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Abstract  

In this thesis, the location-routing problem (LRP) is studied considering a minimum CO2 

emissions objective function with load dependency. We propose a mathematical model and 

an adaptation of the traditional LRP model. A computational comparison between these two 

models is carried out using adapted benchmark instances from the literature. Experiments 

evaluate the performance of both models in terms of the minimization of total cost (traditional 

objective function) and level of CO2 emissions (“green” objective function). These objective 

functions are evaluated independently (i.e., mono-objective version), as well as a bi-

objective version. When evaluating both, costs and level of CO2 emissions, in a separate 

way, results show that the proposed model can reduce CO2 emissions by 37% but with a 

high increase in cost. However, by constructing the Pareto frontier, solutions with a better 

trade-off between objectives are computed, showing that it is possible to reduce CO2 

emissions by 20% with a small penalty in the optimal cost compared to classical location-

routing results. Valid inequalities are also proposed in order to enhance the performance of 

the proposed model in terms of computational time. The impact of these inequalities is also 

evaluated and reported herein. 
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1 Introduction 

1.1 Justification 

Green logistics has been receiving important attention from different stakeholders in the 

search of sustainable supply chains (Lin et al., 2014). The need to design green and efficient 

logistics has grown since they become differentiating factors in terms of productivity and 

customer service (Mallidis et al., 2010; Memari et al., 2015). Lin et al. (2014) also 

acknowledge the risks of not taking into account green objectives when making strategic, 

tactical, and operational decisions on the supply chain design, which potentially imply that 

production operations and logistics are not sustainable in the long-term given their 

environmental and social consequences. 

When designing an environmentally sustainable supply chain, two key decisions are to be 

made. These are the location of depots, and transportation (routing) decisions. In this paper, 

the design of a two-echelon supply chain is studied integrating location and routing decisions 

while minimizing the environmental impact.  

These decisions have been widely studied independently. Facility location and vehicle 

routing optimization models and methods are not scarce among the operations 

research/operations management literature. An integrated approach, denoted as the 

location-routing problem (LRP), has also been considered, yielding to better results (Salhi & 

Rand, 1989), despite the increased resolution complexity of this integrated problem from the 

computational standpoint. The LRP considers a set of candidate depots and a set of 

geographically dispersed customers with deterministic demands. Each customer must be 

assigned to an open depot which will supply its demand. The shipments of customer 

demands are performed by a fleet of capacitated vehicles which are dispatched from the 

open depots, and the vehicle routes might include visits to multiple customers. There is a 

fixed cost associated with opening a depot, a distribution cost associated with the cost of 

using the vehicles, and the cost associated to the sequence in which customers are visited 

by the vehicles. The LRP consists on determining the location of the depots, the allocation 

of customers to depots, and the sequence in which customers are visited by each vehicle in 

order to minimize the total cost of the design, computed as the sum of the location and 

distribution costs (Tuzun & Burke, 1999). The LRP has been an important research field; a 

recent survey is presented by Prodhon & Prins (2014).  

Moreover, large types of variants have been studied (Drexl & Schneider, 2015; Prodhon & 

Prins, 2014) where different features such as considering a heterogeneous fleet, time 

windows at the customers, pick-up and delivery routes, split deliveries, among others 

variants have been considered. However, despite the importance of evaluating the 

environmental impact of distribution decisions, the integrated location-routing problem in 

which the performance measures consider the level of CO2 emissions generated by both, 

the transportation decisions and the number and locations of the depots to be opened, has 

not yet been deeply studied in the academic literature (see for example McKinnon et al. 

(2015)).  
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Further, integrating routing decisions with other decision problems in logistics is relevant 

from the academic and the industrial point of views. For example, combining inventory 

management decisions and routing is studied by Archetti et al., (2012); Pérez & Guerrero, 

(2015). These two decisions are proven to be mutually dependent, with or without the 

existence of time windows, since the size of the orders shipped to customers is limited by 

the vehicle capacity and thus, the routing decisions might be changed if the inventory 

policies at the customers are modified. The integration of these two decisions is often applied 

when implementing a vendor-managed inventory (VMI) system (Cordeau et al., 2015). On 

a similar context, inventory management, routing and location decisions are also proven to 

be mutually dependent. A matheuristic is presented by Guerrero et al. (2015) integrating a 

Lagrangian relaxation on a column generation framework. These articles show the impact 

of combining different levels of decisions within the same model, in order to obtain benefits 

in the long term. 

This thesis presents an analysis of mathematical models to solve the LRP with 

environmental impact considerations. Two mixed-integer programming models are 

presented. The models aim to decide the number and location of depots to be opened, to 

allocate customers to those depots and to design the routes that must be performed by a 

homogeneous fleet of vehicles to distribute a single product while satisfying customer 

demands. Likewise, the measure of the environmental impact is computed by quantifying 

the level of CO2 emissions from vehicles and the selected depots. In this sense, it is 

assumed that CO2 emissions depend proportionally on both the distance traveled and the 

load carried by each vehicle on the arcs of the route. This problem is NP-hard, since it 

reduces to the Vehicle Routing Problem, which is known to be NP-hard (Montoya-Torres et 

al., 2015), if the decision is to open one depot with very large capacity, while the capacity of 

vehicles is also large. 

The main contribution of this thesis is twofold. Firstly, the thesis proposes a mathematical 

model based on mixed-integer programming, which presents a way to make supply chain 

design decisions based on the global trend associated with green initiatives. Secondly, a 

study on the implications of choosing this optimization criterion is presented.  

The thesis is organized as follows. Chapter 2 presents a review of related literature. The 

problem statement and the proposed mathematical model are both detailed in Chapter 3. 

Chapter 4 is dedicated to the computational results and comparisons between the proposed 

model and the classical mathematical model for the LRP adapted to minimize environmental 

impact. Conclusions and directions for future research are presented in Chapter 5. 

1.2 Objectives and Research Question  

1.2.1 Research Question 

 How CO2 emissions could be taken into account in a linear programing model for the 

location routing problem with homogeneous fleet and deterministic demand? 
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 Using those considerations, Is it possible to generate less environmental impacts? 

(in terms of CO2 emissions)  

1.2.2 General objective 

Formulate a mixed integer programming model for Location Routing Problem with 

environmental considerations to evaluate how it could affect the strategical and operational 

decisions involved in this problem. 

1.2.3 Specific objectives 

 Design a mixed integer programing model for the “Green” LRP with homogeneous 

fleet that allows minimizing the environmental impact in terms of CO2 emissions. 

 

 Compare the performance of the proposed model versus an adapted version of the 

traditional formulation of LRP. 

 

 Analyze the consequences of make decisions with the green LRP instead of make 

them with the LRP.  
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2 Literature Review   

The optimization problems embedded in supply chain design have been studied from 

different perspectives, due to the importance of optimizing these decisions to increase the 

efficiency in logistics. The first jobs dedicated to study simultaneously the location of depots 

and vehicle routing date from the 1960s (Boventer, 1961; Maranzana, 1963; Webb, 1968). 

Authors like Martínez-Salazar et al. (2014) and Prodhon & Prins (2014) agree that one of 

the first researchers to analyze the LRP, as it is known nowadays, are Watson-Gandy & 

Dohrn (1973). Following that publication, the LRP has been deeply studied under different 

considerations, as evidenced in the review papers proposed by Balakrishnan et al. (1987), 

(Berman et al. (1995), Drexl & Schneider (2015), Min et al. (1998), Laporte (1989), Nagy & 

Salhi (2006) and Prodhon & Prins (2014) where it is possible to identify advances in the 

different variants of the original problem. 

Moreover, according to Lin et al. (2014), green logistics has been receiving more attention 

from governments and companies worldwide. Therefore, it is interesting to review how in 

the literature has been treating the environmental considerations of logistics. First, Yang & 

Sun (2015) propose a location-routing model aiming to minimize the total routing costs for 

electric vehicles plus the location costs of battery stations where the vehicles can swap 

batteries in order to increase their driving ranges. The problem is solved using hybrid 

metaheuristics. Then, two more works are be associated to the LRP with environmental 

issues. Koç et al. (2016) develop a model describing a situation where the customers are 

located in zones with different speed limits affecting fuel consumption, and hence the total 

CO2 emissions; while the work of Dukkanci & Kara (2015) is, to the best of our knowledge, 

the first paper to establish a Green Location-Routing Problem (GLRP) presenting a 

comprehensive model to quantify the impact of the CO2 emissions. It is important to note 

that these works compute the cost of the CO2 emissions and add it to the total cost function. 

None of them consider the level of emissions due to the location and number of the open 

facilities.  

Regarding the environmental issues in facility location models (FLP), Li et al. (2008) and 

Wang et al. (2011) proposed multi-objective methods to minimize carbon emissions and 

logistic costs under different situations such as transportation operations outsourcing. Diabat 

& Simchi-Levi (2009) analyze how total operational cost is impacted by having a limit in CO2 

emissions. However, overall CO2 emissions associated with opening depots are dependent 

on the number of customers to be attended. Nevertheless, there are other considerations 

that could be taken into account when choosing the location of depots. Ansbro & Wang 

(2013) presents a mixed integer linear programming formulation for the FLP. It considers 

not only external cost, but also the impact of waste disposal. So landfills and recycling 

facilities locations are included in the model and it is applied on a commercial case of study.  

A review on sustainability aspects considered within manufacturing facility location literature 

is presented by Chen et al. (2014), exposing the need and the relevance of developing 

research on the topic. Also, Diabat et al. (2013) propose a closed-loop supply chain design 

model including location decisions on a carbon emissions trading context to analyze how to 
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make sustainable supplier selection decisions considering carbon emissions costs. A review 

on optimization models and methods for sustainable supply chain design is presented by 

Eskandarpour et al. (2015). They discuss how sustainable transportation and industrial 

facility activities, which account for about 40% of global CO2 emissions, are optimized by 

including greenhouse gas indicators and social measures.  

On the other hand, the green VRP has received more attention from the academic 

community. State of the art surveys are presented by Eguia et al. (2013), Lin et al. (2014), 

Demir et al. (2014), Zhang et al. (2015) and Bektaş et al. (2016). Accordingly, there are 

several authors that have oriented their research to measure and minimize total fuel 

consumption, while others focused their research to reduce CO2 emissions taking into 

account travel times, vehicles speeds, traffic conditions in cities, among others. For 

example, Alinaghian & Naderipour (2016) present a study a time-dependent vehicle routing 

problem to minimize fuel comsumption considering, among other factors, the road gradient, 

the vehicle load, and the urban congestion. Ehmke et al. (2015) also study the problem of 

minimizing the expected emissions for vehicle routing in urban areas, modeling the problem 

as a time-dependent vehicle routing problem and proposing a method to precompute the 

customer-to-customer expected time-dependent emissions paths. Qian & Eglese (2016) 

study this problem by implementing a column generation based tabu search algorithm. On 

the other hand, Koç & Karaoglan (2016) study the green VRP (G-VRP) which consists of 

optimizing routing decisions for a fleet of vehicles by minimizing the total travelled distance, 

respecting the fuel tank capacity of the vehicle and allowing the vehicle to replenish its fuel 

tank if required. A new formulation and some valid inequalities are presented by Koç & 

Karaoglan (2016), together with a heuristic solution based on simulated annealing. Montoya 

et al. (2014) also present a heuristic based on multi-space sampling for the problem, 

obtaining eight new best known solutions for benchmark instances of the literature.  

Madankumar & Rajendran (2016) generalize the study by including pick-up and delivery 

constraints and propose three mixed-integer programing models.  

Intermodal transportation to minimize total gas emissions has also been considered. The 

special case of the pollution vehicle routing problem is proposed by Bektaş & Laporte (2011) 

where the objective function integrates cost of carbon emissions with operational costs of 

drivers and fuel consumption. While Xiao et al. (2012) presents a model where a Fuel 

Consumption Rate is considered. In their paper the fuel costs are dependent on the load 

carried and the distance traveled which are linearly associated.  

In conclusion, to the best of our knowledge, there is not a LRP work in which the main 

objective function is to minimize the CO2 emissions generated by both, the location of 

facilities and the routing of vehicles. From the practical and the academic points of view, it 

is interesting to analyze and identify the features, the viability and the consequences of 

making location and routing decisions based on the total CO2 emissions generated by these 

operations. 
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3 Problem definition and proposed mathematical model   

The GLRP studied in this paper is defined on a weighted and directed graph G = (V, A), with 

V being a set of nodes composed by a subset I of m candidate depot locations and a subset 

J = V \ I of n customers. A fixed capacity Hi and a fixed amount of CO2 emissions Oi are 

associated to each candidate depot i ∈ I. The distance matrix between nodes i and j is 

defined as Dij. Each customer j ∈ J has a demand Lj. Let A be the set of arcs connecting 

depots and customers, and customers between them. An unlimited fleet of identical vehicles 

of capacity Q is available. 

The following constraints must hold: 

 the demand of each client Lj must be served by a single vehicle; 

 each route must begin and end at the same depot, and its total load must not exceed 

the vehicle capacity; 

 the total load of the routes assigned to a depot must fit the capacity of that depot; 

The objective is to find which depots to open and the sequence of customers to visit per 

vehicle in order to minimize the total CO2 emission computed as the sum of the fixed CO2 

emissions per opened depot plus the total variable CO2 emissions resulting from routing 

decisions as explained next in section 3.1.  

3.1 Environmental impact measures 

Based on the fuel consumption model proposed by Xiao et al. (2012), it is assumed that CO2 

emissions depend proportionally on both the distance traveled and the load carried by each 

vehicle on the arcs of the route. In order to exhibit the model, let E be equal to the amount 

of CO2 produced per kilometer traveled by a vehicle, in kilograms, while carrying a load of q 

kilograms. As defined earlier, let Q be the vehicle capacity. Thus, let E be computed as 

follows: 

𝐸 = 𝑃0 + (
𝑃𝑓 − 𝑃0

𝑄
) ∗ 𝑞                                 (1) 

Where P0 is the level of CO2 emissions when the vehicle travels without any load, and Pf is 

the level of CO2 emissions when the vehicle is fully loaded. For an easier writing and in order 

to generalize and parametrize the model, the equation is simplified to: 

𝐸 = 𝑃0 + 𝛼 ∗ 𝑞                                           (2) 

Where α is a rate of CO2 emissions per Kg carried per Km. 
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3.2 Proposed model 

The following binary decision variables are used: Let yk =1 if depot k ∈ I is opened, fik =1 if 

and only if customer i ∈ J is assigned to depot k ∈ I, and let xijk =1 if and only if arc (i,j) ∈ A is 

traversed from i to j in the route performed by a vehicle that departures from depot k ∈ I; and 

a positive variable qij equals to the load carried from node i ∈ V to node j ∈ V. Thus, the 

proposed model formulation is: 

min 𝑍 = ∑ ∑ 𝐷𝑖𝑗 (∑(𝑃𝑜𝑥𝑖𝑗𝑘) + 𝛼𝑞𝑖𝑗

𝑘∈𝐼

)

𝑗∈𝑉

+ ∑ 𝑦𝑘 ∗ 𝑂𝑘

𝑘∈𝐼𝑖∈𝑉

                  (3) 

Subject to: 

∑ ∑ 𝑥𝑖𝑗𝑘

𝑘∈𝐼𝑗∈𝑉

= 1               ∀ 𝑖 ∈ 𝐽                                                                 (4) 

∑ ∑ 𝑥𝑖𝑗𝑘

𝑘∈𝐼𝑖∈𝑉

= 1              ∀ 𝑗 ∈ 𝐽                                                                   (5) 

∑ 𝑓𝑖𝑘𝐿𝑖

𝑖∈𝐽

≤ 𝐻𝑘𝑦𝑘            ∀ 𝑘 ∈ 𝐼                                                                  (6) 

∑ 𝑥𝑖𝑗𝑘 = 𝑓𝑖𝑘                    ∀ 𝑖 ∈ 𝐽, ∀ 𝑘 ∈ 𝐼

𝑗∈𝑉

                                                 (7) 

𝑥𝑖𝑗𝑘 = 0               ∀ 𝑗 ∈ 𝐽, ∀ 𝑘 ∈ 𝐼 , ∀ 𝑖 ∈ 𝐼|  𝑖 ≠  𝑘                                 (8) 

∑ 𝑞𝑖𝑗

𝑖 ∈𝑉 | 𝑖≠𝑗

− ∑ 𝑞𝑗𝑖

𝑖 ∈ 𝐽| 𝑖 ≠𝑗

= 𝐿𝑗       ∀ 𝑗 ∈ 𝐽                                               (9) 

∑ 𝑄𝑥𝑖𝑗𝑘

𝑘 ∈ 𝐼

≥ 𝑞𝑖𝑗                              ∀ 𝑖 ∈ 𝑉, ∀ 𝑗 ∈ 𝑉                                 (10) 

∑ 𝑥𝑖𝑗𝑘

𝑗 ∈ 𝑉

− ∑ 𝑥𝑗𝑖𝑘

𝑗∈𝑉

= 0          ∀ 𝑖 ∈ 𝑉, ∀ 𝑘 ∈ 𝐼                                         (11) 

𝑥𝑖𝑗𝑘 ∈  {0 , 1}      ∀ 𝑖 ∈ 𝑉, ∀ 𝑗 ∈ 𝑉, ∀ 𝑘 ∈ 𝐼                                               (12) 

𝑦𝑘  ∈ {0 , 1}         ∀ 𝑘 ∈ 𝐼                                                                              (13) 

𝑓𝑖𝑘  ∈ {0 , 1}         ∀ 𝑖 ∈ 𝐽, ∀ 𝑘 ∈ 𝐼                                                               (14) 
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𝑞𝑖𝑗 ≥ 0                                                                                                          (15) 

The objective function (3) sums all the CO2 emissions resulting from routing operations plus 

those resulting from location decisions. Constraints (4) and (5) guarantee that every 

customer must be visited once, and that each customer has only one predecessor and one 

successor in the route. Storage capacity constraints associated to depots, are satisfied by 

inequalities (6).  Constraints (7) and (8) state the relation between the customer and depot 

allocation and routing decisions. Constraints (9) guarantee the flow of product at each route 

as it ensures load balance conservation and customer’s demand satisfaction. These also 

work as sub-tour elimination constraints. Constraints (10) limit the load per vehicle to be less 

than the vehicle capacity.  Constraints (11) guarantee the flow conservation of vehicles in 

every node in the graph. Finally, Constraints (12), (13) and (14) state the binary nature of 

the decision variables, while (15) state the positive nature of the q variable. 

In this paper, a set of valid inequalities is proposed. These aim to reduce the computational 

time to solve the problem to optimality when using a commercial solver since they reinforce 

the mathematical formulation. These valid inequalities are presented next. 

3.3 Valid inequalities 

In this section, we introduce some new families of constraints that have been proven to be 

useful in order to strengthen the presented formulation. Also, we assume that distance 

matrix satisfies the triangular inequality. Their effectiveness will be discussed in Section 4. 

Theorem 1 The inequalities 

𝑞𝑖𝑗 ≥  ∑ 𝑥𝑖𝑗𝑘 ∗ 𝐿𝑗

𝑘∈𝐼

                ∀𝑖 ∈ 𝑉; ∀ 𝑗 ∈ 𝐽; 𝑖 ≠ 𝑗                    (16) 

are valid for the GLRP. 

Proof Since each customer must be assigned to only one depot, the right side of 

constraints (16) sums up to Lj if and only if the arc (i,j) is traversed. Thus, the constraint 

ensures that the vehicle carries at least the demand of the destination node j through the 

arc (i,j). If the corresponding arc is not traversed, Constraints (10) force the quantity to be 0.  

In other words, the inequalities (16) guarantee that if an arc, arriving to a customer, is 

traversed, then the associated vehicle must be non-empty. 

Theorem 2 The inequalities 

∑ 𝑦𝑘

𝑘 ∈ 𝐼

≥ ⌈
∑ 𝐿𝑖𝑖∈𝐽

max{𝐻𝑘}
⌉         (17) 
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are valid for the GLRP. 

Proof The minimum number of depots to be opened can be estimated by computing the 

ceiling function of the ratio between the total customer demand and the capacity of the 

largest depot. The right-hand side of constraints (17) establish the rounded number of 

depots to be opened whose total storage capacity is able to satisfy the total customer 

demand in the case when the optimal solution implies to use of the largest depots.  

These last inequalities are inspired by the strengthened capacity inequalities often used for 

vehicle routing problems (see Baldacci et al. (2012)). 

Theorem 3 The inequalities 

∑ ∑ 𝑥𝑖𝑗 ≤ |𝑆| − 1 

𝑗∈𝑆𝑖∈𝑆

           ∀ 𝑆 ⊂ 𝐽 | |𝑆| = 𝛾 ;  𝐷𝑖𝑗 ≤ 𝜌 ∀ 𝑖, 𝑗 ∈ 𝑆          (18) 

are valid for the GLRP. 

Proof For every subset S of customers, composed by exactly γ customers, the number of 

arcs used in the optimal solution has to be less or equal than γ – 1. This inequality reinforces 

the sub-tour elimination constraint (9) and it is often used in vehicle routing formulations 

(Baldacci et al., 2012).  In our version, it is intended to separate every subset of customers 

S with exactly γ customers that are in a radio of ρ distance each from another, in order to 

strengthen the sub-tour elimination constraints for these subsets. That is, a subset of 

customers that are relatively close, making a geographical cluster, are likely to compose a 

sub-tour in the linear relaxation of the model. Then, we add some (but not all) sub-tour 

elimination valid inequalities to reinforce the linear relaxation of the model for the routing 

variables. 

In the last inequalities, note that when ρ tends to infinity, the number of constraints is 

exponential and it could be inefficient based on the computational times. On the other hand, 

when ρ is small, the equation only considers subsets of customers which form a very 

compact cluster. In this paper γ is equal to 3 and ρ is 40% of the largest distance in the 

distance matrix Dij. 
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4 Computational experiments  

4.1 Test instances and workstation  

The mathematical formulation described in Section 3 is solved using GAMS 23.5.1 and using 

CPLEX 12.2. The following experiments are executed on an Intel® Xeon® X5560 @ 2.80 

GHz 2.79 GHz and 12 GB RAM with a maximum running time of twelve hours. Prodhon and 

Barreto’s classical instances for LRP (publicly available at http://prodhonc.free.fr/) are 

adapted with additional parameters as Po equal to 30 and α equal to 2, these values are 

based on the fuel economy standards for medium and heavy-duty vehicles proposed by The 

National Highway Transportation Safety Administration (NHTSA) and the Environmental 

Protection Agency (EPA) (EESI, 2015) 

Further, the impact of the valid inequalities is tested by comparing the performance of the 

commercial solver with and without the valid inequalities. This analysis is presented in 

section 4.2. Section 4.3 presents our experiments on large instances composed by up to 

100 customers, the largest instances we could solve. In section 4.4, the performance of our 

proposed model is compared against the traditional formulation presented by Prins et al. 

(2007) with a straightforward adaptation of the objective function. In Section 4.5, we provide 

a comparative analysis of the results between the LRP and the GLRP. 

4.2 Impact of the valid inequalities 

Table 4-1 and Table 4-2 show the results of the mathematical formulation presented in 

section 3.2 with and without the valid inequalities. The comparison is made in terms of 

computational time and number of iterations to reach the optimal solutions, for several 

Prodhon and Barreto’s instances, respectively. Column 1 presents the name of the studied 

instance. Column 2 presents the size of the instance in terms of number of customers (n) 

and candidate depots (m). The column KgCO2 shows the optimal value for each instance. 

Also, the computational time (CPU(s)) in seconds and number of iterations required to 

compute the optimal solution (Iter) are presented. The column variation establishes a 

comparison represented as a percentage assuming the data of proposed model without 

valid inequalities as 100%.    

Table 4-1  Comparison between model with and without VI on Prodhon’s Instances 

Instance n-m Kg CO2 

Proposed Model 
Without VI 

Proposed Model Variation 

CPU 

(s) Iter CPU (s) Iter CPU (s) Iter 

coord20-5-1 20-5 1.462,7 11,0 56.884 3,4 23.611 -68,56% -58,49% 
coord20-5-1b 20-5 2.067,5 17,2 103.622 18,3 123.679 6,54% 19,36% 

coord20-5-2 20-5 1.247,0 2,2 13.822 1,9 12.948 -13,87% -6,32% 

coord20-5-2b 20-5 1.466,7 2,6 15.384 0,5 1.840 -82,34% -88,04% 
coord50-5-1 50-5 4.109,7 12892,9 25.119.555 4.537,6 9.964.695 -64,81% -60,33% 

coord50-5-1b 50-5 3.964,7 28893,6 42.945.623 3.821,4 3.915.452 -86,77% -90,88% 

coord50-5-2 50-5 3.148,8 17283,7 42.494.903 9.805,8 12.727.241 -43,27% -70,05% 
coord50-5-2b 50-5 NOF* NOF* NOF* NOF* NOF* - - 

coord50-5-2bBIS 50-5 NOF* NOF* NOF* NOF* NOF* - - 
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coord50-5-2BIS 50-5 NOF* NOF* NOF* NOF* NOF* - - 

coord50-5-3 50-5 3.331,1 8.146,2 16.985.399 923,2 1.931.276 -88,67% -88,63% 
coord50-5-3b 50-5 3.267,5 1.927,3 2.860.244 910,4 1.454.520 -52,77% -49,15% 

Average 7.686,3 14.510.604 2.224,7 3.350.585 -54,94% -54,73% 
*No optimal solution founded 

Table 4-2  Comparison between model with and without VI on Barreto's Instances 

Instance n-m g CO2 

Proposed Model 
Without VI 

Proposed Model Variation 

CPU (s) Iter CPU (s) Iter CPU (s) Iter 

coordGaspelle 21-5 765.703,1 0,5 529 0,4 1.363 -12,55% 157,66% 

coordGaspelle2 22-5 506.639,8 1,4 779 0,7 1.625 -45,43% 108,60% 

coordGaspelle3 29-5 590.099,5 1,2 1.079 0,6 2.901 -49,66% 168,86% 

coordGaspelle4 32-5 1.312.571,3 1,8 1.287 1,3 4.163 -28,80% 223,47% 
coordGaspelle5 32-5 1.312.571,3 2,0 1.505 0,9 3.739 -56,27% 148,44% 

coordGaspelle6 36-5 50.899,7 25,2 65.015 1,3 4.694 -94,81% -92,78% 

coordMin27 27-5 2.158.788,8 1,1 998 1,0 1.935 -13,63% 93,89% 
coordChrist50 50-5 39.077,6 103,9 185.425 68,1 109.280 -34,45% -41,07% 

coordChrist75 75-10 NOF* NOF* NOF* NOF* NOF* - - 

Average                 17,1 32.077 9,3 16.213 -41,95% 95,88% 

*No optimal solution founded 

Results show significant differences in the performance of the mathematical models when 

solving the problem to optimality applying the presented valid inequalities. For the Prodhon’s 

instances, the proposed model solved them, on average 54,94 % faster and requiring 

95,48% less iterations than the model without valid inequalities. The instances coord50-5-

2b, coord50-5-2bBIS, and coord50-5-2BIS could not be solved by any of the versions of the 

model within the imposed time limit. For Barreto’s instances, the proposed model solved 

them, on average, 41,95 % faster but required to perform 95,88% more iterations to reach 

the optimal solution. This results show the valid inequalities reduce significantly the 

computational time, on average, in 48,83%. In this set of instances, problems with up to 50 

customers could be solved. 

We also estimate the impact of the presented valid inequalities in the proposed model at the 

early iterations of the execution of the model. To identify this, the proposed model without 

valid inequalities is executed with a time limit based on the total execution time of the 

proposed model with valid inequalities. For example, the instance coord20-5-1 is solved with 

a time limit of 3.4 seconds, corresponding to the total computation time of the model with 

valid inequalities. The results of this experiment are shown in Table 4-3 and Table 4-4. 

Table 4-3  Proposed model without VI and time limit on Prodhon's instances. 

Instance n-m Kg CO2 
Proposed Model 

with VI 

Proposed Model without VI  

and Time Limit** 

CPU (s) Kg CO2 %GAP 

coord20-5-1 20-5 1.467,3 3,4 1.545,9 5,69% 

coord20-5-1b 20-5 2.067,5 18,3 2.067,5 0,00% 

coord20-5-2 20-5 1.247,0 1,9 1.265,1 1,45% 
coord20-5-2b 20-5 1.466,7 0,5 NISF*  - 

coord50-5-1 50-5 4.109,7 4.537,6 4.109,7 0,00% 

coord50-5-1b 50-5 3.964,7 3.821,4 3.994,7 0,76% 
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coord50-5-2 50-5 3.148,8 9.805,8 3.148,8 0,00% 

coord50-5-3 50-5 3.079,4 923,2 3.333,2 0,06% 
coord50-5-3b 50-5 3.331,1 910,4 3.267,5 0,00% 

Average 2.224,7 2.841,5 1,00% 

*No integer solution founded 

**The time limit for each instance corresponds to the total computational time of the proposed 
model with VI. 

Table 4-4  Proposed model without VI and time limit on Barreto's instances. 

Instance n-m g CO2 
Proposed Model 

with VI 
Proposed Model without VI and Time 

Limit** 

CPU (s) Kg CO2 %GAP 

coordGaspelle 21-5 765.703,1 0,4 NISF* - 

coordGaspelle2 22-5 506.639,8 0,7 NISF* - 
coordGaspelle3 29-5 590.099,5 0,6 NISF* - 

coordGaspelle4 32-5 1.312.571,3 1,3 NISF* - 

coordGaspelle5 32-5 1.312.571,3 0,9 NISF* - 
coordGaspelle6 36-5 50.899,7 1,3 NISF* - 

coordMin27 27-5 2.158.788,8 1,0 NISF* - 

coordChrist50 50-5 39.077,6 68,1 39.323,5 0,63% 

Average 9,3 39.323,5 0,63% 

*No integer solution founded 

**The time limit for each instance corresponds to the total computational time of the proposed model 

with VI. 

Based on these results, two benefits can be identified when using the valid inequalities. First, 

using valid inequalities accelerates the search within the solver in order to demonstrate the 

optimality of the solution faster, as is exposed in Table 4-3. In fact, the mathematical 

formulation without valid inequalities could find the optimal solution for the instances 

coord20-5-1b, coord50-5-1, coord50-5-2, and coord50-5-3b by the same time the version 

with valid inequalities did. Nevertheless, the optimality of the solution could not be proved 

as fast. Second, the valid inequalities help the solver to find an integer solution faster. This 

is the case for Barreto’s instances in Table 4-4, where the version without valid inequalities 

could not find any integer solution by the same computational time that the version with the 

Valid Inequalities could find the optimal solution. 

4.3 Proposed formulation versus the traditional formulation 

The formulation of the LRP presented by Prodhon & Prins (2014), denoted hereby as the 

traditional formulation in this paper, is adapted to match the proposed objective function 

according to equation (2).  The routing decision variables xijk are redefined to be equal to 1 

if the arc (i,j) is traversed by the vehicle k ∈ K, where K is the set of vehicles, in our case 

homogeneous and with unlimited number. Also, we include into the traditional formulation 

the qij variables representing the quantity of product transported by a vehicle in the arc (i,j) 

∈ A. The rest of sets and variables remain the same as presented in chapter 3. The adapted 

objective function is as follows: 
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𝑚𝑖𝑛 𝑍 = ∑ ∑ 𝐷𝑖𝑗 (∑(𝑃𝑜𝑥𝑖𝑗𝑘) + 𝛼𝑞𝑖𝑗

𝑘∈𝐾

)

𝑗∈𝑉

+ ∑ 𝑦𝑤 ∗ 𝑂𝑤

𝑤∈𝐼𝑖∈𝑉

            (19) 

Additionally, the set of constraints (9) and the adapted version of constraints (10) are 

included into the traditional formulation to make it valid. The adapted version of constraints 

(10) is as follows: 

∑ 𝑄𝑥𝑖𝑗𝑘

𝑘 ∈ 𝐾

≥ 𝑞𝑖𝑗                               ∀ 𝑖 ∈ 𝑉, ∀ 𝑗 ∈ 𝑉                               (20) 

 

The adapted traditional model is compared to our proposed formulation. Tables 4-5 and 4-

6 present the obtained results. The proposed model reaches optimal solutions, on average, 

91,69% faster than the adapted traditional model. Also, the traditional model could reach 11 

optimal solutions (out of 21 instances tested), while the proposed model did for 17 instances 

under the same computational conditions. These results can be explained by noticing that 

the routing decision variables in the proposed mathematical model eliminate the symmetries 

that the traditional model has by indexing them on the set of identical vehicles. This leads to 

an average reduction of 81,19% on the number of iterations required to reach to the optimal 

solution when running a commercial solver with the proposed model. 

Table 4-5  Proposed model versus traditional model (adapted) on Prodhon's instances 

Instance n-m Kg CO2 
Traditional Model Adapted Proposed Model % Variance 

CPU (s) Iter CPU (s) Iter CPU Iter 

coord20-5-1 20-5 1.462,7 130,1 495.781 3,4 23.611 -97,35% -95,24% 

coord20-5-1b 20-5 2.067,5 346,7 995.319 18,3 123.679 -94,72% -87,57% 

coord20-5-2 20-5 1.247,0 243,7 1.063.420 1,9 12.948 -99,23% -98,78% 
coord20-5-2b 20-5 1.466,7 116,3 460.739 0,5 1.840 -99,60% -99,60% 

coord50-5-1 50-5 4.109,7 NOF* NOF* 4.537,6 9.964.695 - - 

coord50-5-1b 50-5 3.964,7 NOF* NOF* 3.821,4 3.915.452 . - 
coord50-5-2 50-5 3.148,8 NOF* NOF* 9.805,8 12.727.241 . - 

coord50-5-2b 50-5 NOF* NOF* NOF* NOF* NOF* . - 
coord50-5-2bBIS 50-5 NOF* NOF* NOF* NOF* NOF* . - 

coord50-5-2BIS 50-5 NOF* NOF* NOF* NOF* NOF* . - 

coord50-5-3 50-5 3.331,1 NOF* NOF* 923,2 1.931.276 . - 
coord50-5-3b 50-5 3.267,5 NOF* NOF* 910,4 1.454.520 . - 

Average                       2.224,7 3.350.585 -97,73% -95,30% 

*No optimal solution founded 

       

Table 4-6  Proposed model versus the traditional model (adapted) on Barreto's instances 

Instance n-m g CO2 
Traditional Model Adapted Proposed Model % Variance 

CPU (s) Iter CPU (s) Iter CPU Iter 

coordGaspelle 21-5 765.703,1 1,7 2.093 0,4 1.363 -75,03% -34,88% 

coordGaspelle2 22-5 506.639,8 5,3 12.238 0,7 1.625 -86,03% -86,72% 

coordGaspelle3 29-5 590.099,5 6,0 6.093 0,6 2.901 -90,30% -52,39% 
coordGaspelle4 32-5 1.312.571,3 6,3 9.124 1,3 4.163 -79,38% -54,37% 

coordGaspelle5 32-5 1.312.571,3 16,3 38.628 0,9 3.739 -94,66% -90,32% 

coordGaspelle6 36-5 50.899,7 1350,2 2.379.752 1,3 4.694 -99,90% -99,80% 
coordMin27 27-5 2.158.788,8 12,9 29.399 1,0 1.935 -92,41% -93,42% 

coordChrist50 50-5 39.077,6 NOF* NOF* 68,1 109.280 - - 
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coordChrist75 75-10 NOF* NOF* NOF* NOF* NOF* - - 

Average                       9,3 16.213 -88,24% -73,13% 

*No optimal solution founded 

Also, in Tables 4-7 and 4-8, the results of the linear relaxation of the models are exposed. It 

is shown that the proposed model computes a better lower bound on the root node for the 

solver. In fact, the average gap to optimality of linear relaxation of proposed model is 3,68% 

while for the traditional model is 14,19%. Although for large instances the optimal solution 

could not be found, results show that the linear relaxation of proposed model is a better 

lower bound that the bound computed when using the traditional model.   

Table 4-7  Linear relaxation proposed model versus linear relaxation of the adapted 

traditional model on Prodhon's instances 

Instance n-m Kg CO2 
LR Traditional Model Adapted  LR Proposed Model 

Kg CO2 %GAP Kg CO2 %GAP 

coord20-5-1 20-5 1.462,7 11.705,9 20,0% 13.980,2 4,42% 
coord20-5-1b 20-5 2.067,5 15.881,3 23,2% 18.952,4 8,33% 

coord20-5-2 20-5 1.247,0 9.728,1 22,0% 11.429,8 8,34% 

coord20-5-2b 20-5 1.466,7 11.355,3 22,6% 13.978,1 4,70% 
coord50-5-1 50-5 4.109,7 34.648,0 15,7% 38.901,1 5,34% 

coord50-5-1b 50-5 3.964,7 31.013,8 21,8% 36.889,6 6,95% 

coord50-5-2 50-5 3.148,8 26.045,8 17,3% 29.413,4 6,59% 
coord50-5-2b 50-5 NOF - - - - 

coord50-5-2bBIS 50-5 NOF - - - - 

coord50-5-2BIS 50-5 NOF - - - - 
coord50-5-3 50-5 3.331,1 27.497,9 17,5% 31.607,3 5,11% 

coord50-5-3b 50-5 3.267,5 24.954,8 23,6% 30.626,0 6,27% 

coord100-5-1 100-5 NOF* 85.498,8 - 90.191,1 - 
coord100-5-1b 100-5 NOF* 73.966,9 - 81.596,1 - 

coord100-5-2 100-5 NOF* 42.284,4 - 47.361,7 - 

coord100-5-2b 100-5 NOF* 37.863,4 - 44.837,3 - 
coord100-5-3 100-5 NOF* 44.330,8 - 49.627,8 - 

coord100-5-3b 100-5 NOF* 39.678,1 - 46.514,1 - 

coord100-10-1 100-10 NOF* 42.947,4 - 49.168,0 - 
coord100-10-1b 100-10 NOF* 38.860,1 - 46.754,0 - 

coord100-10-2 100-10 NOF* 42.542,8 - 47.537,8 - 

coord100-10-2b 100-10 NOF* 37.965,3 - 44.585,5 - 
coord100-10-3 100-10 NOF* 40.690,9 - 45.556,1 - 

coord100-10-3b 100-10 NOF* 36.257,4 - 42.535,7 - 

Average 35.986,5 20,4% 41.049,7 6,23% 

*No optimal solution founded 

    

Table 4-8  Linear relaxation proposed model versus the linear relaxation of the adapted 

traditional model on Barreto's instances 

Instance n-m g CO2 
LR Traditional Model Adapted  LR Proposed Model 

g CO2 %GAP g CO2 %GAP 

coordGaspelle 21-5 765.703,1 754.401,2 1,48% 765.673,1 0,00% 

coordGaspelle2 22-5 506.639,8 490.492,5 3,19% 505.881,3 0,15% 

coordGaspelle3 29-5 590.099,5 571.860,1 3,09% 589.989,5 0,02% 
coordGaspelle4 32-5 1.312.571,3 1.290.297,2 1,70% 1.312.448,6 0,01% 

coordGaspelle5 32-5 1.312.571,3 1.289.418,3 1,76% 1.312.443,3 0,01% 

coordGaspelle6 36-5 50.899,7 40.980,4 19,49% 50.139,2 1,49% 
coordMin27 27-5 2.158.788,8 2.078.558,2 3,72% 2.155.143,7 0,17% 

coordChrist50 50-5 39.077,6 29.986,8 23,26% 37.253,3 4,67% 
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coordChrist75 75-10 NOF* -       

Average                   818.249,3 7,21% 841.121,5 0,82% 

*No optimal solution founded    

These tests are also performed on larger instances to check if conclusions remained the 

same. Using Prodhon’s instances with up to 100 customers, 5 and 10 candidate depots the 

proposed model is tested, but after 12 hours of computation, no optimal solution is found. In 

some cases, the solver stopped because of lack of memory. Nevertheless, after 4 hours of 

computation, the proposed model had an average GAP to the best lower bound of 3,7%, 

while the adapted traditional model could not find any integer solution. It shows that still on 

large instances the proposed model seems to perform better than the adapted traditional 

model. 

4.4 Minimizing costs versus minimizing CO2 emissions 

Implementing a decision-making tool that aims to minimize CO2 emissions of a supply chain 

instead of the logistic costs is good for the environment but an analysis of the trade-off 

between costs and environmental impact is required in order to make a sustainable supply 

chain. In fact, Prodhon’s Instances with up to 50 customers are analyzed by comparing the 

near-optimal solutions for the LRP reported by Prins et al.(2007) in terms of costs ($) and 

its estimated CO2 (Kg CO2) emissions, against the optimal solution found by solving the 

GRLP.  Proven optimal solutions are marked in bold font. 

Table 4-9  Comparison LRP versus GLRP in terms of cost and CO2 emissions on 

Prodhon's instances 

Instance 
LRP GLRP % Variance 

Kg CO2 $ Kg CO2 $ Kg CO2 $ 

coord20-5-1 2.333,3 55.131,0 1.467,3 71.840,0 -37,31% 30,31% 

coord20-5-1b 3.138,7 39.104,0 2.067,5 56.966,0 -34,13% 45,68% 

coord20-5-2 1.815,2 48.908,0 1.247,0 79.191,0 -31,30% 61,92% 

coord20-5-2b 3.078,5 37.542,0 1.466,7 61.887,0 -52,36% 64,85% 

coord50-5-1 5.045,9 90.160,0 4.109,7 120.870,0 -18,55% 34,06% 

coord50-5-1b 6.654,9 63.256,0 3.964,7 111.795,0 -40,42% 76,73% 

coord50-5-2 4.583,9 88.715,0 3.148,8 103.343,0 -31,31% 16,49% 

coord50-5-2b 5.915,1 67.698,0 3.079,4 99.919,0 -47,94% 47,60% 

coord50-5-3 5.305,6 86.203,0 3.331,1 109.378,0 -37,22% 26,88% 

coord50-5-3b 5.553,6 61.830,0 3.267,5 105.373,0 -41,17% 70,42% 

Average 2.591,4 45.171,3 1.562,1 67.471,0 -37,17% 47,49% 

Table 4-9 shows the comparative results. While CO2 emissions could be reduced, on 

average, on 37,17%, the total cost of the operation increases on average in 47,49%. 

Therefore, it represents a significant increase in costs for the evaluated instances. However, 

it should be noted that the LRP completely ignores the costs associated to CO2 emissions 

that depend on the load of the vehicles, then, in real situations, solutions with a better trade-

off between these economic and environmental costs could exist. Despite this, it seems that 

the two objectives, cost and CO2 emissions, oppose to each other. For this reason, a bi-

objective optimization analysis is developed. Results are shown in the next section. 
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4.4.1 Bi-objective optimization  

A bi-objective model is formulated and solved applying the ε-constraint method, based on 

imposing a limit on the total cost of the solution and minimizing the level of CO2 emissions. 

Pareto frontiers are built and are shown in Figure 4-1 for instances with up to 20 customers 

and 5 candidate depots. Results show a large tail to the right side which means that, in these 

situations, it is possible to have a significant reduction on CO2 emissions with a very small 

sacrifice of the total cost. As shown by these results, moving from the optimal solution of 

cost-based LRP (points marked as 1) to the next point in the left of the Pareto frontier (points 

marked as 2), on average for these instances, means a reduction in CO2 of 20,4% and 

increase of 4,2% of the cost. It is therefore a more competitive strategy than just using the 

GLRP criteria, and provides a more sustainable solution than using the LRP optimal solution. 

Figure 4-1  Pareto frontiers for four Prodhon's instances 
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5 Conclusions and perspectives 

A mathematical model for the decision making process of strategic and operational 

decisions associated to a two-echelon supply chain design is presented, aiming to generate 

a lower environmental impact of distribution operations. As shown by the literature review, 

this is interesting to industries worldwide, to dangerously polluted cities, and governments. 

A new mathematical formulation and a set of valid inequalities for the green location-routing 

problem are presented and compared to straight-forward adaptations of the formulations in 

the literature. The presented formulation is stronger than the adapted traditional 

formulations, as shown by the computational results performed on a set of benchmark 

instances.  

Further, the implications on logistic costs are analyzed when solving a minimum CO2 

emissions problem and a bi-objective version of the model. By using the ε-constraint method, 

a near-optimal Pareto frontier is built for a set of test instances. The shapes of these frontiers 

show that important savings in CO2 emissions can be achieved by a making small increase 

in logistic costs. Therefore, a decision-aid tool using the presented model could help 

practitioners and companies to find more competitive and sustainable strategies for supply 

chain design by evaluating the decisions with a trade-off between economic costs and the 

corresponding CO2 emissions.  

 Finally, a novel way of approaching the LRP is presented, and its benefit is twofold: on the 

one hand, to be used by companies who want to have greener operations; and on the other 

hand, to promote the fulfillment of national and international regulations concerning carbon 

footprint. Future research should be dedicated to evaluate the impact of the sensitivity factor 

of the CO2 emissions as a function of the vehicle’s load in the solutions, denoted as α, and 

to analyze how the features of the roads and the vehicles could affect the location and 

routing decisions. Also, well-known variants of the LRP could be evaluated under the same 

considerations. 
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