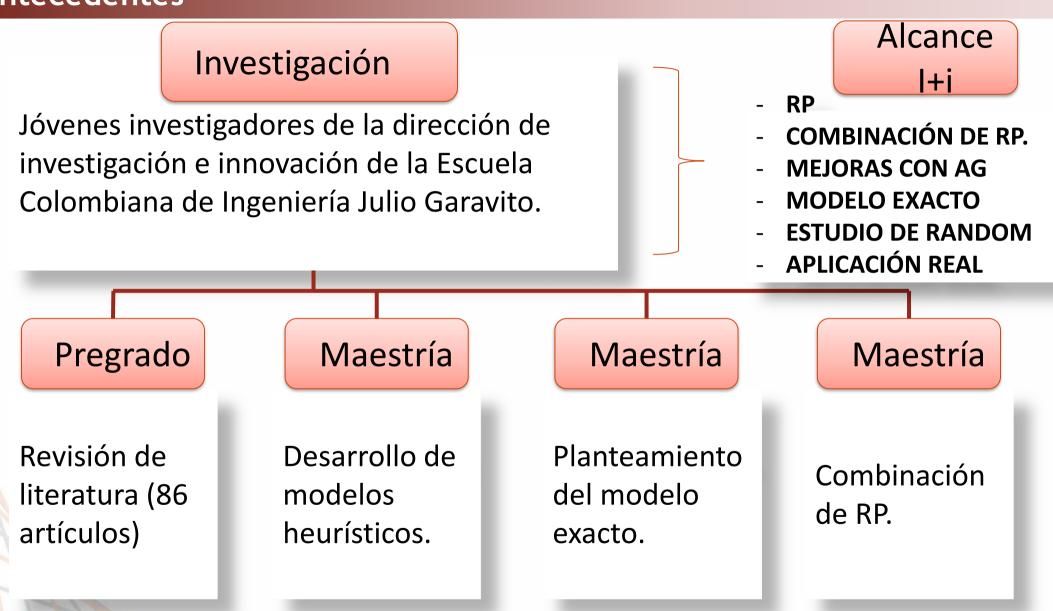


Identificación y análisis de métodos heurísticos basados en reglas de prioridad para la solución de problemas de programación de múltiples proyectos con recursos restringidos (RCMPSP)

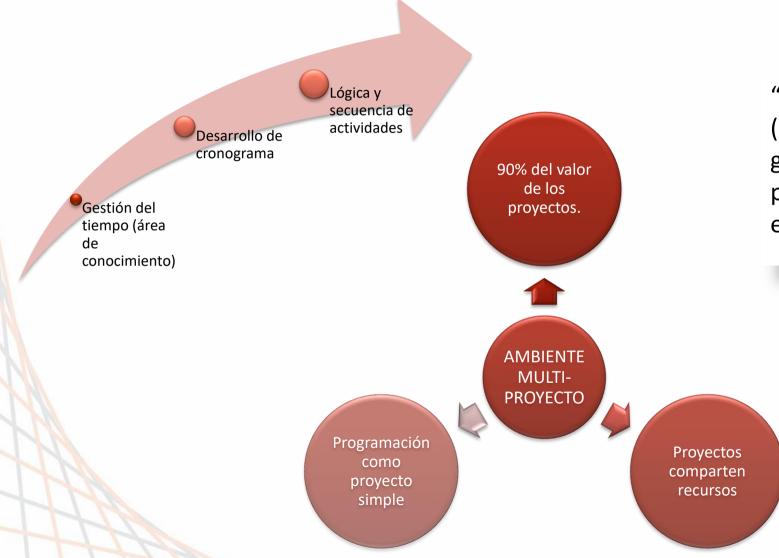
Ing. Cesar Ordóñez

Ing. Diego Aristizábal

Eco. Jonathan Castellanos



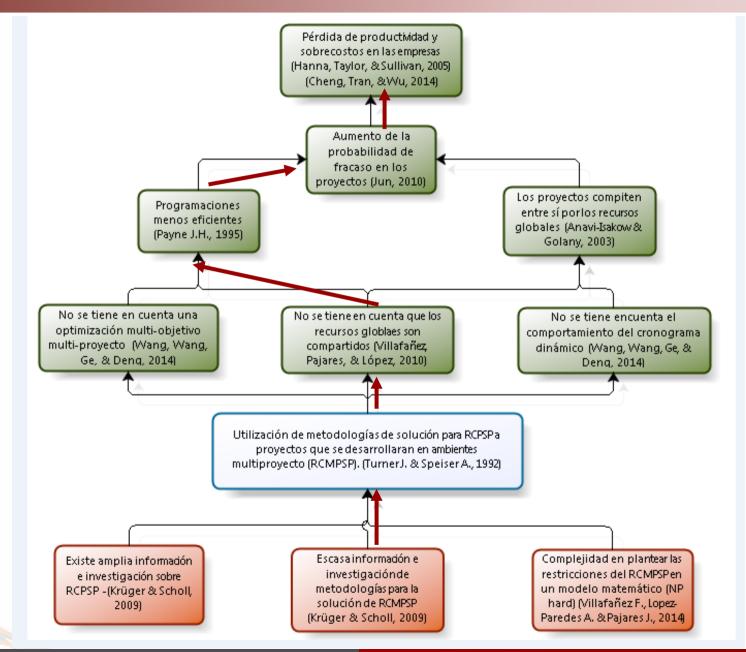
AGENDA


ANTECEDENTES JUSTIFICACIÓN PROPÓSITO OBJETIVOS MARCO TEÓRICO **METODOLOGÍA**

RESULTADOS Y ANÁLISIS CONCLUSIONES RECOMENDACIONES Y TRABAJO FUTURO GERENCIA DEL TRABAJO DE **GRADO BIBLIOGRAFÍA** PREGUNTAS Y RESPUESTAS

1. Antecedentes

1. Antecedentes



Definición

"Colección de componentes (programas o proyectos) gerenciados como un conjunto para alcanzar objetivos estratégicos".

PMBOK 5ta edición; Beşikci, Bilge, & Ulusoy. (2015); Payne (1995); Standard for Portfolio management 3ra edición.

2. Justificación

2. Justificación

Necesidad

Contar con herramientas para los gerentes de proyectos que ayuden en la programación de los proyectos de forma eficiente.

Necesidad

Metodologías de programación en ambientes multiproyecto.

Oportunidad

Escasa investigación en programación en ambientes multi-proyecto con recursos restringidos.

3. Propósito

Propósito del Trabajo de grado

Contribuir al aumento de la probabilidad de éxito de la gerencia de portafolios mediante la reducción del tiempo de completamiento de múltiples proyectos que se ejecuten simultáneamente bajo un enfoque de proyecto simple.

Alineación estratégica

Contribuir al progreso personal, social y del conocimiento, a través de la construcción y desarrollo de conocimiento, especialmente científico y tecnológico y la interacción dinámica, real y permanente con el entorno.

Contextualizar la actividad académica en las necesidades del entorno y en los propósitos y oportunidades nacionales de desarrollo.

4. Objetivos

Objetivo general

Identificar y analizar métodos heurísticos basados en reglas de prioridad para la solución de problemas de programación de múltiples proyectos con recursos restringidos (RCMPSP).

Objetivos específicos

- •Identificar los métodos heurísticos más utilizados en la literatura científica, aplicables a la solución de problemas de programación de múltiples proyectos con recursos restringidos
- •Identificar las medidas de desempeño más utilizadas en la literatura científica para la solución del problema de programación de múltiples proyectos con recursos restringidos.
- •Identificar los principales componentes del modelo básico para la solución del problema de programación de múltiples proyectos con recursos restringidos.
- •Seleccionar y aplicar los métodos heurísticos basados en reglas de prioridad más utilizados a instancias tomadas de la literatura científica.
- •Seleccionar y evaluar las medidas de desempeño más utilizadas en los cronogramas obtenidos por la aplicación de los heurísticos basados en reglas de prioridad seleccionados.
- •Evaluar el desempeño de los métodos heurísticos seleccionados con respecto a cada una de las medidas de desempeño e instancias seleccionadas, presentando un ordenamiento de los mejores métodos.
- •Evaluar la incidencia del uso de los recursos y de la complejidad de la red en la minimización del tiempo de completamiento de un multi-proyecto.

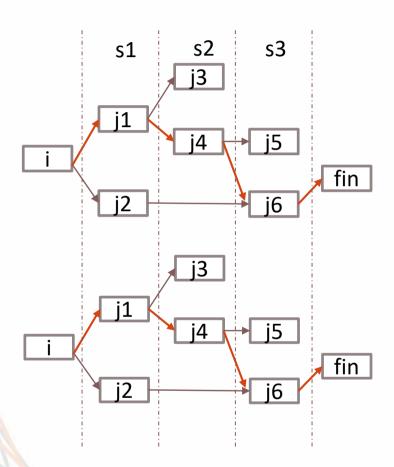
Ampliamente estudiado, desde años 50 del siglo pasado

Programación de actividades y recursos optimizando una función objetivo.

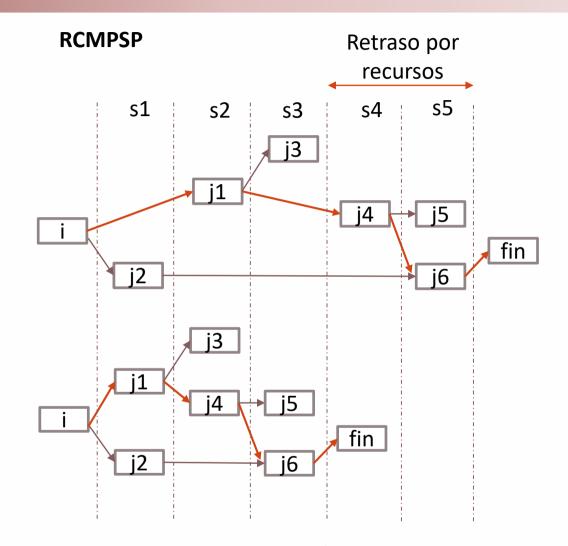
Restricciones

- Precedencia de actividades

Disponibilidad de recursos


RCPSP

Morillo et. al. (2014); Ballestín et. al. (2006);


Problema tratado como extensión del RCPSP Soluciones prácticas Estudios desde la mediante década de los 60 heurísticos y metaheurísticos. **RCMPSP**

Engwall & Jebrant (2003); Yan et. al (2014); Tseng (2008); Browning & Jassine (2010)

MÉTODO DE LA RUTA CRÍTICA

- Asume recursos ilimitados
- Sólo restricciones de precedencia

- Asume recursos restringidos
- Comparte recursos entre proyectos
- Restricciones de precedencia + restricciones de recursos

- MODELO BÁSICO

- Proyectos : $I = \{1, 2, ..., L\}$
- Actividades: $j_i = \{1, 2, ..., N\}$
- Tipos Recursos : $r_k = \{1, 2, ..., K\}$
- Capacidad de recursos: $R_k = \{5, 2, ..., R_k\}$

- Actividades
 j_i
- Duración determinística $d_{j,l}$
- Relaciones de precedencia
 FC
- Requerimientos de recursos $\mathbf{r}_{j \mid k}$
- Due date (Ruta crítica)
 dd_i

• Optimizar medida de desempeño: Makespan

Min (Max
$$(FT_{1,1}, ...FT_{J,L})$$

Sujeto a:

- ✓ Restricciones de precedencia
- ✓ Restricciones de recursos
- ✓ Tiempos de finalización no negativos

SUPUESTOS DEL MODELO:

- Unimodal
- Ambiente estático
- Inicio de todos los proyectos t=0
- Proyectos independientes
- No hay tiempos de transferencia
- Recursos renovables globales no locales
- No preemptions
- Asignación centralizada de recursos

CLASIFICACIÓN DE MÉTODOS DE SOLUCIÓN

EXACTOS

- Ramificación y acotamiento.
- Programación dinámica.
- Programación lineal.


HEURÍSTICOS

 Reglas de Prioridad.

METAHEURÍSTICOS

- Algoritmo
 Genético.
- Recocido simulado.
- Colonia de hormigas.

5. Metodología

Keele, staff (2007).

¿Se ha estudiado ampliamente acerca del problema RCPSP?

¿Se ha estudiado ampliamente acerca del problema RCMPSP?

PREGUNTAS DE INVESTIGACIÓN

¿Cuáles son los métodos más comunes en la literatura para resolver los problemas de secuenciación?

¿Pueden plantearse modelos heurísticos para mejorar los cronogramas de los proyectos que se ejecutan en ambientes multi-proyectos?

Keele, staff (2007).

INCLUSIÓN DE ARTÍCULOS EXCLUSIÓN DE ARTÍCULOS

Tratar tema RCMPSP.

Publicación con más de 20 años.

Publicación en Journal indexado y arbitrado.

Sustentarse con al menos 10 artículos referenciados.

Publicación con menos de 20 años.

Libros de texto.

1. REGLAS DE PRIORIDAD

Método heurístico

Parte de cero, no requiere un cronograma inicial

Razones de selección:

- 1. Han sido necesarias para la solución de grandes problemas históricamente.
- 2. Son un componente de otros heurísticos y son indispensables para obtener soluciones iniciales para metaheurísticos.
- 3. Son ampliamente utilizadas por software comerciales de programación de proyectos.
- 4. Son ampliamente usadas en la práctica.

Browning & Yassine (2009)

1. REGLAS DE PRIORIDAD/ BASADAS EN ACTIVIDAD

No.	NOMBRE	SIGLA	BASE / DESCRIPCIÓN	FÓRMULA
	Primera en llegar primera en		Basada en actividad	Min (ES _{jl})
1	servirse (First Come First Served)		Se programa primero la actividad que tenga el mínimo comienzo temprano (<i>Early Start</i>)	Donde: ES _{jl} es el inicio temprano para la actividad j del proyecto l
	Duración más corta primero		Basada en actividad	Min (d _{jl})
2	(Shortest operation first)	SOF	Se programa primero la actividad que tenga la mínima duración	Donde: d _{il} es la duración de la actividad j del proyecto l
	Duración mas larga primero		Basada en actividad	Max (d _{jl})
3	(Maximum operation first)		Se programa primero la actividad que tenga la duración más larga	Donde: d _{jl} es la duración de la actividad j del proyecto l

1. REGLAS DE PRIORIDAD/ BASADAS EN ACTIVIDAD

No.	NOMBRE	SIGLA	BASE / DESCRIPCIÓN	FÓRMULA
4	Holgura mínima (Minimum Slack)	MINSLK	Basada en actividad Se programa primero la actividad que tenga la holgura mínima	Min (SLK $_{jl}$) Donde SLK $_{jl}$ es la holgura de la actividad j del proyecto l SLK $_{jl}$ = LS $_{jl}$ – max(ES $_{jl}$, t) LS $_{jl}$ es el inicio tardío para la actividad j del proyecto l t es el periodo actual
5	Holgura Máxima (<i>Maximum Slack</i>)	MAXSLK	Basada en actividad Se programa primero la actividad que tenga la holgura máxima	Max (SLK _{jl})
6	Fecha de entrega más temprana (Earliest Due Date First)	EDD	Basada en actividad Se programa primero la actividad con el mínimo comienzo tardío o late start, para la actividad j del proyecto l	Min (LS _{jl})

Browning & Yassine (2009)

1. REGLAS DE PRIORIDAD/ BASADAS EN ACTIVIDAD

No.	NOMBRE	SIGLA	BASE / DESCRIPCIÓN	FÓRMULA
7	Última en llegar primera en servirse (Last come first served)	LCFS	Basada en actividad Se programa primero la actividad que tenga el máximo comienzo temprano <i>o early start,</i> para la actividad j del proyecto l	Max (ES _{jl})
8	Mínimo final tardío (Minimum late finish time)	MINLFT	Basada en actividad Se programa primero la actividad que tenga el mínimo final tardío o <i>late finish time</i> para la actividad j del proyecto l	Min (FT _{jl})
9	Máximo total de sucesoras (Maximum total Successors)	MS	Basada en actividad Se programa primero las actividades que tengan mayor número de sucesoras	Max (TS _{jl}) Donde: TS _{jl} es el total de actividades sucesoras de la actividad j del proyecto l
10	Máximo total de sucesores críticos (Maximum critical successors)	MCS	Basada en actividad Se programa primero las actividades que tengan mayor número de sucesoras criticas (holgura 0)	Max (CS _{jl}) Donde: CS _{jl} es el total de actividades sucesoras críticas de la actividad j del proyecto l

Browning & Yassine (2009)

1. REGLAS DE PRIORIDAD / BASADAS EN ACTIVIDAD Y PROYECTO

No.	NOMBRE	SIGLA	BASE / DESCRIPCIÓN	FÓRMULA
11	Actividad más corta del proyecto más corto (Shortest activity from shortest Project)	SASP	proyecto que tenga la mínima duración de ruta crítica sin	Min (f_{ii}) Donde: $F_{ii} = CP_{i} + d_{ii}$ CP_{i} es la ruta crítica del proyecto l (sin restricción de recursos) d_{ii} es la duración de la actividad j del proyecto l
12	Actividad más larga del proyecto más largo (Longest activity from longest Project)	LALP	Basada en actividad y proyecto Se programa primero la actividad que tenga la máxima duración y que pertenezca al proyecto que tenga la máxima duración de ruta crítica sin restricción de recursos.	7

1. REGLAS DE PRIORIDAD / BASADAS EN ACTIVIDAD Y RECURSOS

No.	NOMBRE	SIGLA	BASE / DESCRIPCIÓN	FÓRMULA
13	Mínimo contenido de trabajo total (Minimum total Work content)	MINTWK	Basada en actividad y recursos Se programa primero la actividad con menor contenido de trabajo, el cual se define como la cantidad de recursos que utiliza la actividad j del proyecto l más la cantidad de recursos utilizada por las actividades en trabajo del proyecto l.	$\begin{aligned} &\textit{Min}(\sum_{k=1}^k \sum_{i \in ASl} d_{jl} * r_{jlk} + d_{jl} \sum_{k=1}^k r_{jlk}) \\ &\textit{Donde:} \\ &\textit{AS}_{l} \text{e el conjunto de actividades ya programadas} \\ &\textit{(Already Scheduled)} \text{del proyecto I, es decir las} \\ &\textit{actividades en trabajo o activas.} \end{aligned}$ La primera parte de la ecuación se conoce como TWK o $\textit{total work content}$
14	Máximo contenido de trabajo total (Maximum total Work content)	MAXTWK	Basada en actividad y recursos Se programa primero la actividad con mayor contenido de trabajo	$Max(\sum_{k=1}^{k} \sum_{i \in ASl} d_{jl} * r_{jlk} + d_{jl} \sum_{k=1}^{k} r_{jlk})$

Browning & Yassine (2009)

1. REGLAS DE PRIORIDAD / BASADAS EN ACTIVIDAD Y RECURSOS

No.	NOMBRE	SIGLA	BASE / DESCRIPCIÓN	FÓRMULA
15	Contenido de trabajo total y tiempo de inicio tardío (MAXTWK & earliest Late Start Time)	TWK-LST	Basada en actividad y recursos Se programa primero la actividad con máximo contenido de trabajo total tal como en la regla 9 y en caso de empate se escoge la actividad con mínimo tiempo de inicio tardío.	Primero: MAXTWK Luego: Min (LS _{jl})
16	Contenido de trabajo total y tiempo de inicio temprano (MAXTWK & earliest early Start Time)	TWK-EST	Basada en actividad y recursos Se programa primero la actividad con máximo contenido de trabajo total tal como en la regla 9 y en caso de empate se escoge la actividad con mínimo tiempo de inicio temprano.	Primero: MAXTWK Luego: Min (ES _{jl})

1. REGLAS DE PRIORIDAD / BASADAS EN PRIORIDAD DE USUARIO

Prioridad dada por el usuario 1: prioridad por importancia de actividad		Basada prioridad de usuario	
Weight activity priority)		El usuario puede dar prioridad a las actividades y luego se programa primero las actividades con mayor prioridad	N.A
Prioridad dada por el usuario 2: prioridad por importancia de proyecto. Weight project	WPP	Basada prioridad de usuario El usuario puede dar prioridad a los proyectos y luego se programa primero las actividades que pertenezcan al proyecto de mayor prioridad	N.A
Aleatorio	RAN		N.A
or W	oyecto. Veight project iority) eatorio	oyecto. WPP Weight project iority) eatorio RAN	WPP El usuario puede dar prioridad a los proyectos y luego se programa primero las actividades que pertenezcan al proyecto de mayor prioridad eatorio Se seleccionan aleatoriamente las actividades. RAN Fata regla sele se utilizá como criterio de decembate.

Browning & Yassine (2009)

5.3 Medidas de desempeño

MEDIDA DE DESEMPEÑO	FÓRMULA	DESCRIPCIÓN
Tc Tiempo computacional	N/A	Dentro del software desarrollado se deja como dato de salida el total de tiempo consumido en resolver la instancia.
C Program makespan	Max (FT _{1,1} ,FT _{J,L})	Esta función mide el tiempo de duración total o finalización de todas las actividades del programa. Se busca minimizar el tiempo de finalización o Finish time (FT) de la última actividad (J) del último proyecto (L)
Program mean flow time	Flow time para las actividades: Fwt $_{j,l}$ = FT $_{j,l}$ - r $_{j,l}$ Mean flow time para el programa: $\frac{1}{n}\sum_{l=1}^{L} \text{Fwt}$	Mide el tiempo promedio de respuesta de los recursos para atender las actividades desde que se liberan (r _j) para ser procesadas hasta que son terminadas (FT _j). Se busca minimizar el tiempo medio que dura una actividad en el sistema.

Browning & Yassine (2009); Germán Giraldo (2016)

5.3 Medidas de desempeño

MEDIDA DE DESEMPEÑO	FÓRMULA	DESCRIPCIÓN
L Program maximun lateness	Lateness de la actividad: $L_{j,l} = FT_{j,l} - d_{j,l}$ Máximo lateness $Max \{L_{1,1}, \dots L_{J,L}\}$	Representa el retraso de las actividades con respecto al periodo en el que debieron ser terminadas denominado <i>due date</i> (d _j). Para el presente trabajo se toma como dj la fecha de terminación tardía de acuerdo al cálculo de la ruta crítica del proyecto. Busca minimizar el máximo retraso dentro de las actividades de todos los proyectos
Program mean lateness	$1/n \sum_{l=1}^{L} \sum_{j=1}^{J} FTJl - djl$	Representa el retraso promedio de las actividades del multi-proyecto. Busca minimizar el promedio de los retrasos del multi-proyecto
T Program total tardiness	Tardiness de la actividad: $T_{j,l} = \max \{ FT_{j,l} - d_{j,l} ; 0 \}$ Total tardines multi-proyecto: $\sum_{l=1}^{L} \sum_{j=1}^{J} T_{j,l}$	Representa el retraso total del multi-proyecto, es una medida del <i>lateness</i> y solo opera para valores positivos. Busca minimizar el total de retrasos de las actividades del multi-proyecto.

Browning & Yassine (2009); Germán Giraldo (2016)

5.3 Medidas de desempeño

MEDIDA DE DESEMPEÑO	FÓRMULA	DESCRIPCIÓN
mT Program maximun tardiness	Max {T _{1,1} ,T _{J,L} }	Representa el máximo retraso de una actividad dentro del multi-proyecto y busca minimizar este retraso máximo.
Program mean tardiness	1/nt $\sum_{l=1}^{L}\sum_{j=1}^{J}T$ j,l	Representa el retraso medio de todo el multi- proyecto, para su cálculo divide la tardanza total entre el número de actividades tardías. Busca minimizar la tardanza media del multi-proyecto.
NL Program number of tardy projects	N/A	Representa la cantidad de proyectos que están terminando tarde dentro del multi-proyecto. Busca minimizar la cantidad de proyecto que no terminan a tiempo
NJ Program number of tardy jobs	N/A	Representa la cantidad de actividades que están terminando tarde dentro del multi-proyecto. Busca minimizar la cantidad de actividades que no terminan a tiempo

Browning & Yassine (2009); Germán Giraldo (2016)

RCPSP / Generadores de instancias

Generador	Autores	Año
DAGEN	Agrawal et al	1996
ProGen	Kolisch et al	1992 1995
ProGen/Max	Schwindt's	1995 1996 1998
Ran/Gen	Demeulemeester et al	2003
RanGen 2	Vanhoucke et al	2004
Hier/Gen	Gutiérrez et al	2004

RCPSP / Librerías

Libería	Autor	Generador	Conjuntos	Instancias
PSPLIB	Kolisch et al	ProGen	J10,j12,j14,j16,j18,j20,j30 ,j90,j120	640
Boctor	Boctor	N/A	Boctor 50, Boctor 100	120

Ampliamente estudiado

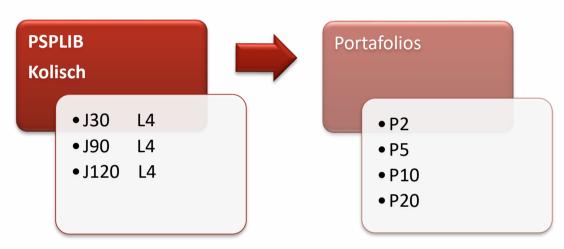
Abundante información para investigación

Peteghem & Vanhoucke (2014).

• RCMPSP / Generadores de instancias

Generador	Autores	Año
RCMPSPs	Browning & Yassine	2009

RCMPSP / Librerías


Librería	MPSPLIB			
Autor	Homberger			
Generador RCPSP	ProGen			
Conjunto de proyectos	P2, P5, P10, P20			
Conjunto Trabajos	J30, J90, J120			
Conjunto Recursos Globales	G1, G2, G3, G4			
Conjunto Recusos locales	Según PSPLIB			
Tipo de solución buscada	DCRMPSP			
Instancias conformadas	140			

Homberger (2009).

• RCMPSP / Generación de instancias RCMPSP en la librería mpsplib

REQUERIMIENTO Y DISPONIBILIDAD DE RECURSOS GLOBALES

mpsplib / selección de instancias para el trabajo de grado

Selección de instancias

- Complejidad de la red
- Número de proyectos
- Número de actividades por proyecto
- Número de recursos globales

COMPLEJIDAD:

$$c = \frac{A}{N}$$

RCMPSP
$$c = \frac{4A - 4N + 4}{(N-2)^2}$$

$$0 - 1$$
Browning & Yassine 0,14 0,64

Pascoe (1996); Browning & Yassine (2009).

• mpsplib / selección de instancias para el trabajo de grado

TABULACIÓN CRUZADA RECURSOS GLOBALES (G) Vs COMPLEJIDAD (C)

		G				TOTAL	%
R/	ANGOS DE C	1	2	3	4	IOIAL	/0
1	[0.001 , 0.015)	16	8	9	52	85	81%
2	[0.015 , 0.028)	6	3	2	6	17	16%
3	[0.028 , 0.042)	0	1	0	0	1	1%
4	[0.042 , 0.055)	2	0	0	0	2	2%
	TOTAL	24	12	11	58		
	%	23%	11%	10%	55%		

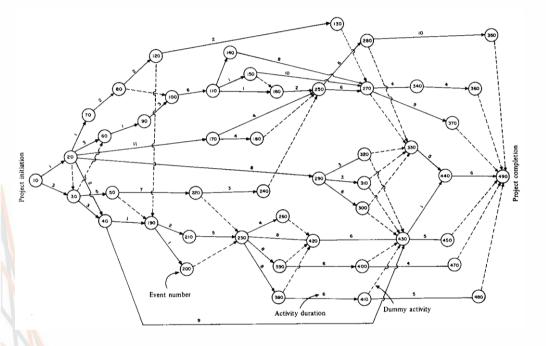
105 instancias para selección

35 instancias descartadas por información incompleta

5.4 Instancias

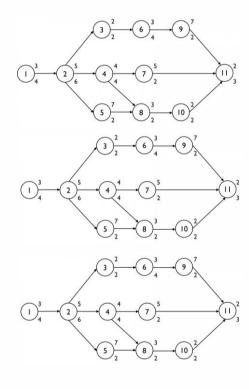
• mpsplib / selección de instancias para el trabajo de grado

TABULACIÓN CRUZADA G - P- C


Suma de Cantidad	G 🔻				
Rango / P	1	2	3	4	Total general
□1	16	8	9	52	85
2			1	10	11
5	4	2	2	16	24
10	6	3	3	16	28
20	6	3	3	10	22
∃2	6	3	2	6	17
2	4	2	1	6	13
5	2	1	1		4
∃ 3		1			1
2		1			1
∃ 4	2				2
2	2				2
Total general	24	12	11	58	105

Se seleccionan 14 instancias para aplicar los métodos heurísticos

s métodos heuristicos		Número de Recursos				
			1	2	3	4
		2			49	128
	ره ۵ م	5	57	38	59	99
	Winnero Vectos	10	45	3	24	108
	Mr bio	20	12	53	34	113


5.5 Enfoque de solución

PROYECTO SIMPLE

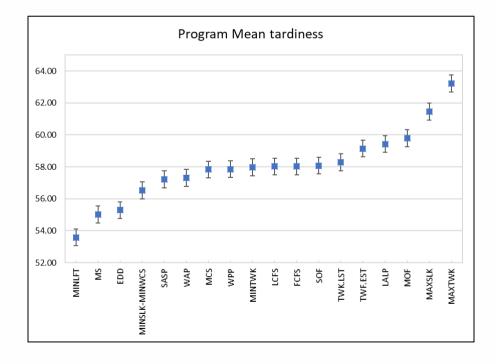
Megaproyecto = $\sum P$ Se obtiene un ruta crítica para el multi-proyecto Se hacen análisis centralizados

MULTI-PROYECTO

Se mantienen las rutas críticas separadas Se hacen análisis descentralizados

5.6 Métodos de análisis de resultados

Análisis de medias o ANOM (Análisis of mean)


Datos:

- 14 instancias
- 18 heurísticos basados en reglas de prioridad
- 10 medidas de desempeño

2,520 resultados

ANOM

- Analizar el desempeño de cada heurístico con respecto a cada medida de desempeño
- Agrupar por categorías : 18 reglas de prioridad
- Datos para cada categoría: promedio de cada medida de desempeño en las 14 instancias
- Se hace análisis rankeo de las RP para cada medida de desempeño

5.6 Métodos de análisis de resultados

REGRESION LINEAL

Variable respuesta: *makespan*

Variables explicativas:

Complejidad (C)

Uso de recursos (AUF) =
$$AUF_K = \frac{\sum_{i=1}^{n} \sum_{j \in J} r_{jk}}{\alpha_k * GCPD}$$

Homberger

Ecuación 1:

$$y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

Y = Makespan

 $X_1 = AUF$ normalizado

 X_2 = Complejidad del programa normalizado

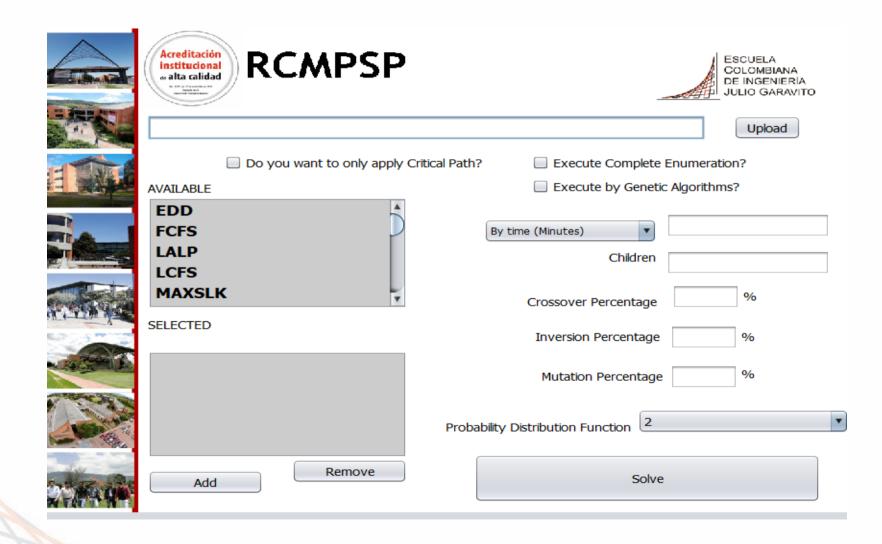
Ecuación 2:

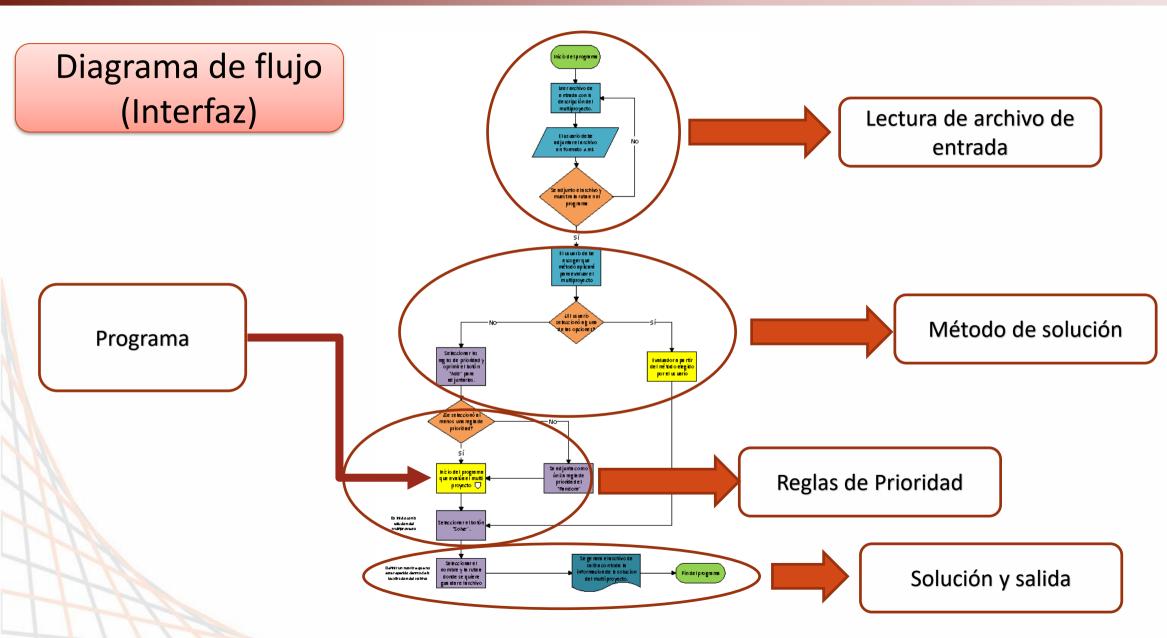
$$y_j = fS_0 + fS_{1j}X_{1j} + fS_{2j}X_{2j}$$

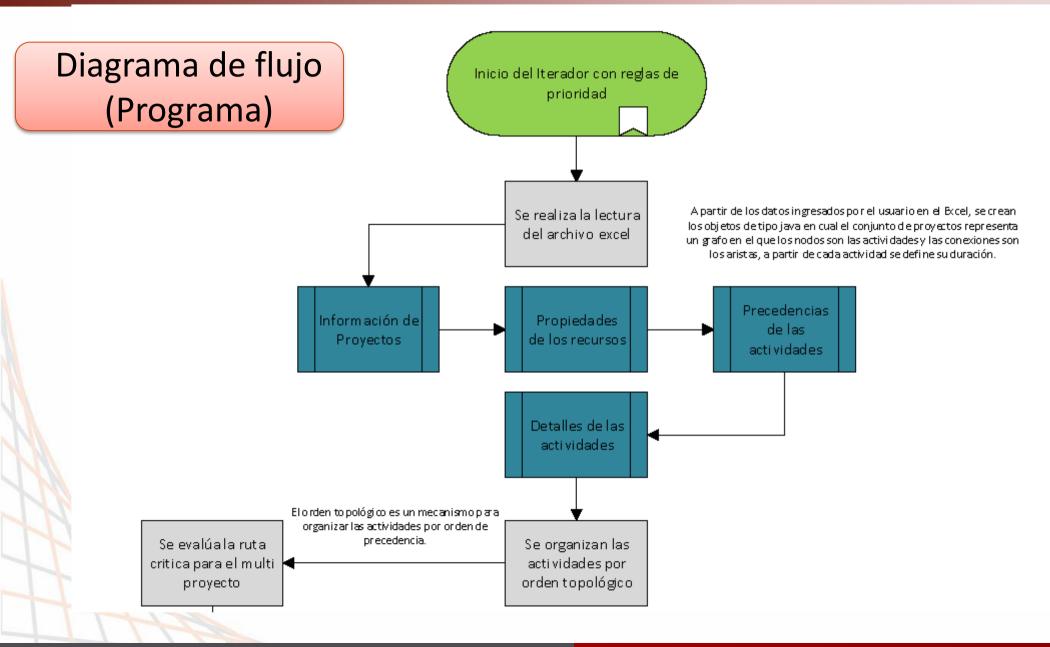
X_{1j} = AUF normalizado de método j

 X_{2j} = Complejidad del programa normalizado de método j

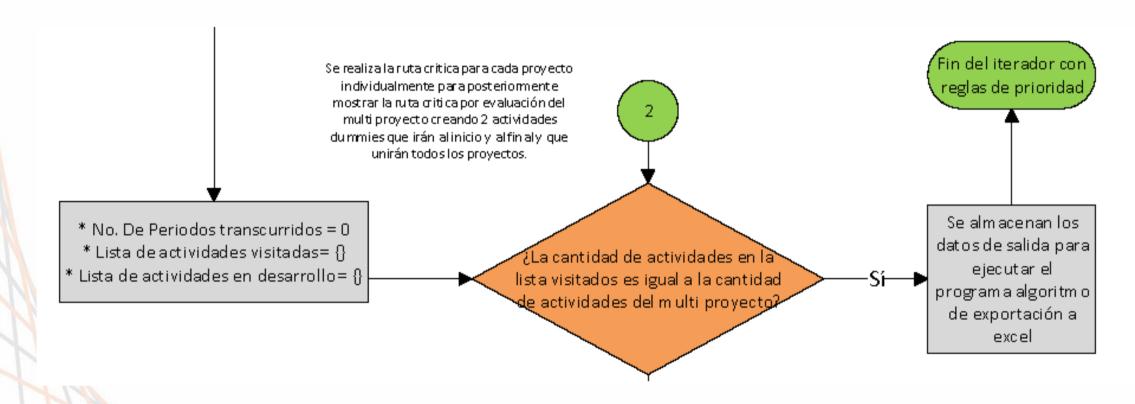
Ecuación 3:


$$y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$$


 $X_1 = AUF$ normalizado


 X_2 = Dependencias normalizado

 X_3 = Actividades normalizado


Homeberger (2009).

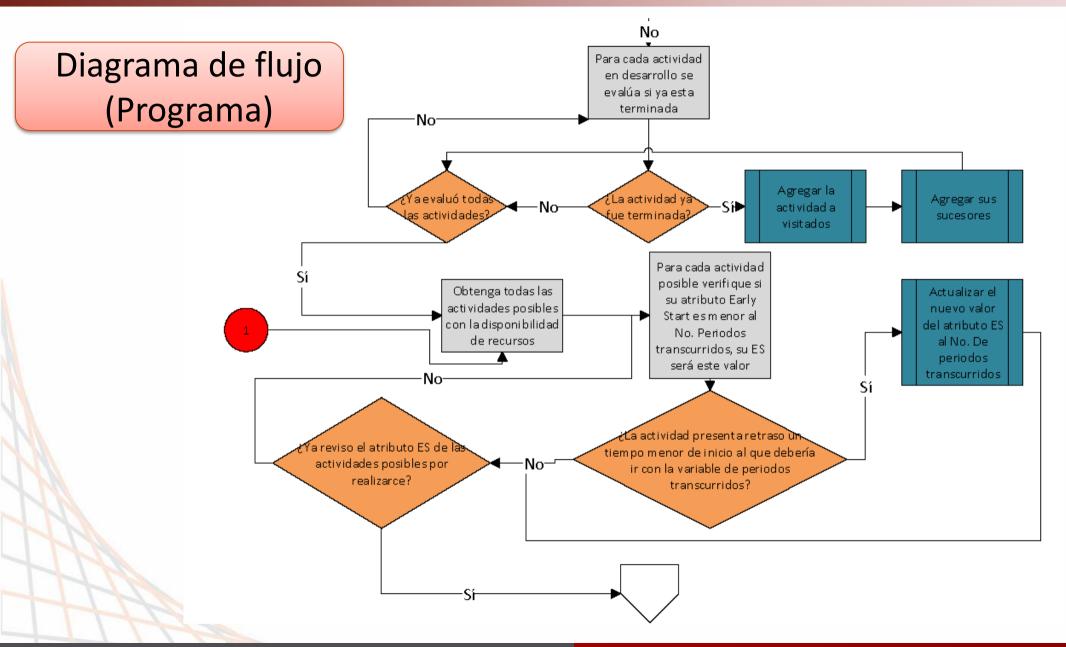


Diagrama de flujo (Programa)

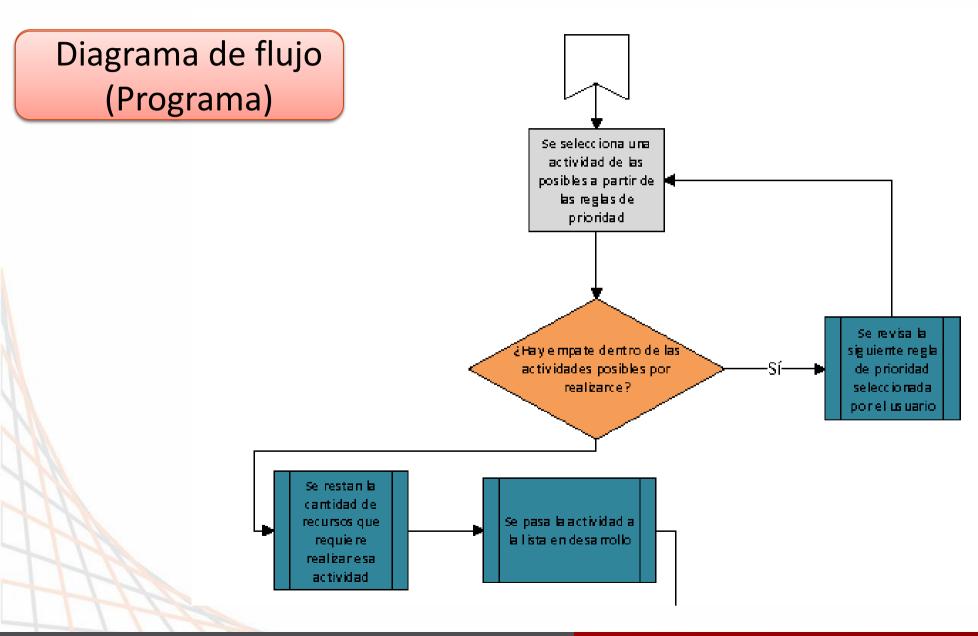
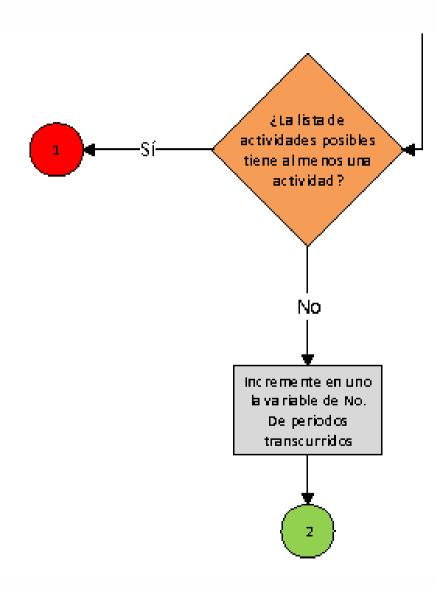
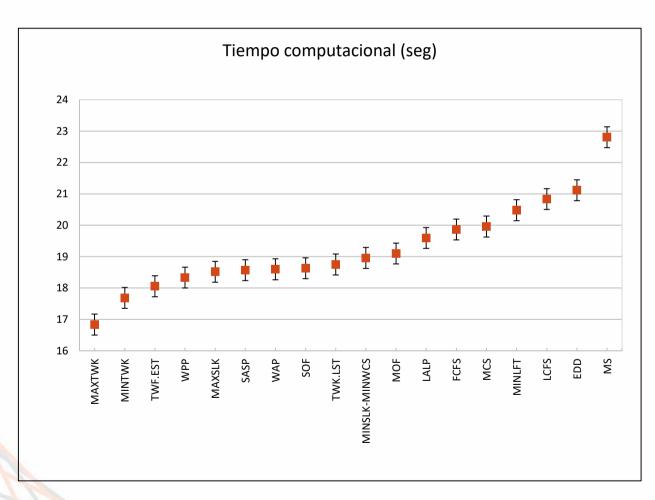
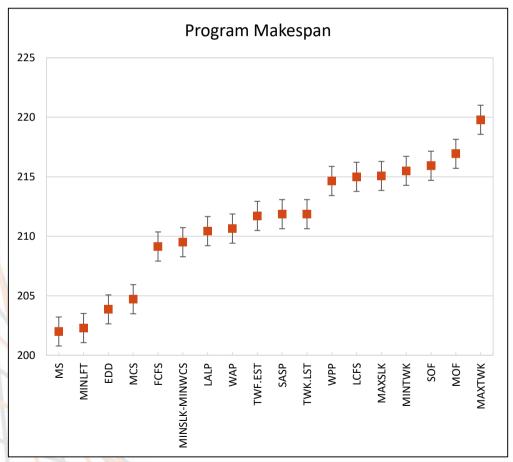



Diagrama de flujo (Programa)


HALLAZGOS RELEVANTES DE RSL

Escasa investigación de RCMPSP.

Los heurísticos más utilizados son 18 RP. EI metaheurístico más utilizado es el AG.

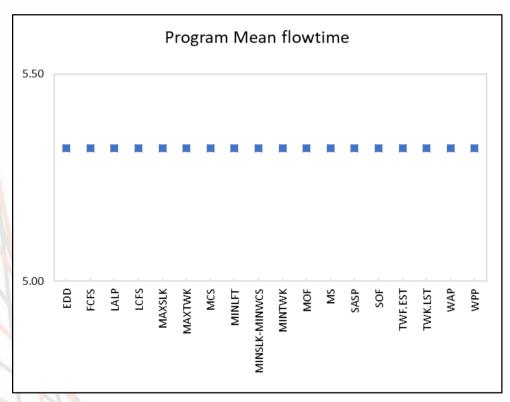

10 medidas de desempeño más utilizadas.

- ANOM
- Tiempo computacional

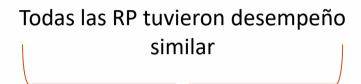
DECLA	Tiempo
REGLA	computacional
MAXTWK	16,84
MINTWK	17,69
TWF.EST	18,06
WPP	18,33
MAXSLK	18,52
SASP	18,57
WAP	18,60
SOF	18,63
TWK.LST	18,75
MINSLK-MINWCS	18,96
MOF	19,10
LALP	19,59
FCFS	19,87
MCS	19,96
MINLFT	20,48
LCFS	20,83
EDD	21,12
MS	22,80

- ANOM
- Program makespan

REGLA	Program Makespan
MS	202.00
MINLFT	202.29
EDD	203.86
MCS	204.71
FCFS	209.14
MINSLK-MINWCS	209.50
LALP	210.43
WAP	210.64
TWF.EST	211.71
SASP	211.86
TWK.LST	211.86
WPP	214.64
LCFS	215.00
MAXSLK	215.07
MINTWK	215.50
SOF	215.93
MOF	216.93
MAXTWK	219.79

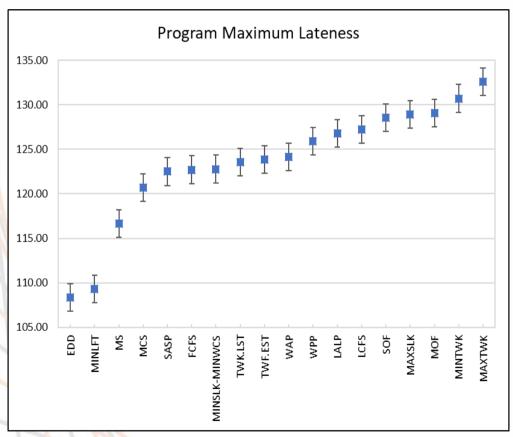

GRUPO 1

- MS
- MINLFT
- EDD
- MCS


RP GRUPO 1:

- Basadas en actividad
- Dan prioridad a las actividades en etapas tempranas de la red

- ANOM
- Program mean flowtime


REGLA	Program Mean flowtime
EDD	5.32
FCFS	5.32
LALP	5.32
LCFS	5.32
MAXSLK	5.32
MAXTWK	5.32
MCS	5.32
MINLFT	5.32
MINSLK-MINWCS	5.32
MINTWK	5.32
MOF	5.32
MS	5.32
SASP	5.32
SOF	5.32
TWF.EST	5.32
TWK.LST	5.32
WAP	5.32
WPP	5.32

- Duraciones determinísticas
- Análisis es unimodal

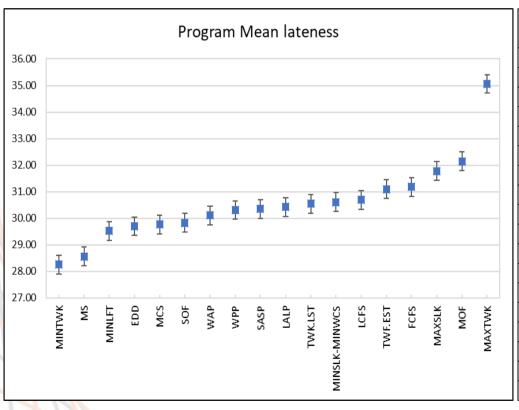
Hipótesis: el *program mean* flowtime varía si hacemos un análisis multimodal

- ANOM
- Program maximun lateness

REGLA	Program Maximum
	Lateness
EDD	108.36
MINLFT	109.29
MS	116.64
MCS	120.71
SASP	122.50
FCFS	122.71
MINSLK-MINWCS	122.79
TWK.LST	123.57
TWF.EST	123.86
WAP	124.14
WPP	125.93
LALP	126.79
LCFS	127.21
SOF	128.57
MAXSLK	128.93
MOF	129.07
MINTWK	130.71
MAXTWK	132.57

EDD MINLFT MS

MCS


- Igual para makespan
- Basadas en actividad

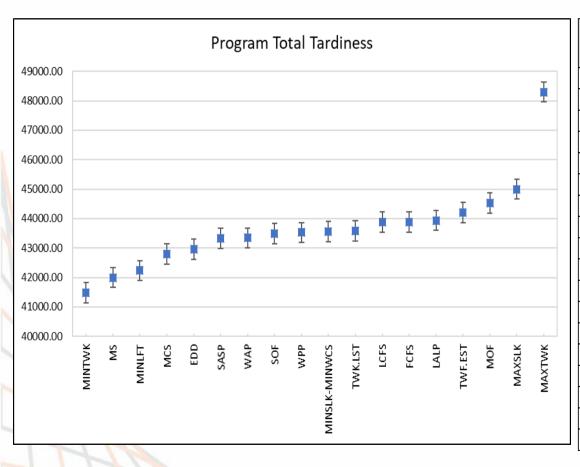
Teorema: maximun lateness y maximun tardines es minimizado por la secuencia EDD

Se cumple el teorema

- ANOM
- Program mean lateness

REGLA	Program Mean lateness
MINTWK	28.26
MS	28.56
MINLFT	29.53
EDD	29.70
MCS	29.76
SOF	29.84
WAP	30.11
WPP	30.31
SASP	30.35
LALP	30.43
TWK.LST	30.54
MINSLK-MINWCS	30.61
LCFS	30.69
TWF.EST	31.10
FCFS	31.18
MAXSLK	31.78
MOF	32.15
MAXTWK	35.06

Basada en actividad y recursos


Basada en actividad

= makespan

= maximun lateness

Basada en actividad y recursos

- ANOM
- Program total tardiness

REGLA	Program Total Tardiness	
MINTWK	41487.5	— → Ba
MS	41995.5	_ (
MINLFT	42235.4	Bas
MCS	42798.8	= n
EDD	42963.4	- = n
SASP	43332.1	= n
WAP	43342.6	
SOF	43485.9	
WPP	43528.1	
MINSLK-MINWCS	43555.8	
TWK.LST	43583.3	
LCFS	43877.9	
FCFS	43877.9	
LALP	43934.4	
TWF.EST	44205.6	
MOF	44524.9	
MAXSLK	44995.1	. [
MAXTWK	48296.4	

Basada en actividad y recursos

Basada en actividad

= makespan

= maximun lateness

= mean lateness

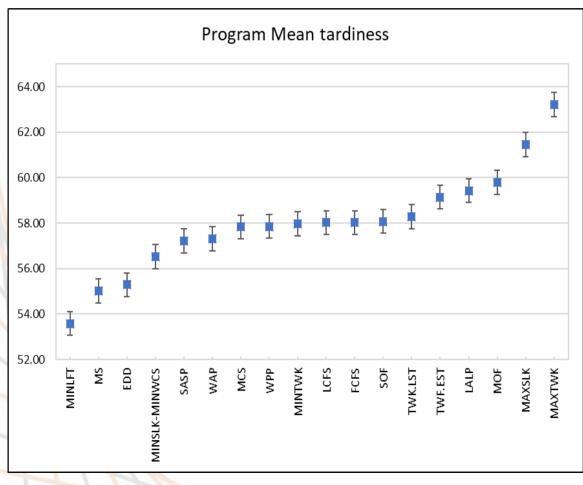
Basada en actividad y recursos

- ANOM
- Program maximun tardiness

	Program
REGLA	Maximum
	tardiness
EDD	108.36
MINLFT	109.29
MS	116.64
MCS	120.71
SASP	122.50
MINSLK-MINWCS	122.79
TWK.LST	123.57
TWF.EST	123.86
WAP	124.14
WPP	125.93
LALP	126.79
FCFS	127.21
LCFS	127.21
SOF	128.57
MAXSLK	128.93
MOF	129.07
MINTWK	130.71
MAXTWK	132.57

Basada en actividad

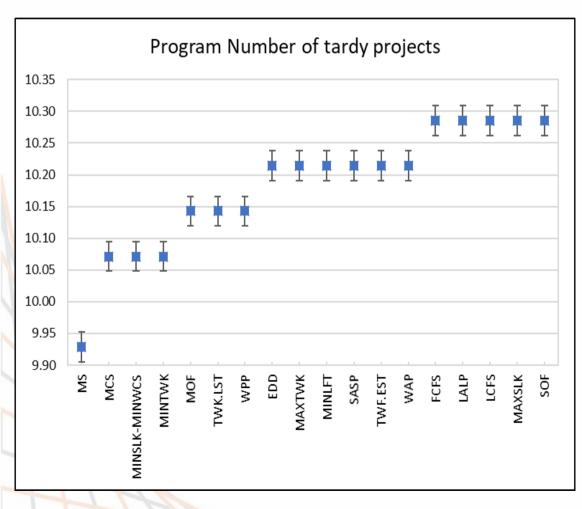
- = makespan
- = maximun lateness
- = mean lateness
- = total tardiness


Basada en actividad y recursos

Teorema: maximun lateness y maximun tardines es minimizado por la secuencia EDD

Se cumple el teorema

- ANOM
- Program meam tardiness

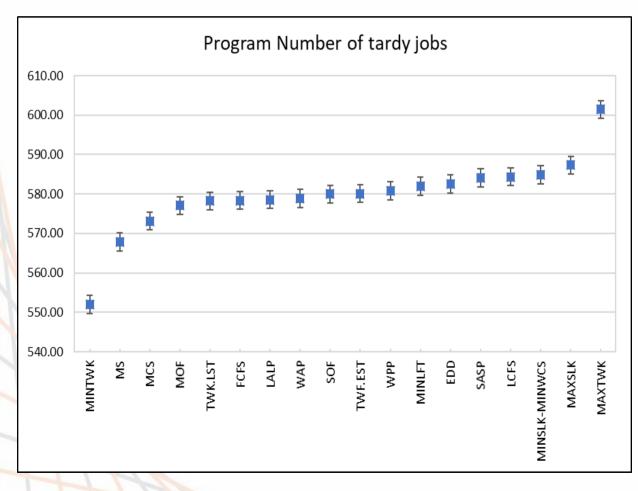

REGLA	Program Mean
ILULA	tardiness
MINLFT	53.58
MS	55.02
EDD	55.29
MINSLK-MINWCS	56.52
SASP	57.21
WAP	57.31
MCS	57.83
WPP	57.85
MINTWK	57.98
LCFS	58.02
FCFS	58.02
SOF	58.08
TWK.LST	58.29
TWF.EST	59.15
LALP	59.43
MOF	59.79
MAXSLK	61.46
MAXTWK	63.21

Basada en actividad

- = makespan
- = maximun lateness
- = mean lateness
- = total tardiness
- = maximun tardiness

Basada en actividad y recursos

- ANOM
- Program number of tardy projects


REGLA	Program Number of tardy projects
MS	9.93
MCS	10.07
MINSLK-MINWCS	10.07
MINTWK	10.07
MOF	10.14
TWK.LST	10.14
WPP	10.14
EDD	10.21
MAXTWK	10.21
MINLFT	10.21
SASP	10.21
TWF.EST	10.21
WAP	10.21
FCFS	10.29
LALP	10.29
LCFS	10.29
MAXSLK	10.29
SOF	10.29

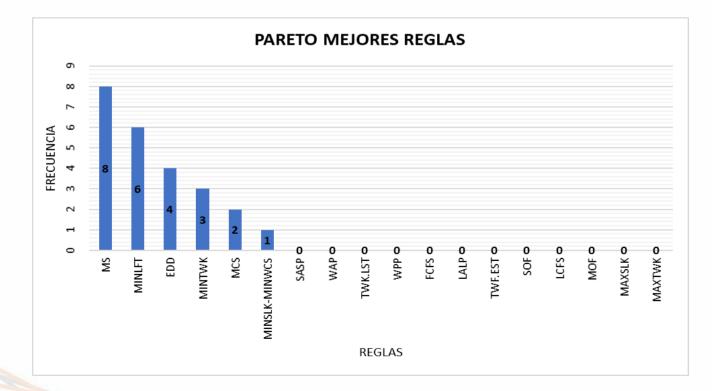
Basada en actividad

- = makespan
- = maximun lateness
- = mean lateness
- = total tardiness
- = mean tardiness

Basada en actividad

- ANOM
- Program number of tardy jobs

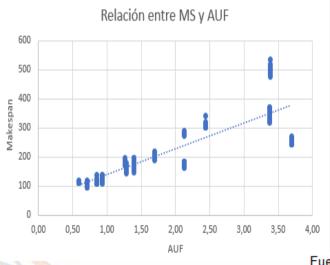
	Program
REGLA	Number of tardy
	jobs
MINTWK	552.00
MS	567.86
MCS	573.14
MOF	577.07
TWK.LST	578.21
FCFS	578.36
LALP	578.57
WAP	578.86
SOF	579.93
TWF.EST	580.07
WPP	580.79
MINLFT	581.93
EDD	582.50
SASP	584.07
LCFS	584.36
MINSLK-MINWCS	584.86
MAXSLK	587.29
MAXTWK	601.43

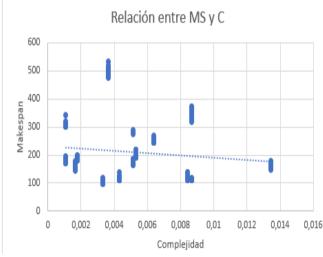

Basada en actividad

- = makespan
- = maximun lateness
- = mean lateness
- = total tardiness
- = mean tardiness
- = n tardy projects

ANOM

MEJORES REGLAS POR MEDIDA DE DESEMPEÑO


TARDY JOBS	TARDY PROJECTS	MEAN TARDINESS	MAXIMUN TARDINESS		MEAN LATENESS	MAXIMUN LATENESS	MAKESPAN
MINTWK	MS	MINLFT	EDD	MINTWK	MINTWK	EDD	MS
MS	MCS	MS	MINLFT	MS	MS	MINLFT	MINLFT
MCS	MINSLK-MINWCS	EDD	MS	MINLFT	MINLFT	MS	EDD



Ecuación 1: $y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$

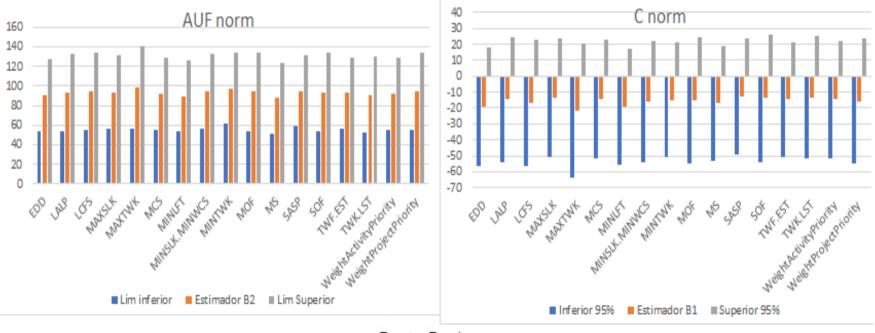
Prob > F = 0.0000R-squared = 0.7278

	Coeficientes	Error típico Robusto	Estadístico t	Probabilidad	Inferior 95% S	uperior 95%
Intercepción	211,16	3,5152	60,07	0,0000	204,24	218,08
AUF norm	93,00	5,7480	16,18	0,0000	81,68	104,32
Cnorm	-15,54	1,9513	-7,96	0,0000	-19,38	-11,70

Fuente: Propia

- A mayor restricción de recursos, mayor probabilidad de que las actividades se retrasen.
- Cuando hay mayores restricciones de precedencia, hay una menor de cantidad actividades factibles para programar y el problema de asignación de recursos genera un incremento de retraso menor, mientras que, en menores restricciones de precedencia, los recursos pueden tener mayores efectos retrasar el para cronograma.

Ecuación 2: $y_j = \beta_0 + \beta_{1j} X_{1j} + \beta_{2j} X_{2j}$


MÉTODO	R-squared	Prob>F	ВЕТА	Coeficientes	Error típico robusto	Estadístico t	Probabilidad	Inferior 95%	Superior 95%
EDD			AUF norm	90,64	26,42	3,43	0,0060	32,50	148,78
EDD	0.7326	0.0125	C norm	-19,04	9,55	-1,99	0,0710	-40,04	1,97
EDD			Intercepción	203,86	16,22	12,57	0,0000	168,15	239,56
FCFS			AUF norm	90,66	26,77	3,39	0,0060	31,73	149,58
FCFS	0.7233	0.0161	C norm	-12,73	8,96	-1,42	0,1830	-32,45	6,99
FCFS			Intercepción	209,14	16,43	12,73	0,0000	172,98	245,30
LALP			AUF norm	93,13	28,11	3,31	0,0070	31,26	155,01
LALP	0.7160	0.0178	C norm	-14,69	9,25	-1,59	0,1410	-35,06	5,67
LALP			Intercepción	210,43	17,23	12,22	0,0000	172,51	248,34
LCFS			AUF norm	94,36	28,62	3,3	0,0070	31,38	157,35
LCFS	0.7220	0.0145	C norm	-16,67	9,42	-1,77	0,1040	-37,41	4,06
LCFS			Intercepción	215,00	17,25	12,47	0,0000	177,04	252,96
MAXSLK			AUF norm	93,70	26,81	3,49	0,0050	34,69	152,72
MAXSLK	0.7376	0.0132	C norm	-13,52	8,03	-1,68	0,1200	-31,19	4,16
MAXSLK			Intercepción	215,07	16,38	13,13	0,0000	179,01	251,13
MAXTWK			AUF norm	98,08	30,32	3,23	0,0080	31,35	164,82
MAXTWK	0.7141	0.0146	C norm	-21,53	10,30	-2,09	0,0610	-44,21	1,14
MAXTWK			Intercepción	219,79	18,42	11,93	0,0000	179,24	260,33
MCS			AUF norm	91,52	26,37	3,47	0,0050	33,48	149,55
MCS	0.7328	0.0130	C norm	-14,28	8,44	-1,69	0,1190	-32,87	4,31
MCS			Intercepción	204,71	16,22	12,62	0,0000	169,01	240,42
MINLFT			AUF norm	89,45	25,36	3,53	0,0050	33,63	145,27
MINLFT	0.7372	0.0102	C norm	-19,16	9,30	-2,06	0,0640	-39,62	1,30
MINLFT			Intercepción	202,29	15,84	12,77	0,0000	167,43	237,15
MINSLK.MINWCS			AUF norm	94,04	27,79	3,38	0,0060	32,87	155,20
MINSLK.MINWCS	0.7342	0.0119	C norm	-16,18	8,55	-1,89	0,0850	-34,99	2,63
MINSLK.MINWCS			Intercepción	209,50	16,65	12,58	0,0000	172,84	246,16

Ecuación 2: $y_j = fS_0 + fS_{1j}X_{1j} + fS_{2j}X_{2j}$

MÉTODO	R-squared	Prob>F	BETA	Coeficientes	Error típico robusto	Estadístico t	Probabilidad	Inferior 95%	Superior 95%
MINTWK			AUF norm	97,76	26,09	3,75	0,0030	40,34	155,19
MINTWK	0.7658	0.0073	C norm	-14,83	8,46	-1,75	0,1070	-33,44	3,78
MINTWK			Intercepción	215,50	15,86	13,58	0,0000	180,58	250,42
MOF			AUF norm	94,27	29,38	3,21	0,0080	29,62	158,92
MOF	0.7146	0.0170	C norm	-15,21	9,15	-1,66	0,1250	-35,35	4,93
MOF			Intercepción	216,93	17,51	12,39	0,0000	178,40	255,46
MS			AUF norm	87,75	25,45	3,45	0,0050	31,75	143,76
MS	0.7291	0.0138	C norm	-17,04	9,31	-1,83	0,0950	-37,54	3,46
MS			Intercepción	202,00	15,80	12,79	0,0000	167,23	236,77
SASP			AUF norm	94,63	25,40	3,73	0,0030	38,73	150,54
SASP	0.7542	0.0109	C norm	-12,79	9,49	-1,35	0,2050	-33,67	8,08
SASP			Intercepción	211,86	15,82	13,39	0,0000	177,05	246,67
SOF			AUF norm	93,63	29,12	3,22	0,0080	29,53	157,73
SOF	0.7122	0.0222	C norm	-13,81	9,11	-1,52	0,1580	-33,86	6,25
SOF			Intercepción	215,93	17,45	12,37	0,0000	177,51	254,34
TWF.EST			AUF norm	93,03	26,18	3,55	0,0050	35,40	150,66
TWF.EST	0.7486	0.0111	C norm	-14,72	7,82	-1,88	0,0860	-31,94	2,49
TWF.EST			Intercepción	211,71	15,83	13,37	0,0000	176,87	246,56
TWK.LST			AUF norm	91,15	27,08	3,37	0,0060	31,55	150,76
TWK.LST	0.7168	0.0187	C norm	-13,21	9,39	-1,41	0,1870	-33,88	7,46
TWK.LST			Intercepción	211,86	16,80	12,61	0,0000	174,89	248,83
WeightActivityPriority			AUF norm	91,44	26,30	3,48	0,0050	33,55	149,34
WeightActivityPriority	0.7357	0.0119	C norm	-14,68	8,72	-1,68	0,1210	-33,88	4,53
WeightActivityPriority			Intercepción	210,64	16,10	13,08	0,0000	175,20	246,08
WeightProjectPriority			AUF norm	94,69	28,30	3,35	0,0070	32,39	156,98
WeightProjectPriority	0.7251	0.0168	C norm	-15,63	9,54	-1,64	0,1300	-36,64	5,37
WeightProjectPriority			Intercepción	214,64	17,14	12,52	0,0000	176,91	252,37

Ecuación 2:
$$y_j = \beta_0 + \beta_{1j} X_{1j} + \beta_{2j} X_{2j}$$

No existe evidencia significativa al 95% de confianza de que los estimadores para las variables de AUF y complejidad entre métodos sean diferentes para explicar el *makespan*.

Ecuación 3: $y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$

MÉTODO	D annual	Duch 5	DETA	Castiniantos	Error típico	Faturdística & D			· · · · · · · · · · · · · · · · · · ·
MÉTODO	R-squared	Prob>F	BETA	Coeficientes	robusto	Estadístico t P	robabiliaaa	injerior 95% S	uperior 95%
EDD			AUF norm	103,53	19,23	5,38	0,000	60,68	146,38
EDD	0.8864	0.0008	Dependencias norm	24,15	8,04	3,00	0,013	6,23	42,06
EDD	0.8864	0.0008	Actividades norm	35,36	15,29	2,31	0,043	1,29	69,43
EDD			Intercepción	203,86	11,09	18,38	0,000	179,14	228,57
FCFS			AUF norm	107,04	17,49	6,12	0,000	68,08	146,00
FCFS	0.8992	0.0008	Dependencias norm	14,89	7,87	1,89	0,088	-2,64	32,42
FCFS	0.8992	0.0008	Actividades norm	43,28	14,00	3,09	0,011	12,08	74,49
FCFS			Intercepción	209,14	10,40	20,11	0,000	185,97	232,31
LALP			AUF norm	109,69	19,12	5,74	0,000	67,10	152,28
LALP	0.8894	0.0010	Dependencias norm	16,51	9,03	1,83	0,097	-3,60	36,63
LALP	0.8894	0.0010	Actividades norm	44,14	15,24	2,90	0,016	10,18	78,11
LALP			Intercepción	210,43	11,28	18,66	0,000	185,31	235,55
LCFS			AUF norm	110,76	18,60	5,96	0,000	69,33	152,19
LCFS	0.8970	0.0000	Dependencias norm	18,84	8,44	2,23	0,050	0,03	37,66
LCFS	0.8970	0.0008	Actividades norm	44,01	15,64	2,81	0,018	9,17	78,86
LCFS			Intercepción	215,00	11,01	19,53	0,000	190,47	239,53
MAXSLK			AUF norm	110,21	18,18	6,06	0,000	69,71	150,71
MAXSLK	0.8990	0.0008	Dependencias norm	13,28	8,00	1,66	0,128	-4,54	31,10
MAXSLK	0.8990	0.0008	Actividades norm	43,65	14,81	2,95	0,015	10,66	76,65
MAXSLK			Intercepción	215,07	10,66	20,18	0,000	191,32	238,82
MAXTWK			AUF norm	114,12	21,04	5,42	0,000	67,24	161,00
MAXTWK	0.8818	0.0009	Dependencias norm	23,92	10,00	2,39	0,038	1,63	46,20
MAXTWK	0.8818	0.0009	Actividades norm	43,72	17,32	2,52	0,030	5,13	82,30
MAXTWK			Intercepción	219,79	12,42	17,69	0,000	192,11	247,47
MCS			AUF norm	107,58	17,39	6,19	0,000	68,83	146,34
MCS	0.0013	0.0000	Dependencias norm	15,22	8,07	1,89	0,089	-2,76	33,20
MCS	0.9013	0.0006	Actividades norm	42,74	13,95	3,06	0,012	11,67	73,81
MCS			Intercepción	204,71	10,34	19,8	0,000	181,68	227,75
MINLFT			AUF norm	102,92	17,44	5,90	0,000	64,07	141,77
MINLFT	0.9015	0.0004	Dependencias norm	23,27	7,60	3,06	0,012	6,33	40,21
MINLFT	0.9015	0.0004	Actividades norm	37,05	13,51	2,74	0,021	6,95	67,16
MINLFT			Intercepción	202,29	10,17	19,89	0,000	179,63	224,94

Ecuación 3: $y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$

MÉTODO	R-squared	Prob>F	BETA	Coeficientes	Error típico robusto	Estadístico t P	Probabilidad I	Inferior 95% S	Superior 95%
MINLFT			AUF norm	102,92	17,44	5,90	0,000	64,07	141,77
MINLFT	0.9015	0.0004	Dependencias norm	23,27	7,60	3,06	0,012	6,33	40,21
MINLFT	0.9013	0.0004	Actividades norm	37,05	13,51	2,74	0,021	6,95	67,16
MINLFT			Intercepción	202,29	10,17	19,89	0,000	179,63	224,94
MINSLK.MINWCS			AUF norm	109,42	18,62	5,88	0,000	67,94	150,90
MINSLK.MINWCS	0.8919	0.0009	Dependencias norm	17,89	8,86	2,02	0,071	-1,85	37,63
MINSLK.MINWCS	0.8313	0.0009	Actividades norm	41,31	15,55	2,66	0,024	6,67	75,96
MINSLK.MINWCS			Intercepción	209,50	11,14	18,81	0,000	184,68	234,32
MINTWK			AUF norm	113,20	16,40	6,90	0,000	76,66	149,75
MINTWK	0.9162	0.0002	Dependencias norm	16,63	7,65	2,17	0,055	-0,43	33,68
MINTWK	0.9162	0.0002	Actividades norm	41,30	13,87	2,98	0,014	10,39	72,20
MINTWK			Intercepción	215,50	9,95	21,65	0,000	193,32	237,68
MOF			AUF norm	111,83	18,69	5,98	0,000	70,19	153,46
MOF	0.0047	0.0009	Dependencias norm	15,64	8,23	1,90	0,087	-2,70	33,97
MOF	0.8947		Actividades norm	46,60	16,70	2,79	0,019	9,40	83,81
MOF			Intercepción	216,93	11,15	19,45	0,000	192,08	241,77
MS			AUF norm	101,31	18,50	5,48	0,000	60,09	142,54
MS	0.8875	0.0008	Dependencias norm	20,28	8,67	2,34	0,041	0,96	39,59
MS	0.8875	0.0008	Actividades norm	36,94	14,16	2,61	0,026	5,38	68,49
MS			Intercepción	202,00	10,68	18,91	0,000	178,20	225,80
SASP			AUF norm	109,44	18,43	5,94	0,000	68,37	150,51
SASP	0.0021	0.0006	Dependencias norm	15,73	8,10	1,94	0,081	-2,33	33,78
SASP	0.9021	0.0006	Actividades norm	39,54	14,04	2,82	0,018	8,25	70,83
SASP			Intercepción	211,86	10,47	20,23	0,000	188,53	235,19
SOF			AUF norm	110,30	20,72	5,32	0,000	64,14	156,46
SOF	0.0774	0.0000	Dependencias norm	14,62	9,47	1,54	0,154	-6,48	35,71
SOF	0.8771	0.0020	Actividades norm	44,21	17,23	2,57	0,028	5,81	82,61
SOF			Intercepción	215,93	11,96	18,05	0,000	189,27	242,58

Ecuación 3: $y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$

MÉTODO	R-squared	Prob>F	BETA	Coeficientes	Error típico robusto	Estadístico t P	robabilidad	Inferior 95%	Superior 95%
TWF.EST			AUF norm	107,89	18,23	5,92	0,000	67,27	148,52
TWF.EST	0.8947	0.0008	Dependencias norm	15,41	8,13	1,9	0,087	-2,69	33,52
TWF.EST	0.6947	0.0008	Actividades norm	39,71	15,26	2,6	0,026	5,71	73,71
TWF.EST			Intercepción	211,71	10,75	19,7	0,000	187,77	235,66
TWK.LST			AUF norm	107,83	18,69	5,77	0,000	66,18	149,47
TWK.LST	0.8962	0.0009	Dependencias norm	15,15	7,87	1,93	0,083	-2,37	32,68
TWK.LST	0.8962	0.0009	Actividades norm	44,25	14,64	3,02	0,013	11,63	76,87
TWK.LST			Intercepción	211,86	10,66	19,87	0,000	188,10	235,62
WeightActivityPriority			AUF norm	107,02	16,78	6,38	0,000	69,63	144,41
WeightActivityPriority	0.9074	0.0005	Dependencias norm	17,34	7,19	2,41	0,037	1,32	33,36
WeightActivityPriority	0.9074	0.0003	Actividades norm	41,71	13,83	3,02	0,013	10,90	72,52
WeightActivityPriority			Intercepción	210,64	10,00	21,07	0,000	188,36	232,92
WeightProjectPriority			AUF norm	110,61	19,74	5,6	0,000	66,61	154,60
WeightProjectPriority	0.8893	0.0013	Dependencias norm	17,92	8,28	2,16	0,056	-0,54	36,37
WeightProjectPriority		0.0012	Actividades norm	42,67	16,24	2,63	0,025	6,49	78,85
WeightProjectPriority			Intercepción	214,64	11,41	18,81	0,000	189,22	240,06

Al comparar los resultados de la regresión de la ecuación 3 con la ecuación 2, se puede observar que mejoró significativamente el R-cuadrado para todas las reglas de prioridad, esto quiere decir que la dependencia y el número de actividades explican mejor el *makespan* que la variable de complejidad.

7. Conclusiones

1. RCPSP

- Estudiado desde los años 50 del siglo pasado
- Ampliamente investigado

RCMPSP

- Menos estudiado
- Presenta un alto potencial para trabajo futuro y aplicación

2.

Heurísticos

- Reglas de prioridad
- Desde los años 60 siglo pasado

Importancia

Más usados

- Fácil aplicación en proyectos reales
- Dan soluciones buenas con poco costo computacional
- Sirven de como solución inicial para metaheurísticos

Metaheurísticos

- Algoritmos genéticos
- Permite explorar mejoras a soluciones iniciales
- Da la posibilidad de escoger operadores para búsqueda de mejora

7. Conclusiones

MEJORES RP

3.

4.

A C T I V I D A D

MS

EDD

• MINLFT et

Prioriza:
Actividades en
etapas
tempranas de la
red

Transitividad:

- Prioriza las sucesoras indirectas
- Evita que los retrasos se trasladen a la etapas finales de la red

Medidas de desempeño mas usadas

MEAN TARDINESSMAKESPANMINLFTMS

Teoremas de secuenciación

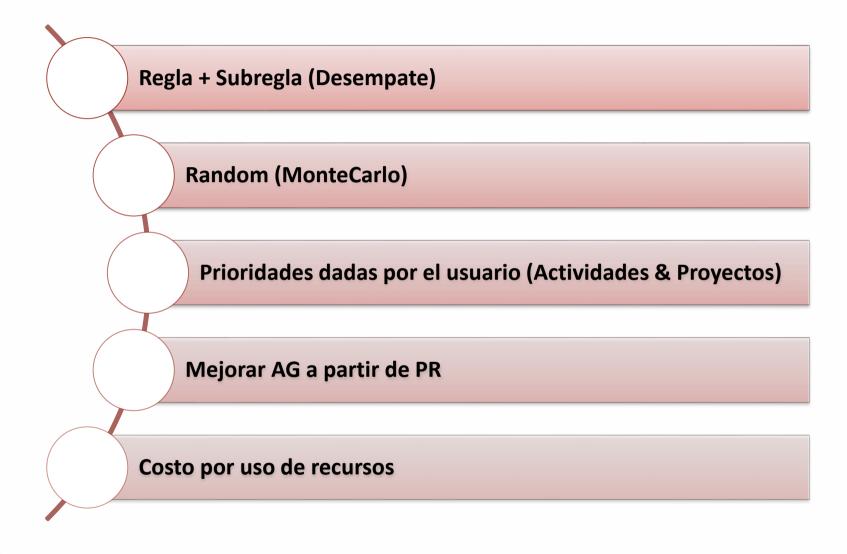
MAXIMUN TARDINESS	MAXIMUN LATENESS
EDD	EDD

7. Conclusiones

5. **AUF vs MAKESPAN**

- Mayor restricción de recursos mayor retraso en la red
- Hay menos recursos para ejecutar las actividades mayor posibilidad de salirse de la ruta crítica

C vs MAKESPAN



Exceso de relaciones de precedencia

• El aumento marginal del retraso por restricción de recursos no es significativo

8. Recomendaciones y Trabajo Futuro

9. Gerencia del Trabajo de Grado

Charter

1. PROJECT CHARTER

FECHA DE EMISIÓN: 4 de noviembre de 2016

NOMBRE DEL PROYECTO: Desarrollo de modelos heurísticos para el análisis de problemas de programación de múltiples proyectos con recursos restringidos.

SPONSOR: Ing. Germán Eduardo Giraldo

ERENTE DE PROYECTO ASIGNADO: Ing. César Miguel Ordóñez Calderón

DESCRIPCIÓN DEL PROYECTO:

El proyecto consiste en el planteamiento y desarrollo de modelos heurísticos que permitan dar solución al problema de programación de múltiples proyectos con recursos restringidos o RCMPSP por sus siglas en Ingiés (Resource constrained multi Project scheduling problem) y su posterior aplicación a casos de estudio en el entorno colombiano con el fin de contribuir al desarrollo de la gerencia de proyectos en el área de conocimiento de gestión del tiempo.

PROPÓSITO

Propósito:

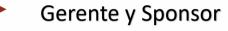
Contribuir en la majora de la productividad de las empresas que se desenvuelven en ambiente multiproyecto mediante la implementación de nuevas metodologías de programación de multi-proyectos con recursos restringidos.

NIVEL DE AUTORIDAD DEL GERENTE DEL PROYECTO

Decisiones de staff:

El Gerente de proyecto tendrá la autoridad de asignar responsabilidades al staff del proyecto para organizar el trabajo del mismo.

Gestión de presupuesto presupuesto:


El Gerente de proyecto deberá tener autorización por parte de los miembros del equipo de trabajo y del sponsor para asignar recurso de presupuesto a cualquier nivel del proyecto.

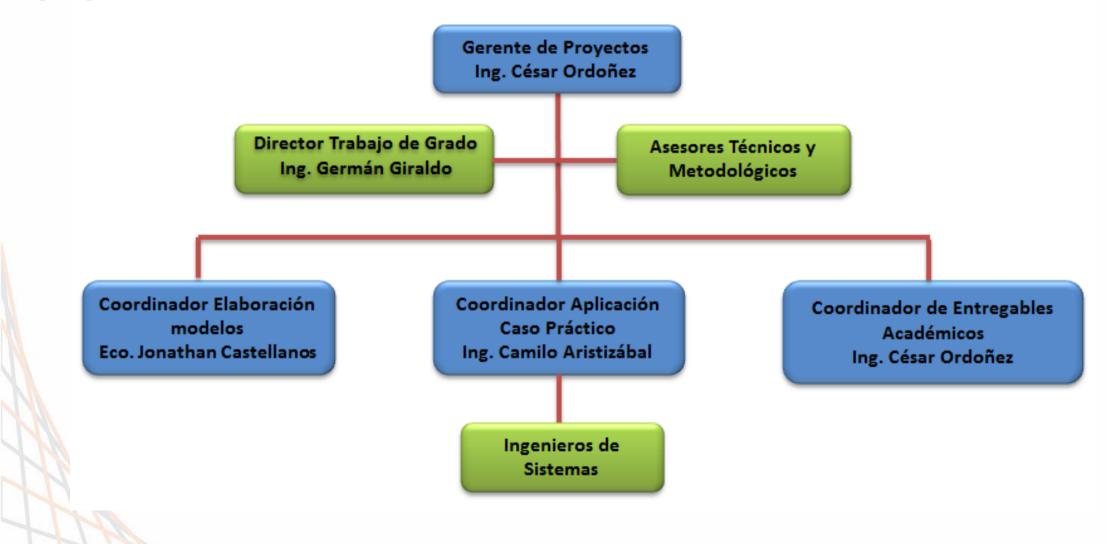
Decisiones técnicas:

El Gerente de proyecto tendrá la autoridad de tomar decisiones en aspectos técnicos del proyecto siempre y cuando estos no cambien el alcance del mismo.

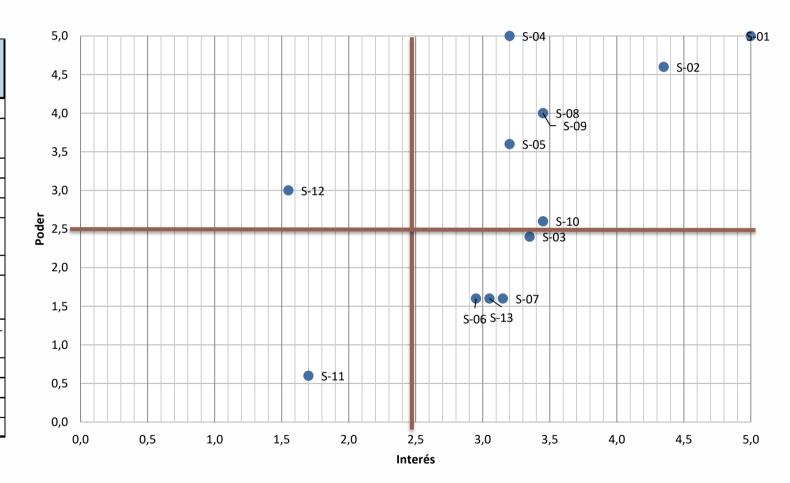
El proyecto se debe desarrollar en 16 semana entregando los resultados finales para el 21 de abril de 2017 Merior a \$73.340.000

Ing. Germán Eduardo Giraldo Sponsor Ing. César Miguel Ordóñez Calderón Gerente de proyecto

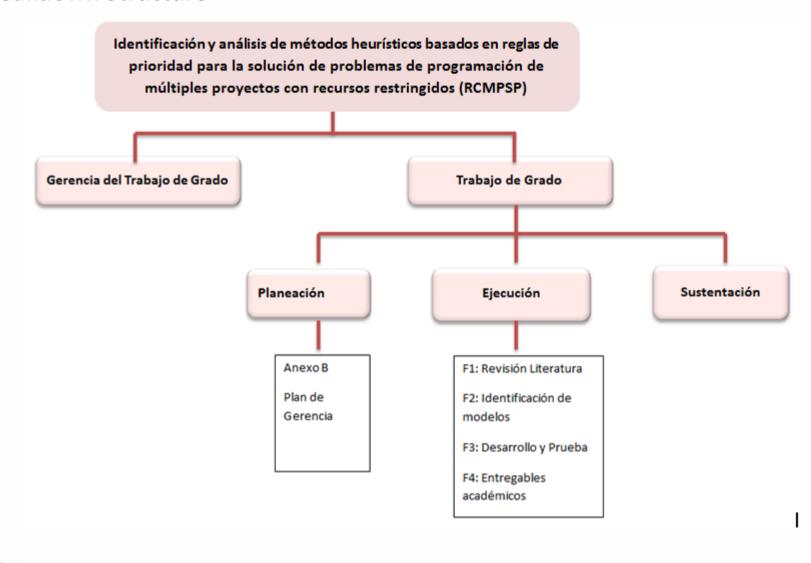
Descripción



Autorización


9. Gerencia del Trabajo de Grado

Organigrama


Stakeholders

ID	STAKEHOLDER			
S-01	Director TDG / German Eduardo Giraldo			
S-02	Integrantes TDG / Cesar Ordoñez, Jonathan			
	Castellanos, Camilo Aristizabal			
S-03	Comité TDG / Profesores ECI			
S-04	Asesor Técnico / Carlos Ruiz			
S-05	Director de Maestría / Daniel Salazar			
S-06	Departamento de Ingeniería de Sistemas / Carlos			
	Ramirez, Alejandro Anzola, Fabián Ardila			
S-07	Empresas interesadas			
S-08	Centro de estudios en desarrollo y gerencia integral			
	de proyectos			
S-09	Centro de investigacion en manufactura y servicios -			
	CIMSER			
S-10	Dirección de investigacón e innovación			
S-11	Estudiante de la ECI			
S-12	PMI			
S-13	Asesor Estadístico / Iván Mendivelso			

Fuente: Propia

WBS - Work Breakdown Structure

Plan de Calidad

PROCESO	INDICADOR O MÉTODO	FÓRMULA O DESCRIPCIÓN	VALOR ESPERADO
	Actas de seguimiento	Realizar actas de seguimiento semanalmente	1 por semana
	Work in Process (WIP)	WIP=∑ Trabajo en ejecución	WIP≤9
Aseguramiento de	Índice de desempeño del Alcance	SPI (\$) = EV / PV	0,9 - 1,05
la calidad	Índice de desempeño del cronograma	SPI (t) = ES / AT	0,9 - 1,05
	Índice de desempeño del costo	CPI (\$) = EV / AC	0,9 - 1,05
	Costo estimado al terminar	EAC (\$) = AC + ETC	-5% BAC +10%
	Literatura científca	Citar artículos de revistas indexadas	Sí
Control de la calidad		Citar artículos que mencionan artículos indexados	Sí
Candad	Diagrama de Paretto	Realizar diagramas de Paretto e histogramas con los resultados de los heurísticos	N.A.

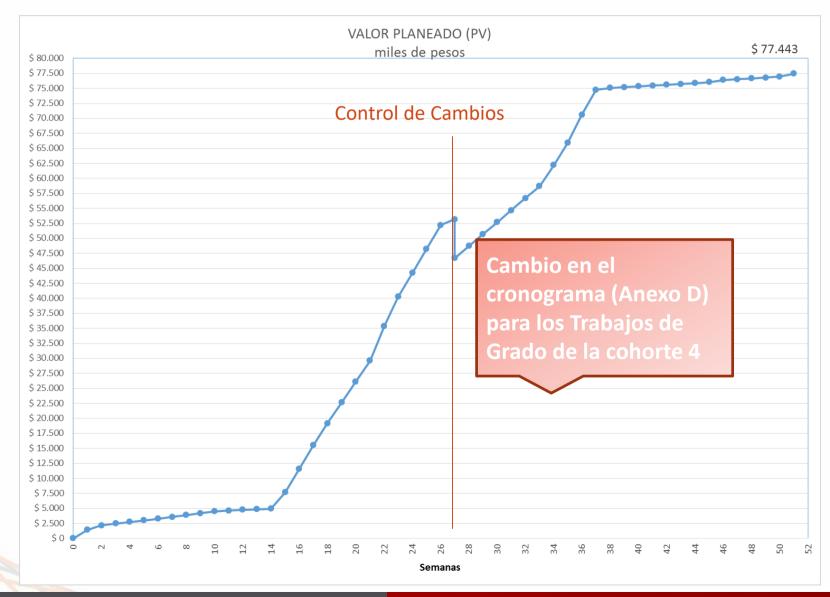
Riesgos Materializados

Planeación de costos y tiempo optimistas

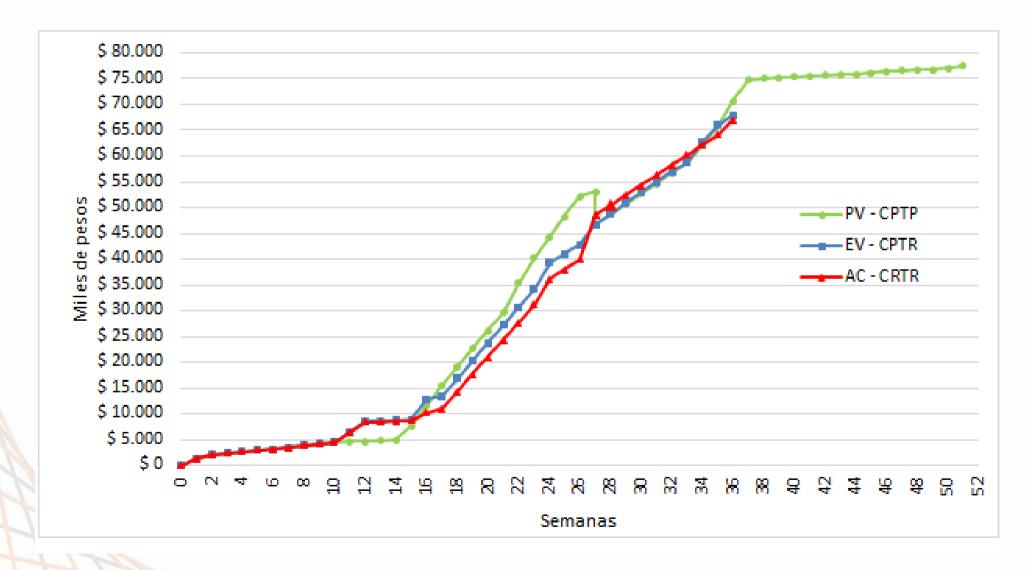
Falta de tiempo del equipo para el desarrollo del trabajo de grado

Sobrecarga de trabajo de los programadores de sistemas

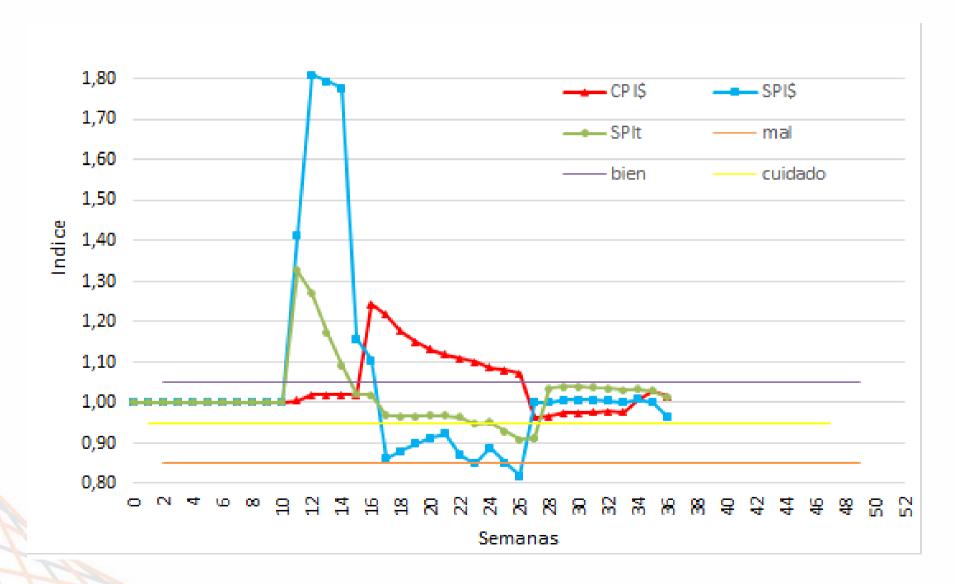
Solicitar control de cambios


Volver a estimar algunas actividades

Redistribución de actividades


Colaboración entre los integrantes del equipo

Estricto monitoreo y control semanal del cumplimiento de las responsabilidades asignadas


Línea Base de Costo

Estado del proyecto

Indicadores de Desempeño

Lecciones Aprendidas

N°	SE REALIZÓ BIEN	POR MEJORAR	CAUSA	LECCIÓN APRENDIDA	RESPONSABLE
1	Se realizaron actas de reunión			Registrar las ideas y hallazgos relevantes de las reuniones permite organizar el trabajo de la semana y enfocarse en temas relevantes.	Equipo del proyecto
2	Se mantuvo la estabilidad del grupo			Mantener una relación cordial y profesional es apropiada para avanzar adecuadamente en las actividades del TDG	Equipo del proyecto
3		Horario de trabajo del equipo del proyecto	Mala planeación	Establecer con el equipo del proyecto horarios de trabajo que se ajusten con mayor exactitud a la realidad de cada participante	Equipo del proyecto
4		Errones al estimar la duración de las actividades	Falta de experiencia en investigacion por parte de los integrantes del equipo del proyecto	Se recomienda que se consulten los tiempos con personal de mayor experiencia para tener mejores estimados.	Equipo del proyecto
5		Seguimiento constante del avance del trabajo de grado	Falta de tiempo de los integrantes del equipo	Planear la metodología para hacer un control y seguimiento estricto al proyecto	Equipo del proyecto
6		Integración entre el trabajo de los programadores y el TDG	Dificultad de reuniones entre los integrantes	Mantener comunicaciones más cercanas con asesores externos	Equipo del proyecto

Adhau, S., Mittal, M. L., & Mittal, A. (2012). A multi-agent system for distributed multi-project scheduling: An auction-based negotiation approach. *Engineering Applications of Artificial Intelligence*, 25(8), 1738-1751.

Adhau, S., Mittal, M. L., & Mittal, A. (2013). A multi-agent system for decentralized multi-project scheduling with resource transfers. *International journal of production economics*, 146(2), 646-661.

Anavi-Isakow, S., & Golany, B. (2003). Managing multi-project environments through constant work-in-process. *International Journal of Project Management*, *21*(1), 9-18.

Ballestin, F., Valls, V., & Quintanilla, S. (2006). Due dates and RCPSP. In *Perspectives in modern project scheduling* (pp. 79-104). Springer US.

Beşikci, U., Bilge, Ü., & Ulusoy, G. (2015). Multi-mode resource constrained multi-project scheduling and resource portfolio problem. *European Journal of Operational Research*, 240(1), 22-31.

Browning, T. R., & Yassine, A. A. (2007). A random generator of resource-constrained multi-project scheduling problems. *Urbana*, *51*, 61801.

Browning, T. R., & Yassine, A. A. (2010). Resource-constrained multi-project scheduling: Priority rule performance revisited. *International Journal of Production Economics*, 126(2), 212-228.

Engwall, M., & Jerbrant, A. (2003). The resource allocation syndrome: the prime challenge of multi-project management?. *International journal of project management*, 21(6), 403-409.

Ghomi, S. F., & Ashjari, B. (2002). A simulation model for multi-project resource allocation. *International Journal of Project Management*, 20(2), 127-130.

Hartmann, S., & Briskorn, D. (2010). A survey of variants and extensions of the resource-constrained project scheduling problem. *European Journal of operational research*, 207(1), 1-14.

Homberger, J. (2009). A multi-agent system for the decentralized resource-constrained multi-project scheduling problem. Int. Trans. In Oper. Res. 14,565-589.

Keele, Staffs. (2007). Guidelines for performing systematic literature reviews in software engineering. In *Technical report, Ver. 2.3 EBSE Technical Report. EBSE*. sn.

Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic literature reviews in software engineering—a systematic literature review. *Information and software technology*, *51*(1), 7-15.

Kolisch, R., & Sprecher, A. (1996). PSPLIB-a project scheduling problem library: OR software-ORSEP operations research software exchange program. *European journal of operational research*, *96*(1), 205-216

Krüger, D., & Scholl, A. (2009). A heuristic solution framework for the resource constrained (multi-) project scheduling problem with sequence-dependent transfer times. *European Journal of Operational Research*, 197(2), 492-508.

Lenstra, J. K., & Rinnooy Kan, A. H. G. (1978). Complexity of scheduling under precedence constraints. *Operations Research*, 26(1), 22-35.

Montoya-Torres, J. R., Gutierrez-Franco, E., & Pirachicán-Mayorga, C. (2010). Project scheduling with limited resources using a genetic algorithm. *International Journal of Project Management*, 28(6), 619-628.

Morales, J. C. C., & Florez, G. P. C. (2015). Comparación de la regresión GINI con la regresión de mínimos cuadrados ordinarios y otros modelos de regresión lineal robustos. *Comunicaciones en Estadística*, 8(2), 129-161.

Moreno, L. F., Díaz, F. J., Peña, G. E., & Rivera, J. C. (2008). Análisis comparativo entre dos algoritmos heurísticos para resolver el problema de planeación de tareas con restricción de recursos (RCPSP). *Dyna*, 74(151), 171-183.

Morillo, D., Moreno, L., & Díaz, J. (2014). Metodologías Analíticas y Heurísticas para la Solución del Problema de Programación de Tareas con Recursos Restringidos (RCPSP): una revisión Parte 2. Ingeniería y Ciencia, 10(20), 203.

Niazi, M., Mahmood, S., Alshayeb, M., Qureshi, A. M., Faisal, K., & Cerpa, N. (2016). Toward successful project

management in global software development. International Journal of Project Management, 34(8), 1553-1567.

Payne, J. H. (1995). Management of multiple simultaneous projects: a state-of-the-art review. International journal of project management, 13(3), 163-168.

Ponsteen, A., & Kusters, R. J. (2015). Classification of human-and automated resource allocation approaches in multi-project management. *Procedia-Social and Behavioral Sciences*, 194, 165-173.

Rivera, J. C., & Celín, A. J. (2010). Algoritmo heurístico híbrido con múltiples vecindarios y recocido simulado para resolver el RCPSP Hybrid Variable Neighborhood and Simulated Annealing Heuristic Algorithm to Solve RCPSP. Singh, A. (2014). Resource constrained multi-project scheduling with priority rules & analytic hierarchy process. *Procedia engineering*, 69, 725-734.

Song, W., Kang, D., Zhang, J., & Xi, H. (2016, May). Decentralized multi-project scheduling via multi-unit combinatorial auction. In *Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent Systems* (pp. 836-844). International Foundation for Autonomous Agents and Multiagent Systems.

Storn, R., & Price, K. (1997). Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. *Journal of global optimization*, *11*(4), 341-359.

Tavares, L. V., Ferreira, J. A., & Coelho, J. S. (1999). A comparative morphologic analysis of benchmark sets of project networks. *International Journal of Project Management*, 20(6), 475-485.

Tran, D. H., Cheng, M. Y., & Pham, A. D. (2016). Using Fuzzy Clustering Chaotic-based Differential Evolution to solve multiple resources leveling in the multiple projects scheduling problem. *Alexandria Engineering Journal*, *55*(2), 1541-1552.

Tseng, C. C. (2008). Two heuristic algorithms for a multi-mode resource-constrained multi-project scheduling problem. *Journal of Science and Engineering Technology*, 4(2), 63-74.

Villafañez, F., Pajares, J., & López, A. (2010, October). Un modelo de programación de entornos multi-proyecto basado en la Metodología de la Cadena Crítica. In 4th International Conference On Industrial Engineering and Industrial Management (pp. 1526-1535).

Wang, W. X., Wang, X., Ge, X. L., & Deng, L. (2014). Multi-objective optimization model for multi-project scheduling on critical chain. *Advances in Engineering Software*, *68*, 33-39.

Wiley, V. D., Deckro, R. F., & Jackson, J. A. (1998). Optimization analysis for design and planning of multi-project programs. *European Journal of Operational Research*, *107*(2), 492-506.

Yang, S., & Fu, L. (2014). Critical chain and evidence reasoning applied to multi-project resource schedule in automobile R&D process. *International Journal of Project Management*, 32(1), 166-177.

Yan, R., Li, W., Jiang, P., Zhou, Y., & Wu, G. (2014). A modified differential evolution algorithm for resource constrained multi-project scheduling problem. *Journal of Computers*, *9*(8), 1923.

Zheng, Z., Guo, Z., Zhu, Y., & Zhang, X. (2014). A critical chains based distributed multi-project scheduling approach. *Neurocomputing*, *143*, 282-293.

11. Preguntas y Respuestas

