr+15], and SparkSW
[ZLS15] are also based on Spark architecture. By contrast, a few BATTs, like S-MART
[ZQ11] or CAFE [Lu+17], harness sequential analysis without any distributed process-

58



3.1. Distributed Biomedical Analyses

ing. Therefore, all these BATTs lack the functionality to support fully distributed and
collaborative work, especially to process data across different geographic sites.

Other tools as workflow systems have more explicit data and computation place-
ment features. For instance, Pegasus [Dee+15] supports three data placement approaches,
shared file systems, remote ones and non-shared ones. In addition, Pegasus uses DAG-
Man [Tan+01] and HTCondor [TTL05] to model task-based workflows submitted to a
pool of resources in HPC clusters. Kepler [Bar+10] includes prebuilt components (re-
ferred to as actors) to model external data sources and grid facilities. Finally, Taverna
uses the SCUFL language to explicitly define the data flow between processors to model
the passing of data between services associated with bioinformatic atomic tasks. Pegasus
and Triana implement the strategy “replica location service” [Yua+10] that allows access
to information about copies in different physical locations to support scalability, reliabil-
ity, and security during distributed executions. The same approach is used by the Giggle
(GIGa-scale Global Location Engine) framework [Che+02].

The second column of Table 3.5 shows the classification of BATTs according to their
data location and computation strategies. The data placement column indicates if the
corresponding BATT supports local data processing (label loc). If, for example, the local
data placement strategy may distribute data in a cluster, such as in Hadoop, we add a
plus symbol (+). If the tool supports even more sophisticated methods, such as dynamic
allocation offered by Spark, we add a doubled plus symbol (label ++). Finally, the label
ext shows if the BATT can handle external data sources located, for example, in cloud
repositories like Amazon’s S3 cloud. The column Placement - Computing describes how
computing resources are allocated. If the tool allocates computing resources at definition
or configuration time, we classify it as employing static allocation. If the allocation or
reallocation of resources is done at execution time, we classify the tool as having dynamic
allocation. The dynamic and static labels are related to each workflow system’s workflow
scheduling strategy. For example, Swift, Galaxy, and Triana systems exploit different
dynamic scheduling strategies based on publish/subscribe patterns or adaptive methods
during workflow execution [Liu+15]. In contrast, systems like Pegasus provide mechanisms
resulting in static scheduling [BL13], without automated strategies to adapt computing
resources during execution across multiple nodes.

59



IPart, Chapter 3 – Distributed Biomedical Analyses

3.1.3.2. Privacy and security

Distributed biomedical analyses are subject to many security risks and, frequently, to
a much higher risk of privacy issues than other domains since the potential loss of personal
and sensitive information implies more severe consequences. Security and privacy-related
properties that have to be satisfied comprise, but are not limited to, authentication,
authorization, integrity during access and control of biomedical data. BATTs, therefore,
have to provide means for the stringent enforcement of security and privacy-preservation
properties, or at least be able to harness corresponding means that are provided by their
environments.

In Table 3.5 (on page 57), we classify BATTs according to the security mechanisms
provided or delegated (either in the cloud or locally). If a BATT provides simple security
mechanisms, we mark it with a single plus symbol (+). Taverna, for example, provides sim-
ple security mechanisms, such as authentication based on web services. Similarly, Galaxy
offers limited capabilities such as libraries to make a secure connection through a web API.
If the tool provides a more advanced security mechanism, we mark it with two-plus sym-
bols (++). For example, some BATTs provide explicit mechanisms to secure data during
storage, transfer, and processing. For instance, in Kepler, the Security Analysis Package
(SAP) provides information security mechanisms such as input validation, data integrity,
and remote access validation. The package triggers an alarm when a potential alteration
of the information is detected [KV16]. However, some researchers have pointed out that
the SAP package is not yet part of the current release of Kepler due to its runtime over-
head [Ryn+19]. Similarly, in Pegasus, the Scientific Workflow Integrity Project5 (SWIP),
proposed by NSF, seeks to ensure integrity and security during workflow execution. The
SWIP project implements some cryptographic mechanisms to check provenance metadata
to detect input and output data changes during the workflow execution.

Many BATTs delegate security to the hosting (cloud or local) infrastructure provider;
this is indicated in the table by delegated. For example, Snakemake, Knime, Sparkhit,
and MetaSpark do not offer mechanisms to analyze data securely. The security aspects
are delegated to the infrastructure provider. In contrast, Taverna and Galaxy endow the
API with authentication strategies through REST services, although the premise is that
the processing nodes are part of trusted environments.

Overall, the table shows that only a few BATTs provide specialized advanced security
and privacy mechanisms. Moreover, security and privacy issues have also to be handled

5. https://cacr.iu.edu/projects/swip/index.html

60



3.1. Distributed Biomedical Analyses

at other levels, such as storage, sharing, processing, and publication of results. The first
BATTs were designed to work with distributed file systems, such as GPFS [SH02] or
PVFS [RT+00], and had to provide simple interfaces to high-performance environments
implemented on top of grids [Liu+14]. In such scenarios, information security and privacy
were often ensured by not sharing data and strongly limiting access to research facili-
ties. Later on, the exponential growth of biomedical data and the emergence of accessible
cloud infrastructures motivated BATT systems to redesign their architecture. However,
most of them tried to achieve this by minimal changes to adopt the cloud as a preferred
execution environment and delegating security to the cloud providers. For example, tools
implementing a MapReduce strategy, such as CloudBurst or MetaSpark, delegate secu-
rity features to the infrastructure provider. In addition, privacy and security are major
concerns of its own in cloud environments. There are still many open challenges to com-
prehensive security during FDC analyzes involving shared computing facilities and data
storage. Some initiatives, though limited, address security with a higher priority, such as
the SWIP project. However, these challenges are most frequently present because of a
lack of support for security concerns in most workflow systems [Kar+18; NV08].

3.1.3.3. Architecture and Quality Attributes

Flexible and robust architectures are needed to support FDC scenarios. In this section,
we study the architectural features of BATTs, focusing on two distinctive characteristics,
namely the support for distributed architectures and the mechanisms provided to address
complex quality attributes such as performance and scalability. Concretely, we classify
them first according to their execution architecture, identifying those that support stand-
alone execution, distributed execution on clusters of computers, and distribution over
several geographically separated sites.

We then study how those tools support complex quality attributes, identifying if they
provide explicit mechanisms to address them or if they delegate the final configuration to
the deployment phase, where engineers rely on the capabilities of the underlying infras-
tructure. Here, we are interested in the explicit support for distribution from within the
tool. For example, as part of a complex workflow, a complex algorithm may be configured
at deployment time to be executed in high-performance computing services on Amazon
Web Services (AWS). However, we are interested in tools providing explicit means to
model and manipulate such high-performance computation facilities.

Table 3.5 presents our findings. First, the column Architecture shows if the tools

61



IPart, Chapter 3 – Distributed Biomedical Analyses

are stand-alone, run on a parallel cluster, or support complex distributed architectures.
By complex distributed architectures, we mean complex workflows deployed on top of
the complex geo-distributed infrastructure. The next column shows if complex quality
attributes are supported explicitly by abstractions provided by the tool or if they are
delegated to the deployment phase and the underlying computing infrastructure. The
remainder of this section provides additional insights on this classification.

Stand-alone Solutions on a Single Machine

Stand-alone applications are used to process small datasets on a single machine. For
example, CAFE implements alignment-free sequence analysis on single-machine archi-
tectures. Decades ago, DNA sequences were aligned using algorithms based on dynamic
programming, but this strategy turned out to be inefficient over time due to the length of
the investigated sequences. More generally, due to a large amount of data to be analyzed
in many cases, stand-alone applications are limited. Therefore, implementations based on
parallel approaches such as MPI techniques, GPU computing, or MapReduce frameworks
are preferred nowadays.

Table 3.6 – Sequential and cluster-based BATTs for genomic data (complements Table 3.1)

Architecture BATTs

Sequential ExAtlas
Cluster-based VariantSpark, CloudTSS, BlueSNP, Myrna, Sparkhit, SEQSpark,

Crossbow, GATK

Table 3.1 is complemented by Table 3.6, where we present the main processing ar-
chitecture differentiating the BATTs that use sequential computations and those that
support processing on parallel clusters.

Cluster-based Distribution

Most current BATTs are implemented on top of popular frameworks such as Hadoop
and Spark. These tools are extensively used for cluster-based processing of large data
sets. For instance, Halvade executes pipelines parallelly on a multi-node architecture or
in a multi-core configuration using Spark on a cluster and storing data in files using the
Hadoop Distributed File System (HDFS). Similarly, DistMap and Myrna use Hadoop to

62



3.1. Distributed Biomedical Analyses

execute statistical models on multiple processors in cluster scenarios. Several other tools
follow similar approaches providing parallel execution over a computing cluster, including
CloudTSS, SEQSpark, VariantSpark, CloudBLAST, CloudSW, or CloudBurst.

The MapReduce paradigm has also been integrated into workflow systems. For exam-
ple, Kepler over Hadoop provides an architecture that supports the execution of MapRe-
duce applications during the workflow execution in Kepler [WCA09]. Similarly, Hi-WAY
executes scientific workflows using Hadoop YARN [Bux+17]. Other SWFMSs employ
naive ad hoc strategies to parallelize tasks and distribute data over available resources
[BL13]. These strategies are specific for each system and are usually provided by the
task management layer of each workflow system. The corresponding BATTs that we have
surveyed are categorized in Table 3.6 as cluster-based architecture.

Distribution of Computations over Several Sites

One may argue that some of the tools harnessing parallel infrastructures can sup-
port fully distributed collaborations by exploiting, in addition, direct manipulation of the
underlying distributed infrastructures such as those based on MapReduce. However, we
have identified several limitations as part of our analysis. Most importantly, the tools rely
on the configuration at deployment time to address complex collaborations, resulting in
a complex deployment phase that restricts flexibility and reproducibility. For example,
Taverna provides components supporting remote execution of locally defined workflows
that are published and controlled by web services. Taverna can be executed on clusters,
grids, and clouds, and it can be made to interoperate with other workflows like Galaxy.
However, those configurations require extensive technical knowledge by the deployer and
flexible features from the underlying infrastructure.

Kepler supports the use of programs written in R or C for remote execution, harnessing
distributed execution threads via web and grid services. In the same way, Nextflow [Di
+17] and Snakemake [KR12] support GRID platforms, e.g., SGE (Sun Grid Engine) or
LSF (Load Sharing Facility). In addition, Snakemake supports the interaction with other
tools via web services executing jobs in distributed environments, such as clusters or batch
systems. But again, most of these tools rely on the configuration knowledge of the deployer.
Pegasus has taken a more explicit approach for distribution and supports execution on
individual machines, remote clusters, distributed infrastructures, and clouds. Nevertheless,
Pegasus does support such architectures with explicit abstractions or components. For
example, it incorporates HTCondor to enable the management of resources in dedicated

63



IPart, Chapter 3 – Distributed Biomedical Analyses

or distributed computers. Also, Pegasus incorporates the Glideins component that allows
adding machines from different domains and HPC centers.

Researchers have noted that BATTs must adapt their architectures for processing
in multi-site scenarios, such as multi-cloud technologies. Nevertheless, it is necessary to
have an orchestrator between the workflow layers and the cloud architectures. This way,
the technical challenges of distributed computing, such as resource allocation, virtualized
systems, fault tolerance, and task monitoring, can be supported [Zha+15c; Sen+18].

3.1.4. Distributed Workflow Systems

Table 3.7 – Classification of SWFMSs according to the level of distribution offered.

SWFM WF Scheduling Data Management WF Partitioning Distribution Level
Taverna centralized centralized Yes Partial
Galaxy centralized centralized Yes Partial
Kepler centralized all Partial
Knime centralized centralized Yes Limited
Nextflow centralized centralized Yes Partial
Pegasus centralized mediated Yes Limited
Swift decentralized all Fully
Triana decentralized peer-to-peer Fully

Snakemake centralized centralized Yes Partial
Wings centralized mediated No Partial

The first column represents the workflow scheduling architecture: central workflow (centralized)
or supported by multiple schedulers (distributed). Data management indicates the strategies
during data processing, moving it to a centralized site, mediated by a distributed data manage-
ment system, and transferring data point-to-point in a P2P fashion. The partitioning process
generates workflow fragments where each is defined to be executed on a specific site or time. The
last column, Distribution Level distinguishes between three possible options: Limited, Partial,
or Fully Distributed.

In this section, we study the use of workflow systems for distributed collaborative
scenarios. Table 3.7 presents additional information about SWFMSs, classifying them by
workflow scheduling approach, data management strategy, support of workflow partition-
ing, and fully distributed collaboration.

Workflow scheduling strategies. Workflow scheduling strategies allocate tasks to
computational resources such as processing nodes during workflow execution [Liu+15].
Yu and Buyya [YB05] present two scheduling strategies for workflow systems. In contrast

64



3.1. Distributed Biomedical Analyses

to centralized scheduling architectures, decentralized ones enable multiple schedulers to
manage tasks. They highlight the importance of scheduling schemes to achieve scalability
and performance in workflow systems. They survey Galaxy, Nextflow, Swift, and Triana as
examples of decentralized architectures. For instance, Galaxy implements the GridWay
framework to provide multiple schedulers, and Swift integrates the Karajan workflow
engine [Wil+11]. In [Liu+15], centralized architectures are identified as having bottlenecks
in the master node, and peer-to-peer (P2P) systems are proposed to mitigate this problem.
The first column in Table 3.7 shows the systems’ workflow scheduling strategies of the
surveyed SWFMSs

Data Management. Another critical feature for FDC support is the data management
strategy. Yu et al. [YB05] study three mechanisms: centralized, mediated, and P2P-based
data management. In a centralized data management strategy, a master node manages
the data; mediated strategy, the underlying system is responsible for data management;
a P2P-based scenario, data is distributed among all available nodes without an interme-
diary. Some SWFMSs offer several strategies, for example, Kepler. Triana implements a
decentralized architecture applying two distribution policies for parallel and pipeline exe-
cution [Tay+07a]. The data management strategies are summarized in the second column
of Table 3.7.

Workflow Partitioning. Clustering is a technique using several tasks to partition a
workflow horizontally. This technique may improve the performance in distributed sce-
narios. For instance, Pegasus [Dee+15] implements different clustering techniques that
improve the execution time significantly for short tasks. Following Liu et al. [Liu+15], the
partitioning process generates workflow fragments where each one is programmed to be
executed on a specific site.

Discussion

The taxonomy presented in this section concludes with the classification of the work-
flow systems with respect to their support for fully-distributed collaborations. As discussed
during the section, existing tools, and approaches for distributed biomedical analysis limit
functionality that supports the three architectural features for analyzing data in an FDC
setting: data and computation placement, privacy and security, and performance and scal-
ability. Additionally, the functionality provided by workflow systems is also limited around

65



IPart, Chapter 3 – Distributed Biomedical Analyses

interoperability and reproducibility. Therefore, we identified an opportunity in designing
systems to analyze data in multi-site environments, such as FDC scenarios, due to the
limited support of current ones in collaborative research and geo-distributed processing.

As discussed in this section, existing tools and approaches for distributed biomedical
analysis limit the functionality of the three main features for FDC analyses: data and
computation placement, privacy and security, as well as performance and scalability. Ad-
ditionally, the functionality provided by workflow systems is also limited with respect
to interoperability and reproducibility. The last column in Table 3.7 classifies current
workflow systems in three categories according to the functionality provided by each one
focused on FDC features: limited, partial, and fully distributed. Finally, we have identi-
fied opportunities in analyzing biomedical data across multiple sites, such as FDC-based
analyses. Current biomedical tools and workflow systems must redesign their architecture
and processing strategies adopting multi-site distribution strategies due to limitations in
centralized processing. This is reaffirmed by the classification presented throughout the
section.

3.2. Machine Learning-Based Analysis

Artificial Intelligence (AI) techniques, which emerged in the 50s, recently have been
much developed as well as proven popular and useful in many domains. In the medical
field, AI systems have emerged, starting from expert systems. A generation of rule-based
expert systems assisted and supported medical diagnoses [Mil94; SPS88; Sho12]. The
rule-based systems were a great success for the problems of the time, such as diagnosing
diseases and defining treatments, leading in many cases to hypotheses to be explored
through clinical and medical research. However, the heterogeneity in the data collected
over time revealed shortcomings with the rule-based systems of the time. Today, machine
Learning algorithms aim to provide the machine with the power of inference from data via
AI techniques. ML algorithms are already frequently used in computer vision, speech and
image recognition, natural language processing, prediction, and recommender systems.

In the biomedical domain, machine learning has recently also become popular, mainly
due to the widespread application of machine learning models. The popularity stems from
recent advances in computing technologies to scale computing resources to train models
on large-scale sets of now available biomedical data. ML techniques have been applied to
diagnose and prognose of different diseases using various biomedical data sources, such as

66



3.2. Machine Learning-Based Analysis

genomes, images, clinical records [Ver+20; LN15; YBK18].
Over the years, technological progress and new biomedical problems motivated the

development of learning techniques to alleviate the challenges faced by heterogeneous
and high-dimensional data [YBK18]. For example, learning implementations assist the
medical imaging diagnosis in radiology, dermatology, and ophthalmology [Est+19], such
as early detection of breast cancer based on prediction models analyzing tomographic
images [Cic+17; Koo+17]. Similarly, the interpretation of genomes [LN15] has benefited
from ML because the volume of available genomic data has much increased over the last
years. For instance, learning algorithms are employed to predict the cancer type from
biopsies [Cri+19] and how a certain kinds of cancer progress in patients [Car+18].

However, there are multiple challenges for learning-based analyses, in particular, re-
ducing the computing capacity needed to train large volumes of data for neural networks.
Another important issue consists in the need of removing noise from data, while preserving
inherent relationships among data attributes [FHL14].

3.2.1. Understanding Supervised Learning

Machine learning encompasses quite different algorithms to learn (infer knowledge)
from large volumes of data. Traditionally learning algorithms required that all the data
was stored centralized on a single site. However, centralized algorithms are inappropriate
for many analyses of biomedical data due to the data-sharing restrictions discussed in the
previous chapter (see Sec. 2.3). Therefore, it is necessary to propose learning techniques
that promote the distributed participation of multiple sites aligned with the current re-
strictions for processing and sharing biomedical data.

This section presents basic concepts to understand the training of supervised models.
First, we explain the general learning process from the data, then supervised learning, how
to evaluate a model, and the possible biases of the trained model. We then explain the
ensemble learning strategy by composing multiple supervised models. Finally, we present
models based on random forests that we use later on.

Learning from Data

Learning from data is the process of discovering underlying knowledge from large
datasets [AML12]. For instance, data may contain input values, such as a symptoms, and
outputs indicate explicitly (as part of supervised learning that we employ, see Fig. 3.3)

67



IPart, Chapter 3 – Distributed Biomedical Analyses

whether patients have or have not a specific disease. The input values are also known as
attributes or features, and the output is typically expressed using labels or class values
that are associated with each set of features. Learning then means inferring a relationship
between the input data and the output variable, assuming that the output is related to
the input attributes. The relationship inferred from the data is called a learning model.

Data
D={X,Y}

Unknown Function
g : X    Y

Training Samples
D={(x1,y1),(x2,y2),...,(xn,yn)}

Trained Model
f : X    Y

Final Hipothesis
hypbest

f ≈ g

Learning 
Models

L

Hypothesis
Set
H

Figure 3.2 – General idea of the learning process approach.

The learned model can be represented as a function M : X → Y that approximates
an unknown target function g(x), where X is the input set (features), Y the output set
(value classes). The labeled dataset D is composed of sets of input and output values,
denoted as X and Y , as well as D = {(xj, yj)}m

j=1 = {(x1, y1), ..., (xm, ym)}, where m is
the number of records, xj ∈ X, yj ∈ Y . In D, each record xj has one output value yj,
where 1 ≤ j ≤ m.

Figure 3.2 shows a general approach to learning from data. First, the learning process
(algorithm) selects M from a set of candidates under multiple considerations called a
hypothesis (hyp) [AML12]. Then, the inferred function M corresponds to the best mapping
from the hypotheses, considered as the best hypothesis, hypB. The objective of the learning
process is to infer a learning model, the best hypothesis, from the data set.

Scoring a Learning Model. The main objective of learning is to determine the best
model from the data, i.e., that best maps the input space onto the output space. The

68



3.2. Machine Learning-Based Analysis

Supervised Unsupervised

x1 x1

x2 x2

Figure 3.3 – Supervised and unsupervised learning. Supervised learning trains a model to
best separate two classes {+,−}. Unsupervised learning seeks to cluster samples based
on common features.

model always seeks to minimize the error of the result obtained by the inferred function
M. For each sample, xj, of the data set, D = {(xj, yj)}m

j=1, it is possible to predict (classify)
the output value class with the learned model, such that, M(xj) = ŷj. The value of ŷj

corresponds to the predicted value for the record xj using the model represented by the
function M. Based on this premise, the output of M(xj) = ŷj should be the most similar
value to the true class, the value of yj. The classification error in supervised learning seeks
to minimize the error defined as:

Error(g) = E{X,Y }

[
I
(

Y, f(X)
)]

(3.1)

where E(X) is the expected value of X, and I is the indicator function defined as:

I
(

Y, f(X)
)

=

0 if Y = f(X)

1 if Y 6= f(X)
(3.2)

Using the Equation 3.2, the classification error can also be defined as:

Error(g) = E{X,Y }

[
I
(

g(X) 6= f(X)
)]

(3.3)

It is calculated after training the model for a subset of D denoted as the testing data
set, DTE. From this error, it is possible to calculate the model’s classification score, which
corresponds to the portion of well-classified samples, calculated as predAcc = 1− Error.

69



IPart, Chapter 3 – Distributed Biomedical Analyses

Bias in Machine Learning

In Machine Learning, bias is the deviation of model predictions from true values or
desired outcomes. The bias problem exists because the training data is skewed, leading to
a model based on incorrect assumptions and inaccurate predictions. For example, if most
of the training data corresponds to information from a minority group, the trained model
will be biased toward people from that group. The bias in machine learning models leads
to unfair predictions due to the deviation of the model from the training data [Mit80].

In geo-distributed processing, bias can appear in trained models, for example, associ-
ated with the location of data, where knowledge underlies the geographic location of the
samples. However, this knowledge cannot be common to other geographic regions. The
bias can affect the trained model, especially under our proposal to compose privately and
collaboratively trained models on the data of each geographically distributed site.

The bias problem has been studied in traditional scenarios, some bias-correction strate-
gies have been explored in federated models [Bia+20]. In this thesis, we propose strategies
for bias correction by securely sharing partial data to have a fairer collaborative model.
However, there is a paradox in training a collaborative model: Collaborative scenarios
provide greater diversity in the global model by promoting data protection for each or-
ganization participating while sacrificing, to some extent, the aggregate model’s fairness
and accuracy.

3.2.2. Ensemble Learning

Ensemble learning trains a model composed of multiple supervised models (classifiers),
and the final prediction of each sample is by a combination of the results of each classifier
in the ensemble. The main idea of ensemble learning is that combining multiple models
compensates for the error induced by a single supervised model. Their combination can
improve the prediction by aggregating multiple simple classifiers [SR18], due to delegate
the learning to a single classifier tends to build models with low accuracy compared to
combining multiple trained models [Zho21].

The ensemble training starts from an initial data set, D, from which random sam-
ples of data sets are generated to train the multiple classifiers that make up the en-
semble model. Each data set to train each classifier is obtained using resampling tech-
niques such as the statistical strategy Bagging (Bootstrap AGGregatING), proposed by
Breiman [Bre96b]. Bagging refers to two tasks, bootstrapping and aggregating, for vari-

70



3.2. Machine Learning-Based Analysis

{x1,y1} = (x11,x12,...,x1n,y1)
{x2,y2} = (x21,x22,...,x2n,y2)
{x3,y3} = (x31,x32,...,x3n,y3)

{xm,ym}=(xm1,xm2,...,xmn,ym)

Initial dataset
with m records

Bootstrapping
with 

replacement

{x4,y4} = (x41,x42,...,x4n,y4)
{xm,ym}=(xm1,xm2,...,xmn,ym)
{x2,y2} = (x21,x22,...,x2n,y2)

{x2,y2} = (x21,x22,...,x2n,y2)

Bootstrapped dataset 
with m records

randomly selects 
m records

Figure 3.4 – Bootstrapping strategy, from the initial dataset D with m records, then m
samples are selected with replacements to generate one bootstrapped data set.

ance reduction of the ensemble model. Bootstrapping is a statistical manner to evaluate
the accuracy of a prediction through resampling samples from a single dataset to create
multiple datasets [Has+09].

Figure 3.4 illustrates the bootstrapping method. There is an initial data set D with
m records. bootstrapping generates a new data set with m records by sampling from D

uniformly and with replacement. The new data set by resampling has m records and can
consider repeated records of the initial data set. For example, in the figure, the record
{x2, y2} is repeated in the generated data set, but the total number of records, m, is equal
to the initial data set. The resampling data set is known as the bootstrapped data set. For
each classifier in the ensemble model, it is necessary to generate multiple bootstrapped
data sets, one for each classifier. Finally, aggregating combines the prediction results of
each classifier through a joint decision of the models.

Dataset

D1

D2

DK

Model1

Model2

Modelk

Pred1

Pred2

PredK

Final
Prediction

Bagging
Bootstrap

Aggregating

Figure 3.5 – Bagging strategy for training and evaluating multiple classifiers in an ensem-
ble learning model.

Figure 3.5 presents the bagging strategy with an ensemble model composed of k classi-
fiers. The first part generates independent bootstrapped data sets to train each classifier.
Each classifier, Modeli, is trained from each bootstrapped dataset, Di. Next, each model

71



IPart, Chapter 3 – Distributed Biomedical Analyses

is used to make predictions, and a combination of the outputs determines the final predic-
tion. Computationally, the ensemble learning approach is highly parallelizable due to the
random sampling from the data, it is generated independently during the construction of
each classifier. A popular ensemble learning method is known as Random Forest. It is an
ensemble composed of multiple individual classifiers known as decision trees.

Decision Trees

Decision trees are represented by a hierarchical structure composed of nodes repre-
senting rules and leaves indicating classes. It is a supervised learning model and has been
widely applied for two decades [SL91].

root

x2<1           x2≥1

  x1≥1.5           x1<1.5
 x1<0.75      x1≥0.75

x2<1.5          x2≥1.5   1          2

   4            5

3

1            2

1
  
  
  
  
  
  
 2

   5

   4

x1

   2         1

x2

3

Figure 3.6 – Representation of a data set, in two forms, by a decision tree with two
attributes (x1, x2) and one binary class {+,−}, and by decision boundaries.

Figure 3.6 is a simple example of a decision tree representing a data set with two
attributes, (x1, x2), and one binary class, {+,−}. The tree has five paths from the root to
the leaves. A rule of conditions represents each path, for example, path 1 can be defined
as: x2 < 1 and x1 ≥ 1.5, then the class value is, +.

Graphically, on the right-hand side, the decision tree divides the features (attributes)
space into axis-parallel regions, where each one is associated with the tree paths. The
classification of new records using the decision tree is performed by traversing the tree from
the root to the leaf with the class; the path depends on satisfying each node’s conditions.
For instance, the record, (x1 = 0.8, x2 = 0.2), is classified as negative ‘−’ following the
path 2. The challenge of building a decision tree is determining the tree levels and the split
values at each node to define the left and right attributes. The construction of optimal
trees is an NP-complete problem. Therefore, the levels and the split values are computed
using heuristics based on statistical measurements to build near-optimal trees.

72



3.2. Machine Learning-Based Analysis

3.2.2.1. Random Forests

A forest is a group of trees, and they seek together to improve a single tree’s learning
score. Random Forests (RF) [Bre99], proposed in 2001, is an ensemble machine-learning
algorithm composed of individual decision trees. RF has been widely used to analyze
biomedical data [GPB11; CI12] and mainly to perform two tasks [Bou+12]: build a clas-
sifier model and obtain ranking variables by their importance level calculated during the
tree’s construction. The Random Forests algorithm has been very popular in analyzing
biomedical data mainly for three reasons [GPB11]:

1. The final classification has high precision due to the composition of randomized
decision trees.

2. RF is robust with respect to parameter settings, usually requiring three values,
ntree (number of trees), mtry (number of attributes considered in each division),
and depth (size of trees). The parameter selection affects the precision of the model.

3. The model is interpretable due to its individual hierarchical structure: non-experts
can understand the decisions of each tree based on its structure, contrary to some
learning models that are black boxes [Fre14].

Dataset
D

D1 D2 DK

Pred1 Pred2 Predk

Final prediction by consensus
voting (classification), averaging (regression)

Final Prediction

Bootstrap
Aggregation

Build each
decision tree

Bootstrap
Sampling

Figure 3.7 – Random Forests algorithm.

73



IPart, Chapter 3 – Distributed Biomedical Analyses

Figure 3.7 presents the idea of training and applying the random forest algorithm.
Each tree is built from the bootstrap dataset of the original ensemble (using a bagging
strategy) and a random sampling of features, each contributing to the error classification of
the forest. If the class type of the data is a numeric value, then the training corresponds
to a regression task, and the final consensus of the forest is achieved by averaging the
results of each tree. On the contrary, if the class corresponds to a discrete value, it is
a classification task. The final prediction is calculated by voting among the individual
predictions of each tree.

Random forest mitigates the shortcomings of a single decision tree. RF improves in-
stability by building a more accurate and diverse model considering the prediction of
multiple randomized decision trees. The above aggregation considers all decisions with
the same weight during the final prediction. However, the final prediction can be modified
such that the prediction of each tree has a different weight to achieve a weighted decision
of the forest (an extensive discussion of voting mechanisms is presented in [Rok09; BS16]).

Table 3.8 describes five classification methods using six properties to compare differ-
ent kinds of models (and motivate the importance of random forests): predictive power,
interpretability, scalability, computation speed, and ability to adjust to overfitting and un-
derfitting. These last two refer to an undesired effect in the model. Overfitting is when the
trained model perfectly fits the training data but cannot satisfactorily predict unknown/-
future samples. While underfitting refers to the poor generalization of the model from
the training data, the inferred function does not satisfactorily capture the relationship
underlying the data [BN06]. These two effects can be treated in some models using pa-
rameters or by the nature of each model. For example, Random Forests by resampling, as
Bagging, controls overfitting due to having more randomization trees. The symbol {+,−}
indicates how much the model favors the considered property, and the computational
column indicates the cost during the construction and application of each model.

3.2.3. Multi-Site Forests

Very few Random Forests implementations have been proposed for the collaboration
of geo-distributed trees. Here, we present three proposals with similar objectives as our
approach implemented in this thesis.

Federated Forests [Liu+20a] build the global model between multiple sites that share
client IDs, but each site maintains different client attributes. A central site, known

74



3.2. Machine Learning-Based Analysis

Table 3.8 – Comparison of some Supervised Machine Learning models

Model Description Pred. Inter. Scal. Comp. Over. Under.
Decision
Trees

Builds a hierarchi-
cal flow (tree) and
classifies traversing
from root to leaves.

- ++ ++ fast sensible sensible

K-
Nearest
Neigh-
bors

Estimates the simi-
larity between data
vectors by choosing
the nearest neigh-
bors.

+ - - expensive sensible sensible

Random
Forests

Sets of decision
trees as weak clas-
sifiers aggregating
the individual
results of each tree.

+ + ++ fast treatable treatable

Support
Vector
Machines

Computes the most
optimal hyperplane
to separate classes.

++ - - high
memory

treatable treatable

Deep
Neural
Networks

Multiple layers
with weighted con-
nections produce
an output from
input data.

++ - - expensive treatable treatable

75



IPart, Chapter 3 – Distributed Biomedical Analyses

as the master, coordinates the model construction and stores all the data that is
going to be distributed to the sites. The master first sends randomly chosen sam-
ples and attributes to each site. Then each site determines the best split attribute
for the data returning the gained information value. The attribute’s name and the
gained information value are then shared with the master. Finally, the master com-
pares the clients’ values, identifying the highest value and the respective name of
the split attribute. This process is between all sites to define the levels of each tree
until the forest is completely trained. The master is responsible for coordinating the
process by choosing the best attribute for each tree and performing the complete
construction of the forest. Storing data in a centralized is not appropriate for an-
alyzing biomedical data. This kind of implementation does not satisfy the current
restrictions regarding biomedical data processing nor the collaborative analysis of
biomedical data between multiple sites.

DfedForest [Sou+20] is a distributed machine-learning system to build and share de-
cision trees. The proposal trains models under Breiman’s strategy of sharing models
between the parties. They use blockchain technology to prevent malicious partic-
ipants from altering the model during sharing. Before combining the local model
with the one shared by others, the received (shared) model is validated on the local
data. The validation determines if the received model increases the local model’s
accuracy. If so, the two models are combined, otherwise, it is omitted. The idea of
omitting trees from other sites can disregard inherent knowledge in each site’s data,
leading to bias in the federated model. For instance, suppose that site i trains an
unstable model Mi due to training data sets of small size. The site i then shares Mi

with site j, but Mi can have a large variance in the probability of misclassification
on data of the site j [SD98]. Thus, Mi is omitted due to its low accuracy on the data
of j. However, part of the Mi model can be useful to build the collaborative model.
The model Mi can still represent knowledge of patterns associated with the data
of site i. Other limitations associated with blockchain as the construction of trees
that must be ordered sequentially and inefficiency due to multiple users performing
concurrent operations over large volumes of data [GR18].

Multicenter Random Forest (MRF) [Li+20a] implements RF at multiple sites to
predict the prognosis of clinical data. MRF generates synthetic data from local data
based on Generative Adversarial Networks (GAN) and then shares it with other

76



3.2. Machine Learning-Based Analysis

sites to validate each local model. The sharing process employs DP combined with
the GANs known as DPGAN methods. Each local model is validated using synthetic
data to find parameters that provide better model accuracy. However, generating
synthetic data using GAN methods requires various preprocessing steps that affect
the quality of the synthetic data [MO14]. Besides, DPGAN-based methods control
data leakage, but there must be a trade-off between preserving privacy and the
quality of synthetic data. Furthermore, DPGAN methods do not provide precise
techniques to resolve all security risks during synthetic data generation [BDR19].
Therefore, MRF has limitations introduced by the generation of synthetic data,
which can affect the construction of the model. Unlike our approach, which does
not use synthetic generation methods, it only shares models with the trained trees
at each site. Our approach is complemented by three strategies to securely share
data to correct bias without generating synthetic data.

Discussion and Main Challenges

Learning techniques are an emerging area widely used in the biomedical domain. Cur-
rent restrictions on sharing biomedical data have promoted federated initiatives to keep
the data on each site. As a result, the trained models can be diverse and even have an
ensemble model composed of diverse classifiers. This subsection presents the reasons for
implementing Random Forests mainly due to their properties and application over biomed-
ical data. Additionally, we present relevant identified challenges regarding the training of
the collaborative forest and the state of the art.

Finally, we identified an opportunity to implement RF in multi-site scenarios due to
its popularity for analyzing biomedical data and the current state of multi-site random
forests. The multi-site RF implementation poses several challenges:

(i) implementing ensemble learning strategies applied to fully distributed architectures,

(ii) aggregating the best trees to each site to have a global model with similar learning
performance to the centralized version,

(iii) designing flexible and scalable distributed workflows to analyze biomedical data,

(iv) incorporating sharing strategies while preserving data privacy and security.

The implementation chapter considers the above challenges to validate that our col-
laborative forest approach satisfies those identified in existing multi-site random forests.

77



IPart, Chapter 3 – Distributed Biomedical Analyses

3.2.4. Distributed Machine Learning

Distributed Machine Learning (DML) has emerged as an alternative to analyze data
in a distributed way, between multiple sites, avoiding sharing data to a central processing
site [Ver+20; PG13], motivated mainly by three reasons:

the ability to scale computational resources for the training of models,

the use of distributed and parallelization strategies during the learning process, and

the need to ensure data privacy during the training of model.

Site1

Aggregator
Server

Share parameters/models

Aggregation of shared information

Send back aggregated information

Update local parameters/models

Site2 SiteN

Aggregation of 
Parameters/Models

Aggregation Strategies Training Distributed Models

Figure 3.8 – Distributed Machine Learning aggregation strategies.

The distributed learning considers the participation of multiple sites through two
collaborative strategies by sharing intermediate model parameters and sharing trained
models privately at each site [Liu+20b]. In the first strategy, each site trains a local model
and shares the parameters of its model with others. Then, through parameter aggregation,
one site aggregate all parameters to build a global model based on these parameters shared
by all. In contrast, the second aggregates local models shared by each site, at the end, a
global model is built by the participation of multiple sites. Figure 3.8 presents a general
aggregation strategy, where the steps 3 and 4 change depending on the selected strategy.
Federated Learning (FL) [McM+17] is a notable example of a distributed learning based
on the first strategy, parameter aggregation. In FL, the collaborative model is adjusted

78



3.2. Machine Learning-Based Analysis

by sharing the parameters of each local model by participation rounds. This strategy
considers the collaboration between the sites to share parameters such as, for example,
the weights of a deep neural network and thus, at the end, have a trained neural network
by sharing local model parameters.

On the other hand, model aggregation can considers the execution of heterogeneous
workflows between multiple sites that share partial information, such as trained supervised
models privately. For instance, train a global random forests by aggregating trained forests
at each site. The sites are heterogeneous, and therefore models at each site are trained
on different machine capabilities where data-sharing and communication have different
restrictions and capacities.

For today’s biomedical data analysis needs, distributed machine learning is an active
and relevant area in the coming years with many challenges such as improving traditional
statistical techniques, ensuring efficient communication between multiple sites, enhancing
current privacy and security techniques, enabling the processing of heterogeneous sites,
and seeking a good precision of the global model [Ver+20; LWH; Xu+21].

Parallelism Strategies for DML

Different initiatives have been proposed to alleviate the workload training on large
volumes of data, such as applying parallelism strategies during different phases of the
learning process, parallelism at the level of data, models, and hybrid techniques [Ver+20;
Liu+22; Yan+19].

Data Parallelism. The most intuitive way to apply parallelism is on the data. The
training is applied in parallel on different machines from each dataset. Model training
is data-centric, and during training, multiple independent devices can communicate syn-
chronously or asynchronously to train the global model. The communication considers the
sharing of parameters or intermediate models between the parallel devices; for example,
implementations based on MapReduce have synchronous communication, while the pa-
rameter server architecture trains asynchronously. The communication does not consider
sharing raw data between the parties, only intermediate values or models to apply some
aggregation strategy to train the global model.

Data Parallelism is appropriate for horizontally partitioned data, where multiple sites
contribute with intermediate parameters to build the final model. Horizontal data par-
titioning works on the same feature space over different samples at each site. Figure 3.9

79



IPart, Chapter 3 – Distributed Biomedical Analyses

illustrates the horizontal data partition strategy in federated scenarios. Assuming that
three sites have the same attributes (feature space), but the samples correspond to unique
patients from each site. For example, three sites analyze symptoms variables (x1, x2, x3)
of a given disease y (yes or not), but the attributes correspond to exclusive patient sam-
ples from each site (unique sample IDs). Each site trains a local model on its privately
partitioned data; then, it can be shared to be aggregated globally.

Site1

Horizontal Data Partitioning

ID   x1   x2   x3    y
 1
 2
 3

Site2

ID   x1   x2   x3    y
 4
 6
 8
 9

Site3

ID   x1   x2   x3    y
 5
 7
10

Figure 3.9 – Horizontal Data Partitioning.

Model Parallelism. Model Parallelism considers the participation of different process-
ing devices, each one contributing independently to the construction of the model. Model
Parallelism is also known as the model-centric training strategy. The execution on each
device is independent from the other tasks. Model Parallelism is suitable for vertically
partitioned data, where each of the sites trains the model on different feature space to
share knowledge from each set of attributes. Each site is thus similar to an independent
processing device. Figure 3.10 shows the vertical data partition strategy. Three sites use
the sample ID space but differ in the attributes (different feature space). For example,
three independent medical institutions have samples from the same patients, but variables
correspond to different data; i.e., the data comes from different sources. In the end, the
global model collectively generalizes relevant knowledge for each patient sample.

Site1

Vertical Data Partitioning

ID   x1   x2   x3    y
 1
 2
 3

Site2

ID   x4   x5   x6 

 1
 2
 3

Site3

ID   x7   x8 

 1
 2
 3

Figure 3.10 – Vertical Data Partitioning.

80



3.2. Machine Learning-Based Analysis

Hybrid Parallelism. A hybrid approach combines the two previously-discussed par-
allelism strategies to train the model collaboratively, meeting the conditions of each ap-
proach. Different implementations take advantage of data and model parallelism during
collaborative training models such as Stochastic Gradient Descent (SGD) [Dea+12] and
distributed deep networks framework [SCJ17]. They partition the data between differ-
ent machines, and the processing on independent data in each one contributes to the
parameters of the global model.

Data Privacy in Distributed Machine Learning

One of the benefits of Distributed Machine Learning is minimizing the privacy and
security risks of biomedical data in its storage and sharing. The aggregation strategies
do not consider sharing raw data, only shared intermediate data such as parameters or
models. Furthermore, these strategies can incorporate security techniques. Privacy risks
are reduced by not sharing sensitive data between the parties. The shared intermediate
information can adopt security techniques to shield leakage of this data during collab-
oration. An important premise during data aggregation is that all sites are considered
trusted parties.

Security methods over data encompass different levels depending on the type of pro-
cessing. The methods may contemplate strategies to safeguard the privacy of the data
from its storage, processing, and sharing. For example, secure collaboration between sites
is facilitated in distributed learning scenarios because the DML strategies avoid sharing
sensitive data like confidential patient information [Li+20b]. Furthermore, distributed sce-
narios can preserve the privacy of shared data through techniques applied to these prior
to sharing, such as Differential Privacy (DP) or based on Homomorphic Encryption (HE)
techniques. Moreover, the collaboration can also be done through the participation of a
trusted third-party site to share partial information, such as implemented in Secure Multi-
Party Computation (SMC). These strategies are briefly explained below, but we present
details of each one in Chapter 5.3. There, these strategies are detailed as a complement
to the fully distributed implementation proposed in this dissertation. Implementing these
techniques is not exclusive; therefore, we combine them to improve security and guarantee
data privacy [Hao+19; Zha+20].

Differential Privacy (DP). Differential Privacy [Dwo+06] introduces noise to the
training set. The goal is to introduce values that distort the original data value in a

81



IPart, Chapter 3 – Distributed Biomedical Analyses

controlled form. The noise introduction is controlled and seeks to maintain the precision
of the learning models as if they were trained on original data. DP techniques are applied to
select records to generate training set noisily but without losing intrinsic knowledge about
the data. This strategy has been widely implemented in Distributed Machine Learning
algorithms [Aba+16; Dwo08] to mislead the adversary in the face of improper access.
However, the great challenge in differential privacy techniques is to guarantee performance
of model training in the presence of noise.

Homomorphic Encryption (HE). Homomorphic Encryption [RAD+78] was pro-
posed in the 70s to compute ciphertext without applying decryption techniques. HE
techniques have been used to perform calculations on encrypted values [Van+10]. For
example, sharing numerical values of model parameters during training as gradient val-
ues. Analyses based on HE techniques share encrypted numerical values to be analyzed
during the collaboration [MG19]. If an intruder obtains part of the shared data, these val-
ues are completely encrypted. There are three main HE schemes based on the definition
and complexity of the mathematical functions proposed in each one (a broad explanation
is presented in [Yan+19]).

Secure Multi-Party Computation (SMC). Secure multi-party computation [Yao86]
was proposed in the 80s and used to train collaborative models. SMC techniques allow for
secure computing between multiple parties through the participation of a trusted third
party during model training [Fen+19; Ohr+16]. The process involves the participation of
keys with public and private values to each site, which is not entirely shared but partially
ensures security. However, SMC techniques have not been much used in training models
on large volumes of data due to computational inefficiency due to the time and capacity
required to share data with the third party. Finally, some implementations combined
between DP and SMC offer better security guarantees than only the SMC techniques
[GX15; Ria+18]. Nevertheless, they have the limitation of efficiency due to the cost of
transferring big data among the participation of multiple sites.

3.3. Conclusions

Most of the analytical tools and techniques reviewed provide only mechanisms for par-
tial collaboration among geo-distributed sites. Most of them are based on collaborative

82



3.3. Conclusions

strategies where one of the sites acts as a central master and the others are slaves nodes.
There are still numerous open issues, including explicit data and computation placement
management, dynamic scheduling of resources, robust security and privacy features, and
flexible data placement strategies. Additionally, ethical and legal constraints must be con-
sidered during the execution of biomedical analyses [Cor+18; MEO13]. As a solution to
these issues, we have advocated Fully-Distributed Collaborations (FDCs) in this disserta-
tion. The FDC analyses are appropriate for processing biomedical data geo-distributedly,
respecting the restrictions and promoting collaborative work. This section presents the
open issues in detail, which motivate the following chapters corresponding to the thesis’s
contribution.

Data and Computation Placement

To address the problem of data and computation placement, tools must place data and
computations in the optimal location according to specific criteria, e.g., putting data in the
infrastructure best suited to analyze it or moving data while preserving data locality and
security constraints. This problem is known to be NP-hard in computational complexity,
and it is still actively studied [LD11].

The development of heuristics with efficient implementations for data and computation
placement is an ongoing endeavor. As we have shown before, current BATTs offer only
some basic strategies such as data analysis in a centralized setting, uniform data partition
among multiple nodes, and computation based on cluster distribution on homogeneous
nodes. Therefore, other research directions consist in providing relevant abstractions to
handle multi-site biomedical data analyses.

A recent and exciting field of research is the application of Machine Learning tech-
niques to optimize distributed computations on scattered data that cannot be shared.
The application of learning models on these data without moving them to a central site.
On the contrary, consider sharing local model parameters or trained local models with-
out revealing sensitive data [Liu+20b]. A prime example, federated learning [Xin+15;
McM+17], has been applied to analyze large genomic data sets spread over multiple sites
worldwide. However, there are many challenges, such as communication latency, systems
heterogeneity, heterogeneous data, and privacy preservation. Nowadays, Distributed Ma-
chine Learning [Ver+20; PG13] seems a promising future research domain.

83



IPart, Chapter 3 – Distributed Biomedical Analyses

Privacy and Security

Research collaborations must comply with strict security policies imposed by gov-
ernments over biomedical data. These policies may be enforced in a national context (as
those implemented by national governments), supranational (e.g., policies enforced by the
European Union), or even globally. However, as we have shown before, the current set of
tools and techniques used to analyze biomedical data address the problem of security and
privacy only partially. They either delegate security to the computing infrastructure (e.g.,
a cloud provider) or provide very basic mechanisms. Therefore, biomedical researchers
must address security by means external to the tools they use. In order to support FDCs,
BATTs have to better support privacy concerns. Thus, several researchers are investigat-
ing more sophisticated security mechanisms. For example, secure containers encapsulating
confidential data allow data to be used in complex computations without exposing partic-
ipating stakeholders [BS18]. Other approaches investigate data watermarking techniques
augmented with encryption and cryptography operations [Bou+22]. However, the security
in BATTs is still a great challenge, especially by security and privacy risks encompassing
large parts of complex workflows, as mentioned by the authors from the NSF’s SWIP
project.

Scalability and Performance

The exponential growth of biomedical data has forced scientists to scale their ex-
periments and applications. Several techniques have been used to address the problem of
scaling up these analytical experiments. A common practice consists in implementing ded-
icated High-Performance Computing (HPC) systems. Most of the world’s supercomputers
belong to this category. Another common technique to improve performance and scalabil-
ity is deploying scientific experiments on clusters of computers, on on-premise facilities,
or in the cloud. Some authors propose to mimic the architectures for massive computa-
tions, and data storage proposed by internet corporations such as Amazon, Facebook,
or Google to create Data-Intensive Scalable Computing (DISC) facilities for scientific
applications [BV16; Val+18].

Each strategy has its benefits and drawbacks. For example, HPC systems offer central-
ized computing resources focused on high-performance applications with many floating-
point operations. But it requires all the data to be available for the computation, and
it also requires a significant investment in infrastructure. These infrastructures may also

84



3.3. Conclusions

be costly to maintain, and they can pose problems regarding data ownership and confi-
dentiality. On the other hand, private and hybrid clouds for the deployment of scientific
experiments constitute flexible means to configure multiple computing scenarios. How-
ever, data ownership, security, and legal restrictions hinder the implementation of mas-
sive biomedical experiments on the cloud. On the other hand, DISC systems, e.g., based
on Hadoop and Spark, enable processing large volumes of data and the distribution and
scaling of resources in clusters or clouds. They include fault-tolerance mechanisms and are
generally controlled by the owner of the DISC system. However, these infrastructures may
be costly to maintain and pose problems regarding data ownership, data confidentiality,
and data localization.

None of the above-discussed systems will support Fully-Distributed Collaborations
(FDCs) as presented in Section 3.1.3. Instead, they all propose some essentially central-
ized solution. They lack the means to address the three FDC requirements: decentralized
computations and flexible data placement, compliance with security and data protection
policies, and performance and scalability based on the interests of participating sites.
Thus, numerous research opportunities exist to develop solutions addressing these re-
quirements while providing performance and scalability benefits.

We found some computational approaches that may support basic, Fully-Distributed
patterns. For example, hybrid strategies, exploiting the MapReduce benefits in the cloud
[HKS18; ZLS15; Cha+12; Xu+17b]. Similarly, some workflow systems also have adopted
combinations of these paradigms [Liu+15; Wol+13; Tay+07b]. However, as seen in the
review, these solutions address some primitive form of technical flexibility, and few provide
explicit abstractions to handle all the desired requirements. Our taxonomy also revealed
another opportunity, for example, to strive to implement flexibly configurable systems that
enable high scalability. The current methods to address high scalability and performance
require some form of centralized control.

Need for Fully Distributed Collaborations

This chapter has identified several research opportunities in data and computation
placement, data privacy and security, and performance and scalability. These areas of
investigation make sense for fully distributed collaborations only when they are considered
together. In the discussion, we explain how to achieve fully distributed collaborations.

First, the CAP theorem [GL02] applied in the same logic to distributed systems in-
dicates that it is impossible simultaneously to have the three properties in a distributed

85



IPart, Chapter 3 – Distributed Biomedical Analyses

system: consistency, availability, and partition tolerance. Therefore, a trade-off has to
be enacted between the three properties to achieve a practical system supporting a dis-
tributed database in an FDC system. Similarly, the scalability trilemma [BFV19] states
that highly distributed systems cannot simultaneously combine: decentralization, scalabil-
ity, and security. Therefore, again, there should be a balance between the levels of support
for each of these three properties. The classification presented in Tables 3.5 and 3.7 cat-
egorizes the tools and approaches into properties such as resource location, privacy and
security, and scalability. It is clear that many cover two of the three properties; therefore,
there is an open question about solving them together. There is still a great challenge
to achieve all three simultaneously because researchers seek to compensate for two of the
properties indicated in the CAP theorem or the scalability trilemma.

Nevertheless, not only technical constraints will affect the development of FDCs. Legal
and socio-economic misconceptions should be overcome before having a full implemen-
tation. We expect that in FDCs scientists will not have to disregard security or legal
restriction to achieve high scalability and performance. On the contrary, an FDC solution
will coordinate dynamically the execution of complete workflows exploiting and combining
heterogeneous computing facilities.

86



Part II

Contributions

87





CONTRIBUTIONS

The second part describes the contributions of this thesis which are presented in the
remaining chapters.

Chapter 4 presents the general motivation for Fully Distributed Collaborative biomed-
ical analyses, defined as Fully Distributed Collaborations (FDCs). The case pre-
sented motivates the need to process biomedical data following the FDC approach.
During the chapter, we present relevant FDC features, distributed processing archi-
tectures, security and privacy mechanisms.

Chapter 5 describes the MuSiForest algorithm, which implements a particular sce-
nario that adopts the FDC properties. The MuSiForest algorithm takes advantage
of distributed collaborative learning strategies. The development of the chapter
presents relevant concepts associated with distributed machine learning, followed
by the technical components of the implementation, and complemented by the ex-
perimentation and results for the proposed scenario.

Chapter 6 introduces the language to specify distributed and collaborative analysis.
The distributed workflow specification language is defined as FeDeRa. The language
supports the specification of analyzes driven by the need for data. FeDeRa is en-
riched with mechanisms to specify multi-site analyses that are more expressive and
intuitive.

89





Chapter 4

FULLY DISTRIBUTED COLLABORATIONS

Introduction

There have been many forms of cooperation among interdisciplinary groups that in-
volve sharing knowledge and the collaborative generation of results [MK03; Mil00]. For
instance, the BIOINFOMED [Mar+04] project is an initiative funded by the European
Commission (EC) to facilitate the collaboration between experts in medical informatics
and bioinformatics. Similarly, the ICAN project [ANR19] (presented in Section 2.2.1) in-
volves collaborative work between 34 French entities where each member provides clinical
records, medical images, and genetic data collected from patients, notably through bio-
logical samples [Bou+17]. However, the predominant architectural model for biomedical
collaborative analyses still consist of centralizing and sharing the underlying data and per-
forming analyses through supercomputers or cluster infrastructures at a single or small
number of organizations [Sch+10a].

Recently, the need for more widely distributed collaborations has been noted [BS18;
Bou+19; PCA15]. Several arguments favor a higher degree of distribution: more and
more organizations dispose of high-performance infrastructures for large-scale analyses,
local data may be preferred to be kept private, massive data transfers are too time-
consuming, etc. During the last years, federated analyses have emerged as a strategy to
train models on mobile devices without the need to centralize data [Kon+16a; Kon+16b].
These initiatives promote collaborative analysis and protect sensitive information such as
biomedical data. In this chapter, we argue that these kinds of collaborations are part of
a wider spectrum of collaborations that we call Fully Distributed Collaborations (FDCs).

FDCs are research endeavors that harness means to exploit and analyze massive
amounts of information collaboratively over geo-distributed infrastructures while respect-
ing social, human, and legal constraints. Thus, FDCs require tools and techniques for
collaboration that can use advanced distributed (data and computation) architectures
while coping with complex sociotechnical constraints and heterogeneous networks. FDCs

91



IIPart, Chapter 4 – Fully Distributed Collaborations

promise to enable more powerful biomedical analyses defined in terms of distributed work-
flows operating over large volumes of private data. FDC approaches will support coopera-
tion between geo-distributed research groups or organizations that are generally subject to
several restrictions derived from legal frameworks, data privacy regulations, and available
local computing infrastructures.

This chapter introduces the concept of Fully Distributed Collaborations and inves-
tigates their characteristics and the features needed by tools supporting such research
endeavors. Concretely, The chapter is structured as follows. Section 4.1 presents the def-
inition of Fully Distributed Collaborations (FDCs). Section 4.2 describes collaborative
research cases that may be supported by FDCs, including some based on machine Learn-
ing algorithms. Section 4.3 presents the distributed architectures supported by FDCs.
Finally, Section 4.4 describes the security strategies enforced by FDCs, and the conclu-
sions are presented in Section 4.5.

4.1. The FDC concept

Nowadays, analyzing data in multi-site scenarios is common in real projects due to
known restrictions on transferring biomedical data to central processing sites. Traditional
data analyses are processed in centralized environments, which are often too limited for the
current needs for biomedical data analyses. Overcoming these restrictions in collaborative
research settings requires improving tools, applications, and infrastructures for research
collaboration. We argue that new tools for scientific collaboration should be supported
by geographically distributed architectures that support distribution, concurrency, and
security mechanisms driven by data needs. We thus propose a method for scientific col-
laboration called Fully Distributed Collaborations (FDCs). As stated previously, FDCs
are research endeavors that harness means to exploit and analyze massive amounts of
information collaboratively over geo-distributed infrastructures while respecting informa-
tion ownership, data privacy, and social and legal constraints.

4.1.1. FDC Properties

We advocate more flexible and dynamic research cooperations through FDC analyses.
FDCs involve several geographically distributed research centers with their biomedical
data, and their computational infrastructure. The central role of FDC analyses is to

92



4.1. The FDC concept

model tasks across heterogeneous cross-site workflows. An example of these heterogeneous
analysis workflows is illustrated in Figure 4.1. The workflow involves the participation of
two countries that cannot (reasonably) be implemented through traditional systems due
to centralized dependence on data placement and computer processing. This workflow
may correspond to the extension proposed for the ICAN project (discussed on page 40).
In the workflow, France has three member sites processing data located in Nantes, Rennes,
and Paris, while Colombia has a single site processing data in Bogotá. Each of the two
countries applies its own restrictions on sharing data, such as the GDPR [CC16] in France
and the “habeas data” law in Colombia [Col12]. In this scenario, the FDC analyses satisfy
each regulation member’s requirements. Colombian law considers responsible data sharing
with countries that dispose of clearly defined regulations, such as the GDPR. Therefore,
the proposed workflow can be reasonable through FDC analysis while complying with
legal restrictions.

Figure 4.1 – FDC analysis between four cities distributed in two countries.

The scenario illustrated in Figure 4.1 can consider sharing models trained from the pri-
vate data of each site. Assume that each site has genomic data corresponding to its private
patient samples. For example, Bogotá stores 1 .7TB of data corresponding to Colombian
samples, while in France, Paris, Nantes, and Rennes store 3 .0TB, 1 .2TB, and 1 .0TB,
respectively. One relevant consideration, from 1 .7TB of raw data, the compressed trained
model can be stored in 400MB [Can+16]. Therefore, if Bogotá wants to share information
with France, it does not need to share almost 2 .0TB; on the contrary, Bogotá needs to
share only 400MB through learning models. This notable data size reduction impacts the

93



IIPart, Chapter 4 – Fully Distributed Collaborations

French sites similarly due to the notable reduction in sharing raw data versus trained mod-
els. In addition, the reduced size of shared data favorably impacts technical aspects such
as communication channel capacity and required transfer time. Regarding legal aspects,
multi-site analyses are limited by the agreements established in such regulations. There-
fore, an FDC-based analysis should facilitate the automation of complex workflows, such
as the one presented between France and Colombia, while respecting diverse restrictions.

Our FDC proposal aims to alleviate legal and technical considerations to analyze data
collaboratively, like the scenario illustrated previously. The FDC approach supports three
significant architectural properties to satisfy complex and heterogeneous workflows:

Data and computation placement: in traditional scenarios, data moves to the
computing site, typically a centralized site; on the contrary, we propose that compu-
tations move to/are performed at data-owning sites, thus keeping data completely
private.

Privacy and Security: transferring data to central processing sites generates risks
associated with the privacy and security of biomedical data. We propose security
mechanisms when data sharing is necessary between sites during the FDC analyses.
The transferred data may be intermediate results obtained during the workflow
execution.

Performance and Scalability: traditional scenarios ignore computational facili-
ties installed at each site, often resulting in a large computational overhead at the
central site. In contrast, we propose using the local infrastructure available at each
site, allowing the integration of heterogeneous tasks supported by different scalable
architectures.

These three properties are essential to satisfy the analysis based on FDCs and are
taken into account in the context of the implementation of our algorithm:

Dataflow-oriented programming guarantees communication based on data availabil-
ity between independent tasks, that is, analyses by data-driven execution.

Declarative concurrency extends the declarative model to deal with concurrency,
mainly designing workflows on demand for data on independent tasks.

Message passing patterns between independent and active tasks that interact via
messages asynchronously.

94



4.1. The FDC concept

Distributed programming mechanisms ensure communication and interaction be-
tween tasks; although they are located in independent sites, they can depend on
data availability to fulfill their execution.

4.1.2. Data as first-class citizens

In a programming language, a first-class citizen refers to an entity that supports other
entities’ operational properties [Sco00]. However, in treating data as first-class, workflow-
based analyses do not always have this consideration. Therefore, in FDCs, data as first-
class citizens means that data can be passed as an argument, returned in workflow steps,
and assigned as a value to a variable, even across multiple sites. Therefore, the data
is treated as a first-class citizen, and their flow drives the analysis execution. The sites
can require sharing information during the execution through dataflow variables. These
variables pass data as arguments to other steps and can also be returned and assigned
by the site responsible for its creation. This behavior is inspired by processing based on
dataflow modeling.

The FDC approach implements data-driven modeling with the need to drive execution
and avoid errors due to the unavailability of data. External tasks must wait for the owner’s
data to bind them and continue executing the paused task. Treating data as a first-class
citizen is advantageous compared to current biomedical data analysis systems, which
require external routines and complex custom plugins to indicate the interaction with
other processing devices.

Relevant Dataflow Features

We support sharing different kinds of data during the analysis, raw data, trained
models, or partial results to be operated by other sites. Our approach to FDC analysis
incorporates relevant dataflow modeling features into the workflow analysis execution:

Data on demand. The interaction between the site that owns the data (who
provides it) and those who need it (who require it) is on demand. The owner site
publishes the data while the requester consumes it as input to the local process.
The data can be consumed as long as it is made available by the owner.

Immutable data. The data shared from one site with others is immutable. The site
owner binds the data and is responsible for publishing it to others. The immutability

95



IIPart, Chapter 4 – Fully Distributed Collaborations

property minimizes errors due to different values for the same variable. For example,
if multiple sites access the same variable, the same variable may have different values
due to multiple assignments in parallel. Therefore, the immutability of variables
guarantees secure operations in terms of the uniqueness of the shared information.

Dynamic and heterogeneous analysis. This characteristic suggests that the
execution of the local tasks is independent and must be adjusted to the capabilities
of each site. The execution does not depend on what happens on other sites unless
others require the data. If the local execution throws an error in any site, the site that
provides data must guarantee data availability for those who require it. Furthermore,
each site may have different configurations, e.g., machine capacity, and installed base
software. Therefore, FDC systems need to be scalable and flexible for heterogeneous
on-site installations.

Semi-synchronous mechanisms. This mechanism provides mediation through
intra-site or inter-site depending on the workflow task type. Our FDC approach
implements features of synchronous and asynchronous communication. For exam-
ple, intra-site tasks take advantage of synchronous communication since local ex-
ecution at each site does not usually require external resources. In this sense, the
tasks are executed at each site regardless of what is happening at the other sites.
In contrast, inter-site communication adopts asynchronous communication. The in-
teractions with other sites use asynchronous mechanisms, where data availability
activates on-demand tasks that require external data. The execution of FDC-based
workflows employs both mechanisms.

4.2. FDC-based analyses supported

FDCs support diverse types of analysis as long as it takes advantage of the local
computing at each site while respecting data-sharing restrictions. These analyses involve
tasks that run sequentially at each site or in a distributed manner where participants can
share information, such as trained models in the case of machine Learning algorithms. We
present abstract cases of FDCs covering various dimensions based on learning analyses
and traditional scenarios such as single-site processing to cross-site analysis.

96



4.2. FDC-based analyses supported

Based on Learning models

Retaking the collaborative scenario illustrated in Figure 4.1 between Colombia and
France. The outcome analysis can correspond to training a federated model to improve
specific disease prevention. The collaborative model refers to a federated classifier to
predict the risk of having or not having a specific disease. For example, the ICAN project
extension can consider international cooperation to share knowledge and geo-distributed
data from patients with aneurysm disease around the world (see Sec. 2.4).

1

2

3

4

Distributed 

Trained Model

Figure 4.2 – FDC Machine Learning over multi-site workflows.

In this sense, Figure 4.2 presents four sites where various learning steps are computed
within the workflow analysis. The four sites have tasks unique to each site and other
tasks requiring external data from other parties. Therefore, some tasks like site1 occur
sequentially, while others occur in parallel and partially share data. The distributed work-
flow scenario illustrated corresponds to a specific analysis case based on machine learning
techniques that seek to build a final federated model as part of a biomedical collabora-
tion. However, FDC-based analyses also comprise simple cases to more complex analysis
scenarios. For example, processing at a single site through local distribution, adding more
sites for new cooperation partners and reaching more complex scenarios over multi-site
workflows. This scenario is also preferred compared to the previous one (see Figure 4.1) for
the data size kept during the training of the models, impacting the technical restrictions
favorably due to the amount of data to be shared. FDC-based analyses are adaptable to

97



IIPart, Chapter 4 – Fully Distributed Collaborations

particular needs regarding biomedical data, considering the data type to be shared, local
infrastructures, and the number of sites participating in the process.

A Collaborative analysis between multiple sites

The analysis between multiple sites often requires sharing information securely be-
tween them. A collaborative analysis can train an ensemble learning model between mul-
tiple geo-distributed sites [Zho21]. The first site trains a classifier, such as Random Forests,
while the others train classifiers as Support Vector Machine (or any model described in
Table 3.8). Each one trains a classifier on local data private to each site. After the local
training of each classifier, one of the sites is responsible for aggregating the models to
build a collaborative model. The data type at each site may be different; for example,
some sites may have genetic information while others have medical images. Although these
data types are different, they are useful for studying specific diseases, such as the ICAN
project. The outcome is an aggregated model that brings together knowledge from the
two parties to predict future disease cases from two different data types.

FDC-based analyses are most useful in this case with many sites; each site has a lo-
cal workflow and does not depend on the executions on other sites. However, there may
be data dependencies between sites. In addition, FDC allows for different computation
capacities. Therefore, some sites may have to share their data with another site to be
analyzed. The multiple sites may have different computing capabilities corresponding to
each site’s infrastructure. Heterogeneous factors such as each site’s computing capacity
and the diversity of the biomedical data. Our proposal to analyze biomedical data through
workflows such as those supported by FDC considers the previous two factors, such as
the geo-distributed scenario illustrated in Fig. 4.1. Additionally, we support variety in the
local tasks executed in each site, following the analysis driven by data sharing informa-
tion securely among all. The FDC analyses are heterogeneous and seek to expand the
constraints of current workflow systems and applications used to analyze biomedical data
because they provide limited support to the geo-distributed analysis and even support
heterogeneous data and architectures [Gar+22].

FDCs also provide flexible and friendly management and configuration mechanisms
by extending a specification language (presented in Chapter 6). Usually, biomedical tools
require custom routines designed by computer experts to deploy distributed analysis,
which is an obstacle for biomedical experts designing biomedical analyzes. For example,
heterogeneous software environments, diverse computing devices, and complex analyses

98



4.3. The Architecture of FDCs

require specialized workflow languages.

4.3. The Architecture of FDCs

FDC systems support traditional collaboration architectures such as sequential and
hierarchical ones. Furthermore, FDCs support fully distributed topologies, as illustrated
in Figure 4.3. The FDC-based architectures are inspired by traditional topologies in dis-
tributed environments [Bar64; Ver+20]. They seek to support heterogenous complex anal-
ysis and computational capacities that are installed on different site.

Fully Distributed Architecture

Site 1

Site 2 Site j

Site n-1

Site n

  data with each other
- Each site shares partial

   all sites have collaborated
- The analysis ends after

Figure 4.3 – FDC Fully-Distributed Architecture.

The Fully-Distributed architecture performs point-to-point communications between
the sites that all have the same role. Therefore, all sites have the same importance during
the process. A fully distributed analysis scenario can share transformed data as trained
models with each neighbor’s site to achieve full participation and construct a global model.
This architecture is more scalable than sequential and hierarchical one; it also eliminates
dependencies on a single site in the event of possible failures during the process.

4.4. Privacy and Security

Our FDC approach considers sharing information secure satisfying legal privacy re-
strictions during the analysis. Technologies based on encryption and cryptography meth-
ods safeguard data privacy during storage, processing, and sharing. For example, public-

99



IIPart, Chapter 4 – Fully Distributed Collaborations

key encryption methods to securely store and share genomic data [Kan+08], as well as
based on homomorphic encryption techniques to protect biomedical data [Rai+18] during
their sharing and processing. FDC-based analyses include strategies that seek to satisfy
data privacy depending on the type of information to be shared and privacy-enhancing
technologies over biomedical data [Are+18]. These strategies are presented in the next
chapter on the implementation of a Fully Distributed Machine Learning algorithm.

4.5. Conclusions

This chapter described our FDC approach, collaborative research endeavors that en-
force confidentiality and ownership properties of biomedical data while providing means to
exploit and analyze information collaboratively. FDCs take advantage of current architec-
ture for distributed processing adaptable to multi-site biomedical analysis. The objective
is to support real biomedical projects that involve the participation of geo-distributed
research groups and entities. FDCs go beyond simple human solutions such as confiden-
tiality agreements or copyrights contracts. We are looking to provide computational tools
for research collaboration respecting all the technical, legal, and socioeconomic restrictions
imposed on biomedical data while maintaining high computational efficiency, flexibility,
and ease of use. FDC analyses offer different ways to analyze data using traditional scenar-
ios and multi-site collaborations. Moreover, we propose the adoption of analyzes based on
machine learning models through the participation of multiple sites. The construction of
federated models is a trending topic due to its primary benefit of reducing the risk of shar-
ing sensitive data. Our approach proposes workflow analysis driven by data need, where
the data is considered as a first-class citizen. Data-driven features differ from the current
biomedical distributed systems, especially to analyze biomedical data in geo-distributed
settings. The analysis through FDC systems will enhance biomedical data processing by
promoting collaborative and secure research and promoting current restrictions by sharing
data, supporting the real needs in biomedical projects.

100



Chapter 5

FULLY DISTRIBUTED RANDOM FORESTS

(MUSIFOREST)

Introduction

During the last two decades, there has been remarkable growth in the usage of Machine
Learning (ML) for data analyses. Machine learning analyses have notably impacted areas
such as healthcare and biomedical research. For example, ML techniques have been applied
to model diagnoses and prognoses of different diseases by analyzing various biomedical
data sources such as genomes, images, and clinical records [LN15; YBK18]. Machine learn-
ing is particularly attractive because it uses methods such as inferential statistics, acceler-
ated computing, and distributed computing to efficiently process and extract knowledge
from large amounts of data.

However, despite the rapid evolution of ML techniques, collaboration for the exploita-
tion of large amounts of data is still hindered by social and technical constraints. Thus,
instead of exploiting parallel computations on globally distributed environments or elas-
tically scaling resources on global cloud providers, several of the current approaches for
ML rely on sharing full data sets.

During the last few years, there has been a need to adopt mechanisms to analyze
data using learning algorithms and distributed computing while maintaining data at its
original location and respecting data ownership constraints. Distributed machine learning
has emerged as a strategy to analyze geo-distributed data [PG13; Ver+20]. In 2016, the
first geo-distributed analysis proposed was Federated Learning [Kon+16a; Kon+16b] to
train a collaborative model from data hosted on several mobile devices. However, current
approaches do not completely support FDCs due to the inherent restrictions in biomedical
data and the computational capacity required to analyze large volumes of data. Therefore,
FDC-compliant methods require novel technical approaches, tools, methodologies, and
collaboration strategies.

101



IIPart, Chapter 5 – Fully Distributed Random Forests (MuSiForest)

This chapter presents an approach to Fully Distributed Collaboration built on top
of a Random Forest algorithm. Our FDC-compliant approach, MuSiForest (Multi-Site
Random Forest), can be used to implement a collaboration of several geographically dis-
tributed research centers with their own data and their own computational infrastructure.
We investigate techniques and tools to build distributed models without violating sharing
restrictions, in contrast to traditional techniques that require full data access. The major
contributions of this chapter are the following:

A Fully Distributed Random Forest algorithm to analyze data collaboratively across
sites while ensuring strict confidentiality and ownership properties of biomedical
data.

A software implementation of the proposed MuSiForest algorithm to build a global
classification forest with the participation of multiple sites.

Strategies for sharing partial data to reduce bias in the collaborative model.

Experiments with the proposed algorithm analyzing labeled data corresponding to
gene expression levels (RNA-Seq) to classify patient samples among five cancer
types.

Experiments using the proposed security strategies relaxing the sharing constraints
to address bias correction in the collaborative model.

This chapter is structured as follows. Section 5.1, presents an overview of the con-
struction process of models based on Random Forests. Section 5.2, describes the proposed
MuSiForest distributed algorithm to train a collaboration forest. Section 5.3, presents
strategies to secure bias correction. Section 5.4, details the implementation and the ar-
chitecture of the prototype, and discusses some of the more common deployment topolo-
gies. Section 5.5 presents the experiments and corresponding results. Finally, Section 5.6
presents the conclusions of the chapter.

5.1. Random Forests Training

In Chapter 3, we introduced machine learning concepts to explain the process of
learning from data using supervised models such as decision trees (see page 67). This
section extends these concepts and explains the relevant steps necessary to train a random

102



5.1. Random Forests Training

forest model. A random forest model is a classifier composed of multiple decision trees.
Using an ensemble of trees for the model has several benefits, namely, it is a way of
reducing the risk of overfitting, we can use distributed and parallel computing to train
the model, and the resulting model is highly interpretable by users because its hierarchical
structure is comprehensible and its structure indicates the level of importance among the
data variables.

5.1.1. Training a Model

Training a model follows the learning process illustrated in Figure 3.2 and seeks to
infer a model that best represents the underlying knowledge from the labeled data set,
D = {X, Y}, where X is a set of attributes, and Y is a set of labels for each one. Usually,
a proportion of records from D is used to train a model (often 70% of random samples),
and the remainder to evaluate the model. Therefore, the data set D is split into training
(DTR) and testing (DTE) data sets.

This section describes the construction (training) and application (test) tasks of each
decision tree that makes up the forest. Finally, we present the computational complexity
of training a decision tree.

5.1.1.1. Building a Decision Tree

The decision tree is built top-down recursively by partitioning the attributed spaces
of the training set. Thus, the construction strategy is based on divide and conquer. The
data set attributes contribute to the tree levels and the cut-off value at each node that
determines the subsequent levels (see explanation in Section 3.2.2). The root node is the
most important attribute, and subsequent levels are defined by decreasing levels of im-
portance in the remaining attributes. Statistical measurements determine each attribute’s
importance level: the most commonly used ones are the Gini index and entropy measure-
ments [RS04]. The decision tree construction is presented below as Algorithm 1, which
follows similar strategies as those presented in [MR14].

Growing the tree
Algorithm 1 implements the idea of training a decision tree where the required data set
has the form, D = {X, Y } = {(xj, yj)}m

j=1, composed of m samples. From these data, the
tree growth is based on the following steps:

103



IIPart, Chapter 5 – Fully Distributed Random Forests (MuSiForest)

Algorithm 1 Building a Decision Tree
Input: Dataset D with samples and a list of attributes (variables) A.
Output: Decision Tree
1: TreeGrowing(D,A)
2: if stop_condition(D) then
3: return leaf with the most common value of class in D as a label.
4: else
5: bestA← best_split_attribute(D, A)
6: tree← new tree with root bestA
7: for each value vk in bestA do
8: Dexs ← {e : e ∈ A and e.bestA = vk}
9: child← TreeGrowing(Dexs, A− bestA)
10: add child a branch to tree with label (A = vk)
11: end for
12: end if
13: return tree
The algorithm trains a decision tree. The process starts from the training data set, de-
termining the level of importance of each attribute and resulting in a trained model, a
decision tree.

1. Select the best attribute xi in D, employing statistical measurements.

2. Define the cut-off value from xi to divide D into two subsets (left and right branches).

3. Repeat the previous steps until the stop condition is fulfilled, i.e., the samples in
the partitioned subset have the same class or no more records to be divided exist.

The main challenge of these steps is determining the best attribute to split and its cut-off
value. We now present two relevant strategies for measuring the attributes and determin-
ing the cut-off value based on statistical measurements to identify the best attributes.

Splitting Attributes
Selecting the best attributes leads to identifying the tree levels, a recursively applied
process until reaching the stop criteria, e.g., the nodes are purity. Purity means that all
samples of the left have the same class, and the right node contains the records of the
other class, i.e., a pure node groups all samples of the same class at each node. After
finding the first split attribute, the data is split into two subsets, each with one or more
classes. Then, the process is repeated until the nodes are pure in terms of the resulting
class. The best attribute is selected through the following statistical measurements that

104



5.1. Random Forests Training

determine the Information Gain (IG) level of each attribute in the data set:

1. Gini impurity is the probability of incorrectly classifying a randomly chosen sam-
ple if it was randomly classified according to the class distribution. Given the data
set D = {(x1, y1), ..., (xm, ym)}, yi ∈ classes. For each value class c, the dataset Dc

is defined as Dc = {(x1, c), ..., (xk, c)}, where yi = c, and Dc ⊂ D. Gini impurity
value is defined as:

Gini(D) =
C∑

j=1
pj

(
1− pj

)
, (5.1)

where C is the number of classes present in a node; pj is the portion of samples in
D with class value j, that is, pj = |Dj |

|D| . Assuming the dataset D is split into two
subsets D1 and D2 according to attribute A, Gini impurity is defined as:

GiniA(D) = |D1|
|D| · Gini(D1)

+ |D2|
|D| ·Gini(D2)

, (5.2)

where D = D1 ∪ D2, D1 ∩ D2 = ∅ , and |Di| denotes the number of samples in Di.

During this document, without loss of generality, the operations ∪ (union) and ∩
(intersection) follow the traditional operations between sets, defined as:

A ∪B = {x : x ∈ A or x ∈ B} (5.3a)

A ∩B = {x : x ∈ A and x ∈ B} (5.3b)

The Equation 5.2 is applied recursively to the dataset’s attributes until the stopping
criterion is fulfilled. The selection of each node performed according to the lowest
Gini value, and the root represents the attribute with the lowest value. The root
is statistically the most important attribute. The process is repeated with part or
all of the attributes until the decision tree is built. Algorithm 2 presents how to
compute the Gini impurity value [Loh11].

2. Entropy determines the degree of uncertainty in a data set. Entropy is used to
calculate the Information Gain (IG) to characterize the impurity of a dataset. The
IG measure seeks to minimize the entropy level in the data set. During the tree
construction, the attributes preferred are those with the lowest IG value. Entropy

105



IIPart, Chapter 5 – Fully Distributed Random Forests (MuSiForest)

Algorithm 2 Gini Impurity estimation
Input: The partitioned subsets D1 and D2 by A.
Output: Gini impurity value
1: for each subset Di in {D1, D2} do
2: Determine the percentage of samples in Di

3: for each class c in Di do
4: Calculate the probability of class c in Di

5: Calculate the Gini(Di) value as in Equation 5.1
6: end for
7: end for
8: Calculate GiniA(D) following the Equation 5.2
9: return GiniA(D)

The algorithm presents the strategy to calculate the value of the Gini impurity. The
process assumes a data set D and estimates the statistical measurement for the attribute
A. The process is repeated for each of the attributes in D.

is defined as
Entropy(D) = S(D) = −

C∑
j=1

pj log2(pj), (5.4)

where pj is the portion of samples in D with class value j as defined before. The
process of calculating entropy is presented in the instructions in Algorithm 3.

Algorithm 3 Entropy estimation
Input: The partitioned subsets D1 and D2 by A.
Output: Entropy value
1: for each subset Di in {D1, D2} do
2: Determine the percentage of samples in Di

3: for each class c in Di do
4: Calculate the probability of class c in Di

5: Multiply the probability in logarithmic value by (−1)
6: end for
7: end for
8: Calculate Entropy(D) as the Equation 5.4
9: return Entropy(D)

The algorithm describes the strategy to calculate the Entropy value. The process assumes
a dataset D and estimates the Entropy for the attribute A.

Consequently, the Information Gain uses the Entropy Equation 5.4 to be defined
as:

IG(D, A) = S(D)− S(D|A), (5.5)

106



5.1. Random Forests Training

where S(D|A) corresponds to the entropy value in the data set resulting from dividing
the data set D by the attribute A.

Algorithm 4 Information Gain estimation
Input: Dataset D and list of attributes A.
Output: IG value, Attribute
1: entropy ← Entropy(D)
2: for each attribute a in A do
3: Compute the expected information as Equation 5.5
4: end for
5: Find the highest IG value and the respective attribute highest_a
6: return highest_IG, highest_a

The algorithm presents the strategy to calculate the Information Gain (IG) value. The
process assumes a data set D and estimates the IG for the attribute A. The process is
repeated for each of the attributes in D.

Algorithm 4 presents a procedure for calculating information gain value. Algorithms
3 and 4 are based on current literature on decision trees’ impurity measure estima-
tions [MR14; Has+09].

5.1.1.2. Decision Tree Application

After the tree construction, the tree is used to classify (predict) data using the trained
model. The application of the model consists of predicting the classes for (in particular,
testing) records to determine if the predicted class is equal to the true class. The prediction
is based on the decision tree’s hierarchical structure, the predicted class is reached by
traversing from the root to the leaf while performing the intermediate node validations.

Figure 5.1 presents a tree trained from real data corresponding to gene expression levels
for thousands of genes, almost 20 thousand attributes with a labeled class. The data is
labeled and correspond to five types of cancer represented by the leaves of the tree with an
integer value class between 1 and 5. The hierarchical structure provides information about
the trained model. Each complete path corresponds to one conditional rule. The figure
also shows relevant information for the construction of the tree. For example, information
such as the Gini value, the number of records analyzed, the distribution of records by
class analyzed, and the predominant class in each node. The root node corresponds to
the best attribute (gen10896) with a Gini value of 0.758, from 252 of five classes with
predominant class 1. Similarly, the remaining nodes present this information based on

107



IIPart, Chapter 5 – Fully Distributed Random Forests (MuSiForest)

1 2

3 5

4

root

Figure 5.1 – Decision tree modeling a data training process with thousands of genes,
multiple classes, and five paths from the root to leaves.

node split evaluation. The color of each node indicates the majority class of the analyzed
records.

The tree application (prediction process) traverses the tree from the root to a leaf. Sup-
pose, we are interested in classifying the sample record x into one of the classes using the
constructed tree: x = (att_8906 = 0.21, att_6737 = 0.18, att_3223 = 0.415, att_15799 =
0.52, att_10896 = 0.02, att_217 = 0.12). The process starts from the root and chooses the
corresponding path based on the values of each attribute of x. In this case, the root chooses
the left branch until it reaches the leaf represented with path 2. Therefore, the record x

is classified with a class value 1.

108



5.1. Random Forests Training

5.1.2. Estimating the Prediction Error

As explained in Section 3.2.2.1, a random forest is composed of multiple trees, each
trained following the previously presented algorithm. In the random forest, each tree can
be used independently. The forest prediction is achieved by a majority vote.

The prediction (classification) error in the Random Forest model is calculated based
on the error of each decision tree. The classification error is defined as:

error(RF, DT E) = 1
|DT E|

∑
(xi,yi)∈DT E

I
(

yi 6= RF (xi)
)

, (5.6)

where RF is the forest, and DTE is the testing data set. Remember that the forest
is built from labeled records, the record xi has a known class, yi (a true class for each
record). The value of RF(xi) corresponds to the predicted value determined by most trees
for the record xi. We refer to this value as ŷi (a predicted class).

The main objective of training a model is that the value of yi is close to or equal to
the value of ŷi, for each record, xi, of the testing set. Thus, the classification error of the
forest can be redefined as:

error(RF, DT E) = 1
|DT E|

∑
(xi,yi)∈DT E

I
(

yi 6= ŷi

)
, (5.7)

where ŷi is the most frequent class predicted by the trees of the forest for each record
xi, and |DTE| is the number of records in dataset DTE. From this classification error, it
is possible to calculate the classification accuracy as: classAcc = 1− error. However, there
are different classification metrics to evaluate the model. We consider to four of them,
the most popular measurements in classification models: accuracy, precision, recall, and
F-score, which will be used in the experimental phase.

5.1.2.1. Metrics for Classification Models

The results of the classification models can be visualized through a matrix represented
by two dimensions, “Actual” and “Prediction”. The matrix rows indicate the actual class
(a true class: yi), and the columns determine the class predicted by the model, ŷi.

109



IIPart, Chapter 5 – Fully Distributed Random Forests (MuSiForest)

Table 5.1 – Confusion matrix for a binary classification problem.

Predicted Class
Positive Negative

Actual
Class

Positive TP FN
Negative FP TN

Table 5.1 presents an example of a confusion matrix for a binary classification problem
with only two output classes (e.g., positive and negative). The four entries are calculated
based on the correct and incorrect records predicted by the model:

TP (True Positive) is the number of predictions in which the model correctly predicts
the positive class.

TN (True Negative) is the number of predictions where the model correctly predicts
the negative class.

FP (False Positive) is the number of incorrect predictions, where the model incor-
rectly predicts the positive class when the actual class is negative.

FN (False Negative) is the number of incorrect predictions, where the model incor-
rectly predicts the negative class when it is positive.

Based on these four values, the total number of correct predictions is given by TP + TN
and the total number of incorrect predictions by FP + FN. The matrix gives an intuitive
visualization of the results of the classification model applied to testing records. Neverthe-
less, the confusion matrix is not a performance measure. However, classification metrics
can be defined based on the confusion matrix values (an extensive discussion on these
metrics is explained in [SL09]). We use four classification metrices, which are presented
later in the implementation section, to evaluate the trained models.

Accuracy
Accuracy is the proportion of samples for which the model predicts the correct result. It
can be defined as:

accuracy(y, ŷ) = 1
nsamples

nsamples∑
i=1

I
(

ŷi = yi

)
, (5.8)

110



5.1. Random Forests Training

where yi is the true class, and ŷi is the predicted class for the record xi. The accuracy can
also be defined from the confusion matrix as:

accuracy = TP + TN

TP + FP + FN + TN
(5.9)

In contrast, the classification error can also be defined as follows using the matrix entries:

error = FN + FP

TP + FP + FN + TN
(5.10)

Precision
Precision is defined as the portion of positive samples correctly classified divided by the
total number of samples classified as positive. This metric measures how many samples
predicted as positive are actually positive, defined as:

precision = TP

TP + FP
(5.11)

Recall
Recall indicates the number of positive samples classified as positive by the model. The
recall value is the ratio between all well-predicted positive samples divided by the total
number of positives, defined as:

recall = TP

TP + FN
(5.12)

F-score
Also known as F-measure, it combines the previous metrics, Precision and Recall, into a
single value. F-score is defined as:

F − score = 2× precision× recall

precision + recall
(5.13)

5.1.2.2. Out-of-Bag (OOB) Error Estimation

The four classification metrics defined above evaluate the random forest and estimate
a measure of the quality of the prediction of the trained model. However, it is possible to
determine the error of each tree independently without the need to evaluate all trees in
the forest together.

111



IIPart, Chapter 5 – Fully Distributed Random Forests (MuSiForest)

Remember that before training the forest, the Bagging (Bootstrap AGGregatING)
strategy is applied to select a different resampling data set to build each tree independently
(see explanation in Section 3.2.2). A bootstrapped set consists of random samples with
replacements from the initial training set (DTR). Approximately two-thirds of the training
records are used to train each tree (inBag set), and the remainder is left Out-Of-Bag (OOB
set) to evaluate each local tree independently.

Initial
dataset

x1 x2
x3

x4 x5 x6

x1 x2
x3

x4x5 x6

x1 x2
x3

x4
x5

x6

x1x2
x3

x4x5

x6

x1 x3

  inBag1       oob1             inBag2       oob2                    inBag3       oob3

                                           
  DT1                             DT2                                  DT3    

Each oobi set is used to evaluate each tree DTi independently. 
The aggregation of each local evaluation leads to the estimation of the forest error.

Build each
decision tree

Bootstrap
Sampling

Each oob set is used 
to evaluate the

corresponding DT

Figure 5.2 – An illustration of OOB error estimation for each decision tree

Breiman [Bre96c] proposed the out-of-bag estimation procedure to compute the en-
semble tree’s classification error based on two data sets, inBag and OOB. The procedure
illustrated in Figure 5.2 computes the error for each tree individually. From the training
data set, multiple bootstrapping samples are selected according to the number of trees in
the forest. In the example, the forest has three trees, therefore, a pair of sets inBag and
OOB is necessary for each tree. Each inBag set leads to training each tree, and each OOB
set is a validation set for each trained tree. This OOB set works as a testing set.

To estimate the Out-of-Bag error, first, each tree predicts each sample from OOB,
then the true class is compared against the predicate class, and finally, the classification
quality is estimated for each tree. The training and testing process occurs independently
for each tree. The sets inBag and OOB are specific to each tree. This strategy seeks to
evaluate the local precision of each tree from the records not used for training each tree.

112



5.2. A Fully Distributed Random Forests Algorithm

5.1.3. Complexity of Random Forests

Several parameters may influence the construction of decision trees. For example, one
may tune parameters such as the measurement impurity function (i.e., Gini impurity
or Entropy), depth (maximum depth of the tree), and mtry (the number of features to
consider for the best split). The runtime complexity of the decision tree depends on these
parameters. Assuming a dataset with numerical values, the runtime complexity of building
a decision tree is O(n·m· log (m)), where m is the number of samples, and n is the number
of attributes. The time complexity of testing a DT model is determined by the depth of
the tree, O(depth) (number of edges from the root to the leaf node).

Random forest implementations also consider tuning parameters such as measurement
impurity functions (e.g., Gini or Entropy), depth (maximum tree depth), and mtry (the
number of features to consider for the best split). Remember that the complexity of
training a single tree is given by the Equation O(n · m · log (m)) with m samples and
n attributes. Thus, if the forest has nt trees, then the time complexity for building the
forest is O(nt · n ·m · log (m)). Therefore, the time complexity applying a random forest
model is given by the number of trees and the depth of the tree O(nt · depth).

5.2. A Fully Distributed Random Forests Algorithm

We propose a Fully Distributed Random Forests Algorithm (MuSiForest) to build a
federated and collaborative model from data located in multiple sites. The proposal’s main
objective is to train a classification model while ensuring confidentiality and ownership
properties of biomedical data.

This section presents the MuSiForest algorithm’s methodology with its phases and
the corresponding steps composing each phase. Furthermore, the proposed strategies to
aggregate independent trees, the way to share the model, and how to apply and evaluate
the collaborative forests.

5.2.1. MuSiForest Methodology

A random forest is a set of multiple trained trees where each tree predicts the class
of a specific instance. Due to the forest’s composition, the training of each tree can be
computed in parallel, each tree can be trained from an independent bootstrapped data
sample, as presented in Algorithm 5 (based on Bagging, discussed on page 70).

113



IIPart, Chapter 5 – Fully Distributed Random Forests (MuSiForest)

Site1

Site2

SiteS

RF1

RF2

RFS

BLM

BLM

BLM

GLM

GLM

GLM

DTR1

 CM V1

CM V3

Collaborative

SCM

SCM

SCM

MEO

MEO

MEO

Random Forest training process based on FDCs

   Preprocessing        Training                Grouping       Aggregating      Sharing         Evaluation and Outcomes

BLM: Build a Local Model, GLM: Group Local Models, SCM: Share Collaborative Models, MEO: Model Evaluation and Outcomes 

stop

stop

stop

LocV1

DTE1

DTE2

DTES

DTR2

DTRS

CM's

CM's

CM's

DTE1

DTE2

DTES

1. Local Model Construction                 2. Model Aggregation              3. Models Evaluation

Aggregate

 CM V2

LocV3

LocV2

LocV1

LocV3

LocV2

LocV1

LocV3

LocV2 Models

Figure 5.3 – Construction and evaluation of the RF model under Fully Distributed Col-
laborations. The process involves s sites. From each dataset a training (DTR) and testing
(DTE) set are generated that are used on the local and collaborative models privately.

The MuSiForest methodology uses the Bagging strategy. But in a multi-site scenario,
where each site builds the forest locally, we propose the following:

First, the trees are aggregated locally using three strategies into ensemble diverse
forests.

Next, the forests are shared to be aggregated and build a collaborative forest.

Finally, each site has a collaborative forest trained jointly and a local forest trained
privately and does not collect information from the other sites.

Figure 5.3 shows the phases of the proposed methodology (upper line) and the corre-
sponding steps (remaining part).

5.2.2. The MuSiForest Algorithm

Datasets: Assume there are s geo-distributed sites, and each has a dataset denoted as
Di, (1 ≤ i ≤ s). Each site has a strict data-sharing policy, so they cannot share any raw
data. The dataset Di contains information for mi samples and ni attributes. The samples
at each site are unique and private, but they may have common attributes (following the
horizontal partition depicted in Figure 3.9). Consider, for example, a group of medical
institutions interested in building a collaborative model to predict cancer types from gene

114



5.2. A Fully Distributed Random Forests Algorithm

expression levels. Each hospital has private samples from its patients, but the samples have
common information, such as the expression level for each gene in the human genome.

Retaking the collaborative case between France and Colombia introduced in Section
2.4 as an extension idea of the ICAN project. Each participating member has private
information about their patients. However, the samples have data in common (attributes).
In this case, the samples have common attributes, the genes, but they correspond to
different patients, unique to each site.

The model construction and application process are based on traditional learning
models. However, it is complemented with the proposed aggregation strategies to obtain
a diverse and precise collaborative forest, mainly by:

Construction of the local forest,

Aggregation of trees to produce diverse forests, and

Evaluation of local and collaborative forests.

These phases belong to the proposed algorithm, MuSiForest, and are detailed below, along
with the steps to meet the desired objective in each phase.

5.2.2.1. Local Model Construction

The first phase of the algorithm, the construction of the local forest, follows two steps,
the traditional training of the forest, next the evaluation of local data.

Step1: Model Training
The dataset has the form Di = {(xi

j, yi
j)}mi

j=1 = {(xi
1, yi

1), ..., (xi
mi , yi

mi)} on each site i, where
X i

j is a vector of attributes, and Y i
j is the vector class (target variable) for the jth record.

Two new sets are generated from this data set Di, training (DTR) and testing (DTE) sets,
following the explained above (see section 5.1.1).

Algorithm 5 presents the instructions for training each tree in the the forest. The al-
gorithm follows the traditional training in learning models [MR14]. The data partition be-
tween training and testing is presented in line 1 in the function split_into_training_testing.
The bagging strategy generates a bootstrapped dataset (bstrap) from DTR to build each
tree, it is implemented in line 4, and the remainder is an Out-Of-Bag set (OOB) used
to evaluate each tree individually. The evaluation of each tree is using the OOB set to
determine an error value for each one. Line 6 computes the internal error rate for each tree

115



IIPart, Chapter 5 – Fully Distributed Random Forests (MuSiForest)

Algorithm 5 Model Training
Input: Dataset Di composed of mi labeled samples {(x1, y1), ..., (xm, ym)}, ntree: number

of trees, feat: number of features, depth: maximum depth reaches, mtry: number of
attributes considered at each split

Output: RF Model, DTE
1: DT R, DT E ← split_into_training_testing(Di)
2: RF ← empty_set
3: do in parallel {for each tree in RF }
4: bstrap, oob← generate_bootstrap_sample(DT R)
5: treej ← build_DT (bstrap, feat, mtry, depth)
6: oobErrorj ← tree_prediction_error(treej, oob)
7: RF ← RF ∪ (treej, oobErrorj)
8: end
9: return RF, DT E

The algorithm presents the instructions to train the forest. The input required is the
dataset, number of trees, number of attributes, maximum depth of each tree, and number
of attributes to consider at each split. The algorithm returns the trained forest and the
testing set for the subsequent evaluation of the models.

(oobError). The oobError is calculated using the dataset bstrap, and the trained tree fol-
lowing the explained in the Out-Of-Bag procedure (see subsection 5.1.2.2). The algorithm
ends at line 7, appending information from each tree, where RF represents the forest. The
union operation, ∪, follows the traditional on sets, defined in Equation 5.3a. Due to the
design of the algorithm, this is highly parallelizable during the construction of the forest.
Therefore, the construction process can take advantage of the computing facilities at each
site by efficiently exploiting distributed resources on site. In summary, the local forest
training consists of:

(i) Generating a training dataset DTR, by choosing a percentage of random samples
from the local dataset Di,

(ii) Resampling n different bootstrap samples, bstrap, to train each tree separately from
the training dataset DTR,

(iii) Training each tree to find a function RF that better maps the input values, bstrap,
to the class.

At the end of the execution of these steps, the forest RF is composed of trees denoted as
RFi = {t1, t2, . . . , tn} composed of with n trees for the site i. The algorithm finally returns

116



5.2. A Fully Distributed Random Forests Algorithm

the testing set, DTE, that will be used to evaluate all random forest models (local and
collaborative), using the same data set to obtain comparable metrics.

Step2: Model Evaluation
The testing dataset, DTE, is used to evaluate the trained forest, where DT E ⊆ Di,

thus, the elements have the same structure {X i
j, Y i

j }. The n trees of the forest are used to
evaluate the classification error of the trained model. Remember that the classification for
each test sample is done by consensus among all trees (see Section 5.1.2 for more details).
This process is done for each trained forest, both for the locally trained model and the
collaborative versions. The details about the construction of the collaborative versions is
explained later. In summary, the evaluation of the trained model RF = {t1, t2, . . . , tn}
consists of:

(i) The n trees of the forest RF are applied on each record xi ∈ DTE to predict n classes,
{Ŷ1, Ŷ2, ..., Ŷn}, one for each record xi.

(ii) From these classes, the majority class, Ŷi, is computed to determine the predicted
value for the record xi.

(iii) The classification error is computed based on the predicted classes Ŷi, the compu-
tation is based on Equation 3.1.

The two previous steps, model training and evaluation, lead to reaching the first
phase of the MuSiForest scenario. The construction of the forest from the training set and
evaluation process using a testing set of the forest at each site. These steps are applied
independently on each site on the local data without sharing any information.

5.2.2.2. Model Aggregation

The construction of the collaborative model groups the best locally trained trees based
on the oobError of each tree at each site (see Out-of-Bag error estimation procedure
explained on page 111). The proposed approach to aggregating local trees addresses five
relevant aspects:

Building an ensemble model via site collaboration.

Having a classification scoring similar to other federated proposals.

Minimizing data leakage risks by sharing models and not raw data.

117



IIPart, Chapter 5 – Fully Distributed Random Forests (MuSiForest)

Taking advantage of the computational facilities at each site.

Reducing the amount of information transferred between the parties.

The model aggregation process consists of three steps. The first step groups the best
local trees by employing three strategies. The second shares the grouped models with
other sites. Lastly, the generation of collaborative models by aggregating the trees in a
global forest. The generation of collaborative models leads to three versions according to
the strategies of the first step. The details of the second phase steps are illustrated in
Figure 5.3 (on page 114) and explained below.

Step1: Grouping Trees
After the first phase, the local construction of each forest, each site i has the forest

RFi = {t1, t2, . . . , tn}. The local aggregation groups the best locally trained trees through
three strategies based on the local evaluation of each tree using the oobError calculated
in line 6 of Algorithm 5. Based on this evaluation metric, the three aggregation strategies
are: joining without distinction (aggregating all local trees), choosing a percentage of the
best trees, and those whose precision is higher than the median accuracy value.

1. Joining without distinction: the trees are aggregated together following the natural
idea of the random forest algorithm. The aggregation groups all local trees following
Breiman’s approach to produce the RFi model at each site.

2. Joining by percentage: the trees have associated the values oobError and classAcc
calculated during the construction phase. This strategy selects a percentage of the
best local trees of each site by its classAcc value. We leave out the worst trees for the
individual oobError of each one. We denote this set of trees in site i as BestPerTreesi.

3. Joining by median value: this strategy selects those whose precision is higher than
the forest’s median classification value. We use the median value since it represents
the best value of central data distribution, especially when the distribution is skewed
and has outliers. The forest built with this strategy is denoted as BestMdnTreesi for
site i.

At the end of this grouping step, the local trees on each site have been grouped by three
strategies: RF, BestPerc and BestMdn. They are, respectively, denoted as LocV1, LocV2,
and LocV3 in Figure 5.3 on page 114. Algorithm 6 presents the strategies implemented to
generate three forest versions on each site.

118



5.2. A Fully Distributed Random Forests Algorithm

Algorithm 6 Model Aggregation
Input: perc: percentage of best trees, Random Forest RF, RF = {(treej, oobErrorj)},

where 1 ≤ j ≤ NoSites.
Output: Three aggregated forests from local trees
1: medianclassAcc← get_median_accuracy_trees(RF)
2: threshold← get_threshold_best_perc_trees(RF)
3: BestPerc, BestMdn← empty_sets
4: for j ← 1 to ‖RF‖ do
5: classAcc← (1− oobErrorj)
6: if (classAcc ≥ threshold) then
7: BestPerc← BestPerc ∪ {treej} // ∪ operator defined in 5.3a
8: end if
9: if (classAcc ≥ medianclassAcc) then
10: BestMdn← BestMdn ∪ {treej}
11: end if
12: end for
13: return RF, BestPerc, BestMdn
From the trained forest composed of trees and the classification error of each one, three
versions of the forest are aggregated (RF, BestPerc, BestMdn), leaving the worst trees out
of the collaborative models.

Step2. Sharing the Grouped Models
The MuSiForest algorithm shares models from multiple sites to the aggregating site.

The location of the aggregator depends on the deployed architecture and is detailed in the
next section. The selection of the aggregator depends on the desired level of distribution
and conditions of the sites, such as:

(i) One site may have better computer capacity installed than others. The site config-
urations can be heterogeneous due to processing and communication capacity. This
ability allows dynamically assigning the aggregator site like the one with the best
computing facilities.

(ii) A site equidistant from others. Grouping sites can favor aggregation due to their
geographical location to improve transmission. The aggregator site can be the one
most central to all in terms of channel capacity.

(iii) By agreements between some sites to share information responsibly. The aggrega-
tor may be according to any specific region, respecting the regional data-sharing
restrictions.

119



IIPart, Chapter 5 – Fully Distributed Random Forests (MuSiForest)

Under these considerations, the architecture is determined and, therefore, the num-
ber of aggregating sites. The shared information corresponds to trained models whose
structure is the hierarchical structure represented in decision trees. The model’s structure
corresponds to the tree’s levels by the nodes and the conditions in each of the branches.
The tree level are represented from the root (most significant attribute) to the leaves
(dataset classes). The information share in trained models do not reveal sensitive patient
data [Yin+11]. The data privacy of patient samples is preserved because it is not part
of the trained model. Similarly, if we consider sharing statistical information during tree
construction, such as sum and average, it does not compromise sensitive patient informa-
tion [AS00].

Step3: Aggregating the Collaborative Model
The responsible site for receiving the models also aggregates them to build the collabora-

tive model. The aggregator site receives three forests from each site: RFi, and BestPerTreesi,
and BestMdnTreesi. These models are sets of individual trees. Next, it creates three different
collaborative models joining the forests of each type:

CMJoin = ⋃s
i=1 Fi, is a large forest composed of the forests for s sites.

CMPerc = ⋃s
i=1 BestPerTreesi,

CMMdian = ⋃s
i=1 BestMdnTreesi.

Algorithm 7 presents the generation of these collaborative models. The algorithm is
executed on the aggregation site depending on the deployed architecture. Figure 5.3 (on
page 114) illustrates these three collaborative versions, such as CMJoin, CMPerc, and
CMMdian.

The idea of aggregating local trees by the individual level of precision is presented
in [CJL07]. They discard some of the worst trees to build a model called Trimmed Bagging.
Based on experimental results, they show better precision than the traditional forest
but in a local site, without collaboration with others. We apply this idea of selecting
the best local trees on each site to next aggregate into collaborative forests. We seek
an optimal classification close to the central one but only share knowledge inherent to
data location without risking data confidentiality. Finally, the aggregator site returns the
collaborative models to each site to be evaluated and applied to the local data to complete
the aggregation step.

120



5.2. A Fully Distributed Random Forests Algorithm

Algorithm 7 Generate Collaborative RF
Input: Set of RF models {(RFj, BestPercj, BestMdnj)} , where 1 ≤ j ≤ NoSites
Output: Collaborative RF models
1: CMJoin, CMPerc, CMMdian← empty_sets
2: for i← 1 to NoSites do
3: CMJoin← CMJoin ∪ {RFi} // ∪ operator defined in 5.3a
4: CMPerc← CMPerc ∪ {BestPerci}
5: CMMdian← CMMdian ∪ {BestMdni}
6: end for
7: sendToAll CMJoin, CMPerc, CMMdian

The aggregator site makes the aggregate from the models aggregated and shared by
each site to form three forest models from the three proposed strategies. In the end, the
aggregator sends the three collaborative forests to each site: CMJoin, CMPerc, CMMdian.

5.2.2.3. Evaluating the Collaborative Model

At this point, each site has received three collaborative forests from the aggregation
site. Therefore, each site has four models, one built locally, RFi, and three by collaboration:
CMJoin, CMPerc, and CMMdian. Next, the four models are evaluated separately on the
testing dataset DTEi . The evaluation follows the process explained in the section on model
evaluation, see Step3 in 5.2.2.1.

Discussion

The MuSiForest algorithm comprises three main phases: local construction, aggrega-
tion models, and application and evaluation of each model. Due to the nature of training
an ensemble model as a random forest, the three phases are highly parallelizable by its
design computing on distributed infrastructures at each site. Moreover, our strategies for
aggregating the collaborative models are also highly parallelizable through the multi-site
distribution, according to the steps presented in the algorithms discussed above. The ex-
perimentation and results address the challenges presented at the beginning of the chapter
(listed on page 77). We show favorability in each of them by implementing the MuSiFor-
est algorithm to analyze geographically distributed data; as a first scenario, we train a
collaborative forest to classify and predict samples.

121



IIPart, Chapter 5 – Fully Distributed Random Forests (MuSiForest)

5.3. Privacy-Preserving Bias Correction

Bias in machine learning is a phenomenon that affects the training process, as ex-
plained previously (see Sec 3.2.1). Bias leads to inaccurate models due to incorrect data
assumptions during training. These assumptions can be caused by data with a dominant
class, which induces a bias in the learned model towards such classes. Moreover, the train-
ing can lead to bias due to the characteristics of the geographical location of the patients.
Consequently, a multi-site analysis can be affected by these two reasons. Some sites have
majority classes and others particular values due to the geographical location of the sam-
ples. The bias is evidenced in the experimental results by achieving less accurate models
between more distributed sites than the centralized model over all data, as will be shown
later.

This section presents three strategies for bias correction induced by each site’s data
in the collaborative model. These strategies seek a balance between the collaborative
model’s privacy and accuracy. The strategies consider sharing partial data securely by
implementing known techniques for the collaborative model based on privacy-enhancing
technologies over biomedical data [Are+18].

However, there is a paradox behind a collaborative model: collaboration leads to diver-
sity by gathering knowledge from all sites and promoting data security and confidentiality.
The collaborative model can also induce biases that affect the prediction of the results in
contrast to the traditional centralized training.

The three bias-correction strategies are:

1. The first strategy is based on secure data containers. It considers a global data set
referencing the samples at each site, but the samples are stored private at each site.
The idea is to generate and collect resampling samples of the global references from
each site’s records and then follow the bagging strategy to train the global forest.

2. The second strategy considers the collaborative construction of each tree, level by
level, through the aggregator. The construction of each tree requires information
gain, a statistical measurement of each set of attributes locally. This strategy con-
siders two sharing approaches: a trusted aggregator without encrypting the values
and an untrusted aggregator requiring homomorphic encryption operations.

3. Finally, the third strategy combines the misclassified samples at each site during
the evaluation phase. These samples are securely shared with neighbors’ sites via

122



5.3. Privacy-Preserving Bias Correction

public and private keys. These samples are part of the validation data set to be safely
shared with others. The goal of sharing a validation dataset is to extend the diversity
of the global forest by aggregating misclassified samples. This strategy is based on
the idea of privacy-preserving classification proposed by Raphael et al. [Bos+14].

These strategies seek aim at sharing partial data while preserving the privacy and
confidentiality of the information.

5.3.1. Secure Data Containers (SDCs)

The first proposed strategy is named Secure Data Containers (SDC) due to sharing se-
curely partial data during the collaborative training. The secure data container is a means
for securing data and learning models that are shared with others. The aggregator site has
information about the number of records for each site, which are kept privately stored in
each one. Further, the aggregator has a consolidated data set with pointers (references) to
identifiers of the records of each site. The identifiers can be consecutive numbers, but they
are not sensitive to patient information. The consolidated data set stores each pointer ref-
erenced to each site’s sample identifiers. The objective of this consolidated set is to apply
the bagging strategy to determine the random sampling of pointers and then safely share
each site with these samples that will comprise the training set. Figure 5.4 represents the
aggregator site with the consolidated set with only the pointers to each site’s records.

Site 1

RecId    SampleID      Data
rec965       852775      [records]    
rec842        69875       [records] Cons   RecId   Site

0001   rec965    01
0002   rec842    01
0003   rec142    02
0004   rec143    02
0005   rec144    02
0006   rec051    03
0007   rec049    03
0008   rec050    03

 Aggregator Site

Site 3

RecId    SampleID      Data
rec051      987885       [records]
rec049       98887        [records]
rec050    12025547     [records]

Site 2

RecId    SampleID      Data
rec142       59987        [records]
rec143      102545       [records]
rec144      897556       [records]

Indicates the
required

Sends the
encrypted

 CM's

Trains three 
collaborative
forests

Sends back

identifiers samples
collaborative
models

Figure 5.4 – Secure Data Container strategy to share partial data securely.

This bias-correction strategy is illustrated in Figure 5.4 and follows three steps:

123



IIPart, Chapter 5 – Fully Distributed Random Forests (MuSiForest)

1. The aggregator site stores all records to each site’s identifiers (RecId). Identifiers
are unique values to identify each site sample, but they are not sensitive data val-
ues. From this set, the aggregator chooses a random sample of references using the
bagging strategy to build a set of random references pointing to each site’s identifier
records. Then, based on this set of references, the aggregator site sends the required
records, RecId, to each indicated site.

2. After receiving the list of identifiers required by the aggregator, each site generates a
data set with the required samples from such identifiers. Then, each site packages the
data required in a container and, applying some encryption techniques, gets a secure
container to be shared with the aggregator. The container is encapsulated based on
biomedical encryption techniques such as those presented in [Azi+19; Are+18].

3. Finally, after receiving the secure data containers from each site, the aggregator is
responsible for aggregating the consolidated data set from the samples received from
each site. For this, the aggregator must decrypt the samples to generate that will be
the training set of the collaborative forests. Then, the aggregator trains the forest
using the three strategies of the MuSiForest algorithm. In the end, it sends back the
three collaborative forests to apply privately to all data at each site.

After applying the SDC strategy, each site has four models, the one built locally and the
three collaborative versions shared by the aggregator. The encrypted data shared by the
aggregator does not correspond to the total records. It is only a portion of the records
according to the bagging technique.

The Secure Data Container strategy can reduce the model’s bias by having a higher
representation of the data distribution for each site. The collaborative models better
generalize the sample population from the sites through statistical sampling mechanisms
such as bagging. Moreover, the models increase the diversity compared to the version
trained on each site. One site is limited to knowing the data of another site, but this is
exclusive to the aggregator site, which accesses the partial records securely.

In summary, the SDC strategy can reduce the bias of the collaborative model due to
the greater availability of data to train the forest at a single site. However, this strategy
requires more flexibility in terms of security between the sites to ensure the sharing of
containers.

124



5.3. Privacy-Preserving Bias Correction

5.3.2. Secure Tree Data (STD)

The second strategy considers the collaborative construction of each tree in the forest
among all the sites. Remember that each tree has a hierarchical structure comprised of
levels from the root to the leaves. The tree hierarchy is defined based on statistical mea-
surements to determine the gain of information on the attributes of each site, following the
explained in Section 5.1.1.1. This second strategy, STD, involves two approaches to shar-
ing data. The first approach is to encrypt the data with Fully Homomorphic Encryption
(FHE) techniques on each site before sharing data. The encrypted data corresponds to the
statistical measurement, assuming the non-existence of a trusted third party. While the
second is to share the values without encryption, assuming the existence of a trusted site.
These two approaches increase the sharing scenarios depending on the level of security
offered and the computing facilities of each site that does collaborative analysis.

FHE-based Sharing

The FHE-based approach applies when there is no trusted third-party site to share
data. For instance, the aggregator is not part of the collaborating members, but it can be
used for its high computing capacity appropriate for the analysis. Encryption based on
fully homomorphic techniques supports mathematical operations such as addition, mul-
tiplication, and comparing encrypted data [Van+10]. However, homomorphic operations
are computationally-intensive, decreasing the performance. Nevertheless, the FHE-based
approach can be considered to share encrypted numerical values with the non-existence
of a trusted site.

Site 1

att7

att2           att1

att6            att5

Site 2

att8

att6           att3

att3            att9att4 

att1

Aggregator

att7

att6           att3

att6            att5att4 

att1

The tree-level values are encrypted with a 
local key to be shared with the aggregator

The aggregator compares the values per level,
comparing encrypted values to build global trees

The aggregator sends back the
global encrypted tree to each site

Figure 5.5 – Secure Tree Data strategy based on FHE to build each level tree securely.

This approach applies FHE techniques based on other homomorphic techniques (as

125



IIPart, Chapter 5 – Fully Distributed Random Forests (MuSiForest)

presented in [Aka+22]) based on the construction of each tree in the forest described
in 5.1.1.1. The main idea is to share encrypted statistical values with the aggregator
(untrusted site) to build each tree level by level. Then, the aggregator builds each tree from
the statistical information shared by each attribute (identifier, gain level, and split value).
This strategy is illustrated in Figure 5.5, and the idea is summarized in the following
steps.

1. Assume that two sites want to build a collaborative model, tree by tree. Each site
shares tree-level values by training each tree from local data. The tree-level val-
ues, Information Gain (IG), result from the splitting procedure (see explanation in
5.1.1.1). The values resulting are the most important attributes and their splitting
values. This information is represented by the set IGs = {att1, . . . , attp} that repre-
sents the information for p attributes in the site s. Each one of the elements of IG
(attt) contains the identifier (idt), the Information Gain (igt), and the split value
(cvt) for the attribute t.

First, each site creates the respective data set, IG1 and IG2, for its local data set.
Next, create an encrypted version from these values using a local key to be shared
with the aggregator.

2. The aggregator receives the encrypted values from two sites and compares the gain
values ig1

t and ig2
t , selecting the major value. This value corresponds to each level of

the global tree. This procedure is applied until it reaches each tree’s depth.

3. Finally, the aggregator sends the global encrypted tree back to each site. The pre-
vious process is repeated, and the collaboration finishes until the forest is complete.

As already mentioned, this approach assumes data sharing with an untrusted site.
Therefore, the data shared is encrypted. However, this strategy can increase the latency
time between the sites because the collaboration is done level by level for each tree.
Moreover, FHE techniques are subject to some limitations in handling large numbers
because of the computational effort required by the homomorphic evaluation [ZZK16].

TrustedSite-based Sharing

This strategy follows the explanation of the previous part, but it is applied to cases
when the aggregator is trusted. Therefore, this scenario does not consider encrypting the

126



5.3. Privacy-Preserving Bias Correction

data to be shared. Instead, the process follows the collaborative construction of each tree
level, sharing information about the statistical gain from each site (as explained in Section
5.1.1.1). The sites only share unencrypted information about the hierarchical structure
of the trees. The strategy does not consider sharing raw data. The idea is the same as
illustrated in Figure 5.5, but removing the encryption process on each site because the
aggregator is a trusted site. In the end, The aggregator site has a global model composed
of each tree to be sent back to each site.

5.3.3. Secure Validation Dataset (SVD)

The last strategy, SVD, seeks to create a global validation data set from the misclas-
sified samples in each site forest. This global validation set will be the training set to
apply the MuSiForest algorithm. The idea of having a global validation dataset aims to
gather misclassified samples to have a dataset with more knowledge from data from all
sites. Gathering this diverse knowledge will be a way to correct the bias of the collabo-
rative model. The SVD strategy is based on the idea of privacy-preserving classification
proposed by Raphael et al. [Bos+14].

Share the encrypted test samples to
be classified with the other RF model

D1

Site 1

DTE

DTR

RFeRF1

D2

Site 2

DTE

xe x2

Site 2

DTE

DTR

RFeRF2

DTR

DVAL2

RF1(x2) e     e

Send back encrypted predicted classes
after applying the RF model

eŷ
2 

Site 1

DTE

DTR

DVAL1 eŷ
1 

xe x1

RF2(x1) e     e

D1 D2

Site 1

D1

Phase1: Evaluate the local forest with external test samples. The forest and test samples are encrypted.

Phase2: Receive the validation dataset

1

1

2

2

2

2

2

2

DVAL2

MuSiForest
Algorithm

Site 2

D2DVAL1

MuSiForest
Algorithm

Compare returned class versus true class,
and store misclassification samples in DVAL

Receive the misclassified testing samples
(DVAL) to retrain the local forest

5 5

5 Apply the MuSiFores algorithm on the
aggregated data sets D and DVAL

from the other site to retrain the RF model.

Figure 5.6 – Bias-correction strategy based on a secure global validation dataset.

This strategy is illustrated in Figure 5.6, composed of two main phases, evaluating the
local forest with external test samples and receiving the validation dataset from the other
site to retrain the models. Assuming that the strategy is applied between two sites (site1

and site2), these two phases proceed as follows:

127



IIPart, Chapter 5 – Fully Distributed Random Forests (MuSiForest)

1. In the first step, site1 receives from site2 the encrypted testing samples D2
TE. With

these samples, site1 predicts with the encrypted forest RF1
e each testing sample x2

e

from site2 to obtain ŷ2
e . Similarly, site2 receives the encrypted testing samples x1

e

from site1 to apply the local forest RF2
e. The encryption and privacy classification is

based on Raphael et al. [Bos+14].

At this point, each site obtains predicted classes encrypted with the opposite RF on
its testing samples. For instance, site1 has the predicted classes for site2, such that,
RF1

e(x2
e) = ŷ2

e , and vice-versa, site2 has the predicted classes for site1, as RF2
e(x1

e) = ŷ1
e .

2. Each site sends the predicted classes to the respective site. For instance, site1 pri-
vately receives the predicted classes ŷ1

e from site2, and site2 sends ŷ1
e to site1. The

two sites keep the model and samples encrypted; neither site learns anything from
the other because the RF model and samples are always encrypted.

3. On each site, the predicted class is compared against the true class of each record to
identify misclassified records. The set of misclassified records constitutes a validation
dataset. For instance, DVAL1 is shared encrypted with site2, and DVAL2 with site1.

4. Next, site1 receives the validation set from site2, DVAL2 , and site2 receives the DVAL1

dataset from site1. Each validation set comprises samples from the other site mis-
classified by each local forest, where the local model was wrong in those predictions.

5. Finally, site1 expands the initial dataset D1 with DVAL2 . This new dataset is used to
train the collaborative model based on the MuSiForest algorithm. Similarly, datasets
D2 and DVAL1 are joined for use in site2. The local data and validation set from
the other site are combined privately to train the forest following our approach
illustrated in Figure 5.3 (on page 114).

The bias-correction strategy, SVD, seeks to improve model bias by extending the orig-
inal dataset with partial data from other sites. The diversity in the new training dataset
will lead to an unbiased model by collecting more samples from other sites extending
the local knowledge of the samples with data from other geo-located patients. Moreover,
the third strategy uses a recent method for machine learning classification over encrypted
data, a promising area in the coming years to use global encrypted models without moving
data to predict unknown records, such as machine learning as a service [Bos+14; GLN13;
Fri+18].

128



5.4. Architecture and Implementation

Discussion

The fairness1 of model training is an open question in Federated Learning [Kai+21].
The models must meet current regulations for data sharing and improve fairness and ac-
curacy without having access to private data at each site. Nowadays, few approaches have
been proposed to build fairness models. For example, agnostic federated learning [MSS19]
attempts to train a centralized model optimized for any possible target distribution con-
formed by a mixture of client distributions. PATE [Pap+18b] combines multiple trained
models applying DP techniques by introducing controlled noise into the data. Federated
fairness is an open field of study. One starting point is to validate whether the central-
ized bias correction methods apply to geo-distributed environments and determine each
method’s assumptions. Regarding learning model bias, there is a trade-off between pri-
vacy, fairness, and precision, where the local models offer guarantees to comply with these
features, limiting collaborative efforts. In our experiments, we implement one of the three
bias correction techniques proposed and show how the classification scoring of the model
improved sharing of partial data securely.

These three scenarios are applied to realistic projects analyzing biomedical data, such
as the proposed collaboration between Colombia and France (see Sec. 2.4). These col-
laborative scenarios will improve the model’s scoring by reducing the bias by collecting
more information specific to the site of each patient through one of the three strategies
described. Furthermore, the three techniques enrich the MuSiForest algorithm through en-
cryption, sharing, and data processing techniques. These bias-correction strategies enrich
this type of international cooperation favoring privacy in biomedical data and promoting
collaborative research.

5.4. Architecture and Implementation

The MuSiForest engine’s architecture aims for high scalability and flexibility despite
the workload distribution and heterogeneity properties for the processing among multi-
ple participants. Figure 5.7 presents the architecture with the components installed in
each site and their interactions. The interaction between these components supports the
deployment in three distributed processing topologies: sequential, hierarchical, and fully
distributed. These topologies are based on the architecture described in FDCs (see Section

1. We refer to fairness as the absence of generalization about the training data and the model’s
preference for a particular set of features.

129



IIPart, Chapter 5 – Fully Distributed Random Forests (MuSiForest)

 Site

Site Controller
SC

a. Data Partitioning
b. Training Process

e. Aggregation process

Model Controller
MC

c. Grouping Tasks

Distributed Controller
DC

d. Communication
and Interaction Tasks

INTERNET

Training and Aggregator

DCMC
Aggregation and 

grouping local trees

Construction

derivation of models

Application and 
evaluation of models

Application

SC

Figure 5.7 – Architecture of the MuSiForest engine.

4.3).
As shown in the Figure, the architecture includes three components (site, model, and

distribution controller) that are part of each site and the aggregator site. These com-
ponents are installed on each site, and it is possible to configure aggregator roles before
deploying a multi-site analysis. The execution of these components is based on data-driven
demand as an advantage of our FDC approach. Therefore, these components are indepen-
dent at each site and are adjusted to each configuration and computational capacity.

These tasks are presented in three main processes illustrated in Figure 5.7. They
interact through two processes: models’ construction (blue arrow) and their application
(red arrow) over data from each site. The deployment of these components supports
the MuSiForest algorithm execution offering a flexible processing architecture adjusted
to heterogeneous conditions of a multi-site analysis, such as the collaborative scenario
between France and Colombia.

5.4.1. Component-based Architecture

The FDC architecture uses independent components between functional and logical
modules based on data-driven demand. The architecture components contribute to mod-
ular, reusable, and extensible deployment scenarios. In our system, the FDC architecture
supports these properties, considering three specific controllers:

The Site Controller (SC) is responsible for local tasks such as building local trees
and grouping them by the three aggregation strategies proposed (RF, BestPerc,

BestMdn). Furthermore, the SC is exclusively responsible for accessing the data to

130



5.4. Architecture and Implementation

build the models at each site. Finally, it is responsible for applying the models (local
and collaborative versions) to obtain the evaluation and the results over local data.

The Model Controller (MC) oversees the aggregation of local models during the
ensemble process. Furthermore, it aggregates the local models with those received
from other sites. The MC is an intermediary between the SC and the following
component, Distribution Controller (DC), responsible for interacting with others.

The Distribution Controller (DC) is responsible for distributing and communicat-
ing with other sites. It also ensures the exchange of local aggregated models and
receives the collaborative models. In addition, the DC controller is responsible for
the interaction for data sharing between the sites. The models that others share are
received by the DC controller and delivered to the MC component.

 Site
a. Data

Partitioning

e. Aggregation process

d. Communication
Process

INTERNET

Training and grouping Aggregator

Aggregation and 

the local trees

Construction

derivation of the models

Application and 
evaluation of the models

Application
Local
Data Train

Test

b. Training
Process

RF

c. Grouping
Tasks

LcM1

LcM2

LcM3

LcM1

LcM2 LcM3

CM1

CM2

CM3

f. Model’s
Application

g. Classification Results

Figure 5.8 – Execution Architecture the MuSiForest algorithm.

Figure 5.8 complements the architecture diagram presenting the execution flow be-
tween the system components. The diagram illustrates the execution architecture of the
MuSiForest algorithm. The figure details the architecture components with two execution
flow between the site and the aggregator. The first flow is in charge of the model’s local
and global construction process, while the second sends back the collaborative models and
ensures the application of these on local data. In Figure 5.8, the three main processes are
detailed in tasks (numbered from a. to g.) delegated to each controller. These controllers

131



IIPart, Chapter 5 – Fully Distributed Random Forests (MuSiForest)

communicate through interfaces ensuring interoperability between them. The component-
based architecture of our system provides a higher level of abstraction appropriate for the
distribution level considered in the FDC architectures.

Site1

MC

DC
Site2

MC

DC

Site3

DC

MC

SC

Network Channel

SCSC

Figure 5.9 – Diagram of deployment components among three sites.

Each of the three controllers makes up a processing site of the multi-site system, and
their integration permits the execution of the MuSiForest algorithm. Figure 5.9 shows the
installation at each site, where they all have the same components communicated through
a channel. The Figure shows an abstraction of a deployment scenario with three sites (the
deployment model applies to N sites without loss of generality). The sites collaborate
through the interface provided by the distributed controller to build a shared model. The
architecture may involve a trusted communication channel between the parties. However,
the shared data can also be secured using the techniques described in Section 5.3. The
communication can be done differently depending on the desired deployment model, such
as using point-to-point or one-to-many connections.

5.4.2. System Implementation

Our system is implemented through Python 3.7 in well-defined modules packaged
according to the responsibility of each architecture component. The components incorpo-
rate specialized libraries according to the tasks of each controller. For instance, the site
controller tasks extend the Scikit-learn2 library by our native implementation to incorpo-
rate the strategies proposed during the trees’ construction and their classification metrics.

2. https://scikit-learn.org/

132



5.4. Architecture and Implementation

Scikit-learn is a popular library used for machine-learning tasks in Python. Moreover, in
this component, we have implemented some routines in parallel during forest construc-
tion, such as building the trees and estimating the corresponding errors. The following
controller, MC, incorporates native programming to implement the ensemble strategies
proposed in the MuSiForest algorithm. In the first data flow (arrows depicted in Fig-
ure 5.8), the implementation groups the local models to be shared by the DC controller.
In the other flow, it is also in charge of aggregating the models received with the local mod-
els to be applied by the site controller. Finally, the distribution controller communicates,
shares, and interacts with other sites through the three libraries:

ZeroMQ3 is used to pass messages between the sites according to the availability of
shared data.

p2pNetwork4 allows decentralized peer-to-peer communication among all sites.

Redis5 is a distributed data store used for sharing data between sites.

Our system’s implementation includes native code and integrates the four popular
Python libraries mentioned: Scikit-learn, ZeroMQ, p2pNetwork, and Redis. The imple-
mentation ensures the correct execution of the MuSiForest algorithm in the two flows
(construction and application) during the phases proposed in our approach.

5.4.3. MuSiForest Topologies

Our system architecture supports three distributed topologies adapted to multi-site
scenarios to analyze biomedical data. The topologies presented are a particular analysis
scenario conforming to the FDC architectures discussed in Section 4.3: Sequential, Hierar-
chical, and Fully Distributed processing. Federated Learning has adopted these processing
topologies proposed in distributed communications decades ago [Bar64]. Furthermore, the
aggregation strategies in federated training consider different data partitioning strategies
(as discussed in Section 3.2.4) and processing architectures, as discussed in this thesis.
Therefore, the three proposed topologies are based on traditional federated processing
and have been widely discussed by others, as presented in [Liu+22; Ver+20; Li+20b].

3. https://zeromq.org/
4. https://pypi.org/project/p2pnetwork/
5. https://redis.io/

133



IIPart, Chapter 5 – Fully Distributed Random Forests (MuSiForest)

The MuSiForest algorithm can be deployed on each architecture, changing the form
of communication and aggregation between multiple processing nodes. Each node can be
a single computational device or a sub-network of geographically distributed nodes. The
main nodes of each topology can have two roles: processing and aggregator site, or even
both. Each topology maintains the three software components discussed: site, model, and
distribution controllers. The difference in each is due to the form of communication and
sharing between them. In this subsection, we investigate three configurations based on
the strategy used to ensemble the collaborative models:

Sequential: in this topology, the aggregation strategies are executed sequentially
between all sites. The sequential topology is similar to a pipeline execution, orches-
trated by the sequential execution of site-by-site tasks.

Hierarchical: this topology considers the aggregation of the model in a more decen-
tralized way than in the previous case. Hierarchical aggregation considers processing
nodes for partial and intermediate aggregation of collaborative models.

Fully Distributed: this strategy considers fully distributed participation among all
sites, similar to peer-to-peer communication until everyone participates during the
construction of collaborative models.

Each proposed topology is associated with the proposed aggregation strategies in our
MuSiForest algorithm, previously discussed in Section 5.2.2.2. Hence, each topology is
discussed and detailed below based on the three indicated aggregation strategies.

5.4.3.1. Sequential Aggregation

In the sequential topology (pipe), the model aggregation is executed sequentially over
the sites, as shown in Figure 5.10. The first site shares its local trees with the second
one. Then, the second one aggregates them with its local versions and then shares the
new aggregated model with the third site, and so on, until the s sites are participated
in building the aggregated models. In the end, the site s is responsible for sharing the
aggregated model with all sites via each other’s distributed controller.

An application case of this topology can consider the training of the forest by building
each tree level by level. For example, consider a scenario where each site provides the
information for each tree level and sequentially defines each tree level for each tree that
composes the forest.

134



5.4. Architecture and Implementation

Sequential Aggregation

Site 1

MC

DC

SC

Site 2

MC

DC

SC

Site 3

MC

DC

SC

Site s

MC

DC

SC

the local model
First site builds

the local version to be shared
Aggregate received model with

collaborative model with all sites
Share the final aggregated and

RF's CM's CM's

CM'sCM's

Figure 5.10 – Sequential aggregation, each site builds the local model and shares it with
others until all sites participate sequentially.

The algorithm’s execution by sequential topology has an important property extended
to all topologies, the independent composition; that is, regardless of the sequence order
of the sites, the aggregate model will always be the same.

The operation applied during the grouping models (before sharing) justifies the inde-
pendence property. Remember that the models are grouped through the three forms of
aggregation (see explanation in Section 5.2.2.2) employing the union of local trees. The
union operation on sets always satisfies the associative property. Therefore, if three sites
have the forests RF1, RF2, and RF3, respectively, then the aggregated model conformed by
the union of all as

(
(RF1 ∪ RF2) ∪ RF3

)
is equivalent to

(
RF1 ∪ (RF2 ∪ RF3)

)
. Therefore,

the execution order (aggregation) does not matter because the collaborative models will
always be the same. The independence property is maintained even when the percent-
age of trees in each site changes because the collaborative forest follows the associative
property during the aggregation process. Our algorithm’s associative property on sets and
independence composition leads to a faster model ensemble by considering partial aggre-
gations as in the following topology, maintaining the final result, the final collaborative
model.

5.4.3.2. Hierarchical Aggregation

Hierarchical aggregation is illustrated in Figure 5.11. The model aggregation is imple-
mented in a more decentralized way than in the previous case. The aggregation process
uses intermediate sites responsible for partially aggregating the model on its delegated
sites. The collaborative model is shared with all sites when the process covers all levels to
the top. The topology provides different levels generating a hierarchy.

135



IIPart, Chapter 5 – Fully Distributed Random Forests (MuSiForest)

Hierarchical Aggregation

model to be shared
build the local

collaborative models
generate the intermediate

model with all sites
share the final aggregated

Site 1

MC

DC

SC

Site 2

MC

DC

SC

Site s-1

MC

DC

SC

Site s

MC

DC

SC

Site 3

MC

DC

SC

Site s-2

MC

DC

SC

RF's RF's RF's RF's

CM'sCM's CM'sCM'sCM'sCM's CM'sCM's

Site k

MC

DC

SC

CM's
CM'sCM's

CM'sCM'sCM's

Figure 5.11 – Hierarchical aggregation with one intermediate level, each site builds a local
model and shares with the intermediate sites. The intermediary collects the models to the
top and then shares the collaborative model with all sites.

A hierarchical deployment can be used if some criteria can group sites. For example,
in Figure 5.11, sites 1 and 2 can communicate efficiently as sites s− 1 and s , for technical
reasons or by geographic location. Then each pair aggregates the model through the inter-
mediate site and so on until all sites are collaborating. For example, in the collaborative
scenario between Colombia and France (detailed in Section 2.4), the final aggregation can
be responsible for an equidistant site located in France, which has the aggregator role and
receives the regional models.

This topology preserves the compositional independence property. Regardless of the
number of intermediaries or the hierarchy established during aggregation, the final collab-
orative model will always be the same. As discussed in the topology above, the associative
property argues the reason for the union of sets.

5.4.3.3. Fully Distributed Aggregation

An example of a fully distributed architecture is illustrated in Figure 5.12. This sce-
nario aggregates the model in a fully distributed way to build the collaboration model
where all sites have the same role during the process. The scenario removes the hierarchy
and intermediate sites from the previous scenario. When all the sites have participated
in the process, each has a version of the collaboration model applied locally. The sites
communicate using peer-to-peer protocols. Therefore, this topology is completely decen-

136



5.4. Architecture and Implementation

tralized than the two presented above.

Fully Distributed Aggregation

Site 1

MC

DC

SC

Site 2

MC

DC

SC

Site 3

MC

DC

SC

Site s-1

MC

DC

SC

Site s

MC

DC

SC

Figure 5.12 – Example of Fully distributed aggregation, through peer-to-peer communi-
cation, the sites share the models until the participation of all results in the collaborative
version.

The fully distributed topology considers the same role for all the sites. If all the sites
participate in the collaboration, the global model still complies with the independence
property. The only way to not fulfill the property is if a site fails to participate during
the collaboration for some technical reason. Otherwise, this topology also satisfies the
set-associative property, fulfilling the independence execution property.

Discussion

The architecture of our system considers diverse topologies where sites can be deployed
in three different ways depending on the analysis type and its restrictions. In each topol-
ogy, a site is a processing node where local tasks can be processed in a distributed way,
such as those delegated to the site controller during model building and evaluation. The
data demand drives the communication between the sites. When external information
is required, the local execution stops until the site offering the data fulfills the required
information. The three proposed topologies provide flexibility and scalability to our MuSi-
Forest algorithm’s execution, such as the Fully Distributed approach, even for large-scale
processing data.

Additionally, the topologies preserve the independence property allowing optimal model
aggregation during the collaboration. For example, it is possible to consider the geograph-

137



IIPart, Chapter 5 – Fully Distributed Random Forests (MuSiForest)

ical distances among sites. Furthermore, the participation order of sites is indifferent to
the final global model during the analysis deployment since the independence property
guarantees the same aggregation of the final model during the indistinct participation of
all sites. Finally, the topology selection depends on on-site computing capacity, commu-
nication channels, geographical location, and legal considerations. The architecture and
topologies proposed are completely aligned with FDCs; therefore, these three topologies
are highly appropriate for multi-site biomedical analysis.

5.5. Experiments and Results

We conducted the experiments to verify that the challenges of multi-site random forest
implementations, see Sec. 3.2.3, are met:

(i) implementing ensemble learning strategies applied to fully distributed architectures,

(ii) aggregating the best trees to each site to have a global model with similar learning
performance to the centralized version,

(iii) designing flexible and scalable distributed workflows to analyze biomedical data,

(iv) incorporating sharing strategies while preserving data privacy and security.

These challenges are fulfilled in the experiments of our implementation, in particular,
we seek to evaluate three aspects:

1. The performance of the classification model as evaluated using metrics (see Sec. 5.1.2.1).

2. The size of data shared by trained models.

3. The computing capacity required at each site to train the models privately.

We contrast the corresponding results with a traditional centralized training algo-
rithm, that stores all data at a single site. This requires the property to be satisfied that
biomedical data can be freely moved and shared on a central site.

The models trained in our experiments correspond to a supervised classification prob-
lem. The dataset used is labeled and corresponds to gene expression levels for five types
of cancer (RNA-seq data). Our learning objective is to train a multiclass classification

138



5.5. Experiments and Results

model to predict the cancer type from numerical values corresponding to gene expression
levels.

Concretely, the experiment compares the training of prediction models using a random
forest on a centralized setting versus collaborative models built using the MuSiForest im-
plementation in a distributed setting. The distributed environments use configurations of
3, 5, and 8 geo-distributed sites. Execution environments (algorithms, data, . . . ) have been
deployed on the grid-cluster platform for distributed systems Grid’50006(G5K ) [Cap+05].

5.5.1. Dataset Description

The experimented data (RNA-Seq) correspond to gene expression levels for five types
of cancer: Breast (BRCA), Renal Kidney (KIRC), Colon (COAD), Lung (LUAD), and
Prostate (PRAD). The dataset is a part of the information published in the PCAWG (Pan-
Cancer Analysis of Whole Genomes) project [Por; Who20]. The experimental dataset has
gene expression levels of 20, 531 genes (attributes) for 10, 400 patient samples stored in
approximately 1.8 Gigabytes.

The gene expression levels correspond to values associated with the degree of tran-
scription of each gene. Each value is obtained by applying quantification methods on
biological tissues over normal and mutated cells (see [Kor+14; Liñ+19] for more details
about these quantification methods). Gene expression analysis allows to understand the
biological principles to establish variations in the phenotypes related to human diseases.

For the centralized scenario, all the data is stored on one site for model training. In
the distributed environments, the patient samples are randomly horizontally partitioned
into smaller data sets used to train the models on each site.

5.5.2. The Grid’5000 testbed

Grid’5000 7 (G5K ) is a large-scale, geo-distributed, highly re-configurable experimen-
tal grid testbed for computer science experiments, scientific algorithms, and distributed
infrastructures. G5K is maintained and financed by the French and European informat-
ics communities, notably through the EU project and infrastructure slices. Figure 5.13
presents the physical architecture of G5K hosted at (currently) 12 sites in France and Lux-
embourg. At each site one or a small number of clusters is installed, totaling approximately

6. https://www.grid5000.fr/
7. https://www.grid5000.fr/

139



IIPart, Chapter 5 – Fully Distributed Random Forests (MuSiForest)

France
Luxembourg

Geo-distributed Processing Nodes in Grid'5000 (G5k)

Each site has multiple nodes 

with large amount of resources 

communicated by secure protocols.

Each site deploys  

with execo library 

and are connected 

via SSH

Figure 5.13 – Grid’5000 (G5K ) nodes distribution.

800 compute nodes and 15000 cores. Employing advanced virtualization techniques, geo-
distributed applications can be executed practically and efficiently on hundreds of thou-
sands of virtual machines. Therefore, G5K allows us to simulate geo-distributed biomed-
ical analyses in a controlled environment.

Deploying on Grid’5000 (G5K)
The execution time of our experiments on G5K was, on average, between 3 and 5 days.
The duration depends on the size of the data and the number of sites deployed. We com-
plement our implementation with a module to deploy the experiments in a controlled and
automated way employing the execo8 library. Execo provides an API for local or remote,
standalone or parallel, process execution and also enables large-scale running experiments
on distributed systems. With this deployment module, we reserve the desired number of
sites and the number of nodes per site to simulate the geo-distributed environment. Each
site and each node can have a different configuration which we support through our de-
ployment module on G5K. The machine’s reservation in G5K is associated with jobs, and
they have a duration in time. We monitored each site and its nodes to have information on
the process status and guarantee the complete execution of tasks. Our deployment module
supports controlled execution between the different sites between France and Luxembourg
supported on G5K.

8. http://execo.gforge.inria.fr/

140



5.5. Experiments and Results

5.5.3. Experimental Setup

We deployed and executed the experiments on Grid’5000. With our deployment mod-
ule, we load configuration files and deploy all the FDC dependencies on each geo-distributed
site in G5K. First, we set up the geo-distributed environment with each node’s initial-
ization. Next, we install the FDC components on each node. Finally, Next, we move
the libraries required and install them on each node deployed. At this point, the geo-
distributed environment is ready to analyze data according to the multi-site workflow
design.

We used a hierarchical topology with one aggregator site for the experiments with
distributed architectures. The hierarchical deployment allows the experimentation of the
collaborative scenario between Colombia and France, which considers regional grouping
in each country and global aggregation in any of the sites. However, without loss of
generality, the deployed scenario can consider any of the topologies supported by our
system architecture explained in the previous section.

We deploy our experiments on machines with Intel E5 Xeon Processor 2.2GHz with
32CPUs, each running Ubuntu 18. This configuration is the same for all sites, even for
the centralized scenario. Each machine’s system is installed, including our architecture
based on the three components. The experimental data is randomly divided for each
distributed configuration, and each site keeps the data private by never sharing patient
samples. Moreover, each site has a local configuration file to specify hyper-parameters
learning (e.g., number of trees) and connection parameters (e.g., IP addresses).

The experimentation contemplates executing the MuSiForest algorithm following the
methodology explained for the aggregation and construction of the collaborative models
(explained in Section 5.2.2). The deployment environments consider three distributed
settings with the participation of 3, 5, and 8 sites. The first scenario, with 3 sites, has two
forest configurations with 100 and 1000 trees, while the centralized version independently
trains models with 300 and 3000 trees on the aggregated data. The second comprises 5
sites that train a forest with 200 trees. Finally, the last scenario, with 8 sites, trains each
local forest with 125 trees. The total number of aggregated trees equals the number of
trees in the centralized model, 3000 trees, to compare different forests under the same
conditions.

The idea of the deployed experiment is presented in Figure 5.14. It follows the MuSi-
Forest phases detailed in Section 5.2.2. First, each site trains the random forest model
locally following the MuSiForest algorithm. Then, the construction of each model starts

141



IIPart, Chapter 5 – Fully Distributed Random Forests (MuSiForest)

Site1

DTR1 DTE1

Perc RF

Medn

CM's

Site2

DTR2 DTE2

Perc RF

Medn

CM's

Sites

DTRS DTES

Perc RF

Medn

CM's

     Aggregator
1. Each distributed controller
    indicates availability to

DTE1 DTESDTE2

    start the process.

2. Distributed controller
     share grouped models
     locally to be aggregated.

    collaborative forests to
    be applied at each site 

3. Aggregator site sends

    results and testing datasets
     to be aggregated

4. Distributed controller shares

FDC Scenario deployment Centralized Scenario

One Site

DTR

RF

Data from all sites
is aggregated

DTESites

Build a local
random forest

The model is applied
on testing aggregated
datasets

Figure 5.14 – Experiments deployed with the participation of s sites versus the centralized
training.

using training data, DTRi , and the testing set DTEi , is used to evaluate the model. Each
site trains local RF models and then groups them using the three strategies to be shared
with the responsible site. The experiment considers the hierarchical topology to aggregate
the model. However, the aggregator’s role can be randomly assigned under any other ar-
chitecture since any site can run as the aggregating site during the algorithm’s execution.

5.5.4. Experimental Results

The experiments focused on three relevant aspects to show the advantages of FDC
analyses versus the centralized scenario:

(i) evaluation of each collaborative model,

(ii) size of data shared during collaboration, and

(iii) computational required time for model training.

Evaluating these three aspects, we partially alleviate the challenges in the current im-
plementations of multi-site forests. The implementation and the proposed deployment
topologies complemented the full achievement of these challenges discussed at the end of
the experimental results.

142



5.5. Experiments and Results

Models Evaluation
We conducted experiments for different distributed environments by changing the number
of sites and setting up random forests with different numbers of trees. The evaluation of
the models considered four classification metrics: accuracy, precision, recall, and FScore,
which were explained in Section 5.1.2.1.

1 2 3 4 5
0.89

0.90

0.91

0.92

0.93

0.94

S
co

re

Accuracy

BestCollaboModel

CentralizedModel

1 2 3 4 5

0.900

0.905

0.910

0.915

0.920

0.925

0.930

0.935

0.940

S
co

re

Precision

BestCollaboModel

CentralizedModel

1 2 3 4 5
Iterations

0.89

0.90

0.91

0.92

0.93

0.94

S
co

re

Fscore

BestCollaboModel

CentralizedModel

1 2 3 4 5
Iterations

0.89

0.90

0.91

0.92

0.93

0.94

S
co

re

Recall

BestCollaboModel

CentralizedModel

Comparison of metrics for collaborative and centralized models in 3 Sites

Figure 5.15 – Comparison of metrics for collaborative and centralized models in 3 Sites.

Figure 5.15 presents these four metrics for the experiment deployed on three sites. In
this experiment, each site builds a forest of 100 local trees, and the size of the collaborative
model is 300 trees. Similarly, the centralized model comprises 300 trees but is trained over
aggregated data on one site. The x-axis indicates the number of iterations, corresponding
to the number of times each model was trained independently. The centralized model
does better on all four metrics than the collaborative model because it trains the model

143



IIPart, Chapter 5 – Fully Distributed Random Forests (MuSiForest)

on all the aggregated data on one site. However, the movement and central processing are
highly costly, as we will show later based on the experimental results. Figure 5.15 shows
a difference between 0.2 and 0.4 points between the centralized and collaborative models’
for the FScore. We consider this difference tolerable due to the unfeasibility and expensive
centralized training as shown by the experimental results.

To compare the classification performance of the models, we select the FScore to find
a balance between precision and recall using a single metric. Remember that precision
refers to how the model behaves regarding the number of predicted positives. However,
the precision does not include how many observations of actual positive classes were
predicted to be in the negative class. In contrast, recall measures the ability to find all the
relevant cases within a data set. Therefore, the selected metric, FScore, seeks to compare
performance by combining precision and recall to mitigate the impact of false positives
and false negatives calculated between multiple iterations.

BCoM CeM BCoM CeM BCoM CeM BCoM CeM

3Sites – 300DTs (H) 3Sites – 3000 DTs (T) 5Sites – 1000 DTs (T) 8Sites – 1000 DTs (T)

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

Comparison of Metrics for Collaborative and Centralized Models

Accuracy

Precision

Recall

Fscore

Different deployment scenarios

M
et

ri
c 

S
co

re

Figure 5.16 – Comparison of metrics for the models: BestPercCollaborative (BCoM) and
Centralized (CeM) in different distributed scenarios.

Figure 5.16 presents these classification metrics for more distributed experiments for
two random forest versions, Best Median Collaborative (BCoM) and Centralized Model
(CeM). The x-axis values indicate the number of deployed sites and the configuration
of each forest represented by Hundreds (H) or Thousands (K) of trees. In these other

144



5.5. Experiments and Results

Table 5.2 – Evaluation of the FScore metric for the trained models

FScore

Sites Join BestPerc BestMedn Centralized
Score DTs Score DTs Score DTs Score DTs

3 0.9027 300 0.8978 246 0.8983 160 0.9388 300
3 0.9020 3000 0.8966 817 0.8985 528 0.9385 3000
5 0.8809 1000 0.8701 811 0.8734 538 0.9396 1000
8 0.8514 1000 0.8436 818 0.8457 530 0.9396 1000

distributed scenarios, the evaluation metrics always show a better result in the centralized
model versus the collaborative version. Furthermore, while the number of sites increases,
the difference with the centralized model also increases.

Table 5.2 presents the FScore metrics for the three collaborative model versions com-
pared to the centralized training. The evaluation considered different forest configurations
determined by the number of trees (DTs). The table shows forests with different tree sizes
due to the threshold value determined during the execution to select the best trees in
each site according to the three aggregation strategies. The collaborative model version
that showed the best precision is BestMedn, which reduces the difference with respect
to the centralized model. In the Table, the first record value in bold indicates that the
best score obtained from the BestMdn version was 89.78% versus 93.88% for the central-
ized model. The delta value, the difference between the precision of the centralized model
and the MuSiForest algorithm, is almost four points, with the centralized slightly better.
However, the difference is minimal, in contrast to the MuSiForest versions.

Figure 5.17 presents more detail on these FScores between the central and collaborative
models. The three plotted results show each of the three aggregation strategies of our
algorithm against the respective version of the central forest. The difference between
centralized and collaborative versions lies between 0.3 and 0.6 points, depending on the
number of distributed sites. While the number of distributed sites increases, the difference
between the two precision scores is the same as the delta value. The main reason is
the degree of distribution of the data; more distribution leads to a model with lesser
generalization capabilities than the centralized model.

Shared Data Size
The second aspect evaluated corresponds to the amount of data shared through the MuSi-
Forest strategies and the centralized one. The MuSiForest algorithm considers sharing

145



IIPart, Chapter 5 – Fully Distributed Random Forests (MuSiForest)

3 3H 3 3K 5 1K 8 1K

93.89%

93.85%

93.97%

90.27%

90.21%

88.09%

85.14%

F
-S

co
re

Models Trained by Join Strategy

CentralizedModel

CollaborativeModel

3 3H 3 3K 5 1K 8 1K

93.73%

93.61%

93.66%

89.78%

89.67%

87.02%

84.37%

F
-S

co
re

Models Trained by BestPerc Strategy

CentralizedModel

CollaborativeModelv

3 3H 3 3K 5 1K 8 1K

Distributed Settings

93.61%

93.68%

93.69%

89.83%

89.86%

87.35%

84.57%

F
-S

co
re

Models Trained by BestMedn Strategy

CentralizedModel

CollaborativeModel

Figure 5.17 – FScore metrics for collaborative and centralized models in different dis-
tributed settings (H:Hundreds, K:Thousands) based from Table 5.2.

models that are trained privately, while the centralized one requires moving all raw data
to a single site. Figure 5.18 illustrates the shared data sizes during model training for the

146



5.5. Experiments and Results

different distributed settings. Each site has part of the data due to the initial partitioning
process of the experimental data, in total, corresponds to 1.8Gb.

3-Sites 5-Sites 8-Sites

2

2.5

3

Distributed Setting

D
at
a
Si
ze

(lo
g)

Amount of Data Shared

JoinModel
BestModel
CentralMdl

No.
Sites DT Data Size Shared (MB) per Site

JoinMdl BestMdl Centralized
3 300 59.5 49.4

18005 200 65.5 53.8
8 125 69.1 55.8

Figure 5.18 – Amount of data shared between collaborative models and moved raw data
in the centralized case.

The evaluation of the distributed scenarios considers different forest compositions due
to the corresponding number of decision trees. The centralized model has been handled
using the same conditions: aggregate data set, forest composition, and machine config-
uration conditions. The join version shares trained models between 60MB and 70MB of
data, and data sharing of the best version amounts to 49MB and 55MB.

In contrast to sharing models, the centralized version requires moving all the data to
a single site, in our case, almost 2Gb of data. Our proposal to share models significantly
reduces the size of the shared data. The model’s size is directly related to the number of
trees in the forest. As a result, the stored space in the forest is also much smaller than the
size of the shared raw data. The data size also impacts the required time and bandwidth
capacity to move the data (models) depending on the learning scenario. This notable
reduction has to be a trade-off against the model’s precision score, the cost of moving raw
data to a single site, and potential legal restrictions.

Computational Time
The last aspect evaluated is the training time of each model version in each distributed
setting and centralized one. The time required to train the MuSiForest versions and the
centralized model is presented in Figure 5.19. The computational training time of mod-
els at different sites significantly reduces the computational resources required compared

147



IIPart, Chapter 5 – Fully Distributed Random Forests (MuSiForest)

to the central forest. Figure 5.19 illustrates the computational time required to train
the models in the two scenarios. The first scenario, the distributed one, corresponds to
our algorithm deployed among several sites, and the second contrast the forest trained
traditionally in a central site on aggregated data. The centralized model requires more
computation time to train the model. We have evaluated all cases with the same con-
ditions concerning machine configuration and model parameters in both scenarios. The
MuSiForest algorithm reduces the computational time required by taking advantage of
the local computation capacity installed at each site. The last aspect constitutes another
advantage of analyzing data using our FDC approach.

3-1T 5-1T 8-1T

0

500

1,000

1,500

Distributed Setting

C
PU

T
im

e
(S
ec
s)

Computational Time Training Models

Time per Site
Time Central

Figure 5.19 – Computational Time Training a Model: centralized versus collaborative
versions.

5.5.5. Bias-Correction Evaluation

The last challenge to evaluate is the scenario where partial data is shared securely to
mitigate the bias of the fully distributed trained model according to the last challenge:
incorporating sharing strategies while preserving data privacy and security. Therefore,
we implement the first proposed strategy for bias correction, defined as Secure Data
Containers (SDC) in Section 5.3.

In brief, the strategy considers a trusted site, an aggregator, with a global data set.
This data set has the number of samples from each site, but the data samples are stored
privately on each site. Although the global set has an identifier corresponding to each
sample at each site, this number is not sensitive data. It simply corresponds to a unique
numerical value in the global data set.

148



5.5. Experiments and Results

The aggregator starts the process by resampling all these identifiers, then sends the
required identifiers to each site. Next, each site selects the samples with that identifiers
and packages and encrypts them to be shared with the aggregator. Finally, the aggregator
follows the traditional training model with the decrypted data and generates models from
the three aggregation strategies. We used the same data set described at the beginning of
the section and held the random partitioning at each site.

We implement the strategy with three sites. The objective is to compare the training
model’s learning performance using the secure data container strategy versus the collab-
orative model aggregated with MuSiForest. The Python implementation uses the Fernet9

library to generate encrypted samples. As the aggregator is a secure site, then each site
shares the key with the aggregator to consolidate the global set and generate the training
samples.

Dataset Description

The data set is the same used in the experiments described in the previous section.
The dataset samples correspond to 1.8Gb of gene expression levels for five types of cancer
comprised of 10, 471 samples and 20, 533 genes. In our experiment, we consider three sites
where the data is randomly partitioned based on the horizontal data strategy.

Table 5.3 – Description of each data set in each site experimented in the Secure Data
Containers’ strategy.

Data Description Size No.Samples No.Genes
Central Data 1.8Gb 10471

20533
Data per site ∼549MB ∼3491
Data required per site ∼84KB

∼2400Data unencrypted per site ∼280MB
Data encrypted per site ∼370MB

Table 5.3 presents the description of each site’s datasets and the information of required
data sets (unencrypted and encrypted). The required data sets corresponding to the total
number of samples resampled by the aggregator at each site corresponds to 70% of the
samples, which follows the traditional training model learning. The data size per site is
averaged based on the number of sites. The number of samples required corresponds to

9. https://cryptography.io/en/latest/fernet/

149



IIPart, Chapter 5 – Fully Distributed Random Forests (MuSiForest)

70% of samples randomly determined by the aggregator. The table shows different data
sizes, but only encrypted data is shared with the aggregator. In our experiment, the data
transferred by each site corresponds to an average of 370MB. This size results from an
average of 68% of the raw data stored on each site. These figures regarding the number
of samples and genes correspond to the horizontal partitioning strategy on all data and
the data set used for centralized training. The data set encrypted by each site is shared
with the aggregator to train the model following the three aggregation strategies proposed
with our MuSiForest algorithm.

1 2 3 4 5

0.88

0.89

0.90

0.91

0.92

0.93

0.94

F
S

co
re

    Central and Collaborative Models versus Secure Data Containers

Centralized Model

Collaborative Model

 ModelSDC

1 2 3 4 5

0.86

0.87

0.88

0.89

0.90

0.91

0.92

F
S

co
re

   Local Models per Site versus Secure Data Containers

Site 1

Site 2

Site 3

 ModelSDC

Figure 5.20 – Comparison of local models per site versus the Secure Data Containers
(SDC) strategy for three sites.

Figure 5.20 presents the model’s performance trained on a central and collaborative
version versus the Secure Data Containers (SDC) strategy between three sites. The up-
per part shows three models: the centralized (trained over aggregated data), the trained

150



5.5. Experiments and Results

through secure data sharing strategy and the collaborative (based on the MuSiForest
strategy). The centralized model presents better precision than the other two, notable for
the five iterations experienced. The difference between the central model (red line) and the
collaborative model (blue line) follows that shown in the experiments (see Figure 5.17).
The difference corresponds to 2 or 3 percentage points. In contrast, we compared the
central model with the proposed secure model (purple line) and found a reduction in the
difference between these two learning performances.

The central model continues with better performance, but the difference is reduced
compared with the SDC model and the MuSiForest proposal. The difference corresponds
to between 0.3 and 1.4 points. This performance learning result improves the model ag-
gregated by secure sharing SDC versus the collaborative MuSiForest model. Therefore,
our safe sharing strategy to improve the bias of the global model is feasible according
to these experimental figures. Since the performance of the SDC model (purple line) is
improved versus the fully distributed proposal, the MuSiForest algorithm (blue line).

In Figure 5.20, the lower part shows the result of the model trained using the SDC
strategy versus the local model trained at each site. The SDC model shows a better
performance concerning the locally trained ones compared to our MuSiForest approach.
The SDC model shows a better performance concerning the locally trained ones and is also
better with respect to the one trained without data sharing, our MuSiForest approach.

5.5.6. Discussion

As a result of the experiments and the evaluation outcomes, the following insights can
be emphasized:

The learning performance, FScore metric, of the collaborative model is between 0.2
and 0.4 points lower than that of the centralized version. The better value of the
centralized model is due to performing model training based on all data aggregated
on one site.

The centralized model shows expensive training in terms of computation capacities
and communication restrictions moving all data. Our algorithm significantly reduces
the computing capacity required to train the model on each site.

Our algorithm significantly reduces the amount of data shared due to sharing only
trained models. Furthermore, the aggregation strategies proposed significantly re-

151



IIPart, Chapter 5 – Fully Distributed Random Forests (MuSiForest)

duces the amount of information shared, in contrast to the often infeasible process
of moving all the data to one site.

We have experimented with one bias-correction strategy to improve the precision
score of the collaborative model (Secure Data Containers strategy, see Sec. 5.3). This
strategy shows an improvement the learning metric compared to the centralized
model.

To improve our classification performance, we propose strategies to share partial
data securely, experimentally showing that it improves classification performance.

Our experimental results are similar to current approaches to training multi-site ran-
dom forests [Liu+20a; Sou+20]. The central model always has better precision than
the multi-site. However, training on aggregated data is computationally expensive
and infeasible due to restrictions on biomedical data.

According to Giacomelli et al. [Gia+19], our difference values with the centralized
model are similar for models trained collaboratively, centrally, and entirely locally
without data sharing.

Our FDC-based Forest training approach offers computational relief and guarantees
data confidentiality but maintains lower learning performance than the costly and unfeasi-
ble centralized training. Moreover, due to the previously mentioned insights, the approach
is beneficial to promote collaborations around training prediction models based on ensem-
ble learning techniques.

Furthermore, the experimental results fulfill the challenges stated at the beginning
of Section 3.2.3 (copied below and shown in italics) with respect to existing multi-site
Random Forest implementations:

(i) Implementing ensemble learning strategies applied to fully distributed architectures.
Our algorithm is designed and implemented through architectural components that
support independent and highly distributed execution. Furthermore, the implemen-
tation supports topologies such as hierarchical and fully distributed ones used in
Federated Learning that can be combined to take full advantage of the distributed
resources at each site. Therefore, our implementation appropriates the FDC features
to provide a powerful multi-site analysis over biomedical data.

152



5.5. Experiments and Results

(ii) Aggregating the best trees to each site to have a global model with similar learning
performance to the centralized version.
The proposed aggregation strategies select the best trees from each site to build
collaborative models. As a result, the precision of our collaborative model is lower
than the expensive centralized model. However, we consider the difference accept-
able concerning the other benefits obtained with our algorithm. For example, our
collaborative model can assist medical decisions and supports medical hypotheses.
Nevertheless, we never consider substituting the medical expert because the expert
will always be responsible for the patient’s final decision. However, we implemented
one bias-correction strategy sharing secure partial data, and our collaborative model
improves the precision performance.

(iii) Designing flexible and scalable distributed workflows to analyze biomedical data.
The architecture implemented complies with two principles: flexibility and scalabil-
ity. Our proposal is flexible since it adjusts to the sites’ heterogeneous capabilities
and communication capacities. The implemented topologies provide flexible analy-
ses with the ability to adapt to site conditions. On the other hand, the independence
of the components makes them highly scalable to satisfy the processing capacity on
site. Additionally, tasks on the controllers can be executed by leveraging distributed
processing at each site. Therefore, our implementation is more robust with these
two principles in the face of heterogeneous processing workflows between multiple
sites.

(iv) Incorporating sharing strategies while preserving data privacy and security.
Our implementation is extended through three strategies to improve the perfor-
mance learning of the model seeking to reduce bias. In the experimental phase, we
showed that one of the strategies improves the precision of the model through the
secure sharing of partial data. The three proposed strategies are based on exist-
ing techniques for securely sharing biomedical data. Therefore, we use these secure
techniques to enrich our approach to building collaborative models.

In conclusion, the MuSiForest implementation offers favorable properties for analyzing
biomedical data supported by a flexible and scalable architecture compared to traditional
centralized training. Furthermore, the FDC features alleviate data sharing restrictions,
reduce the computational time training centralized models, minimize the amount and type

153



IIPart, Chapter 5 – Fully Distributed Random Forests (MuSiForest)

of data sharing, and favor biomedical data privacy. Therefore, the FDC-based analyses
offer a good balance of these aspects versus the expensive training in a centralized way.

5.6. Conclusions

In this chapter, we propose a novel approach, MuSiForest, to build a collaborative
model in terms of forests composed of multiple trees that are trained privately among
multiple sites. We have performed, evaluated and analyzed multiple experiments consist-
ing of analyses over labeled data over gene expression levels in order to classify patient
samples among five cancer types. We include three strategies to collaborate between the
parties that share models without revealing sensible data from each site. We only use
partial data represented in trees to collaborate among all and build a global model. The
proposed approach mitigates restrictions on sharing data, such as technical, legal, and
ethical ones. In addition, we proposed bias correction techniques to improve the precision
of models seeking to be fair in learning with more representation of the knowledge of the
sites. Experiments have shown a reduced amount of shared data, decreased computational
overhead, and a noticeable reduction with our distributed processing approach. However,
this minimal difference with the expensive centralized training does not affect the pre-
diction results since these learning models seek to assist the medical experts based on
insights from the data analysis. Therefore, the trained models will never replace medical
experts because they are only assistance tools. For this reason, we consider having an effi-
cient training approach in a distributed setting, respecting data privacy restrictions, and
providing more rapid data processing than the time-consuming and non-viable centralized
training over biomedical data. FDC-based analyses are a promising solution for collab-
orative data processing, such as the proposal presented in this chapter, the MuSiForest
algorithm, as opposed to expensive and often inappropriate centralized processing.

154



Chapter 6

WORKFLOW LANGUAGE FOR FDCS

(FEDERA)

Introduction

Workflow systems are frequently used in biomedical research to model scientific exper-
iments. They enable scientists, who are often laymen in informatics, to model analyses in
terms of tasks, dependencies, and dataflows [Liu+15]. Workflow systems also frequently
support portability across different execution environments, such as grids and clusters
[YB05; RB17]. However, current workflow systems do not support global multi-site collab-
orations, such as FDCs, because they lack coordination mechanisms for decentralization,
distributed computations, and security and privacy models [PCA15].

Current workflow systems offer mechanisms to specify scientific analyses, but they
have limited means for configuring deployments on complex and heterogeneous distributed
environments. In particular, they lack mechanisms to support geo-distributed processing.
In this sense, FDC-compliant workflows must provide intuitive and flexible distributed
workflow specification languages suitable to be used by researchers that are not experts
in computer science.

In this chapter, we first investigate the expressiveness level and ease of use of cur-
rent workflow specification languages. We then identify shortcomings in current workflow
languages to specify workflow analysis in multi-site scenarios. Based on this analysis, we
propose FeDeRa, a language to specify multi-site analyses. The FeDeRa language also
provides abstractions to fine-tune the deployment across distributed machines.

This chapter is structured as follows. Section 6.1 introduces workflow languages and
presents some popular workflow systems used in biomedical analyses. Section 6.2 presents
a workflow involving a multi-site machine learning scenario. Section 6.3 introduces our
distributed and declarative language with its features, syntax, and semantics. Section 6.4
presents the implementation, architecture, and deployment features. Section 6.5 compares

155



IIPart, Chapter 6 – Workflow Language for FDCs (FeDeRa)

our language to other workflow languages. Finally, in Section 6.6, we present a conclusion.

6.1. Workflow Languages for Biomedical Analyses

Workflow systems are popular tools used to analyze biomedical data, allowing sci-
entists to define tasks as well as dependencies between tasks [Liu+15]. The workflow
task definitions and their dependencies define the steps and the execution order of those
steps, required to complete a data analysis. The workflow specification can be represented
in graphical form or using scripting text-based languages. Workflow languages typically
adopt one of two strategies to task dependencies [Tay+07b]. The data-flow strategy defines
interactions in terms of data provided by one task and needed by others. The control-
flow strategy defines task dependencies in terms of the transfer of control between tasks.
Typical control-oriented operators execute tasks sequentially, depending on conditions or
iteratively [Zha+12b].

The popularity of workflow systems has increased remarkably in recent years. For in-
stance, the Common Workflow Language (CWL) website1 lists over 200 workflow systems.
Biomedical data processing contributes to this popularity. Workflow languages support,
in particular, the management and automation of analysis pipelines. The researchers can
modularize their pipelines, facilitating problem-solving and maintainability. Moreover,
some workflow languages integrate specialized libraries for common tasks, such as sani-
tizing data or particular genomic tasks. These benefits can reduce the time required to
code pipelines, supporting more complex but also more comprehensible designs as well as
supporting reproducible analyses.

The diversity in workflow systems has proliferated in diverse specification languages
since there is no standard specification language among all systems. Therefore, each work-
flow system offers different ways of specifying and how analyses are executed and pro-
cessed, some systems and their properties were discussed in Section 3.1.2.1. Therefore,
researchers can choose the most appropriate one according to particular needs.

6.1.1. Distributed Workflow Languages

Workflow systems for geo-distributed processing involving biomedical data have to
observe data-sharing restrictions. Nowadays, workflow systems support distributed pro-

1. https://www.commonwl.org/

156



6.1. Workflow Languages for Biomedical Analyses

cessing between different cloud sites and distributed infrastructures. For example, Tav-
erna [Wol+13] can be executed on clusters, grids, and clouds. However, those configu-
rations require extensive technical knowledge by the deployer. Nextflow [Di +17] and
Snakemake [KR12] support grid platforms, e.g., SGE (Sun Grid Engine) and LSF (Load
Sharing Facility). Pegasus [Dee+15] has taken a more explicit approach to distribution and
supports execution on individual machines, remote clusters, distributed infrastructures,
and clouds. The execution on multiple sites is usually harnessing the platforms’ virtual-
ization properties [Liu14]. The processing of biomedical data across multiple sites has to
be taken into account limitations related to the definition and execution of distributed
workflows. The high-level specification means partially depend on the other workflow
system layers, for instance, on operational aspects, such as resource allocation. A major
resulting limitation, pointed out by different studies, consists in the limited functional-
ity to support geographically distributed processing in workflow systems, notably among
geo-distributed cloud sites [PCA15]. These features directly impact the ability to specify
biomedical analyses among multiple sites.

6.1.2. Baseline Workflow Languages

Due to the wide variety of workflow systems, we select three of them: Swift [Wil+11],
Snakemake [KR12], and Pegasus [Dee+15], which have been regularly used for biomedical
analyses, such as processing genomics data [Bux18]. We want to compare our specifica-
tion proposal against the mechanisms offered by these three widespread systems. The
main objective is to show the advantages of our proposal, especially concerning multi-site
analyses, such as those supported by FDCs.

Systems like Snakemake and Swift offer much more lightweight text-based specifi-
cation languages than complex systems like Pegasus [Bux+17]. Snakemake is based on
the GNU make tool that supports the definition of task-oriented workflows. While Swift,
through its scripting language, allows the simple definition of parallel instructions on the
data. These specification forms allow the scalable execution of workflows on distributed
architectures but leave out features such as data partitioning, as is supported by Pegasus.
Pegasus provides distributed execution capabilities to efficiently use installed resources
for distribution, monitoring, and groupings [Bux18]. In the following we provide the main
characteristics of Swift, Snakemake, and Pegasus (so that we can later compare them to
our proposal).

157



IIPart, Chapter 6 – Workflow Language for FDCs (FeDeRa)

Swift

Swift [Wil+11] offers a scripting language that supports large-scale and parallel/dis-
tributed workflows. Swift has been widely used for biomedical analyses, notably by taking
advantage of on-site distributed processing [Wil+09; DeB+10]. The workflow execution
translates the steps into executing tasks, which can be performed distributively through
the Turbine distributed run-time system. However, the tasks access the data by reading
or writing on a shared data system, leading to a bottleneck for large-scale processing.
Swift specifications are based on the C language, that is, instructions are defined in an
imperative style, a control-flow oriented style, as opposed to dataflow-based analysis.

Snakemake

The Snakemake [KR12] workflow system supports the creation of reproducible and
scalable data analyses. For example, different biomedical data analyses have been imple-
mented in Snakemake, such as analyses of cancer genomics data [MGG10]. Snakemake
specifies workflows in Snakefiles that describe rules with Python-like syntax, including
input and output data between them. However, Snakemake does not provide its own dis-
tributed execution environment. Therefore, distributed workflow analyzes lead to complex
specifications due to the interaction between multiple files between their rules and depen-
dencies. The Snakemake specifications harnesses the benefits of Python syntax; however,
configuring multi-site workflows are very difficult to define because each site must be
defined by one rules file.

Pegasus

Pegasus [Dee+15] is a scalable workflow management system that takes a more explicit
approach to distribution, supporting the execution on local machines, remote clusters,
distributed computing environments, and clouds. Pegasus has also been used in several
biomedical tasks, such as analyzing genomic data. Although Pegasus supports multiple
distributed environments, it is limited in specifying and executing workflows or parts of
them across different geo-distributed distributed sites.

Workflow Languages Problems

The three workflow systems described above provide different mechanisms to imple-
ment tasks between multiple machines on-site and specification forms according to the

158



6.2. Workflow-based Machine Learning Analysis

execution capabilities of each system. However, the limitation of workflow systems to
process multi-site analysis across sites leads to limitations in specifying workflow across
geo-distributed sites. For instance, specifying collaborative analyses is complex due to
the lack of mechanisms to combine rules with external data sources required during an
analysis. Additionally, the complexity of specifying and allocating distributed computing
resources requires highly-specialized technical expertise. This constitutes a prime moti-
vation to equip our FDC approach with a new specification language that supports the
definition of collaborative workflows for expert and non-expert users. An extensive discus-
sion of the functionality and limitations of multi-site workflows is presented in [Gar+22].

Finally, workflow systems should provide mechanisms for experiment reproducibility,
which is essential for collaborative research studying biomedical issues. Some researchers
even claim that the life sciences are experiencing a reproducibility crisis [Fry+15]. The
research community has pressured researchers to ensure their experiments and results
are reproducible [HG13b]. Current workflow mechanisms have limitations in specifying
geo-distributed analyses and limit the reproducibility of experiments due to the distribu-
tion of multiple resources, leading to problems such as heterogeneity, scale, and instabil-
ity [Wan06; WCW08]. Therefore, reproducibility is another property to consider besides
specifying multi-site workflow analyses.

6.2. Workflow-based Machine Learning Analysis

In order to concretely motivate our language contribution, we reconsider the collabo-
rative scenario between Colombia and France (that has been first presented on page 40).
The scenario contemplates a collaborative training of local random forest models, sharing
partial information between the sites. However, this collaborative analysis is challeng-
ing for current workflow systems because they lack mechanisms for multi-site analysis
on heterogeneous architectures. Similarly, workflow specification languages between mul-
tiple geo-distributed sites are lacking coordination mechanisms for decentralization and
distributed computations (also see the discussion in Chapter 3).

This collaborative scenario comprises different sites with differing communication ca-
pacities and, potentially, heterogeneous infrastructures. We use this scenario to show the
benefits of our declarative approach compared to the specification mechanisms offered by
other workflow systems.

Figure 6.1 shows a workflow representation of the scenario, which considers the training

159



IIPart, Chapter 6 – Workflow Language for FDCs (FeDeRa)

FR

BLM

GLM

MMD

SCM

MEO

Stop

BLM

GLM

SLM

MEO

Stop

REO

Stop

SLD

CO

BLMBLM

MEO
GLM

MMD

MEO

Site4 Site2
Site3

- On-site

Processing:

Site1

Stop

Stop

Collaborative Workflow Scenario between Colombia and France

- Collaborative

C1

C3

C4

C2C2

Figure 6.1 – Workflow for collaborative training between CO and FR (described in Section
2.4). (BLM: Build a Local Model, GLM: Group Local Models, SLD: Share Local Data, MMD: Merge
Models, SLM: Share Local Models, SCM: Share Collaborative Models, MEO: Model Evaluation, REO:
Receive Evaluation and Outcomes).

of distributed models based on the execution of tasks in each site and some collabora-
tions. The workflow illustrated is heterogeneous, from executing the steps at each site to
combining results and supporting different data types. This kind of workflow is dynamic
and has a heterogeneous behavior.

The illustrated workflow has two local flows within site4. On that site, in the right
flow, Colombia participates with France to analyze common data, for example, genomic
data. As part of the other flow (left side), site4 can consider other types of analysis for
local patient samples, such as SNP identification analysis. The parallel and independent
analyses triggered in site4 can be extended to other sites and combines various data sources
to complement the analysis of local heterogeneous samples, such as genomics data and
SNP information. The four sites include steps/tasks that are executed in an entirely local

160



6.3. FeDeRa: Distributed and Declarative Workflows

fashion without data sharing, but others involve cooperation.
A cooperation case is presented in four collaboration steps during the analyses that

we denoted as C1, C2, C3, and C4. The collaboration steps share data between the tasks
at each site. For example, in the collaboration denoted as C1, site1 aggregates the models
of the other French sites in the merge models step (MMD1). site1 can be selected due
to having more computing capacity than the other two sites. In another step C3, site3

requires the collaboration of site2 to complete the analysis because site3 does not dispose
of the necessary infrastructure. However, it can share data with site2 due to agreements
established between the parties.

In summary, the proposed scenario involves different tasks between the four sites,
which are executed partially sequentially, partially in a parallel fashion between different
parts of the analysis workflow. The execution of each task is specific to each site, and the
collaboration is achieved by sharing data during the multi-site analysis.

6.3. FeDeRa: Distributed and Declarative Workflow
Language

We propose the FeDeRa language (Fully EnricheD languagE for distRibuted Analysis)
to specify workflow-based analyses on FDCs. FeDeRa enables, in particular, the definition
of workflows between multiple sites. FeDeRa is implemented as a Python library that
provides a declarative programming language for specifying multi-site analyses. FeDeRa
provides control-flow and data flow programming strategies, treating data as a first-class
citizen. It also provides special concurrency and distribution mechanisms to support the
execution of tasks. FeDeRa implements data flows by means of a shared information store
that is accessible by all sites involved in the data flow. A workflow task can provide
the data to a participating site that requires it by using a shared variable that will be
consumed by said site that requires the data.

The FeDeRa language presents three abstractions to support declarative specifications
based on the dataflow during analysis:

We incorporate future variables to share information between cross-site tasks. The
interaction is done through data-driven tasks mediated by a variable shared common
to all sites.

161



IIPart, Chapter 6 – Workflow Language for FDCs (FeDeRa)

We implement the binding operator that allows to fill data required by others by
data-need during collaborative execution.

Finally, we synchronize through controlled and synchronous waits according to the
availability of the data.

These abstractions are made explicit in the language’s syntax and are transformed into
executable Python code. The workflow tasks at different sites are executed independently;
local execution does not affect the execution of the other sites. With these abstractions,
we seek to provide three capabilities that are very rarely supported by other workflow
languages:

1. User-friendly specification through declarative statements focused on non-expert
users, notably biomedical engineers and techniciens.

2. Natural transformation from diagram-expressed workflows into FeDeRa syntax with-
out using complex constructions.

3. High level of expressiveness for defining tasks on multiple sites and their dependen-
cies compared to other specification approaches.

Finally, we also consider deadlocks detection since it can occur due to mutual depen-
dency between sites, such as between data flow variables. Therefore, we have harnessed a
graph-based strategy for deadlock detection [KS11] to build a global graph representing
the tasks deployed across all sites and the dependencies between dataflow variables. This
construction is usually feasible in the case of biomedical collaborations due to a mutual
agreement between all the participants that typically must be established prior to the co-
operation. Furthermore, requiring dependencies to be known in advance allows potential
deadlocks to be identified and removed before starting the collaborative analysis.

6.3.1. FeDeRa Language Features

In order to realize the above abstractions and capabilities, we propose a language
incorporating dataflow programming and declarative concurrency mechanisms.

162



6.3. FeDeRa: Distributed and Declarative Workflows

6.3.1.1. Dataflow Programming

Workflows almost always define tasks in terms of control, indicating that a task can
be executed only after completing the previous task. In contrast, using data-driven flows,
task execution is triggered by the data required availability. Therefore, the data-driven ap-
proach also fits the definition of multiple concurrent tasks well. Nowadays, the most popu-
lar data processing systems based on a data flow approach are those based on MapReduce.
However, current control flow-based and dataflow-based approaches are subject to limita-
tions concerning multi-site analyses and do not support geo-distributed analyses [PCA15;
Dol+17a]. Therefore, dataflow programming drives the execution through a series of op-
erations and transformations on the data. The data flow can be represented by a directed
graph where the nodes represent the operations, and the edges between them show how
data flows among operations. For example, a node executes an operation when its input
data is available and produces output data for the next node.

Colombia

Dataflow representation of the collaborative analysis

S2    S3

Data

E

S1

Group the 
models

Optimize 
the models

Share data and 
train the models

FROUT

Evaluates 
the models

French Sites

Data

Data

E

COOUT

S4

Train the 
local model

Figure 6.2 – Dataflow representation between French and Colombian sites that share
information on one variable E.

Figure 6.2 is a part of the collaborative workflow proposed between France and Colom-
bia (illustrated in Figure 6.1). Figure 6.2 presents a dataflow between multiple sites
that execute independent tasks but sometimes require collaboration. The left part of
the dataflow corresponds to the French sites and the right side to the Colombian process.
The French sites can share data and models as indicated in each step. Some steps are

163



IIPart, Chapter 6 – Workflow Language for FDCs (FeDeRa)

executed on a specific site according to the installed computing capacity or data-sharing
agreements. For instance, the Colombian site requires the variable E, and a French site
binds that variable. Once E is bound, the Colombian site continues with the local process.
The variable E is a one-time modifiable entity, that is immutable after the initial bind-
ing. It is the owner’s responsibility to bind its value. In other terms, the variable E is a
so-called future that supplies a value for a “hole” on another site.

Dataflow-based tasks may be executed in parallel if each of them does not depend on
the output data of the other. This often allows many tasks in dataflow-based workflows
to be executed in parallel. This relationship between parallel and dataflow programming
enables us to provide mechanisms appropriate for multi-site analysis. Dataflow-based par-
allelism provides a natural specification means, in particular, for non-expert users.

6.3.1.2. Declarative Concurrency

FeDeRa also includes declarative concurrent programming features. It adopts relevant
mechanisms focused on concurrent processing and distributed mechanisms, such as those
proposed in the Oz language [HSW93] and its computation model [Con13; VH04]. FeD-
eRa combines declarative and concurrency techniques seeking to maintain instructions
independently, satisfying the needs of each site during multi-site analyses.

Concurrency extends the functionality to perform analyses independently across multi-
ple sites, where they interact only when necessary. The interactions are performed through
single-share variables referenced in a common space accessible to all. Dataflow variables
are stored on an external site called the Single-Share Store (SSS). These variables have
two states: initially, they are undefined and their status is unbound. Next, the status
changes to bound when a value is assigned to the variable.

The Single Share Store (SSS)
FeDeRa implements a variable store, a common space to share information between
participating sites. Variables in the SSS are initially declared and have no initial value
assigned. The purpose of these variables is to share the required information between the
sites to support multi-site analyses. The SSS stores dataflow variables that maintain the
unbound (defined) and bound (assigned) states. These variables are assignable only once
and then immutable. The site that defines the dataflow variable is the only one responsible
for changing its value. The value assigned can correspond to a primitive type, a learning
model, a data set, or an encrypted object. The location of the SSS store can be fixed

164



6.3. FeDeRa: Distributed and Declarative Workflows

to one of the participating members (that is, for instance, located approximately “in the
middle” of all participants) or a third party trusted by the parties.

The SSS store can constitute a bottleneck during processing due to thousands of re-
quests from geo-distributed sites, which generate latency and communication problems.
Nevertheless, we think that real biomedical problems almost always involve fewer par-
ticipants than in other areas, such as business or social media. For example, the ICAN
project involves 34 participating sites. Our scheme can be improved upon if bottlenecks
arise by splitting the SSS into several such spaces that manage subsets of the shared
variables whose users are, for example, located close to one another. We do not consider
this, relatively straightforward, extension further in this thesis.

Futures
Futures are dataflow variables that share information between parties, enabling on-demand
data analysis. The future variables are implicitly defined during the workflow specification,
and the synchronization is done during the call for sites that require it. The adoption of
future variables increase the independence between calculations that require values from
other sites and takes advantage of local computing facilities installed at each site.
These features, directly related to declarative and dataflow-oriented concurrency program-
ming, are included in the FeDeRa language implementation to facilitate the specification
of biomedical analyses at multiple sites and mitigate some of the specification problems
in current workflow systems.

6.3.2. Syntax and Semantics

We define the FeDeRa syntax by extending the provided for Python2. First, FeDeRa’s
syntax defines the most important properties of our language. Next, the semantics is
defined in terms of transformations from our declarative programming instructions into
Python standard programs.

6.3.2.1. FeDeRa Instructions

The syntax of the FeDeRa language is presented in Figure 6.3. The grammar is defined
using Extended Backus-Naur Form (EBNF) and Parsing Expression Grammar (PEG).
The syntax is similar to the Python grammar. In particular, the syntax statements in our

2. https://docs.python.org/3/reference/grammar.html

165



IIPart, Chapter 6 – Workflow Language for FDCs (FeDeRa)

//FeDeRa Program statements

FeDeRaProgram := FeDeRaStmt+

FeDeRaStmt := FeDeRaStmtDecl | PythonStmts

//FeDeRa statement declaration

FeDeRaStmtDecl := DFVarDeclaration | DFVarBindings | FlowDecl

//DataFlow Variable Declaration

DFVarDeclaration := “var“, varName+

varName := PythonVariableIdentifier

//DataFlow Variable Bindings

DFVarBindings := varName, “:=“, value

value := PythonExpression

//Flow and Workflow definition

FlowDecl := “flow”, SiteIdentifier, “(“,[Paramlist],”)”, “:”, [FeDeRaStmt]

WorkflowDef := “workflow (”, SiteIdentifier, {”|”, SiteIdentifier}, ”)”

//Workflow invocation

StrtInv := WorkflowObj, “.start”, “(“,[Paramlist],”)” 

WorkflowObj := WorkflowDef | objectName

Paramlist = Param, {“,” Param}

Param := varName | value

//Python statements

PythonStmts correspond to Python grammar

 

Figure 6.3 – Syntax of FeDeRa language.

language follow Python’s indentation rules3 to delimit structure, establish code blocks,
and take advantage of the benefits of code readability.

The grammar mainly introduces three statements that enrich our language for multi-
site analyses: parallel composition of multi-site workflows (represented by the grammar
non-terminal WorkflowDef ), local flow declaration (non-terminal FlowDecl), dataflow
variables declaration (DFVarDeclaration), and a binding operation for dataflow variables
(DFVarBindings). The parallel composition between multi-site workflows is synchronized
through the shared variables implemented in our language.

3. https://peps.python.org/pep-0008/

166



6.3. FeDeRa: Distributed and Declarative Workflows

start BLM MMD MEO stop

start BLM MMD MEO stop

C1

C2

start stop

C3

Site1

Site2

Site3

BLM MEO

C4

C4

Figure 6.4 – A distributed machine learning scenario among three sites applying the steps:
Build a Local Model (BLM), Merge Models (MMD), and Model Evaluation (MEO).

To show how to use the FeDeRa syntax, we use the workflow diagram illustrated in
Figure 6.4. This workflow is a part of the collaborative analysis discussed on page 92, which
will be defined later. The workflow illustrated in Figure 6.4 represents an analysis among
three sites. They share data at different times through dataflow variables (represented
by C1, C2, C3, and C4). The scenario consists of three steps: BLM (Build Local Model)
runs entirely local on each site, while the steps MMD (Merge Models) and MEO (Model
Evaluation and Outcomes) share data between sites. The step MMD1 requires two models,
the local one, from Site1, and the other from Site2. For communication, Site1 requires the
future variable C2, bound by Site2. Therefore, the execution of the MMD1 task must wait
until the value of C2 is assigned.

This collaborative workflow among three sites is specified using FeDeRa’s syntax, as
shown in Figure 6.5. The specification has two parts, a global part for all the sites and a
part specific for each one. First, the global workflow definition provides the information
required by all sites, see lines 2–5 in Figure 6.5. The second part corresponds to the
algorithm executed on each workflow site. For the case study, three sites are declared
separately. In Figure 6.5, the flows on the three sites are defined in lines 9–33.

The languages capabilities offered are used as follows in this context. We define four
dataflow variables in line 3. These dataflow variables allow communication between the
sites in order to share information required by the parties during the multi-site execution
of tasks. On line 4, we start three tasks on three different sites. During the execution,
they communicate through passing message patterns and share future variables using a
single share store.

Then come three flow definitions for the three sites (lines 9–33). On each site, the flow

167



IIPart, Chapter 6 – Workflow Language for FDCs (FeDeRa)

1 # Global workflow specification for all sites
2 flow allSites ():
3 var c1 ,c2 ,c3 ,c4 # Define dataflow variables
4 workflow (Site1|Site2|Site3) # Invoke the multi -site workflow
5 print (" Analysis performed among three sites")
6

7 # Local flow specifications for each site
8 flow Site1 ():
9 dataS1 = loadData ()

10 blm = buildLocalMdl ( dataS1 )
11 mmd = mergeMdl (blm ,c2)
12 c1 := mmd # Bind future c1
13 meolc = evalMdl (blm)
14 meo = evalMdl (c4)
15 print ("Model Evaluation Results ")
16 print ("Local Model",meolc , " Collab M.", meo)
17

18 flow Site2 ():
19 dataS2 = loadData ()
20 blm = buildLocalMdl ( dataS2 ) # Bind future c2
21 c2 := blm
22 mmd = mergeMdl (c1 ,c3)
23 c4 := mmd # Bind future c4
24 print ("Model Evaluation Results ")
25 print ("Local Model",evalMdl (blm), " Collab M.", evalMdl (mmd))
26

27 flow Site3 ():
28 dataS3 = loadData ()
29 blm = buildLocalMdl ( dataS3 )
30 c3 := blm # Bind future c3
31 print ("Model Evaluation Results ")
32 print ("Local Model",evalMdl (blm), " Collab M.", evalMdl (c4))

Figure 6.5 – FeDeRa analysis workflow among three sites from Figure 6.4

statement in form of Python-style programs. Finally, the dataflow variables are bound
(using FeDeRa’s binding operator operator ‘:=’) on lines 12, 21 and 30.

6.3.2.2. Transformational semantics of FeDeRa instructions

The FeDeRa statements are defined by transforming the FeDeRa’s new constructs
into executable (standard) Python code. The main idea of this semantics is to define the
future-based by-need execution among multiple sites.

Figure 6.6 illustrates FeDeRa’s compilation process, transforming FeDeRa’s proper
declarative or Python instructions into Python executable code. The former is transformed

168



6.3. FeDeRa: Distributed and Declarative Workflows

Transformation

FeDeRa
program

FeDeRa
Stmt

Python
Stmts

Code Generation

FeDeRa compiler

Executable
Python code

Distributed
Runtime

Figure 6.6 – FeDeRa compilation process.

into plain Python, as shown in the following; the latter can be interpreted directly. This
transformation is achieved through FeDeRa modules developed in Python for each FeDeRa
component explained below.

The Single Share Store (SSS) is the channel through which sites share information
based on the dataflow variables (futures). In the example specification presented in Fig-
ure 6.5, line 3 defines four dataflow variables in the SSS. Without loss of generality, we
assume that such variables must be unique.

Implementation of var

definition for the variable 

c1 into Python code

Figure 6.7 – Transformation of Single Share Store functionality

In Figure 6.7, we present the transformation of the SSS into Python code that uses
message passing between the sites and the site responsible for the store. The synchroniza-
tion of declares and binds operations is through publisher and subscriber patterns. We
implement this functionality based on the asynchronous messaging library, ZeroMQ4.

Future assignment (:=) is the second relevant feature of our language. This bind
operation is defined in the syntax as DFVarDeclaration and DFVarBindings. The operator

4. https://zeromq.org/

169



IIPart, Chapter 6 – Workflow Language for FDCs (FeDeRa)

Implementation of the
bind operator ':='

for the dataflow
variable varName

Figure 6.8 – Implementation of the subscriber site to the dataflow variable varName as
Python code

‘:=’ is transformed into the ‘wait_needed()’ Python function as presented in Figure 6.8.
The function subscribes to the site interested in accessing the future named varName.
When a site requires the variable and is not bound, the site waits until the variable’s state
is bound. Otherwise, the subscriber continues the local execution if the future variable is
bound.

Implementation of the bind 
operation for the dataflow 

variable varName 
with the value result

Figure 6.9 – Implementation for binding a dataflow variable in Python code

170



6.3. FeDeRa: Distributed and Declarative Workflows

The binding operator is implemented using a function ‘bind_variable()’ presented
in Figure 6.9. The function publishes the result in the future varName. The binding
process is done through the publisher patterns. The future varName binding is implicit
whenever some function refers to it. For example, the ‘call_function()’ implicitly as-
signs a varName the result value.

Finally, as we already mentioned, the keyword workflow defines the parallel composition
of the flows, and flow is transformed into executable routines in Python. The workflow
definition allows deploying the analysis between the multiple sites indicated as arguments.
In contrast, the flow corresponds to the executable code composed of Python and FeDeRa
statements executed on each site.

6.3.2.3. Specification of the Collaborative Scenario

As a second workflow case to specify, we reconsider the collaborative scenario illus-
trated in Figure 6.1 (on page 160). The corresponding FeDeRa specification is also com-
posed of two parts. The first part corresponds to the global specification illustrated in
Figure 6.10. The second part defines once again each site’s flow steps, represented in
Figure 6.11 for the Colombian and Figure 6.12 for the French sites.

1 # Global specification for all sites
2 flow allSites ():
3 # define dataflow vars in the single share store
4 var c1 ,c2 ,c3 ,c4
5 #The first three sites correspond to French members , and the rest

to the process in Colombia .
6 workflow (Site1|Site2|Site3| Site4a | Site4b )
7 print (" Analysis performed among the four sites")

Figure 6.10 – FeDeRa specification for the global conditions of the collaborative scenario
presented in Figure 6.1 (introduced on page 40)

The Colombian and French sites dispose of information derived from genomic data,
such as gene expression levels. Moreover, Site4 processes another independent task that
does not depend on third parties, such as analyzing SNP information to complement the
analyses of the samples of Colombian patients. For this reason, in Figure 6.1, Site4 has
two local processes, as explained above.

The global specification, presented in Figure 6.10, defines the participation of four sites
that compose the collaborative analysis. In the specification, line 4 defines four dataflow

171



IIPart, Chapter 6 – Workflow Language for FDCs (FeDeRa)

variables used during the collaborative analysis to share data and accomplish the process
according to the workflow diagram. Next, line 6 refers to the different process sites, and
the last value, Site4b, is the independent process in Colombia that, in particular, processes
SNP information.

1 #Local specification for Colombian site
2 flow Site4a ():
3 dataS4a = loadData ()
4 localMdl = buildLocalMdl ( dataS4a )
5 groupMdl = groupModel ( localMdl )
6 mergeMdl = mergeModes ( groupMdl )
7 print ("Model Evaluation Results ")
8 print ("Local Model",evalMdl ( localMdl ))
9 print (" Collab Models ",evalMdl (c2)

10

11 flow Site4b ():
12 dataS4b = loadData ()
13 localMdl = buildLocalMdl ( dataS4b )
14 print ("Model Evaluation Results ")
15 print ("Local Model",evalMdl ( localMdl ))

Figure 6.11 – FeDeRa specification for Colombian site in the collaborative scenario illus-
trated in Figure 6.1

For the specification on the Colombian site, Figure 6.11 defines two parallel workflows.
The workflow described in the Site4a routine corresponds to the collaboration with France.
All steps are defined using new FeDeRa constructs or standard Python code. In this
specification, all steps call routines that are defined in Python. In contrast, line 9 uses the
dataflow variable C2, bound by Site1. The variable C2 corresponds to a future to share
information.

Finally, the specification of the three French sites is shown in Figure 6.12. They are also
composed of calls to routines defined in native Python code. For example, lines 7, 16, 23,
and 31 refer to the variables C1, C2, C3 defined in the single share store to share required
information. The binding operations of these variables occur in lines 9, 19, and 29.

Until now, we have specified two collaborative workflows using our provided syntax. The
specification is based on the simplicity provided by Python. The workflow illustrated in
Figure 6.4 was defined as the FeDeRa code shown in Figure 6.5. Second, the collaborative
case introduced at the beginning of the thesis, diagrammed in Figure 6.1 was transformed
into the FeDeRa syntax shown in Figures 6.10, 6.11, and 6.12.

In both cases, the specification form from the workflow diagram shows one of the ben-

172



6.3. FeDeRa: Distributed and Declarative Workflows

1 #Local specification for French sites
2 flow Site1 ():
3 dataS1 = loadData ()
4 localMdl = buildLocalMdl ( dataS1 )
5 groupMdl = groupModel ( localMdl )
6 # wait_needed (c1), wait until glm on site2 is bound
7 mergeMdl = mergeModes (groupMdl ,c1)
8 # binding the dataflow variable c2 to mergeMdl value
9 c2 := mergeMdl

10 print ("Model Evaluation Results ")
11 print ("Local Model",evalMdl ( localMdl ))
12 print (" Collab Models ",evalMdl ( mergeMdl ))
13

14 flow Site2 ():
15 dataS2 = loadData ()
16 localMdl = buildLocalMdl (dataS2 ,c3)
17 groupMdl = groupModel ( localMdl )
18 # binding the dataflow variable c1 to groupMdl value
19 c1 := groupMdl
20 print ("Model Evaluation Results ")
21 print ("Local Model",evalMdl ( localMdl ))
22 # binding the dataflow variable c4
23 c4 := evalMdl (c2)
24 print (" Collab Models ",c4)
25

26 flow Site3 ():
27 dataS3 = loadData ()
28 # binding the dataflow variable c3 to dataset dataS3
29 c3 := dataS3
30 print ("Model Evaluation Results ")
31 print (" Collab Models ",c4)

Figure 6.12 – FeDeRa specification for French sites in the collaborative scenario presented
in Figure 6.1

efits desired with our language, mentioned at the beginning when we define our language
(on page 161). The natural transformation from diagrammed workflow into FeDeRa syn-
tax without using complex elements. These specification features are complemented later
in the experimental stage, comparing other capabilities of FeDeRa with respect to other
workflow specification languages.

173



IIPart, Chapter 6 – Workflow Language for FDCs (FeDeRa)

6.4. Architecture and Implementation

FeDeRa language implementation supports FDCs with two main features: dataflow-
oriented workflows supported by declarative means to handle concurrency. FeDeRa has
been implemented using Python (version 3.7) and some specialized libraries to achieve the
desired functionality mentioned in this section. Our implementation offers high portability,
a relevant feature in biomedical analysis since there is no standard platform for distributed
analyses.

6.4.1. Implementation overview

The Single Shared Store (SSS) supports communication between all sites through
the interaction between data flow variables. The SSS can be configured and located at
an arbitrary site that participates in the analysis or a separated trusted third party.
The interaction between the SSS and the sites is handled via message passing using an
asynchronous messaging library (ZeroMQ5). ZeroMQ is a concurrent library that provides
brokerless messaging through an asynchronous message queue. In addition, the ZeroMQ
library also handles low-level tasks such as managing system-level communication sockets.

waits for 
the var

Site2

SSS Site3

V
a
r

N
a
m
e

Site1
defines and

binds the varV
a
r

N
a
m
e

Figure 6.13 – Communication between two sites via the Single Share Store SSS.

Figure 6.13 presents the interaction with the SSS through three sites. First, Site1
defines the variable varName to be used as a future for others. Site2 is responsible for
hosting the Single Share Store. Finally, Site3 requires the content of varName at some
point during the workflow execution.

We mainly rely on the Publisher/Subscriber pattern for interactions that use different
ports for different variables. The Publisher/Subscriber functionality is implemented using
the functions wait_needed and bind_variable introduced in previous section (on page 170).
The implementation supports point-to-point communication that is well aligned with
the distributed topologies supported by FDCs. Finally, the concurrent functionality is
implemented through the asyncio library6, which provides high-level functionality to

5. https://zeromq.org/
6. https://docs.python.org/es/3/library/asyncio.html

174



6.4. Architecture and Implementation

ensure asynchronous tasks during the communication.

Handling deadlocks

Distributed processing involves sharing resources in FeDeRa-based FDC systems, such
as dataflow variables. At some point, there can be competition for access to these variables,
generating deadlocks. For example, a deadlock in FeDeRa specification can occur when
a workflow task requires dataflow variables held by another site. Potential deadlocks
are unavoidable and difficult to avoid, and they are always latent in distributed and
concurrent systems such as FDCs. Therefore, we propose using a well-known deadlock
identification employing cyclic dependencies in global directed graphs, known as Wait-
For-Graph (WFG) [KS11].

Step11

Site1

Step12

Step13

Step21

Site2

Step22

Step31

Site3

Step32

Step33 Step34

Figure 6.14 – Example of a Wait-For-Graph (WFG) strategy for handling deadlocks be-
tween three sites.

This approach is useful in the context of FDCs for biomedical analyses — and typi-
cally feasible in contrast to other domains where distributed algorithms are harnessed —
because their stringent security and privacy requirements entail that complete knowledge
about the system is available at some point. As a consequence, the dependency graph can
effectively be constructed.

A multi-site distributed analysis can be modeled through a directed graph whose nodes
represent tasks, and the edges represent directed communications between them. Nodes
can have two possible states running or waiting. The running status corresponds to the
correct assignment of resources to finish the task. In contrast, waiting indicates that the

175



IIPart, Chapter 6 – Workflow Language for FDCs (FeDeRa)

step is acquiring some future value. The form of representation of the WFG corresponds
to the indicated in the literature handling deadlocks using graphs [Sin89].

Figure 6.14 shows a WFG graph composed of tasks at three sites, where the nodes are
tasks, and the edges represent the wait state for the resource. For instance, the directed
edge from node Step11 to node Step21 means Step11 is blocked and is waiting for Step21

to bind a variable. WFG representation allows identifying if the system has deadlocks as
long as there is a cycle between nodes. For example, Step11, Step21, and Step31 form a
cycle. Therefore, these steps form a deadlock. Algorithms, for instance, that are presented
in [KS11], must satisfy two conditions:

i. detection of deadlocks in a finite time, avoiding the occurrence of new deadlocks,

ii. ensure that it is a real lock and does not correspond to false deadlocks.

Python Interpreter

MQBroker (ZeroMQ)

asyncio

Federa Programs

SSS (ZeroMQ)

P2P Lib

Python Interpreter

MQBroker (ZeroMQ)

asyncio

Federa Programs

P2P Lib

Figure 6.15 – FeDeRa distributed runtime architecture.

6.4.2. FeDeRa Runtime Architecture

The FeDeRa runtime architecture supports the execution of multi-site analyses collab-
oratively and coordinatedly. Figure 6.15 illustrates the distributed runtime architecture
of FeDeRa and its handling of interactions between multiple sites. At each site, the imple-
mented FeDeRa code is deployed, and the specialized libraries to achieve local execution
and synchronization between sites are defined. In the distributed runtime architecture, the
sites communicate through the availability of variables hosted in the Single Share Store
(SSS). The SSS is initialized in one site that communicates with all to share future data.

176



6.4. Architecture and Implementation

The communication between sites can be point-to-point when the sites require some direct
communication. The services implemented in the architecture support multi-site execution
of the analyses specified with the FeDeRa language.

The mentioned libraries in the runtime architecture correspond to specialized tasks
supported in Python. For example, the message queue on each site is implemented through
the ZeroMQ library. Point-to-point communication is performed through the p2pnetwork
library7. It supports peer-to-peer connection and the modeling of dynamic networks, such
as the workflows supported by FDC systems.

Federa Runtime Federa Runtime Federa Runtime

SSS

Figure 6.16 – FeDeRa communication distributed architecture.

Finally, Figure 6.16 corresponds to the distributed architecture between the sites,
where the SSS can be located at one of the sites participating in the process or even at
trusted third party during the execution of the distributed analysis.

6.4.3. Deployment

We are interested in deploying FeDeRa in multi-cloud environments over distributed
sites in order to support FDC analyses. Its implementation library can be deployed on
an arbitrary number of sites. After installation of some configuration files and the setup
and parameterization of the single share store on a trustworthy site, FDC applications
are ready to be executed.

7. https://github.com/macsnoeren/python-p2p-network

177



IIPart, Chapter 6 – Workflow Language for FDCs (FeDeRa)

Deploying on Grid’5000 (G5K)
Following the deployment mentioned in the previous chapter in Section 5.5.2 (on page 139),
FeDeRa-specified analyses were also deployed in the Grid’5000 environment. The deploy-
ment is automated and controlled through the execo library. This library supports the
automated execution from the local console on hundreds of nodes deployable on G5K.

France

Luxembourg

Geo-distributed Nodes
on Grid'5000

FeDeRa modules

& FDC packages

Each site deploys  

with execo13 and are 

connected via SSH

Figure 6.17 – Grid’5000 (G5K) nodes distribution with FeDeRa and FDC components.

We first initialize each node required during the multi-site analysis from the specifi-
cation in FeDeRa. Next, we set up the geo-distributed environment based on the nodes
specified. We then move and install the FeDeRa and FDC components on each node. Fi-
nally, we start the execution according to the multi-site workflow specification. Figure 6.17
presents the distributed deployment of the modules and FeDeRa components installed in
each site, where they can communicate point-to-point using the networkx library.

1 <DeployConfig >
2 <ProviderName >G5K </ ProviderName >
3 <NoSites >8</ NoSites >
4 <SiteConfig >
5 <Site >Nantes </Site >
6 <NoNodes >2</ NoNodes >
7 <OS >ubuntu1804 -x64 -min </OS >
8 <Requisites > python3 .7, scikit -learn ,pandas </ Requisites >
9 </SiteConfig >

10 ...
11 </ DeployConfig >

Figure 6.18 – Sample of configuration file to deploy multi-site analyses on G5K

178



6.5. Evaluation and Results

Environment settings
The deployment is handled mainly by means of a configuration file that enables cus-
tomizing the relevant site data, such as the arrangement of nodes and the configuration of
the machines involved in the multi-site analysis. On each node, it is possible to indicate
the operating system and the required libraries. The environment is first initialized at
each site, and then the base software is installed. Finally, each site executes the specified
workflow that implements the FDC. Figure 6.18 presents a part of the configuration file
(in XML format) for deployment between multiple sites members of G5K. This per-site
file may define the following fields:

ProviderName: is the name of the environment to implement the distributed analy-
sis. Until now, we only have considered G5K, but other geo-distributed environments
could be considered an extension of the language.

NoSites: total number of sites on which the FDC is deployed.

Site: name or ID of each site (in our case, the cities providing G5K clusters).

NoNodes: number of nodes to be deployed on each site.

OS : operating system to set up and configure on each node.

Requisites: list of desired packages and libraries to install on each node.

The configuration file is required prior to the deployment of the analysis. This setup
reduces the required technical knowledge for deploying current multi-site analyses in dis-
tributed processing environments such as G5K. Current analyses, such as those based on
distributed workflow systems, require intricate specialized code to achieve similar deploy-
ment types. In this way, our language offers another advantage, reducing the complex
technical knowledge of multi-site deployments required in traditional workflow systems.

6.5. Evaluation and Results

In this section, we evaluate the new features of FeDeRa by comparison with the three
baseline workflow languages Swift, Snakemake, and Pegasus, mentioned in this chapter on
page 157. We specify a workflow common to all and then present a qualitative evaluation
of the abstractions provided by our language versus the specification of the three baseline
systems. We focus on three properties:

179



IIPart, Chapter 6 – Workflow Language for FDCs (FeDeRa)

Expressiveness refers to the capability of how natural and concise multi-site anal-
yses can be defined with the new language mechanisms.

Concurrency strategies to specify multi-site tasks in the presence of data-flow
dependencies during collaborations among sites.

Distribution mechanisms to specify the use and share of resources required for
processing between multiple sites.

Workflow Diagram Representation

Input
DataSet

part.1

split

part.2 part.3 part.4

word
freq

word
freq

word
freq

word
freq

count.1 count.2 count.3 count.4

aggreg

out.txt

Figure 6.19 – Workflow to split a single input into four independent files on which word
frequencies are calculated output as a single file.

The comparison among FeDeRa and the three baseline workflows employ the same
workflow analysis common to all, represented in Figure 6.19, and specified separately in
each syntax provided. The workflow splits an input file into several independent tasks.
Later, the number of frequencies of the words is counted in each file. Then the frequency
counts are returned and aggregated into a single output file. This workflow can be used to

180



6.5. Evaluation and Results

parallelize across multiple compute resources, allowing multiple jobs to run independently.
For example, processing large data sets or sharing trained models across multiple sites,
such as the FDC-based learning approach.

1 type file;
2

3 app (file out) split_job ( string FInput )
4 {
5 split "--input" FInput stdout = filename (o);
6 }
7

8 app (file out) wordfreq_job (file part_file )
9 {

10 wordfreq "--input" part_file stdout = filename (out);
11 }
12

13 app (file out) merge_job (file s[])
14 {
15 aggregate filenames (s) stdout = filename (out);
16 }
17

18 file FInput <" InputDS .txt" >;
19 file outputs [];
20

21 foreach i in [0:3] {
22 file FPart <single_file_mapper ; file= strcat (" output /part.",i) >;
23 FPart = split_job ( FInput );
24

25 file FCount <single_file_mapper ; file= strcat (" output /count.",i) >;
26 FCount = wordfreq_job (FPart);
27 outputs [i] = FCount ;
28 }
29

30 file out <" output / output .txt" >;
31 out = merge_job ( outputs );
32

Figure 6.20 – Specification in Swift for the workflow analysis presented in Figure 6.19
.

Figure 6.20 presents the specification in Swift for the workflow illustrated in Fig-
ure 6.19. The specification presented is from the documentation provided by the Swift
language workflow8. The syntax is based on scripting language similar to C-syntax, and
each statement acts as a “shell” language instruction, a syntax highly suitable for develop-
ers. However, this is a disadvantage for non-technical users, such as biomedical researchers,

8. https://github.com/swift-lang/swift-tutorial

181



IIPart, Chapter 6 – Workflow Language for FDCs (FeDeRa)

because learning the syntax can be complex compared to other languages, such as FeD-
eRa. The complexity of learning the Swift language can be a barrier for non-technical
users [Ahm+19]. In addition, another drawback is the complex configuration and techni-
cal knowledge required to implement analyses in distributed environments using Swift.

1 inFiles = "data .1 data .2 data .3".split ()
2

3 rule all:
4 input :
5 " results .txt"
6

7 rule count:
8 input :
9 "{ myFile }. txt"

10 output :
11 txt="{ myFile }. count"
12 shell:
13 "cat {input} | wc -w > { output }"
14

15 rule merge_job :
16 input :
17 expand (’{f}. count ’, f= inFiles )
18 output :
19 " results .txt"
20 shell:
21 "cat {input} > { output }"
22

Figure 6.21 – Specification in Snakemake for the workflow analysis presented in Figure 6.19
.

Figure 6.21 corresponds to the specification in Snakemake for the workflow presented
in Figure 6.19. The specification presented is also from the documentation provided on the
Snakemake website9. The specification shows the essence of the Snakemake syntax, the
rule-based Snakefile. The workflow defines the analysis of the data from rules, composed
of a name, input files, output files, parameters, and the shell responsible for generating
the output from the input. The syntax provided by Snakemake is based on Python, which
makes the language easy to write, read and maintain. However, the relationship between
the rules can be difficult for complex analyses since the connection between the input and
output of the rules directs the workflow execution. In addition, if the analysis requires
more than one Snakefile, the biomedical engineer is responsible for correctly designing

9. https://snakemake.readthedocs.io/

182



6.5. Evaluation and Results

the workflow among requirements between rules in multiple files, dealing with the de-
pendencies between them and the particularities of the execution of each one. Therefore,
this creates difficulties in deploying complex analyses such as multi-site and distributed
analyses supported by the FDCs.

1 from Pegasus .DAX3 import *
2 # Create a abstract DAG
3 dax = ADAG("sample - workflow ")
4

5 #Add input file to the DAX -level
6 FInput = File(" InputDS .txt")
7 dax. addFile (a)
8 #Add a remote or local split job
9 split_job = Job(name="split")

10 split_job . addArguments ("-l 1",FInput ,"part.")
11 split_job .uses(FInput , link=Link.INPUT)
12 dax. addJob ( split_job )
13

14 # Define merge job to aggregate each counts
15 output_file = File(" output .txt")
16 merge_job = Job(name=" aggregate ")\
17 . add_outputs ( output_file )
18 dax. add_jobs ( merge_job )
19 outputs = []
20

21 for f in range (1 ,5):
22 # Generate each part files
23 part = File("part .%s" % f)
24 split.uses(part , link=Link. OUTPUT )
25 FPart = File(part)
26 dax. addFile (FPart)
27

28 ##Add a remote or local word frequent job , one for each input file
29 wordfreq_job = Job(name=" wordfreq ")
30 FCount = File("count .%s" % f)
31 wordfreq_job . addArguments (FPart , FCount )
32 wordfreq_job .uses(FPart , link=Link.INPUT)
33 wordfreq_job .uses(FCount , link=Link. OUTPUT )
34 outputs . append ( FCount )
35 dax. addJob ( wordfreq_job )
36

37 #Merge jobs with the counts files
38 merge_job . add_inputs ( outputs )
39 dax.write ()
40

Figure 6.22 – Specification in Pegasus for the workflow analysis presented in Figure 6.19
.

183



IIPart, Chapter 6 – Workflow Language for FDCs (FeDeRa)

The last baseline workflow specification is based on Pegasus, presented in Figure 6.22.
The specification assumes execution on a single site. Therefore partitioning and file merg-
ing can be parallelized on-site. The specification presented is based on the documentation
provided by Pegasus10. Pegasus abstractly describes the workflow using a DAX (Directed
Acyclic Graph in XML) format based on diverse programming languages such as Python
and Java. Pegasus supports dependency management of complex tasks through explicit
configuration, e.g., a user-produced file in XML format. Pegasus has taken a more ex-
plicit approach to distribution and supports running on single machines, remote clusters,
distributed infrastructures, and clouds. Therefore, it is usually optimal for execution in
HPC environments. However, the specification form for multi-site analysis is complex, as
the configuration for multi-site deployments requires detailed technical knowledge.

1 # Global specification for all sites
2 flow allSites ():
3 # Define futures variables to receive data from all
4 var count .1, count .2, count .3, count .4
5 FInput = load(" InputDS .txt")
6 FPart = split( FInput )
7 workflow (Site0|Site1|Site2|Site3).start(FPart [0], FPart [1], FPart [2],

FPart [3])
8

9 #Merge jobs with the counts files
10 res = merge_job . add_inputs (count .1, count .2, count .3, count .4)
11 genResults (" output .txt",res)
12 print (" Analysis performed among four sites")
13

14 flow Site0 ():
15 # Invoke a local function to compute word frequencies
16 count .1 := wordfreq (FPart .0)
17

18 flow Site1 ():
19 count .2 := wordfreq (FPart .1)
20

21 flow Site2 ():
22 count .3 := wordfreq (FPart .2)
23

24 flow Site3 ():
25 count .4 := wordfreq (FPart .3)
26

Figure 6.23 – Specification in FeDeRa for the workflow analysis presented in Figure 6.19
.

10. https://github.com/pegasus-isi/

184



6.5. Evaluation and Results

Finally, we specify the same workflow using FeDeRa, illustrated in Figure 6.23. Our
specification assumes that a global site is responsible for splitting the files, sending these
to each site, and then receiving them back for aggregation. We share the information
between the four sites and the aggregator through future variables, defined on line 4, and
each is filled in within each site. The execution on line 10 follows the natural execution
of the workflow after each site sends the information about the local count. Finally, this
information is combined in a single output file. The routines, split, wordfreq, and genresults
are external scripts specialized in a particular task, similar to invoke in each rule in
Snakemake. This specification provides for a natural formulation using the features of our
language, the future variables, their declaration, and filling during the workflow execution.

6.5.1. Expressiveness Level

FeDeRa seeks to offer a high level of expressiveness and ease of use than current
workflow languages. We evaluate this property based on two principles proposed by Kie-
pusewski et al. [Kie03] to achieve a good modeling language:

Suitability is related to the level of knowledge the user is required to possess in
order to specify the workflow steps, that is, how natural it is to specify programs
with the syntax provided.

Expressiveness is the ability to provide domain-specific notations and constructs
through language specification.

Due to the diversity of workflow systems, there is no standard way to compare them;
they lack standards in the design, specification, and execution of workflows. Therefore, our
evaluation corresponds to a subjective assessment, as used also by other authors [KTB00;
WWG21]. A means to evaluate the expressiveness level can be to determine the suitability
of the language’s mechanisms versus the concepts required from the problem domain. In
our case, transforming graphical workflow diagrams into workflows is the most natural
procedure: FeDeRa directly supports this method because it does not require complex
knowledge of the language or computation to realize such transformations. Only the three
language abstractions we have introduced and Python code blocks are required.

The level of expressiveness is obvious from the different scenarios shown in this chapter.
First, the collaborative scenario illustrated in Figure 6.4 and expressed using FeDeRa in
Figure 6.5 shows a natural way to transform the graphical workflow into FeDeRa syntax.

185



IIPart, Chapter 6 – Workflow Language for FDCs (FeDeRa)

Second, the split/merge workflow specified in the three baselines workflows (respectively
presented in Figures 6.22, 6.21, 6.20) shows the benefits of our specification form. For
example, in contrast to Swift, FeDeRa allows to define the steps more intuitively without
requiring programming concepts like in C language. Similarly, with respect to Snakemake,
although we have a similar syntax based on Python, the relationships between rules and
their requirements can be a problem. This problem is if we consider multi-site analysis,
where the manipulation of Snakefiles and its dependencies often become very complex.
Finally, regarding the Pegasus scenario, the simplicity of writing is similar. However,
communicating tasks between multiple sites requires complex middleware configurations,
which is highly complex to perform for non-technical users.

Therefore, our proposal uses futures between the sites frees users from responsibilities
since the Single Share Store coordinates and mediates the data during workflow execution.
This type of future sharing is not provided in current workflow systems, which require
previously defining resources such as data in each site. In addition, our functionality allows
for more comfortable sharing data (i.e., raw data or learning models) between multiple
sites, improving the ability to specify and configure versus others. Finally, the level of
expressiveness and abstraction provided allows the creation of reusable, scalable, and
flexible modules, which is highly convenient for biomedical users. Although the level of
expressiveness is one feature provided in our proposal, there are other aspects to consider
since the configuration required to deploy multi-site analysis is also relevant, especially
for the thesis scope, our interest in processing data in FDCs. Overall, our approach allows
for a more efficient and understandable multi-site workflow design for biomedical users.

6.5.2. Concurrency and Distribution

The last two features desired with our language are concurrency and distribution
mechanisms. According to concurrency, our specification supports using data flow vari-
ables that can be executed in different sites, and, in the end, the analysis preserves the
final result. Therefore, the multi-site task specification allows for adding concurrency
mechanisms without stressing about data races between sites. Instead, each site interacts
with others through the controlled passage of messages through the single share store.
Additionally, the scenarios specified in our language, including the collaborative analysis
between Colombia and France (presented on page 40), show an example of the use of
futures supporting concurrent operations such as splits and joins.

Distributed processing is favored by some of the benefits of the mechanisms provided in

186



6.6. Conclusion

the language. FeDeRa’s syntax and its mechanisms provided for deployment in multi-site
environments allow controlled execution of multi-site analyses where sites communicate
with each other by the need of data. The specified analyses can run in distributed environ-
ments where each site can have a different configuration. The concurrency mechanisms are
aligned with distributed processing between sites. Our multi-site specification considers
the distribution of tasks, resources, and data sharing through a common space. Each site
can have its local resources, even those different from others. FeDeRa supports flexible
and hybrid designs where some tasks can be decentralized and others entirely localized.

Nevertheless, a limitation in the availability of distributed resources can generate dead-
locks. One way to manage this is to build a global graph (Wait-For-Graph explained on
page 175) from the steps of all sites, including the required resources at each one. From
this graph, cycles, and deadlocks are previously calculated and then corrected before
starting the analysis. Therefore, our language provides mechanisms in favor of distributed
processing, such as distributed computation models, distribution of declarative data, and
commonly distributed processing architectures.

Finally, the controlled deployment of multi-site analysis in the G5K deployment case
shows the ease of supporting FDCs, which require a simple configuration file (explained
on page 179). We also offer a model for controlled deployment across multiple G5K sites
to complement our language.

6.6. Conclusion

This chapter presents some workflow systems and their forms to specify distributed
analysis, especially focused on expressiveness, concurrency, and distribution mechanisms
relevant to multi-site analysis. From our survey, we identified shortcomings in such mech-
anisms. For example, Snakemake defines the analysis using association rules in text files,
limiting multi-site analysis due to multiple dependencies between those rules. Swift offers
a C language-based syntax, which is hard to understand, nor does it make it easy to
distribute the analysis across multiple sites. Pegasus supports multiple distributed envi-
ronments but is limited in specifying and executing workflows or parts of them across
different geo-distributed distributed sites. Finally, these systems lack mechanisms that fa-
cilitate easy deployment in cloud environments, often requiring technical knowledge from
the user to achieve such deployment.

Based on these shortcomings, we propose FeDeRa, a language to specify multi-site

187



IIPart, Chapter 6 – Workflow Language for FDCs (FeDeRa)

analyses. The FeDeRa language also provides abstractions to fine-tune the deployment
across distributed machines. FeDeRa enables, in particular, the definition of workflows
between multiple sites. FeDeRa is implemented as a Python library that provides a
declarative programming language for specifying multi-site analyses. FeDeRa provides
control-flow and dataflow programming strategies, treating data as a first-class citizen.
Our language is complemented with two features: dataflow programming and declarative
concurrency.

FeDeRa uses specialized libraries to ensure data sharing between sites through variable
dataflow, using message-passing patterns, and achieving point-to-point communication
between each site. The syntax offered in FeDeRa is transformed into executable code in
Python, which is deployed in a controlled way on each site. The architecture provided is
flexible and aligned to multi-site analysis, like those previously presented in FDC systems.

Finally, we present a qualitative evaluation of our approach to specifying distributed
analyzes versus other workflow systems based on three properties: expressiveness, con-
currency, and distribution. By comparing three current systems, we identified benefits in
our language in each property, which are appropriate for biomedical analysis and their
participants. The mechanisms provided in our language make it easy to specify analyses
and deploy them in multi-site environments.

188







Chapter 7

CONCLUSIONS

This thesis addresses the problem of designing, implementing, and deploying informa-
tion systems to analyze massive amounts of biomedical data using a globally distributed
infrastructure while respecting data ownership and privacy. Concretely, we argue that
due to the amount of biomedical data, and the legal and socio-economic restrictions on
these data, scientific analyses can no longer be done by individuals or single organizations.
Instead, researchers need to design Fully Distributed Collaborations which are research
endeavors that harness means to exploit and analyze massive biomedical information col-
laboratively over geo-distributed infrastructures. However, in their current state, computer
tools are not prepared to support such collaborations. In particular, they do not provide
means to address legal and socio-economic restrictions on data. In most cases, researchers
are forced to request full access to the data of all parties involved in the collaboration,
and they design their experiments under this assumption.

In chapter 2, we first investigated the issues and challenges of collaborative research
on biomedical data. We studied different types of biomedical data and the restrictions
that apply to each. We also summarized the global landscape of current data-sharing
regulations, which determine how and when to share personal data, including biomedical
information. We also presented biomedical projects that involve collaboration between
geo-distributed teams, their restrictions, and the opportunities associated with the current
tools for biomedical analysis, such as workflow systems. Finally, we presented in detail a
collaborative scenario involving the participation of sites in Colombia and France. This
scenario is used during the thesis development to present and discuss our contributions.

In chapter 3, we presented the state of the art of Biomedical Analytical Tools and
Techniques. First, we investigated how these analytical tools were used to solve biomed-
ical problems. In particular, we investigated how they were used to solve five relevant
problems during the DNA sequencing process. We then categorized a subset of these
tools, namely workflow systems, into three categories: the specification of tasks, the abil-
ity to reproduce experiments, and interoperability properties. Finally, we studied them

191



from the perspective of three architectural features: data and computation placement,
privacy and security, and architecture and distribution level. During the investigation, we
found limited support to address the needs and requirements of FDCs.

From the revision of the literature, we identify several research opportunities for
the distributed processing of biomedical data [Gar+22]. Current tools and systems for
distributed genomic analyses have several limitations, including implementing efficient
heuristics for the placement of computations and data according to the restrictions spe-
cific to each experiment. Similarly, regarding privacy and security, most current systems
do not provide native means to address security issues and delegate responsibility to the
computing infrastructure (e.g., the cloud infrastructure). Finally, the scalability and per-
formance quality attributes have limited support to configure and execute complex distri-
bution patterns over heterogeneous infrastructure and across data privacy and ownership
boundaries. They use efficient frameworks to analyze data in distributed environments
but neglect biomedical, legal, and socio-economic considerations.

Thus, in Chapter 4, we introduce the concept of Fully Distributed collaborations
(FDCs), which constitute collaborative research endeavors where the confidentiality and
ownership of biomedical data are satisfied while providing means to analyze and exploit
the information collaboratively. FDC-based analyses take advantage of local computing
facilities at each site, minimize security risks in sharing data, and favor global biomedical
data restrictions. FDCs promise to enable more powerful biomedical analyzes defined in
distributed workflows operating over large volumes of shared public and private data.
Three topologies complement our collaborative approach for distributed processing based
on sequential, hierarchical, and fully distributed architectures. We also extend our FDC
approach with two security strategies for sharing data when it is necessary to share data
securely between the parties. The first is to share data in secure containers, and the sec-
ond is to share and operate over the encrypted data, maintaining the data encrypted. The
FDC features mitigate technical, legal, and socio-economic constraints by adopting secure
mechanisms, expressive definition languages, and a rich set of architectural features that
promote reliable collaborations.

Chapter 5 proposes a biomedical analysis algorithm compliant with the FDC require-
ments and based on Random Forest. The scenario considers a novel implementation of the
Random Forests algorithm in a fully distributed multi-site setting. Our fully distributed
random forest algorithm (MuSiForest) offers strategies to use private data to train models
at each site without sharing raw information and aggregate and optimize them accord-



ing to the distributed processing topology. MuSiForest shows better results regarding the
shared information size and the required computation infrastructure. The performance
learning rate is close to but lower than centralized versions of the Random Forest algo-
rithm. We also present strategies to improve the performance of the MuSiForest model by
sharing partial information securely. Allowing the algorithm to share partial information
produce models with less bias than the initial proposal of not sharing data between sites.
We experiment with geo-distributed data corresponding to gene expression levels for five
types of cancer. The goal is to build a global model for prediction from the aggregation
of privately trained local models at each site. Our algorithm was efficient in computing
overhead and amount of shared data, and our learning performance was close to expensive
and unfeasible centralized training.

Finally, Chapter 6 presents a language to specify fully distributed collaborative anal-
yses in a declarative way. Our language combines FeDeRa and Python statements, where
the need for the data drives the analysis. FeDeRa is a language to support FDCs with
two main features: declarative and concurrent, extending Python with share assignment
variables and dataflow variables as futures. The language provides instructions that are
transformed into executable code to be interpreted in Python. The language was tested
against three current workflow systems to assess the level of expressiveness and distributed
and concurrency mechanisms. Our experiments found that the syntax and way of spec-
ifying and deploying multi-site analysis are appropriate for biomedical users in contrast
to the technical knowledge required in current systems to configure and deploy analysis
in multi-site environments. The results also show that workflows are defined more sim-
ply and naturally than the other workflow languages. For example, a notable reduction
in the number of instructions to specify analysis with our proposal compared to others
shows expressiveness benefits. As result, we offer a user-friendly approach, eliminating the
complex practices that current systems provide for specifying multi-site analyses.

7.1. Future work

The results of this dissertation reveal opportunities for future research in biomedical
data analysis in geo-distributed environments. Here we discuss possible future works in
three categories: the implementation of fully distributed algorithms for data analysis,
automated compilation from FeDeRa into Python code, more expressiveness in workflow
languages, and secure sharing of biomedical data.



Fully distributed processing algorithms

The global restrictions on sharing biomedical data motivate research on more fully
distributed processing algorithms, such as those based on distributed and federated learn-
ing. In this thesis, we presented a strategy based on vertical data partitioning. However,
as a complement, new approaches can be based on horizontal and hybrid data partitions.
In addition, combining other data sources on the same samples can reveal more findings
in the study of each patient, such as jointly processing images and genomic data.

As a future implementation, other FDC scenarios can consider the composition of
other local models (classifiers) resulting from algorithms such as Support Vector Ma-
chines [Hea+98], K-Nearest Neighbor [CH67], and Neural Networks [JMM96]. This com-
position generates different aggregated models, which could improve the precision due
to the training strategy of each algorithm. This idea would seek to combine the bene-
fits of each classifier to train a global model that best approximates the performance of
centralized training.

Finally, during the prediction process, a weighted voting mechanisms strategy could be
implemented [WFB13; Zhu+18] in contrast to our approach, where all trees have the same
weight during the prediction. The weight could be determined by the level of contribution
of each site. For example, the weight used during the global model could be determined
based on the number of samples from each site. However, the collaborative model can
explore other statistical measurements to find the best voting mechanism during the
prediction phase.

Improve FeDeRa functionalities

We have applied the transformation manually for each of the FeDeRa statements into
Python code. In future work, we propose the automated generation of executable code
from our declarative specifications. To achieve this, it must be necessary to define the
automatic compilation with the validation of our syntax and the correct transformation
of our instructions into native code to be executed by the Python interpreter. In addition,
we propose the automated implementation of deadlock handling mechanisms as future
work. This implementation will permit early detection of deadlocks between resources
required from multiple sites.

Moreover, improving the expressiveness of language mechanisms in terms of support-
ing more distributed processing environments is necessary. For example, we implemented



a module to deploy automated geo-distributed analyses in Grid’5000 (G5K ), but it is im-
portant to propose other scripts for automated deployment in popular cloud environments.
Finally, we consider to improve our specification forms to have more expressiveness, such
as designing graphical user interfaces, but without requiring the configuration of special-
ized routines through the interface, as in traditional workflow systems.

Secure sharing of biomedical data

As evaluated in state of the art, current tools and workflow systems partially address
security and privacy issues. They either delegate security to the computing infrastruc-
ture (e.g., a cloud provider) or provide basic mechanisms. Therefore, it is necessary to
improve the ways to protect the data during processing during all analysis phases, from
the collection to results generation. These efforts should be focused on multi-site analysis,
where recently, there have been more and more restrictions to sharing biomedical data.
Furthermore, the analysis must consider processing encrypted data using complementary
techniques to the costly homomorphic encryption. Such as training models from encrypted
data focused on global supervised services where consumers send encrypted samples, and
the model is also applied in an encrypted way [Bos+14]. The idea is to extend various
models through machine learning as a service approach [Taf+17].





GLOSSARY

bagging considers weak classifiers that are trained in a parallel way independently and
then combined using some aggregation strategy. 70, 71, 74, 112–114

BATTs is an abbreviation for Biomedical Analytical Tools and Techniques. 45

bias results from making incorrect assumptions, which leads to a model trained under
the wrong premises. 23, 122

bootstrapping is a statistical sampling method based on random sampling with re-
placement focused on improving learning algorithms’ diversity and accuracy. 15, 70,
71

CAP theorem indicates that it is impossible in a distributed system to guarantee at
the same time: Consistency, Availability, and Partition tolerance. 85, 86

classification refers to supervised learning problem where the training dataset relates
independent and output (label) variables. 19, 23, 73, 74, 109, 110

decision trees are a supervised learning method used for classification and regression
tasks based on a hierarchical structure. 72, 73

Distributed Machine Learning is a strategy to mitigate algorithm complexity and
memory limitation through large-scale distributed processing.. 24, 78, 81–83

ensemble learning is a machine learning strategy where multiple models are trained
to solve a classification problem and then combined into one model to be used in
prediction tasks. 15, 70–72, 77, 98, 152

entropy is the amount of noise or disorder in a data set. 105, 106, 113

expressiveness is the ability to provide domain-specific notations and constructs through
language specification. 23, 162, 180, 185

197



federated Learning is a distributed machine learning technique to train models across
multiple decentralized mobile maintaining data on site. 78, 101, 129, 152

Fully-Distributed Collaborations (FDCs) is a research endeavors where the confi-
dentiality and ownership of biomedical data are satisfied while providing means to
analyze and exploit the information collaboratively. 43, 83, 85

gene expression level determines how genes are transcribed into functional gene prod-
ucts such as functional RNA species or proteins. 27, 107, 138, 139

General Data Protection Regulation (GDPR) is the strictest privacy and security
regulation for data sharing in the world. 22, 27, 29

Genome-Wide Association (GWA) is a research approach to identify genomic vari-
ants that are statistically associated with a particular disease.. 28

genomic data is a set of genomes and DNA data of an organism and the resulting
analyzes from these. 28, 29, 158, 160, 171

gini impurity is the probability of incorrectly classifying a randomly chosen sample if
it was randomly classified according to the class distribution. 105, 106, 113

ICAN project is the IntraCranial ANeurysms (ICAN) project aims to develop diagnos-
tic and predictive tools for the risk of intracranial aneurysms. 9, 27, 36–39, 43, 97,
98, 165

Information Gain is the amount of information gained by each attribute to determine
the tree’s levels by its information gained. 105, 106, 126

machine Learning involves artificial intelligence methods allowing organizations to in-
fer knowledge from data autonomously. 46, 66, 83, 92, 96

MapReduce is a framework that supports parallel computing on large volumes of data
distributed between processing workers. 79, 85

MuSiForest is a our approach for MUlti-SIte random Forest. 23

Next-Generation Sequencing (NGS) refers to large-scale DNA or RNA sequencing
technology to study diseases and their biological relationships. 21



overfitting is when the trained model perfectly fits the training data but cannot predict
unknown/future samples satisfactorily. 74

Random Forests are an ensemble machine learning algorithm composed of individual
decision trees. 22

regression refers to supervised learning problem where the training dataset relates in-
dependent and output (continuous) variables. 74

suitability of the language is related to the level of knowledge required by the user to
specify the workflow steps. 185

underfitting refers to the poor generalization of the model from the training data, the
inferred function does not satisfactorily capture the relationship underlying the data.
74





BIBLIOGRAPHY

[Aam+13] Harald Aamot et al., «Pseudonymization of patient identifiers for transla-
tional research», in: BMC medical informatics and decision making 13.1
(2013), pp. 1–15.

[Aba+16] Martin Abadi et al., «Deep learning with differential privacy», in: Proceed-
ings of the 2016 ACM SIGSAC conference on computer and communications
security, 2016, pp. 308–318.

[Abu+16] José M Abuín et al., «SparkBWA: speeding up the alignment of high-throughput
DNA sequencing data», in: PloS one 11.5 (2016), e0155461.

[AÇ15] Anas Abu-Doleh and Ümit V Çatalyürek, «Spaler: Spark and graphx based
de novo genome assembler», in: 2015 IEEE International Conference on Big
Data (Big Data), IEEE, 2015, pp. 1013–1018.

[Act96] Accountability Act, «Health insurance portability and accountability act of
1996», in: Public law 104 (1996), p. 191.

[ADW10] Francisco Azuaje, Yvan Devaux, and Daniel RWagner, «Integrative pathway-
centric modeling of ventricular dysfunction after myocardial infarction», in:
PLoS One 5.3 (2010), e9661.

[Ahm+19] Azza E Ahmed et al., «Managing genomic variant calling workflows with
Swift/T», in: PloS one 14.7 (2019), e0211608.

[AIG12] Mohamed Abouelhoda, Shadi Alaa Issa, and Moustafa Ghanem, «Tavaxy:
Integrating Taverna and Galaxy workflows with cloud computing support»,
in: BMC bioinformatics 13 (2012), pp. 1–19.

[Aka+22] Adi Akavia et al., «Privacy-preserving decision trees training and predic-
tion», in: ACM Transactions on Privacy and Security 25.3 (2022), pp. 1–
30.

[Alm+12] Jonas S Almeida et al., «Fractal MapReduce decomposition of sequence
alignment», in: Algorithms for Molecular Biology 7.1 (2012), pp. 1–12.

201



[Alt+90] Stephen F Altschul et al., «Basic local alignment search tool», in: Journal
of molecular biology 215.3 (1990), pp. 403–410.

[AML12] Yaser S Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin, Learning
from data, vol. 4, AMLBook New York, 2012.

[ANR19] ANR, IntraCranial ANeurysms: From familial forms to pathophysiological
mechanisms – I-CAN, http://www.agence-nationale-recherche.fr/
Project-ANR-15-CE17-0008, [Online; accessed 10-Oct-2019], 2019.

[APT10] Mohamed Radhouene Aniba, Olivier Poch, and Julie D Thompson, «Issues
in bioinformatics benchmarking: the case study of multiple sequence align-
ment», in: Nucleic acids research 38.21 (2010), pp. 7353–7363.

[Are+18] April Moreno Arellano et al., «Privacy policy and technology in biomedical
data science», in: Annual review of biomedical data science 1 (2018), pp. 115–
129.

[AS00] Rakesh Agrawal and Ramakrishnan Srikant, «Privacy-preserving data min-
ing», in: Proceedings of the 2000 ACM SIGMOD international conference
on Management of data, 2000, pp. 439–450.

[Atk+17] Malcolm Atkinson et al., Scientific workflows: Past, present and future, 2017.

[Azi+19] Md Momin Al Aziz et al., «Privacy-preserving techniques of genomic data—a
survey», in: Briefings in bioinformatics 20.3 (2019), pp. 887–895.

[Bal+13] Daniel Balouek et al., «Adding virtualization capabilities to the Grid’5000
testbed», in: Cloud Computing and Services Science: Second International
Conference, CLOSER 2012, Porto, Portugal, April 18-21, 2012. Revised Se-
lected Papers 2, Springer, 2013, pp. 3–20.

[Bar+10] Derik Barseghian et al., «Workflows and extensions to the Kepler scientific
workflow system to support environmental sensor data access and analysis»,
in: Ecological Informatics 5.1 (2010), pp. 42–50.

[Bar+16] Christian Barillot et al., «Shanoir: applying the software as a service distri-
bution model to manage brain imaging research repositories», in: Frontiers
in ICT 3 (2016), p. 25.

[Bar64] Paul Baran, «On distributed communications networks», in: IEEE transac-
tions on Communications Systems 12.1 (1964), pp. 1–9.

http://www.agence-nationale-recherche.fr/Project-ANR-15-CE17-0008
http://www.agence-nationale-recherche.fr/Project-ANR-15-CE17-0008


[BBL76] Barry W Boehm, John R Brown, and Myron Lipow, «Quantitative evalua-
tion of software quality», in: Proceedings of the 2nd international conference
on Software engineering, 1976, pp. 592–605.

[BDR19] Steven M Bellovin, Preetam K Dutta, and Nathan Reitinger, «Privacy and
synthetic datasets», in: Stan. Tech. L. Rev. 22 (2019), p. 1.

[BFV19] Mirko Bez, Giacomo Fornari, and Tullio Vardanega, «The scalability chal-
lenge of ethereum: An initial quantitative analysis», in: 2019 IEEE Interna-
tional Conference on Service-Oriented System Engineering (SOSE), IEEE,
2019, pp. 167–176.

[BH07] Peter Bühlmann and Torsten Hothorn, «Boosting algorithms: Regulariza-
tion, prediction and model fitting», in: (2007).

[Bia+20] Jiang Bian et al., «Mp2sda: Multi-party parallelized sparse discriminant
learning», in: ACM Transactions on Knowledge Discovery from Data (TKDD)
14.3 (2020), pp. 1–22.

[BL13] Marc Bux and Ulf Leser, «Parallelization in scientific workflow management
systems», in: arXiv preprint arXiv:1303.7195 (2013).

[BN06] Christopher M Bishop and Nasser M Nasrabadi, Pattern recognition and
machine learning, vol. 4, 4, Springer, 2006.

[Bod+15] Ulrich Bodenhofer et al., «msa: an R package for multiple sequence align-
ment», in: Bioinformatics 31.24 (2015), pp. 3997–3999.

[Bos+14] Raphael Bost et al., «Machine learning classification over encrypted data»,
in: Cryptology ePrint Archive (2014).

[Bou+12] Anne-Laure Boulesteix et al., «Overview of random forest methodology and
practical guidance with emphasis on computational biology and bioinfor-
matics», in: Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery 2.6 (2012), pp. 493–507.

[Bou+17] Romain Bourcier et al., «Understanding the pathophysiology of intracranial
aneurysm: the ICAN project», in: Neurosurgery 80.4 (2017), pp. 621–626.

[Bou+19] Fatima-Zahra Boujdad et al., «On distributed collaboration for biomedical
analyses», in: 2019 19th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID), IEEE, 2019, pp. 611–620.



[Bou+22] Fatima-zahra Boujdad et al., «A Hybrid Cloud Deployment Architecture
for Privacy-Preserving Collaborative Genome-Wide Association Studies»,
in: Digital Forensics and Cyber Crime: 12th EAI International Conference,
ICDF2C 2021, Virtual Event, Singapore, December 6-9, 2021, Proceedings,
Springer, 2022, pp. 342–359.

[Bra+16] Nicolas L Bray et al., «Near-optimal probabilistic RNA-seq quantification»,
in: Nature biotechnology 34.5 (2016), pp. 525–527.

[Bre+84] L Breirnan et al., Classification and regression trees, 1984.

[Bre96a] Leo Breiman, Arcing classifiers, tech. rep., Technical report, University of
California, Department of Statistics, 1996.

[Bre96b] Leo Breiman, «Bagging predictors», in:Machine learning 24 (1996), pp. 123–
140.

[Bre96c] Leo Breiman, «Out-of-bag estimation», in: (1996).

[Bre99] L Breiman, «Random forests», in: University of California: Berkeley, CA,
USA (1999).

[Bro00] Michael W Browne, «Cross-validation methods», in: Journal of mathemati-
cal psychology 44.1 (2000), pp. 108–132.

[BS16] Gérard Biau and Erwan Scornet, «A random forest guided tour», in: Test
25 (2016), pp. 197–227.

[BS18] Fatima-Zahra Boujdad and Mario Südholt, «Constructive privacy for shared
genetic data», in: CLOSER 2018: 8th International Conference on Cloud
Computing and Services Science, 2018, pp. 1–8.

[BT13] Sam Behjati and Patrick S Tarpey, «What is next generation sequencing?»,
in: Archives of Disease in Childhood-Education and Practice 98.6 (2013),
pp. 236–238.

[Bun+19] Annalisa Buniello et al., «The NHGRI-EBI GWAS Catalog of published
genome-wide association studies, targeted arrays and summary statistics
2019», in: Nucleic acids research 47.D1 (2019), pp. D1005–D1012.

[Bur+05] Alexandre Bureau et al., «Identifying SNPs predictive of phenotype using
random forests», in: Genetic Epidemiology: The Official Publication of the
International Genetic Epidemiology Society 28.2 (2005), pp. 171–182.



[Bux+17] Marc Bux et al., «Hi-way: Execution of scientific workflows on hadoop yarn»,
in: 20th International Conference on Extending Database Technology, EDBT
2017, 21 March 2017 through 24 March 2017, OpenProceedings. org, 2017,
pp. 668–679.

[Bux18] Marc Nicolas Bux, «Scientific Workflows for Hadoop», in: (2018).

[BV16] Carlyna Bondiombouy and Patrick Valduriez, «Query processing in multi-
store systems: an overview», in: International Journal of Cloud Computing
5.4 (2016), pp. 309–346.

[BW08] Raymond PL Buse and Westley R Weimer, «A metric for software read-
ability», in: Proceedings of the 2008 international symposium on Software
testing and analysis, 2008, pp. 121–130.

[Can+16] Ignacio Cano et al., «Towards geo-distributed machine learning», in: arXiv
preprint arXiv:1603.09035 (2016).

[Can+22] Gaia Cantelli et al., «The european bioinformatics institute (EMBL-EBI) in
2021», in: Nucleic Acids Research 50.D1 (2022), pp. D11–D19.

[Can20] Parliament of Canada, BILL C-11, https://parl.ca/DocumentViewer/
en/43- 2/bill/C- 11/first- reading, [Online; accessed 21-July-2021],
2020.

[Can85] Justice Law of Canada, The Privacy Act, https://laws-lois.justice.
gc.ca/eng/acts/p-21/fulltext.html, [Online; accessed 21-July-2021],
1985.

[Cap+05] Franck Cappello et al., «Grid’5000: a large scale, reconfigurable, contro-
lable and monitorable Grid platform», in: SC’05: Proc. The 6th IEEE/ACM
International Workshop on Grid Computing Grid’2005, hal number inria-
00000284, IEEE/ACM, Seattle, USA, Nov. 2005, pp. 99–106, url: https:
//hal.inria.fr/inria-00000284.

[Car+18] Giulio Caravagna et al., «Detecting repeated cancer evolution from multi-
region tumor sequencing data», in: Nature methods 15.9 (2018), pp. 707–
714.

[Cas+17] Marcelo Rodrigo de Castro et al., «SparkBLAST: scalable BLAST processing
using in-memory operations», in: BMC bioinformatics 18 (2017), pp. 1–13.

https://parl.ca/DocumentViewer/en/43-2/bill/C-11/first-reading
https://parl.ca/DocumentViewer/en/43-2/bill/C-11/first-reading
https://laws-lois.justice.gc.ca/eng/acts/p-21/fulltext.html
https://laws-lois.justice.gc.ca/eng/acts/p-21/fulltext.html
https://hal.inria.fr/inria-00000284
https://hal.inria.fr/inria-00000284


[Cat+17a] Giuseppe Cattaneo et al., «An effective extension of the applicability of
alignment-free biological sequence comparison algorithms with Hadoop», in:
The Journal of Supercomputing 73 (2017), pp. 1467–1483.

[Cat+17b] Giuseppe Cattaneo et al., «Mapreduce in computational biology-a synop-
sis», in: Advances in Artificial Life, Evolutionary Computation, and Systems
Chemistry: 11th Italian Workshop, WIVACE 2016, Fisciano, Italy, October
4-6, 2016, Revised Selected Papers 11, Springer, 2017, pp. 53–64.

[Cat19] GWAS Catalog, GWAS Catalog, https://www.ebi.ac.uk/gwas/, [Online;
accessed 20-Sept-2019], 2019.

[CC16] European Commission and Council, Regulation (EU) 2016/679 of the Eu-
ropean Parliament and of the Council of 27 April 2016 on the protection of
natural persons with regard to the processing of personal data and on the free
movement of such data, http://data.europa.eu/eli/reg/2016/679/
2016-05-04, Apr. 2016.

[CD05] Brecht Claerhout and Georges JE DeMoor, «Privacy protection for clinical
and genomic data: The use of privacy-enhancing techniques in medicine»,
in: International Journal of Medical Informatics 74.2-4 (2005), pp. 257–265.

[CDK05] George F Coulouris, Jean Dollimore, and Tim Kindberg, Distributed systems:
concepts and design, pearson education, 2005.

[CG16] Tianqi Chen and Carlos Guestrin, «Xgboost: A scalable tree boosting sys-
tem», in: Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[CG18] Sam Corbett-Davies and Sharad Goel, «The measure and mismeasure of fair-
ness: A critical review of fair machine learning», in: arXiv preprint arXiv:1808.00023
(2018).

[CH67] Thomas Cover and Peter Hart, «Nearest neighbor pattern classification», in:
IEEE transactions on information theory 13.1 (1967), pp. 21–27.

[Cha+12] Yu-Jung Chang et al., «A de novo next generation genomic sequence assem-
bler based on string graph and MapReduce cloud computing framework»,
in: BMC genomics, vol. 13, 7, BioMed Central, 2012, pp. 1–17.

https://www.ebi.ac.uk/gwas/
http://data.europa.eu/eli/reg/2016/679/2016-05-04
http://data.europa.eu/eli/reg/2016/679/2016-05-04


[Che+02] Ann Chervenak et al., «Giggle: A framework for constructing scalable replica
location services», in: SC’02: Proceedings of the 2002 ACM/IEEE Confer-
ence on Supercomputing, IEEE, 2002, pp. 58–58.

[Che+21] Zheyi Chen et al., «Effective data placement for scientific workflows in mobile
edge computing using genetic particle swarm optimization», in: Concurrency
and Computation: Practice and Experience 33.8 (2021), e5413.

[CI12] Xi Chen and Hemant Ishwaran, «Random forests for genomic data analysis»,
in: Genomics 99.6 (2012), pp. 323–329.

[Cic+17] Mark Cicero et al., «Training and validating a deep convolutional neural
network for computer-aided detection and classification of abnormalities on
frontal chest radiographs», in: Investigative radiology 52.5 (2017), pp. 281–
287.

[CJL07] Christophe Croux, Kristel Joossens, and Aurélie Lemmens, «Trimmed bag-
ging», in: Computational statistics & data analysis 52.1 (2007), pp. 362–
368.

[CMH83] K Mani Chandy, Jayadev Misra, and Laura M Haas, «Distributed deadlock
detection», in: ACM Transactions on Computer Systems (TOCS) 1.2 (1983),
pp. 144–156.

[Coh+17] Sarah Cohen-Boulakia et al., «Scientific workflows for computational repro-
ducibility in the life sciences: Status, challenges and opportunities», in: Fu-
ture Generation Computer Systems 75 (2017), pp. 284–298.

[Col+11] Marc E Colosimo et al., «Nephele: genotyping via complete composition
vectors and MapReduce», in: Source code for biology and medicine 6 (2011),
pp. 1–10.

[Col12] Congress of Colombia, Colombian Data Protection Law, Last accessed 16
September 2021, 2012, url: https://www.funcionpublica.gov.co/eva/
gestornormativo/norma.php?i=49981.

[Com] European Commission, Data protection in the EU, https://ec.europa.
eu/info/law/law-topic/data-protection/data-protection-eu_en.

[Con+14] DS Consortium et al., «Genome-wide trans-ancestry meta-analysis provides
insight into the genetic architecture of type 2 diabetes susceptibility», in:
Nature genetics 46.3 (2014), pp. 234–244.

https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=49981
https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=49981
https://ec.europa.eu/info/law/law-topic/data-protection/data-protection-eu_en
https://ec.europa.eu/info/law/law-topic/data-protection/data-protection-eu_en


[Con13] Mozart Consortium, The Mozart Programming System, http://www.mozart-
oz.org/, [Online; accessed 01-January-2021], 2013.

[Coo+19] Charles E Cook et al., «The European Bioinformatics Institute in 2018:
tools, infrastructure and training», in: Nucleic acids research 47.D1 (2019),
pp. D15–D22.

[Coo+20a] Charles E Cook et al., «The European Bioinformatics Institute in 2020:
building a global infrastructure of interconnected data resources for the life
sciences», in: Nucleic acids research 48.D1 (2020), pp. D17–D23.

[Coo+20b] Charles E Cook et al., «The European Bioinformatics Institute in 2020:
building a global infrastructure of interconnected data resources for the life
sciences», in: Nucleic acids research 48.D1 (2020), pp. D17–D23.

[Cop+09] Jason M Cope et al., «Robust data placement in urgent computing environ-
ments», in: 2009 IEEE International Symposium on Parallel & Distributed
Processing, IEEE, 2009, pp. 1–13.

[Cor+18] Manuel Corpas et al., «A FAIR guide for data providers to maximise shar-
ing of human genomic data», in: PLoS computational biology 14.3 (2018),
e1005873.

[Cou08] Jennifer Couzin, Whole-genome data not anonymous, challenging assump-
tions, 2008.

[Cri+19] Stephen Cristiano et al., «Genome-wide cell-free DNA fragmentation in pa-
tients with cancer», in: Nature 570.7761 (2019), pp. 385–389.

[DCD03] GJE De Moor, B Claerhout, and FILIP De Meyer, «Privacy enhancing tech-
niques», in: Methods of information in medicine 42.02 (2003), pp. 148–153.

[De +11] David De Roure et al., «Towards the preservation of scientific workflows»,
in: Proc. 8th Intl. Conference on Preservation of Digital Objects, 2011.

[De +12] Pierre De Wit et al., «The simple fool’s guide to population genomics via
RNA-Seq: an introduction to high-throughput sequencing data analysis», in:
Molecular ecology resources 12.6 (2012), pp. 1058–1067.

[Dea+12] Jeffrey Dean et al., «Large scale distributed deep networks», in: Advances
in neural information processing systems 25 (2012).

http://www.mozart-oz.org/
http://www.mozart-oz.org/


[DeB+10] Joe DeBartolo et al., «Protein structure prediction enhanced with evolution-
ary diversity: SPEED», in: Protein Science 19.3 (2010), pp. 520–534.

[Dec+15] Dries Decap et al., «Halvade: scalable sequence analysis with MapReduce»,
in: Bioinformatics 31.15 (2015), pp. 2482–2488.

[DEC21] DECIPHER, DatabasE of genomiC varIation and Phenotype in Humans us-
ing Ensembl Resources, https : / / www . deciphergenomics . org / about /
overview, [Online; accessed 21-July-2021], 2021.

[Dee+09] Ewa Deelman et al., «Workflows and e-Science: An overview of workflow
system features and capabilities», in: Future generation computer systems
25.5 (2009), pp. 528–540.

[Dee+15] Ewa Deelman et al., «Pegasus, a workflow management system for science
automation», in: Future Generation Computer Systems 46 (2015), pp. 17–
35.

[Di +17] Paolo Di Tommaso et al., «Nextflow enables reproducible computational
workflows», in: Nature biotechnology 35.4 (2017), pp. 316–319.

[Dob+13] Alexander Dobin et al., «STAR: ultrafast universal RNA-seq aligner», in:
Bioinformatics 29.1 (2013), pp. 15–21.

[Dol+17a] Shlomi Dolev et al., «A survey on geographically distributed big-data pro-
cessing using MapReduce», in: IEEE Transactions on Big Data 5.1 (2017),
pp. 60–80.

[Dol+17b] Shlomi Dolev et al., «A survey on geographically distributed big-data pro-
cessing using MapReduce», in: IEEE Transactions on Big Data 5.1 (2017),
pp. 60–80.

[Dom+19] Josep Domingo-Ferrer et al., «Privacy-preserving cloud computing on sen-
sitive data: A survey of methods, products and challenges», in: Computer
Communications 140 (2019), pp. 38–60.

[Don+17] Gaifang Dong et al., «An accurate sequence assembly algorithm for livestock,
plants and microorganism based on Spark», in: International Journal of
Pattern Recognition and Artificial Intelligence 31.08 (2017), p. 1750024.

https://www.deciphergenomics.org/about/overview
https://www.deciphergenomics.org/about/overview


[Dwo+06] Cynthia Dwork et al., «Calibrating noise to sensitivity in private data analy-
sis», in: Theory of Cryptography: Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, Springer,
2006, pp. 265–284.

[Dwo08] Cynthia Dwork, «Differential privacy: A survey of results», in: Theory and
Applications of Models of Computation: 5th International Conference, TAMC
2008, Xi’an, China, April 25-29, 2008. Proceedings 5, Springer, 2008, pp. 1–
19.

[EAH18] Peter F Edemekong, Pavan Annamaraju, and Micelle J Haydel, «Health
insurance portability and accountability act», in: (2018).

[Ebr+15] Mahdi Ebrahimi et al., «Bdap: a big data placement strategy for cloud-based
scientific workflows», in: 2015 IEEE First International Conference on Big
Data Computing Service and Applications, IEEE, 2015, pp. 105–114.

[EHT10] Erik Elmroth, Francisco Hernández, and Johan Tordsson, «Three fundamen-
tal dimensions of scientific workflow interoperability: Model of computation,
language, and execution environment», in: Future Generation Computer Sys-
tems 26.2 (2010), pp. 245–256.

[El 10] Khaled El Emam, «Risk-based de-identification of health data», in: IEEE
Security & Privacy 8.3 (2010), pp. 64–67.

[ELI14] ELIXIR, EXCELERATE, https://elixir-europe.org/about-us/how-
funded/eu-projects/excelerate, [Online; accessed 18-March-2021], 2014.

[ELI19] ELIXIR, European Research Infrastructure for Data in Life Sciences, https:
//elixir-europe.org, [Online; accessed 18-March-2021], 2019.

[Eng21] Genomics England, Department of Health and Social Care, https://www.
genomicsengland.co.uk/information-for-participants/participant-
forms/, [Online; accessed 21-July-2021], 2021.

[Era+19] Gökcen Eraslan et al., «Deep learning: new computational modelling tech-
niques for genomics», in: Nature Reviews Genetics 20.7 (2019), pp. 389–
403.

[Est+19] Andre Esteva et al., «A guide to deep learning in healthcare», in: Nature
medicine 25.1 (2019), pp. 24–29.

https://elixir-europe.org/about-us/how-funded/eu-projects/excelerate
https://elixir-europe.org/about-us/how-funded/eu-projects/excelerate
https://elixir-europe.org
https://elixir-europe.org
https://www.genomicsengland.co.uk/information-for-participants/participant-forms/
https://www.genomicsengland.co.uk/information-for-participants/participant-forms/
https://www.genomicsengland.co.uk/information-for-participants/participant-forms/


[EU20] GDPR EU, What is the LGPD? Brazil’s version of the GDPR, https://
gdpr.eu/gdpr-vs-lgpd/, [Online; accessed 21-July-2021], 2020.

[Eur14] I European Union, «Communication from the Commission to the European
Parliament, the Council, the European Economic and Social Committee and
the Committee of the Regions», in: A newskillsagendaforeurope. Brussels
(2014).

[Eur20] EUR Lex Europa, Implementing Decision (EU) 2019/419, https://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2019.
076.01.0001.01.ENG&toc=OJ:L:2019:076:TOC, [Online; accessed 06-
August-2021], 2020.

[FBS12] Juliana Freire, Philippe Bonnet, and Dennis Shasha, «Computational repro-
ducibility: state-of-the-art, challenges, and database research opportunities»,
in: Proceedings of the 2012 ACM SIGMOD international conference on man-
agement of data, 2012, pp. 593–596.

[Fec+17] Benedikt Fecher et al., «A reputation economy: how individual reward con-
siderations trump systemic arguments for open access to data», in: Palgrave
Communications 3.1 (2017), pp. 1–10.

[Fed+15] Lisa M Federer et al., «Biomedical data sharing and reuse: attitudes and
practices of clinical and scientific research staff», in: PloS one 10.6 (2015),
e0129506.

[Fen+19] Zhi Feng et al., «Securegbm: Secure multi-party gradient boosting», in:
2019 IEEE International Conference on Big Data (Big Data), IEEE, 2019,
pp. 1312–1321.

[Fer+12] óscar Ferrández et al., «Generalizability and comparison of automatic clin-
ical text de-identification methods and resources», in: AMIA Annual Sym-
posium Proceedings, vol. 2012, American Medical Informatics Association,
2012, p. 199.

[Fer+18] Alberto Fernández et al., Learning from imbalanced data sets, vol. 10, Springer,
2018.

[Fer89] David Fernández-Baca, «Allocating modules to processors in a distributed
system», in: IEEE Transactions on Software Engineering 15.11 (1989), pp. 1427–
1436.

https://gdpr.eu/gdpr-vs-lgpd/
https://gdpr.eu/gdpr-vs-lgpd/
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2019.076.01.0001.01.ENG&toc=OJ:L:2019:076:TOC
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2019.076.01.0001.01.ENG&toc=OJ:L:2019:076:TOC
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2019.076.01.0001.01.ENG&toc=OJ:L:2019:076:TOC


[FHL14] Jianqing Fan, Fang Han, and Han Liu, «Challenges of big data analysis»,
in: National science review 1.2 (2014), pp. 293–314.

[FHT01] Jerome Friedman, Trevor Hastie, and Robert Tibshirani, «The elements of
statistical learning. vol. 1 Springer series in statistics», in: New York (2001).

[Fos+08] Ian Foster et al., «Cloud computing and grid computing 360-degree com-
pared», in: 2008 grid computing environments workshop, Ieee, 2008, pp. 1–
10.

[Fou14] National Science Foundation, Core Techniques and Technologies for Advanc-
ing Big Data Science and Engineering, 2014, url: http://www.nsf.gov/
pubs/2012/nsf12499/nsf12499.htm (visited on 04/03/2019).

[Fou17] New America Foundation, Translation: Cybersecurity Law of the People’s Re-
public of China, https://www.newamerica.org/cybersecurity-initiative/
digichina/blog/translation-cybersecurity-law-peoples-republic-
china/, [Online; accessed 06-August-2021], 2017.

[Fou20] New America Foundation, Translation: China’s Draft Personal Informa-
tion Protection Law, https : / / www . newamerica . org / cybersecurity -
initiative/digichina/blog/chinas- draft- personal- information-
protection-law-full-translation/, [Online; accessed 06-August-2021],
2020.

[Fre14] Alex A Freitas, «Comprehensible classification models: a position paper»,
in: ACM SIGKDD explorations newsletter 15.1 (2014), pp. 1–10.

[Fri+18] Kyle Fritchman et al., «Privacy-preserving scoring of tree ensembles: A novel
framework for AI in healthcare», in: 2018 IEEE international conference on
big data (Big Data), Ieee, 2018, pp. 2413–2422.

[Fri01] Jerome H Friedman, «Greedy function approximation: a gradient boosting
machine», in: Annals of statistics (2001), pp. 1189–1232.

[Fry+15] Stephen V Frye et al., «Tackling reproducibility in academic preclinical drug
discovery», in: Nature Reviews Drug Discovery 14.11 (2015), pp. 733–734.

[FS+96] Yoav Freund, Robert E Schapire, et al., «Experiments with a new boosting
algorithm», in: icml, vol. 96, Citeseer, 1996, pp. 148–156.

http://www.nsf.gov/pubs/2012/nsf12499/nsf12499.htm
http://www.nsf.gov/pubs/2012/nsf12499/nsf12499.htm
https://www.newamerica.org/cybersecurity-initiative/digichina/blog/translation-cybersecurity-law-peoples-republic-china/
https://www.newamerica.org/cybersecurity-initiative/digichina/blog/translation-cybersecurity-law-peoples-republic-china/
https://www.newamerica.org/cybersecurity-initiative/digichina/blog/translation-cybersecurity-law-peoples-republic-china/
https://www.newamerica.org/cybersecurity-initiative/digichina/blog/chinas-draft-personal-information-protection-law-full-translation/
https://www.newamerica.org/cybersecurity-initiative/digichina/blog/chinas-draft-personal-information-protection-law-full-translation/
https://www.newamerica.org/cybersecurity-initiative/digichina/blog/chinas-draft-personal-information-protection-law-full-translation/


[FS97] Yoav Freund and Robert E Schapire, «A decision-theoretic generalization of
on-line learning and an application to boosting», in: Journal of computer
and system sciences 55.1 (1997), pp. 119–139.

[GA4] GA4GH, The Global Alliance for Genomics and Health, https : / / www .
ga4gh.org/.

[Gar+22] Wilmer Garzón et al., «A taxonomy of tools and approaches for distributed
genomic analyses», in: Informatics in Medicine Unlocked (2022), p. 101024.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep learning, MIT
press, 2016.

[GEW06] Pierre Geurts, Damien Ernst, and Louis Wehenkel, «Extremely randomized
trees», in: Machine learning 63 (2006), pp. 3–42.

[GFI16] Steven N Goodman, Daniele Fanelli, and John PA Ioannidis, «What does
research reproducibility mean?», in: Science translational medicine 8.341
(2016), 341ps12–341ps12.

[GG20] The Global Alliance for Genomics and Health (GA4GH),GDPR Brief: Japan
obtains the first adequacy agreement under the GDPR, https : / / www .
ga4gh.org/news/gdpr-brief-japan-obtains-the-first-adequacy-
agreement-under-the-gdpr/, [Online; accessed 06-August-2021], 2020.

[GH] The Global Alliance for Genomics and Health, Genomics England Imple-
ments GA4GH, https : / / www . ga4gh . org / news / genomics - england -
implements-ga4gh-api-to-provide-secure-access-to-genomic-data-
for-the-nhs/.

[Gia+19] Irene Giacomelli et al., «Privacy-preserving collaborative prediction using
random forests», in: AMIA summits on translational science proceedings
2019 (2019), p. 248.

[Gil+10] Yolanda Gil et al., «Wings: Intelligent workflow-based design of computa-
tional experiments», in: IEEE Intelligent Systems 26.1 (2010), pp. 62–72.

[GL02] Seth Gilbert and Nancy Lynch, «Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services», in: Acm Sigact News
33.2 (2002), pp. 51–59.

https://www.ga4gh.org/
https://www.ga4gh.org/
https://www.ga4gh.org/news/gdpr-brief-japan-obtains-the-first-adequacy-agreement-under-the-gdpr/
https://www.ga4gh.org/news/gdpr-brief-japan-obtains-the-first-adequacy-agreement-under-the-gdpr/
https://www.ga4gh.org/news/gdpr-brief-japan-obtains-the-first-adequacy-agreement-under-the-gdpr/
https://www.ga4gh.org/news/genomics-england-implements-ga4gh-api-to-provide-secure-access-to-genomic-data-for-the-nhs/
https://www.ga4gh.org/news/genomics-england-implements-ga4gh-api-to-provide-secure-access-to-genomic-data-for-the-nhs/
https://www.ga4gh.org/news/genomics-england-implements-ga4gh-api-to-provide-secure-access-to-genomic-data-for-the-nhs/


[GLN13] Thore Graepel, Kristin Lauter, and Michael Naehrig, «ML confidential: Ma-
chine learning on encrypted data», in: Information Security and Cryptology–
ICISC 2012: 15th International Conference, Seoul, Korea, November 28-30,
2012, Revised Selected Papers 15, Springer, 2013, pp. 1–21.

[Glo] Privacy Laws Around Globe, Privacy Laws Around Globe, https://piwik.
pro/privacy-laws-around-globe/, Accessed: 2021-09-30.

[Goe+10] Jeremy Goecks et al., «Galaxy: a comprehensive approach for supporting
accessible, reproducible, and transparent computational research in the life
sciences», in: Genome biology 11 (2010), pp. 1–13.

[Gol77] Barry Goldman, Deadlock detection in computer networks, tech. rep., Mas-
sachusetts Institute of Tech Cambridge Lab for Computer Science, 1977.

[Gov] North Carolina Gov, North Carolina Public Records Law, https://www.
nccourts.gov/services/request- a- public- record/about- north-
carolina-public-records-law, [Online; accessed 21-July-2021].

[GPB11] Benjamin A Goldstein, Eric C Polley, and Farren BS Briggs, «Random forests
for genetic association studies», in: Statistical applications in genetics and
molecular biology 10.1 (2011).

[GR18] Julija Golosova and Andrejs Romanovs, «The advantages and disadvantages
of the blockchain technology», in: 2018 IEEE 6th workshop on advances
in information, electronic and electrical engineering (AIEEE), IEEE, 2018,
pp. 1–6.

[GTA06] Michael I Gordon, William Thies, and Saman Amarasinghe, «Exploiting
coarse-grained task, data, and pipeline parallelism in stream programs», in:
ACM SIGPLAN Notices 41.11 (2006), pp. 151–162.

[Guo+18] Runxin Guo et al., «Bioinformatics applications on apache spark», in: Gi-
gaScience 7.8 (2018), giy098.

[GX09] James Gardner and Li Xiong, «An integrated framework for de-identifying
unstructured medical data», in:Data & Knowledge Engineering 68.12 (2009),
pp. 1441–1451.

[GX15] Slawomir Goryczka and Li Xiong, «A comprehensive comparison of multi-
party secure additions with differential privacy», in: IEEE transactions on
dependable and secure computing 14.5 (2015), pp. 463–477.

https://piwik.pro/privacy-laws-around-globe/
https://piwik.pro/privacy-laws-around-globe/
https://www.nccourts.gov/services/request-a-public-record/about-north-carolina-public-records-law
https://www.nccourts.gov/services/request-a-public-record/about-north-carolina-public-records-law
https://www.nccourts.gov/services/request-a-public-record/about-north-carolina-public-records-law


[Hao+19] Meng Hao et al., «Towards efficient and privacy-preserving federated deep
learning», in: ICC 2019-2019 IEEE international conference on communi-
cations (ICC), IEEE, 2019, pp. 1–6.

[Has+09] Trevor Hastie et al., The elements of statistical learning: data mining, infer-
ence, and prediction, vol. 2, Springer, 2009.

[Has+18] Tatsunori Hashimoto et al., «Fairness without demographics in repeated loss
minimization», in: International Conference on Machine Learning, PMLR,
2018, pp. 1929–1938.

[Hea+18] National Institutes of Health et al., «NIH strategic plan for data science»,
in: NIH, June (2018).

[Hea+21] National Institutes of Health et al., «Guidance: rigor and reproducibility in
grant applications», in: Online document at: https://grants. nih. gov/poli-
cy/reproducibility/guidance. htm, accessed March 24 (2021).

[Hea+98] Marti A. Hearst et al., «Support vector machines», in: IEEE Intelligent
Systems and their applications 13.4 (1998), pp. 18–28.

[Hea21] National Institutes of Health (NIH), NIH Genomic Data Sharing, https:
/ / osp . od . nih . gov / scientific - sharing / genomic - data - sharing/,
[Online; accessed 18-July-2021], 2021.

[HG13a] Yunda Huang and Raphael Gottardo, «Comparability and reproducibility of
biomedical data», in: Briefings in bioinformatics 14.4 (2013), pp. 391–401.

[HG13b] Yunda Huang and Raphael Gottardo, «Comparability and reproducibility of
biomedical data», in: Briefings in bioinformatics 14.4 (2013), pp. 391–401.

[Hin13] Pieter Hintjens, ZeroMQ: messaging for many applications, " O’Reilly Media,
Inc.", 2013.

[HKS18] Liren Huang, Jan Krüger, and Alexander Sczyrba, «Analyzing large scale
genomic data on the cloud with Sparkhit», in: Bioinformatics 34.9 (2018),
pp. 1457–1465.

[Hom+08] Nils Homer et al., «Resolving individuals contributing trace amounts of
DNA to highly complex mixtures using high-density SNP genotyping mi-
croarrays», in: PLoS genetics 4.8 (2008), e1000167.

https://osp.od.nih.gov/scientific-sharing/genomic-data-sharing/
https://osp.od.nih.gov/scientific-sharing/genomic-data-sharing/


[Hon+12] Dongwan Hong et al., «FX: an RNA-Seq analysis tool on the cloud», in:
Bioinformatics 28.5 (2012), pp. 721–723.

[Hor14] Horizon, H2020 Programme, https://ec.europa.eu/easme/en/section/
horizon-2020-energy-efficiency/h2020-programme, [Online; accessed
18-March-2021], 2014.

[HPS16] Moritz Hardt, Eric Price, and Nati Srebro, «Equality of opportunity in su-
pervised learning», in: Advances in neural information processing systems
29 (2016).

[HR82] Gary S. Ho and CV Ramamoorthy, «Protocols for deadlock detection in dis-
tributed database systems», in: IEEE Transactions on Software Engineering
6 (1982), pp. 554–557.

[HSW93] Martin Henz, Gert Smolka, and Jörg Würtz, «Oz-a programming language
for multi-agent systems», in: IJCAI, Citeseer, 1993, pp. 404–409.

[HTP13] Hailiang Huang, Sandeep Tata, and Robert J Prill, «BlueSNP: R package
for highly scalable genome-wide association studies using Hadoop clusters»,
in: Bioinformatics 29.1 (2013), pp. 135–136.

[Hun+11] Che-Lun Hung et al., «CloudTSS: a TagSNP selection approach on cloud
computing», in: Grid and Distributed Computing: International Conference,
GDC 2011, Held as Part of the Future Generation Information Technology
Conference, FGIT 2011, Jeju Island, Korea, December 8-10, 2011. Proceed-
ings, Springer, 2011, pp. 525–534.

[Hut10] Stu Hutson, «Data handling errors spur debate over clinical trial», in: Nature
medicine 16.6 (2010), p. 618.

[Im+12] Hae Kyung Im et al., «On sharing quantitative trait GWAS results in an era
of multiple-omics data and the limits of genomic privacy», in: The American
Journal of Human Genetics 90.4 (2012), pp. 591–598.

[Ize13] Alan Julian Izenman, «Linear discriminant analysis», in: Modern multivari-
ate statistical techniques, New York: Springer, 2013, pp. 237–280.

[JAP20] Personal Information Protection Commission JAPAN, Act on the Protection
of Personal Information, https://www.ppc.go.jp/en/legal/, [Online;
accessed 06-August-2021], 2020.

https://ec.europa.eu/easme/en/section/horizon-2020-energy-efficiency/h2020-programme
https://ec.europa.eu/easme/en/section/horizon-2020-energy-efficiency/h2020-programme
https://www.ppc.go.jp/en/legal/


[Jia+09] Rui Jiang et al., «A random forest approach to the detection of epistatic
interactions in case-control studies», in: BMC bioinformatics 10.1 (2009),
pp. 1–12.

[JMM96] Anil K Jain, Jianchang Mao, and K Moidin Mohiuddin, «Artificial neural
networks: A tutorial», in: Computer 29.3 (1996), pp. 31–44.

[JT00] Gillian CL Johnson and John A Todd, «Strategies in complex disease map-
ping», in: Current opinion in genetics & development 10.3 (2000), pp. 330–
334.

[Ju+11] Young Seok Ju et al., «Extensive genomic and transcriptional diversity iden-
tified through massively parallel DNA and RNA sequencing of eighteen Ko-
rean individuals», in: Nature genetics 43.8 (2011), pp. 745–752.

[Kai+20] Georgios A Kaissis et al., «Secure, privacy-preserving and federated machine
learning in medical imaging», in: Nature Machine Intelligence 2.6 (2020),
pp. 305–311.

[Kai+21] Peter Kairouz et al., «Advances and open problems in federated learning»,
in: Foundations and Trends® in Machine Learning 14.1–2 (2021), pp. 1–210.

[Kan+08] Murat Kantarcioglu et al., «A cryptographic approach to securely share and
query genomic sequences», in: IEEE Transactions on information technology
in biomedicine 12.5 (2008), pp. 606–617.

[Kar+18] Md Rezaul Karim et al., «Improving data workflow systems with cloud ser-
vices and use of open data for bioinformatics research», in: Briefings in
bioinformatics 19.5 (2018), pp. 1035–1050.

[Kha+19] Farah Zaib Khan et al., «Sharing interoperable workflow provenance: A re-
view of best practices and their practical application in CWLProv», in: Gi-
gaScience 8.11 (2019), giz095.

[Kie+14] Peter Kieseberg et al., «Protecting anonymity in data-driven biomedical sci-
ence», in: Interactive Knowledge Discovery and Data Mining in Biomedical
Informatics: State-of-the-Art and Future Challenges (2014), pp. 301–316.

[Kie03] Bartosz Kiepusewski, Expressiveness and suitability of languages for control
flow modelling in workflows, Queensland University of Technology, Brisbane,
2003.



[Kim19] Ju Han Kim, Genome Data Analysis, Springer Singapore, 2019, url: https:
//www.springer.com/gp/book/9789811319419.

[Kit14] Rob Kitchin, The data revolution: Big data, open data, data infrastructures
and their consequences, Sage, 2014.

[Kno14] Bartha Maria Knoppers, «Framework for responsible sharing of genomic and
health-related data», in: The HUGO journal 8.1 (2014), p. 3.

[Kon+16a] Jakub Konečný et al., «Federated learning: Strategies for improving commu-
nication efficiency», in: arXiv preprint arXiv:1610.05492 (2016).

[Kon+16b] Jakub Konečný et al., «Federated optimization: Distributed machine learning
for on-device intelligence», in: arXiv preprint arXiv:1610.02527 (2016).

[Koo+17] Thijs Kooi et al., «Large scale deep learning for computer aided detection of
mammographic lesions», in: Medical image analysis 35 (2017), pp. 303–312.

[Kor+14] Eija Korpelainen et al., RNA-seq data analysis: a practical approach, CRC
press, 2014.

[Kot13] Sotiris B Kotsiantis, «Decision trees: a recent overview», in: Artificial Intel-
ligence Review 39 (2013), pp. 261–283.

[Kow+19] Kamran Kowsari et al., «Text classification algorithms: A survey», in: In-
formation 10.4 (2019), p. 150.

[KR12] Johannes Köster and Sven Rahmann, «Snakemake—a scalable bioinformat-
ics workflow engine», in: Bioinformatics 28.19 (2012), pp. 2520–2522.

[KS11] Ajay D Kshemkalyani and Mukesh Singhal, Distributed computing: princi-
ples, algorithms, and systems, Cambridge University Press, 2011.

[KTB00] Bartek Kiepuszewski, Arthur Harry Maria Ter Hofstede, and Christoph J
Bussler, «On structured workflow modelling», in: Advanced Information Sys-
tems Engineering: 12th International Conference, CAiSE 2000 Stockholm,
Sweden, June 5–9, 2000 Proceedings 12, Springer, 2000, pp. 431–445.

[Kuh+07] K Kuhn et al., «The cancer biomedical informatics grid (caBIG™): Infras-
tructure and applications for a worldwide research community», in: Medinfo
1 (2007), p. 330.

[KV16] Donghoon Kim and Mladen A Vouk, «Assessing run-time overhead of Se-
curing Kepler», in: Procedia Computer Science 80 (2016), pp. 2281–2286.

https://www.springer.com/gp/book/9789811319419
https://www.springer.com/gp/book/9789811319419


[lab19] Palumbi lab, An Introduction to High-Throughput Sequencing Data Analysis,
http://sfg.stanford.edu/, [Online; accessed 20-June-2019], 2019.

[Lab21] U.S. Deparment of Labor, Guidance on the Protection of Personal Identifi-
able Information, https://www.dol.gov/general/ppii, [Online; accessed
15-July-2021], 2021.

[Lan+09] Ben Langmead et al., «Searching for SNPs with cloud computing», in:
Genome biology 10 (2009), pp. 1–10.

[Lar+18] Elise Larsonneur et al., «Evaluating workflow management systems: A bioin-
formatics use case», in: 2018 IEEE International Conference on Bioinfor-
matics and Biomedicine (BIBM), IEEE, 2018, pp. 2773–2775.

[LD09] Heng Li and Richard Durbin, «Fast and accurate short read alignment with
Burrows–Wheeler transform», in: bioinformatics 25.14 (2009), pp. 1754–
1760.

[LD11] Xin Liu and Anwitaman Datta, «Towards intelligent data placement for sci-
entific workflows in collaborative cloud environment», in: 2011 IEEE Inter-
national Symposium on Parallel and Distributed Processing Workshops and
Phd Forum, IEEE, 2011, pp. 1052–1061.

[Leg] California State Legislature, The California Consumer Privacy Act of 2018,
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?
bill_id=201720180SB1121.

[Leg20a] New Zealand Legislation, New Zealand Privacy Act 2020, https://www.
legislation.govt.nz/act/public/2020/0031/latest/LMS23223.html,
[Online; accessed 21-July-2021], 2020.

[Leg20b] Virginia’s Legislative, Consumer Data Protection Act, https://lis.virginia.
gov/cgi-bin/legp604.exe?212+sum+SB1392, [Online; accessed 06-August-
2021], 2020.

[Leu+15] Michael KK Leung et al., «Machine learning in genomic medicine: a review
of computational problems and data sets», in: Proceedings of the IEEE 104.1
(2015), pp. 176–197.

[LH05] Gregor von Laszewski and Mike Hategan, «Workflow concepts of the java
cog kit», in: Journal of Grid Computing 3 (2005), pp. 239–258.

http://sfg.stanford.edu/
https://www.dol.gov/general/ppii
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180SB1121
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180SB1121
https://www.legislation.govt.nz/act/public/2020/0031/latest/LMS23223.html
https://www.legislation.govt.nz/act/public/2020/0031/latest/LMS23223.html
https://lis.virginia.gov/cgi-bin/legp604.exe?212+sum+SB1392
https://lis.virginia.gov/cgi-bin/legp604.exe?212+sum+SB1392


[LHL10] Ben Langmead, Kasper D Hansen, and Jeffrey T Leek, «Cloud-scale RNA-
sequencing differential expression analysis with Myrna», in: Genome biology
11 (2010), pp. 1–11.

[Li+09] Ruiqiang Li et al., «SNP detection for massively parallel whole-genome re-
sequencing», in: Genome research 19.6 (2009), pp. 1124–1132.

[Li+16] Xuejun Li et al., «A novel workflow-level data placement strategy for data-
sharing scientific cloud workflows», in: IEEE Transactions on Services Com-
puting 12.3 (2016), pp. 370–383.

[Li+19] Qinbin Li et al., «A survey on federated learning systems: vision, hype and
reality for data privacy and protection», in: Hype and Reality for Data Pri-
vacy and Protection (2019).

[Li+20a] Jin Li et al., «A multicenter random forest model for effective prognosis pre-
diction in collaborative clinical research network», in: Artificial intelligence
in medicine 103 (2020), p. 101814.

[Li+20b] Tian Li et al., «Federated learning: Challenges, methods, and future direc-
tions», in: IEEE signal processing magazine 37.3 (2020), pp. 50–60.

[Lie+16] Chee Sun Liew et al., «Scientific workflows: moving across paradigms», in:
ACM Computing Surveys (CSUR) 49.4 (2016), pp. 1–39.

[Liñ+19] Jose Liñares Blanco et al., «Differential gene expression analysis of RNA-
seq data using machine learning for Cancer research», in: Machine learn-
ing paradigms: applications of learning and analytics in intelligent systems
(2019), pp. 27–65.

[Liu+14] Ji Liu et al., «Parallelization of scientific workflows in the cloud», PhD thesis,
INRIA, 2014.

[Liu+15] Ji Liu et al., «A survey of data-intensive scientific workflow management»,
in: Journal of Grid Computing 13 (2015), pp. 457–493.

[Liu+17] Ji Liu et al., «Scientific workflow scheduling with provenance data in a mul-
tisite cloud», in: Transactions on Large-Scale Data-and Knowledge-Centered
Systems XXXIII (2017), pp. 80–112.

[Liu+18] Ji Liu et al., «Efficient scheduling of scientific workflows using hot meta-
data in a multisite cloud», in: IEEE Transactions on Knowledge and Data
Engineering 31.10 (2018), pp. 1940–1953.



[Liu+20a] Yang Liu et al., «Federated forest», in: IEEE Transactions on Big Data 8.3
(2020), pp. 843–854.

[Liu+20b] Yi Liu et al., «A systematic literature review on federated learning: From a
model quality perspective», in: arXiv preprint arXiv:2012.01973 (2020).

[Liu+22] Ji Liu et al., «From distributed machine learning to federated learning: A
survey», in: Knowledge and Information Systems 64.4 (2022), pp. 885–917.

[Liu14] Ji Liu, «Multisite Management of Data-intensive Scientific Workflows in the
Cloud», in: BDA: Gestion de Données—Principes, Technologies et Applica-
tions, 2014, pp. 28–30.

[LN15] Maxwell W Libbrecht and William Stafford Noble, «Machine learning appli-
cations in genetics and genomics», in: Nature Reviews Genetics 16.6 (2015),
pp. 321–332.

[Loh11] Wei-Yin Loh, «Classification and regression trees», in: Wiley interdisci-
plinary reviews: data mining and knowledge discovery 1.1 (2011), pp. 14–
23.

[Lov+12] Jakob Lovén et al., «Revisiting global gene expression analysis», in: Cell
151.3 (2012), pp. 476–482.

[LSZ09] Simone Leo, Federico Santoni, and Gianluigi Zanetti, «Biodoop: bioinfor-
matics on hadoop», in: 2009 International Conference on Parallel Processing
Workshops, IEEE, 2009, pp. 415–422.

[Lu+17] Yang Young Lu et al., «CAFE: a C celerated A lignment-F r E e sequence
analysis», in: Nucleic acids research 45.W1 (2017), W554–W559.

[LWH] Q Li, Z Wen, and B He, «Federated learning systems: Vision, hype and
reality for data privacy and protection. arXiv 2019», in: arXiv preprint
arXiv:1907.09693 ().

[LYS15] Wen-Jie Lu, Yoshiji Yamada, and Jun Sakuma, «Privacy-preserving genome-
wide association studies on cloud environment using fully homomorphic
encryption», in: BMC medical informatics and decision making, vol. 15,
Springer, 2015, pp. 1–8.

[LZ11] Shiyong Lu and Jia Zhang, «Collaborative scientific workflows supporting
collaborative science», in: International Journal of Business Process Inte-
gration and Management 5.2 (2011), pp. 185–199.



[Mad03] Tom Madden, «The BLAST sequence analysis tool», in: The NCBI handbook
(2003).

[Map] Global Privacy Map, Global Privacy Map, https://wfanet.org/tools/
global-privacy-map, Accessed: 2021-09-30.

[Mar+04] Fernando Martin-Sanchez et al., «Synergy between medical informatics and
bioinformatics: facilitating genomic medicine for future health care», in:
Journal of biomedical informatics 37.1 (2004), pp. 30–42.

[Mar+14] Ronald Margolis et al., «The National Institutes of Health’s Big Data to
Knowledge (BD2K) initiative: capitalizing on biomedical big data», in: Jour-
nal of the American Medical Informatics Association 21.6 (2014), pp. 957–
958.

[McK+10] Aaron McKenna et al., «The Genome Analysis Toolkit: a MapReduce frame-
work for analyzing next-generation DNA sequencing data», in: Genome re-
search 20.9 (2010), pp. 1297–1303.

[McM+17] Brendan McMahan et al., «Communication-efficient learning of deep net-
works from decentralized data», in: Artificial intelligence and statistics, PMLR,
2017, pp. 1273–1282.

[Meh+21] Ninareh Mehrabi et al., «A survey on bias and fairness in machine learning»,
in: ACM Computing Surveys (CSUR) 54.6 (2021), pp. 1–35.

[MEO13] Bradley A Malin, Khaled El Emam, and Christine M O’Keefe, «Biomedical
data privacy: problems, perspectives, and recent advances», in: Journal of
the American medical informatics association 20.1 (2013), pp. 2–6.

[Mey+14] Stéphane M Meystre et al., «Text de-identification for privacy protection:
a study of its impact on clinical text information content», in: Journal of
biomedical informatics 50 (2014), pp. 142–150.

[MG19] Kalikinkar Mandal and Guang Gong, «PrivFL: Practical privacy-preserving
federated regressions on high-dimensional data over mobile networks», in:
Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing Se-
curity Workshop, 2019, pp. 57–68.

[MGG10] Matthew Meyerson, Stacey Gabriel, and Gad Getz, «Advances in under-
standing cancer genomes through second-generation sequencing», in: Nature
Reviews Genetics 11.10 (2010), pp. 685–696.

https://wfanet.org/tools/global-privacy-map
https://wfanet.org/tools/global-privacy-map


[MHS05] Marjan Mernik, Jan Heering, and Anthony M Sloane, «When and how to
develop domain-specific languages», in: ACM computing surveys (CSUR)
37.4 (2005), pp. 316–344.

[Mil00] Perry L Miller, «Opportunities at the intersection of bioinformatics and
health informatics: a case study», in: Journal of the American Medical In-
formatics Association 7.5 (2000), pp. 431–438.

[Mil94] Randolph A Miller, «Medical diagnostic decision support systems—past,
present, and future: a threaded bibliography and brief commentary», in:
Journal of the American Medical Informatics Association 1.1 (1994), pp. 8–
27.

[Mit80] Tom M Mitchell, The need for biases in learning generalizations, Citeseer,
1980.

[MK03] Victor Maojo and Casimir A Kulikowski, «Bioinformatics and medical in-
formatics: collaborations on the road to genomic medicine?», in: Journal of
the American Medical Informatics Association 10.6 (2003), pp. 515–522.

[MK20] Fruzsina Molnár-Gábor and Jan O Korbel, «Genomic data sharing in Eu-
rope is stumbling—Could a code of conduct prevent its fall?», in: EMBO
molecular medicine 12.3 (2020), e11421.

[ML17] Gunasekaran Manogaran and Daphne Lopez, «A survey of big data archi-
tectures and machine learning algorithms in healthcare», in: International
Journal of Biomedical Engineering and Technology 25.2-4 (2017), pp. 182–
211.

[MMP11] James D Malley, Karen G Malley, and Sinisa Pajevic, Statistical learning for
biomedical data, Cambridge University Press, 2011.

[MO14] Mehdi Mirza and Simon Osindero, «Conditional generative adversarial nets»,
in: arXiv preprint arXiv:1411.1784 (2014).

[Mor+13] Luc Moreau et al., «PROV-N: The provenance notation», in: W3C Recom-
mendation (2013).

[Mou+11] George P Moustris et al., «Evolution of autonomous and semi-autonomous
robotic surgical systems: a review of the literature», in: The international
journal of medical robotics and computer assisted surgery 7.4 (2011), pp. 375–
392.



[MR14] Oded Z Maimon and Lior Rokach, Data mining with decision trees: theory
and applications, vol. 81, World scientific, 2014.

[MSS19] Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh, «Agnostic feder-
ated learning», in: International Conference on Machine Learning, PMLR,
2019, pp. 4615–4625.

[MTF08] Andréa Matsunaga, Maurício Tsugawa, and José Fortes, «Cloudblast: Com-
bining mapreduce and virtualization on distributed resources for bioinfor-
matics applications», in: 2008 IEEE Fourth International Conference on
eScience, IEEE, 2008, pp. 222–229.

[NB18] Vivek Navale and Philip E Bourne, «Cloud computing applications for biomed-
ical science: A perspective», in: PLoS computational biology 14.6 (2018),
e1006144.

[Neu+19] Geoffrey K Neumann et al., «Pseudonymization risk analysis in distributed
systems», in: Journal of Internet Services and Applications 10.1 (2019),
pp. 1–16.

[Nor+13] Henrik Nordberg et al., «BioPig: a Hadoop-based analytic toolkit for large-
scale sequence data», in: Bioinformatics 29.23 (2013), pp. 3014–3019.

[NSF19] NSF, Chapter XI - Other Post Award Requirements and Consideration, https:
//www.nsf.gov/pubs/policydocs/pappg19_1/pappg_11.jsp#XID4, [On-
line; accessed 20-June-2019], 2019.

[NSR11] Tung Nguyen, Weisong Shi, and Douglas Ruden, «CloudAligner: a fast and
full-featured MapReduce based tool for sequence mapping», in: BMC re-
search notes 4.1 (2011), pp. 1–7.

[NV08] Meiyappan Nagappan and Mladen A Vouk, «A model for sharing of con-
fidential provenance information in a query based system», in: Provenance
and Annotation of Data and Processes: Second International Provenance and
Annotation Workshop, IPAW 2008, Salt Lake City, UT, USA, June 17-18,
2008. Revised Selected Papers 2, Springer, 2008, pp. 62–69.

[Obe82] Ron Obermarck, «Distributed deadlock detection algorithm», in: ACM Trans-
actions on Database Systems (TODS) 7.2 (1982), pp. 187–208.

[OBr+15] Aidan R O’Brien et al., «VariantSpark: population scale clustering of geno-
type information», in: BMC genomics 16 (2015), pp. 1–9.

https://www.nsf.gov/pubs/policydocs/pappg19_1/pappg_11.jsp#XID4
https://www.nsf.gov/pubs/policydocs/pappg19_1/pappg_11.jsp#XID4


[Oca+15] Kary ACS Ocaña et al., «Data analytics in bioinformatics: data science in
practice for genomics analysis workflows», in: 2015 IEEE 11th International
Conference on e-Science, IEEE, 2015, pp. 322–331.

[Ohn+12] Lucila Ohno-Machado et al., «iDASH: integrating data for analysis, anonymiza-
tion, and sharing», in: Journal of the American Medical Informatics Associ-
ation 19.2 (2012), pp. 196–201.

[Ohr+16] Olga Ohrimenko et al., «Oblivious multi-party machine learning on trusted
processors.», in: USENIX Security Symposium, vol. 16, 2016, pp. 10–12.

[Ovt+15] Kalin Ovtcharov et al., «Accelerating deep convolutional neural networks
using specialized hardware», in: Microsoft Research Whitepaper 2.11 (2015),
pp. 1–4.

[Pan+09] Biswanath Panda et al., «Planet: massively parallel learning of tree ensem-
bles with mapreduce», in: (2009).

[Pap+18a] Louis Papageorgiou et al., «Genomic big data hitting the storage bottle-
neck», in: EMBnet. journal 24 (2018).

[Pap+18b] Nicolas Papernot et al., «Scalable private learning with pate», in: arXiv
preprint arXiv:1802.08908 (2018).

[Par21] European Parliament,Data Protection Working Party, https://ec.europa.
eu / justice / article - 29 / documentation / opinion - recommendation /
files/2014/wp216_en.pdf, [Online; accessed 21-July-2021], 2021.

[PC95] European Parliament and Council, Data Protection Directive, https://eur-
lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:31995L0046,
[Online; accessed 21-July-2021], 1995.

[PCA15] Luis Pineda-Morales, Alexandru Costan, and Gabriel Antoniu, «Towards
multi-site metadata management for geographically distributed cloud work-
flows», in: 2015 IEEE International Conference on Cluster Computing, IEEE,
2015, pp. 294–303.

[PCX11] Rachida Parks, Chao-Hsien Chu, and Heng Xu, «Healthcare information
privacy research: Iusses, gaps and what next?», in: (2011).

[PDK15] Rob Patro, Geet Duggal, and Carl Kingsford, «Salmon: accurate, versatile
and ultrafast quantification from RNA-seq data using lightweight-alignment»,
in: (2015).

https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2014/wp216_en.pdf
https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2014/wp216_en.pdf
https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2014/wp216_en.pdf
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:31995L0046
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:31995L0046


[Pel+20] David Peloquin et al., «Disruptive and avoidable: GDPR challenges to sec-
ondary research uses of data», in: European Journal of Human Genetics 28.6
(2020), pp. 697–705.

[PG13] Diego Peteiro-Barral and Bertha Guijarro-Berdiñas, «A survey of methods
for distributed machine learning», in: Progress in Artificial Intelligence 2
(2013), pp. 1–11.

[Pin+16] Luis Pineda-Morales et al., «Managing hot metadata for scientific workflows
on multisite clouds», in: 2016 IEEE International Conference on Big Data
(Big Data), IEEE, 2016, pp. 390–397.

[PLZ11] Luca Pireddu, Simone Leo, and Gianluigi Zanetti, «SEAL: a distributed
short read mapping and duplicate removal tool», in: Bioinformatics 27.15
(2011), pp. 2159–2160.

[Por] ICGC Data Portal, The Pan-Cancer Analysis of Whole Genomes (PCAWG)
study, https://dcc.icgc.org/pcawg, [Online; accessed 10-July-2020].

[PS13] Ram Vinay Pandey and Christian Schlötterer, «DistMap: a toolkit for dis-
tributed short read mapping on a Hadoop cluster», in: PloS one 8.8 (2013),
e72614.

[PST11] Chandra Shekhar Pareek, Rafal Smoczynski, and Andrzej Tretyn, «Sequenc-
ing technologies and genome sequencing», in: Journal of applied genetics 52
(2011), pp. 413–435.

[Puc11] Mario Eduardo Sánchez Puccini, «Executable models for extensible workflow
engines», PhD thesis, Citeseer, 2011.

[Qi12] Yanjun Qi, «Random forest for bioinformatics», in: Ensemble machine learn-
ing: Methods and applications, Springer, 2012, pp. 307–323.

[Qui14] J Ross Quinlan, C4. 5: programs for machine learning, Elsevier, 2014.

[Qui86] J. Ross Quinlan, «Induction of decision trees», in:Machine learning 1 (1986),
pp. 81–106.

[RAD+78] Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al., «On data banks
and privacy homomorphisms», in: Foundations of secure computation 4.11
(1978), pp. 169–180.

https://dcc.icgc.org/pcawg


[Rai+18] Jean Louis Raisaro et al., «Protecting privacy and security of genomic data in
i2b2 with homomorphic encryption and differential privacy», in: IEEE/ACM
transactions on computational biology and bioinformatics 15.5 (2018), pp. 1413–
1426.

[RB17] Maria A Rodriguez and Rajkumar Buyya, «Scientific workflow management
system for clouds», in: Software architecture for big data and the cloud,
Elsevier, 2017, pp. 367–387.

[RB89] Marina Roesler and Walter A. Burkhard, «Resolution of deadlocks in object-
oriented distributed systems», in: IEEE Transactions on Computers 38.8
(1989), pp. 1212–1224.

[Ren+18] Jie Ren et al., «Alignment-free sequence analysis and applications», in: An-
nual Review of Biomedical Data Science 1 (2018), pp. 93–114.

[Rep18] Presidência da República du Brasil, Lei Geral de Proteção de Dados Pessoais
(LGPD), http://www.planalto.gov.br/ccivil_03/_ato2015-2018/
2018/lei/l13709.htm, [Online; accessed 06-August-2021], 2018.

[Rep19] NIH Data Sharing Repositorie, NIH Data Sharing Repositories, https://
www.nlm.nih.gov/NIHbmic/nih_data_sharing_repositories.html,
[Online; accessed 20-Sept-2019], 2019.

[Rep20] Constitution of the Republic of South Africa, Protection of Personal In-
formation Act (POPI Act), https : / / popia . co . za/, [Online; accessed
06-August-2021], 2020.

[RHW19] Yuji Roh, Geon Heo, and Steven Euijong Whang, «A survey on data collec-
tion for machine learning: a big data-ai integration perspective», in: IEEE
Transactions on Knowledge and Data Engineering 33.4 (2019), pp. 1328–
1347.

[Ria+18] M Sadegh Riazi et al., «Chameleon: A hybrid secure computation frame-
work for machine learning applications», in: Proceedings of the 2018 on Asia
conference on computer and communications security, 2018, pp. 707–721.

[Ris00] Neil J Risch, «Searching for genetic determinants in the new millennium»,
in: Nature 405.6788 (2000), pp. 847–856.

http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/l13709.htm
http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/l13709.htm
https://www.nlm.nih.gov/NIHbmic/nih_data_sharing_repositories.html
https://www.nlm.nih.gov/NIHbmic/nih_data_sharing_repositories.html
https://popia.co.za/


[Rok09] Lior Rokach, «Taxonomy for characterizing ensemble methods in classifica-
tion tasks: A review and annotated bibliography», in: Computational statis-
tics & data analysis 53.12 (2009), pp. 4046–4072.

[Rok10] Lior Rokach, «Ensemble-based classifiers», in: Artificial intelligence review
33 (2010), pp. 1–39.

[Ros61] Frank Rosenblatt, Principles of neurodynamics. perceptrons and the theory
of brain mechanisms, tech. rep., Cornell Aeronautical Lab Inc Buffalo NY,
1961.

[RR13] Zeehasham Rasheed and Huzefa Rangwala, «A map-reduce framework for
clustering metagenomes», in: 2013 IEEE International Symposium on Par-
allel & Distributed Processing, Workshops and Phd Forum, IEEE, 2013,
pp. 549–558.

[RS04] Laura Elena Raileanu and Kilian Stoffel, «Theoretical comparison between
the gini index and information gain criteria», in: Annals of Mathematics and
Artificial Intelligence 41 (2004), pp. 77–93.

[RT+00] Robert B Ross, Rajeev Thakur, et al., «PVFS: A parallel file system for Linux
clusters», in: Proceedings of the 4th annual Linux showcase and conference,
2000, pp. 391–430.

[Ryn+19] Mats Rynge et al., «Integrity protection for scientific workflow data: Motiva-
tion and initial experiences», in: Proceedings of the Practice and Experience
in Advanced Research Computing on Rise of the Machines (learning), 2019,
pp. 1–8.

[SAG16] Stian Soiland-Reyes, Pinar Alper, and Carole Goble, «Tracking workflow
execution with TavernaProv», in: PROV Three Years Later (2016).

[Sal+16] Salman Salloum et al., «Big data analytics on Apache Spark», in: Interna-
tional Journal of Data Science and Analytics 1 (2016), pp. 145–164.

[Sana] Troutman Sanders,Data Privacy: The Current Legal Landscape 2018, https:
//www.troutman.com/images/content/1/9/v2/198033/Data-Privacy-
Newsletter-Jan2019.pdf, Report, Accessed: 2021-09-30.

https://www.troutman.com/images/content/1/9/v2/198033/Data-Privacy-Newsletter-Jan2019.pdf
https://www.troutman.com/images/content/1/9/v2/198033/Data-Privacy-Newsletter-Jan2019.pdf
https://www.troutman.com/images/content/1/9/v2/198033/Data-Privacy-Newsletter-Jan2019.pdf


[Sanb] Jessica Santos, International landscape of privacy legislation, past, present
and future, https://www.kantar.com/inspiration/research-services/
global-privacy-landscape-for-2019-and-beyond, Report, Accessed:
2021-09-30.

[Sav+20] Sinem Sav et al., «Poseidon: Privacy-preserving federated neural network
learning», in: arXiv preprint arXiv:2009.00349 (2020).

[SB18] Richard S Sutton and Andrew G Barto, Reinforcement learning: An intro-
duction, MIT press, 2018.

[Sch+04] Thomas G Schulze et al., «Defining haplotype blocks and tag single-nucleotide
polymorphisms in the human genome», in: Human Molecular Genetics 13.3
(2004), pp. 335–342.

[Sch+10a] Eric E Schadt et al., «Computational solutions to large-scale data manage-
ment and analysis», in: Nature reviews genetics 11.9 (2010), pp. 647–657.

[Sch+10b] Michael C Schatz et al., «De novo assembly of large genomes using cloud
computing», in: Proceedings of the Cold Spring Harbor Biology of Genomes
Conference, 2010.

[Sch08] Michael C Schatz, «BlastReduce: high performance short read mapping
with MapReduce», in: University of Maryland, http://cgis. cs. umd. edu/-
Grad/scholarlypapers/papers/MichaelSchatz. pdf (2008).

[Sch09] Michael C Schatz, «CloudBurst: highly sensitive read mapping with MapRe-
duce», in: Bioinformatics 25.11 (2009), pp. 1363–1369.

[SCJ17] Disha Shrivastava, Santanu Chaudhury, and Dr Jayadeva, «A data and
model-parallel, distributed and scalable framework for training of deep net-
works in apache spark», in: arXiv preprint arXiv:1708.05840 (2017).

[Sco00] Michael Lee Scott, Programming language pragmatics, Morgan Kaufmann,
2000.

[SD98] Marina Skurichina and Robert PW Duin, «Bagging for linear classifiers»,
in: Pattern Recognition 31.7 (1998), pp. 909–930.

[Sen+18] Izzet F Senturk et al., «A resource provisioning framework for bioinformatics
applications in multi-cloud environments», in: Future Generation Computer
Systems 78 (2018), pp. 379–391.

https://www.kantar.com/inspiration/research-services/global-privacy-landscape-for-2019-and-beyond
https://www.kantar.com/inspiration/research-services/global-privacy-landscape-for-2019-and-beyond


[SH02] Frank B Schmuck and Roger L Haskin, «GPFS: A Shared-Disk File System
for Large Computing Clusters.», in: FAST, vol. 2, 19, 2002.

[SH89] Beverly A Sanders and Philipp A Heuberger, «Distributed deadlock de-
tection and resolution with probes», in: Distributed Algorithms: 3rd In-
ternational Workshop Nice, France, September 26–28, 1989 Proceedings 3,
Springer, 1989, pp. 207–218.

[Shi+17] Benjamin Shickel et al., «Deep EHR: a survey of recent advances in deep
learning techniques for electronic health record (EHR) analysis», in: IEEE
journal of biomedical and health informatics 22.5 (2017), pp. 1589–1604.

[Shi99] Y-S Shih, «Families of splitting criteria for classification trees», in: Statistics
and Computing 9.4 (1999), pp. 309–315.

[Sho+14] Edward H Shortliffe et al., Biomedical informatics: computer applications in
health care and biomedicine, Springer, 2014.

[Sho12] Edward Shortliffe, Computer-based medical consultations: MYCIN, vol. 2,
Elsevier, 2012.

[Sil+17] Rafael Ferreira da Silva et al., «A characterization of workflow management
systems for extreme-scale applications», in: Future Generation Computer
Systems 75 (2017), pp. 228–238.

[Sin89] Mukesh Singhal, «Deadlock detection in distributed systems», in: Computer
22.11 (1989), pp. 37–48.

[SL09] Marina Sokolova and Guy Lapalme, «A systematic analysis of performance
measures for classification tasks», in: Information processing & management
45.4 (2009), pp. 427–437.

[SL91] S Rasoul Safavian and David Landgrebe, «A survey of decision tree classifier
methodology», in: IEEE transactions on systems, man, and cybernetics 21.3
(1991), pp. 660–674.

[Sou+20] Lucas Airam C de Souza et al., «DFedForest: Decentralized federated forest»,
in: 2020 IEEE International conference on blockchain (blockchain), IEEE,
2020, pp. 90–97.

[SP15] Idafen Santana-Perez and María S Pérez-Hernández, «Towards reproducibil-
ity in scientific workflows: An infrastructure-based approach», in: Scientific
Programming 2015 (2015).



[Spj+15] Ola Spjuth et al., «Experiences with workflows for automating data-intensive
bioinformatics», in: Biology direct 10.1 (2015), pp. 1–12.

[SPS88] Peter Szolovits, Ramesh S Patil, and William B Schwartz, «Artificial intel-
ligence in medical diagnosis», in: Annals of internal medicine 108.1 (1988),
pp. 80–87.

[SR18] Omer Sagi and Lior Rokach, «Ensemble learning: A survey», in: Wiley In-
terdisciplinary Reviews: Data Mining and Knowledge Discovery 8.4 (2018),
e1249.

[SS16] Ignacio San Segundo-Val and Catalina S Sanz-Lozano, «Introduction to the
gene expression analysis», in: Molecular genetics of asthma (2016), pp. 29–
43.

[SSK15] Alexei A Sharov, David Schlessinger, and Minoru SH Ko, «ExAtlas: An
interactive online tool for meta-analysis of gene expression data», in: Journal
of bioinformatics and computational biology 13.06 (2015), p. 1550019.

[Sta+19] Zornitza Stark et al., «Australian genomics: a federated model for integrating
genomics into healthcare», in: The American Journal of Human Genetics
105.1 (2019), pp. 7–14.

[Ste+15] Zachary D Stephens et al., «Big data: astronomical or genomical?», in: PLoS
biology 13.7 (2015), e1002195.

[Sub+05] Aravind Subramanian et al., «Gene set enrichment analysis: a knowledge-
based approach for interpreting genome-wide expression profiles», in: Pro-
ceedings of the National Academy of Sciences 102.43 (2005), pp. 15545–
15550.

[Swe00] Latanya Sweeney, «Simple demographics often identify people uniquely», in:
Health (San Francisco) 671.2000 (2000), pp. 1–34.

[SYP17] Kaz Sato, Cliff Young, and David Patterson, «An in-depth look at Google’s
first Tensor Processing Unit (TPU)», in: Google Cloud Big Data and Ma-
chine Learning Blog 12 (2017).

[Taf+17] Ahmad P Tafti et al., «Machine learning-as-a-service and its application to
medical informatics», in: Machine Learning and Data Mining in Pattern
Recognition: 13th International Conference, MLDM 2017, New York, NY,
USA, July 15-20, 2017, Proceedings 13, Springer, 2017, pp. 206–219.



[Tan+01] Todd Tannenbaum et al., «Condor: a distributed job scheduler», in: Beowulf
cluster computing with windows, 2001, pp. 307–350.

[Tan+10] Wei Tan et al., «CaGrid Workflow Toolkit: A taverna based workflow tool
for cancer grid», in: BMC bioinformatics 11 (2010), pp. 1–12.

[Tan+16] Haixu Tang et al., «Protecting genomic data analytics in the cloud: state of
the art and opportunities», in: BMC medical genomics 9 (2016), pp. 1–9.

[Tay+07a] Ian Taylor et al., «The triana workflow environment: Architecture and appli-
cations», in: Workflows for e-science: Scientific workflows for grids (2007),
pp. 320–339.

[Tay+07b] Ian J Taylor et al., Workflows for e-Science: scientific workflows for grids,
vol. 1, Springer, 2007.

[Ter14] Sharon F Terry, «The global alliance for genomics & health», in: Genet Test
Mol Biomarkers 18.6 (2014), pp. 375–6.

[TGL18] Cheng Tang, Damien Garreau, and Ulrike von Luxburg, «When do ran-
dom forests fail?», in: Advances in neural information processing systems 31
(2018).

[TTL05] Douglas Thain, Todd Tannenbaum, and Miron Livny, «Distributed comput-
ing in practice: the Condor experience», in: Concurrency and computation:
practice and experience 17.2-4 (2005), pp. 323–356.

[TZL18] Ngoc Hieu Tran, Xianglilan Zhang, and Ming Li, «Deep omics», in: Pro-
teomics 18.2 (2018), p. 1700319.

[Uff+21] Emil Uffelmann et al., «Genome-wide association studies», in: Nature Re-
views Methods Primers 1.1 (2021), p. 59.

[Val+18] Patrick Valduriez et al., «Scientific data analysis using data-intensive scalable
computing: The scidisc project», in: LADaS: Latin America Data Science
Workshop, vol. 2170, CEUR-WS. org, 2018.

[Van+10] Marten Van Dijk et al., «Fully homomorphic encryption over the integers»,
in: Advances in Cryptology–EUROCRYPT 2010: 29th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
French Riviera, May 30–June 3, 2010. Proceedings 29, Springer, 2010, pp. 24–
43.



[VC11] Tran Van Hung and Huang Chuanhe, «An effective data placement strategy
in main-memory database cluster», in: 2011 Second International Conference
on Networking and Distributed Computing, IEEE, 2011, pp. 93–98.

[Ver+20] Joost Verbraeken et al., «A survey on distributed machine learning», in:
Acm computing surveys (csur) 53.2 (2020), pp. 1–33.

[VH04] Peter Van Roy and Seif Haridi, Concepts, techniques, and models of computer
programming, MIT press, 2004.

[Vig+02] Alain Vignal et al., «A review on SNP and other types of molecular mark-
ers and their use in animal genetics», in: Genetics selection evolution 34.3
(2002), pp. 275–305.

[Vis+12] Peter M Visscher et al., «Five years of GWAS discovery», in: The American
Journal of Human Genetics 90.1 (2012), pp. 7–24.

[Vis+17] Peter M Visscher et al., «10 years of GWAS discovery: biology, function, and
translation», in: The American Journal of Human Genetics 101.1 (2017),
pp. 5–22.

[Wan06] Yanyan Wang, «Automating experimentation with distributed systems using
generative techniques», PhD thesis, University of Colorado at Boulder, 2006.

[WCA09] Jianwu Wang, Daniel Crawl, and Ilkay Altintas, «Kepler+ Hadoop: a gen-
eral architecture facilitating data-intensive applications in scientific workflow
systems», in: Proceedings of the 4th Workshop on Workflows in Support of
Large-Scale Science, 2009, pp. 1–8.

[WCW08] Yanyan Wang, Antonio Carzaniga, and Alexander L Wolf, «Four enhance-
ments to automated distributed system experimentation methods», in: Pro-
ceedings of the 30th international conference on Software engineering, 2008,
pp. 491–500.

[WFB13] Stacey JWinham, Robert R Freimuth, and Joanna M Biernacka, «A weighted
random forests approach to improve predictive performance», in: Statisti-
cal Analysis and Data Mining: The ASA Data Science Journal 6.6 (2013),
pp. 496–505.

[WG06] Charles B Weinstock and John B Goodenough, On system scalability, tech.
rep., carnegie-mellon univ pittsburgh pa software engineering inst, 2006.



[WGS09] Zhong Wang, Mark Gerstein, and Michael Snyder, «RNA-Seq: a revolution-
ary tool for transcriptomics», in: Nature reviews genetics 10.1 (2009), pp. 57–
63.

[Who20] The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium,
«Pan-cancer analysis of whole genomes», in: Nature 578.7793 (2020), pp. 82–
93.

[Wie+14] Marek S Wiewiórka et al., «SparkSeq: fast, scalable and cloud-ready tool for
the interactive genomic data analysis with nucleotide precision», in: Bioin-
formatics 30.18 (2014), pp. 2652–2653.

[Wil+09] Michael Wilde et al., «Parallel scripting for applications at the petascale and
beyond», in: Computer 42.11 (2009), pp. 50–60.

[Wil+11] Michael Wilde et al., «Swift: A language for distributed parallel scripting»,
in: Parallel Computing 37.9 (2011), pp. 633–652.

[Wil+16] Mark D Wilkinson et al., «The FAIR Guiding Principles for scientific data
management and stewardship», in: Scientific data 3.1 (2016), pp. 1–9.

[Wol+13] Katherine Wolstencroft et al., «The Taverna workflow suite: designing and
executing workflows of Web Services on the desktop, web or in the cloud»,
in: Nucleic acids research 41.W1 (2013), W557–W561.

[WWG21] Laura Wratten, Andreas Wilm, and Jonathan Göke, «Reproducible, scalable,
and shareable analysis pipelines with bioinformatics workflow managers», in:
Nature methods 18.10 (2021), pp. 1161–1168.

[XGL12] Baomin Xu, Jin Gao, and Chunyan Li, «An efficient algorithm for DNA
fragment assembly in MapReduce», in: Biochemical and biophysical research
communications 426.3 (2012), pp. 395–398.

[Xie+10] Jiong Xie et al., «Improving mapreduce performance through data placement
in heterogeneous hadoop clusters», in: 2010 IEEE international symposium
on parallel & distributed processing, workshops and Phd forum, IEEE, 2010,
pp. 1–9.

[Xie08] Tao Xie, «Sea: A striping-based energy-aware strategy for data placement in
raid-structured storage systems», in: IEEE Transactions on Computers 57.6
(2008), pp. 748–761.



[Xin+15] Eric P Xing et al., «Petuum: A new platform for distributed machine learn-
ing on big data», in: Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2015, pp. 1335–1344.

[Xu+17a] Bo Xu et al., «DSA: scalable distributed sequence alignment system using
SIMD instructions», in: 2017 17th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID), IEEE, 2017, pp. 758–761.

[Xu+17b] Bo Xu et al., «Efficient distributed smith-waterman algorithm based on
apache spark», in: 2017 IEEE 10th International Conference on Cloud Com-
puting (CLOUD), IEEE, 2017, pp. 608–615.

[Xu+21] Jie Xu et al., «Federated learning for healthcare informatics», in: Journal of
Healthcare Informatics Research 5 (2021), pp. 1–19.

[Yan+10] Pengyi Yang et al., «A review of ensemble methods in bioinformatics», in:
Current Bioinformatics 5.4 (2010), pp. 296–308.

[Yan+19] Qiang Yang et al., «Federated learning», in: Learning 13.3 (2019), pp. 1–
207.

[Yao86] Andrew Chi-Chih Yao, «How to generate and exchange secrets», in: 27th
annual symposium on foundations of computer science (Sfcs 1986), IEEE,
1986, pp. 162–167.

[YB05] Jia Yu and Rajkumar Buyya, «A taxonomy of workflow management systems
for grid computing», in: Journal of grid computing 3 (2005), pp. 171–200.

[YBK18] Kun-Hsing Yu, Andrew L Beam, and Isaac S Kohane, «Artificial intelligence
in healthcare», in: Nature biomedical engineering 2.10 (2018), pp. 719–731.

[Yin+11] Yong Yin et al., «Data mining: Concepts, methods and applications in man-
agement and engineering design», in: Springer Science & Business Media,
2011.

[Yu+12] Hsiang-Fu Yu et al., «Large linear classification when data cannot fit in mem-
ory», in: ACM Transactions on Knowledge Discovery from Data (TKDD) 5.4
(2012), pp. 1–23.

[Yua+10] Dong Yuan et al., «A data placement strategy in scientific cloud workflows»,
in: Future Generation Computer Systems 26.8 (2010), pp. 1200–1214.



[ZG09] Xiaojin Zhu and Andrew B Goldberg, «Introduction to semi-supervised
learning», in: Synthesis lectures on artificial intelligence and machine learn-
ing 3.1 (2009), pp. 1–130.

[Zha+11] Junjun Zhang et al., «International Cancer Genome Consortium Data Por-
tal—a one-stop shop for cancer genomics data», in: Database 2011 (2011).

[Zha+12a] Lu Zhang et al., «Gene set analysis in the cloud», in: Bioinformatics 28.2
(2012), pp. 294–295.

[Zha+12b] Jun Zhao et al., «Why workflows break—Understanding and combating de-
cay in Taverna workflows», in: 2012 IEEE 8th International Conference on
e-Science, IEEE, 2012, pp. 1–9.

[Zha+15a] Chen Zhang et al., «Optimizing FPGA-based accelerator design for deep
convolutional neural networks», in: Proceedings of the 2015 ACM/SIGDA
international symposium on field-programmable gate arrays, 2015, pp. 161–
170.

[Zha+15b] Yuchen Zhang et al., «Foresee: Fully outsourced secure genome study based
on homomorphic encryption», in: BMC medical informatics and decision
making, vol. 15, 5, BioMed Central, 2015, pp. 1–11.

[Zha+15c] Yong Zhao et al., «Enabling scalable scientific workflow management in the
Cloud», in: Future Generation Computer Systems 46 (2015), pp. 3–16.

[Zha+16] Qing Zhao et al., «A new energy-aware task scheduling method for data-
intensive applications in the cloud», in: Journal of Network and Computer
Applications 59 (2016), pp. 14–27.

[Zha+17] Di Zhang et al., «SEQSpark: a complete analysis tool for large-scale rare
variant association studies using whole-genome and exome sequence data»,
in: The American Journal of Human Genetics 101.1 (2017), pp. 115–122.

[Zha+20] Chengliang Zhang et al., «Batchcrypt: Efficient homomorphic encryption for
cross-silo federated learning», in: Proceedings of the 2020 USENIX Annual
Technical Conference (USENIX ATC 2020), 2020.

[Zho+16] Yu Zhou et al., «Gene Expression and Profiling», in: Application of Clinical
Bioinformatics (2016), pp. 59–82.



[Zho+17] Wei Zhou et al., «MetaSpark: a spark-based distributed processing tool to
recruit metagenomic reads to reference genomes», in: Bioinformatics 33.7
(2017), pp. 1090–1092.

[Zho21] Zhi-Hua Zhou, «Ensemble Learning», in: Machine Learning, Springer Singa-
pore, 2021, pp. 181–210, isbn: 978-981-15-1967-3, doi: 10.1007/978-981-
15-1967-3_8.

[Zhu+18] Min Zhu et al., «Class weights random forest algorithm for processing class
imbalanced medical data», in: IEEE Access 6 (2018), pp. 4641–4652.

[Zie+17] Andrzej Zielezinski et al., «Alignment-free sequence comparison: benefits,
applications, and tools», in: Genome biology 18 (2017), pp. 1–17.

[ZLS15] Guoguang Zhao, Cheng Ling, and Donghong Sun, «SparkSW: scalable dis-
tributed computing system for large-scale biological sequence alignment», in:
2015 15th IEEE/ACM international symposium on cluster, cloud and grid
computing, IEEE, 2015, pp. 845–852.

[ZM12] Cha Zhang and Yunqian Ma, Ensemble machine learning: methods and ap-
plications, Springer, 2012.

[ZQ11] Matthias Zytnicki and Hadi Quesneville, «S-MART, a software toolbox to
aid RNA-Seq data analysis», in: PloS one 6.10 (2011), e25988.

[ZZK16] Lifang Zhang, Yan Zheng, and Raimo Kantoa, «A review of homomorphic
encryption and its applications», in: Proceedings of the 9th EAI International
Conference on Mobile Multimedia Communications, 2016, pp. 97–106.

https://doi.org/10.1007/978-981-15-1967-3_8
https://doi.org/10.1007/978-981-15-1967-3_8





	Abstract
	Résumé
	Resumen
	Acknowledgements
	Notations and Acronyms
	List of figures
	List of tables
	Introduction
	Context and Motivation
	Contributions and structure of the thesis
	Publications

	I Related Work and Concepts
	The Problem of Global Collaboration in Biomedical Analyses
	Data Sharing, Privacy and Protection in Biomedical Analyses
	Biomedical Data Categories
	Data-Privacy: Global Landscape
	Guiding Principles for Data-Sharing

	The ICAN project: a Case of Collaborative Biomedical Analyses
	The IntraCranial ANeurysm ICAN

	Constraints on Biomedical Collaborations
	Technical Constraints
	Legal Constraints

	Extending I-CAN to EU and non-EU partners
	Conclusions

	Distributed Biomedical Analyses
	Distributed Biomedical Analyses
	Biomedical problems, data analytic techniques, and tools
	Support for Research Collaborations
	Workflow Description Language
	Experiment Reproducibility
	Workflow System's Interoperability

	Distributed Architectural Features
	Data and Computation Placement
	Privacy and security
	Architecture and Quality Attributes

	Distributed Workflow Systems

	Machine Learning-Based Analysis
	Understanding Supervised Learning
	Ensemble Learning
	Random Forests

	Multi-Site Forests
	Distributed Machine Learning

	Conclusions


	II Contributions
	Fully Distributed Collaborations
	The FDC concept
	FDC Properties
	Data as first-class citizens

	FDC-based analyses supported
	The Architecture of FDCs
	Privacy and Security
	Conclusions

	Fully Distributed Random Forests (MuSiForest)
	Random Forests Training
	Training a Model
	Building a Decision Tree
	Decision Tree Application

	Estimating the Prediction Error
	Metrics for Classification Models
	Out-of-Bag (OOB) Error Estimation

	Complexity of Random Forests

	A Fully Distributed Random Forests Algorithm
	MuSiForest Methodology
	The MuSiForest Algorithm
	Local Model Construction
	Model Aggregation
	Evaluating the Collaborative Model


	Privacy-Preserving Bias Correction
	Secure Data Containers (SDCs)
	Secure Tree Data (STD)
	Secure Validation Dataset (SVD)

	Architecture and Implementation
	Component-based Architecture
	System Implementation
	MuSiForest Topologies
	Sequential Aggregation
	Hierarchical Aggregation
	Fully Distributed Aggregation


	Experiments and Results
	Dataset Description
	The Grid’5000 testbed
	Experimental Setup
	Experimental Results
	Bias-Correction Evaluation
	Discussion

	Conclusions

	Workflow Language for FDCs (FeDeRa)
	Workflow Languages for Biomedical Analyses
	Distributed Workflow Languages
	Baseline Workflow Languages

	Workflow-based Machine Learning Analysis
	FeDeRa: Distributed and Declarative Workflows
	FeDeRa Language Features
	Dataflow Programming
	Declarative Concurrency

	Syntax and Semantics
	FeDeRa Instructions
	Transformational semantics of FeDeRa instructions
	Specification of the Collaborative Scenario


	Architecture and Implementation
	Implementation overview
	FeDeRa Runtime Architecture
	Deployment

	Evaluation and Results
	Expressiveness Level
	Concurrency and Distribution

	Conclusion


	Conclusions
	Future work

	Glossary
	Bibliography

