Proyecto de grado en Maestría en
Ingeniería Civil. Énfasis en
Geotecnia

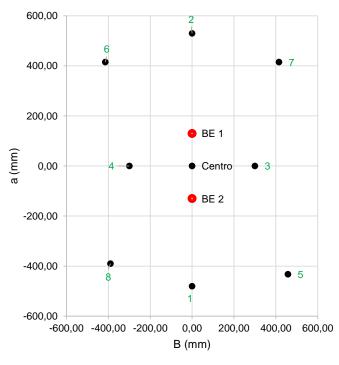
Elaborado por: Ing. Diego Triana

		FIA

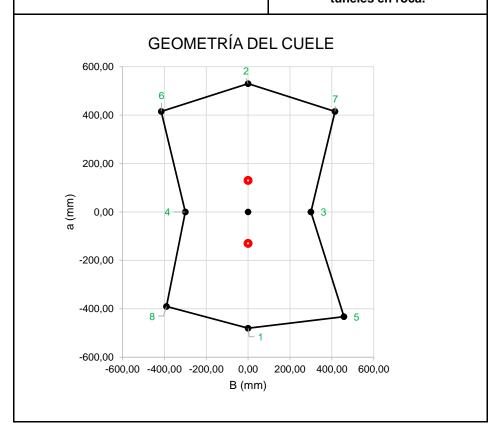
Tipo de terreno	IIIb	
Longitud máxima recomendada del barreno a partir del tipo de terreno	1,00	m
Definir longitud del barreno	1,00	m
Longitud del tramo	125,0	m
Sección del túnel	88,0	m^2
Diámetro túnel	10,6	m
Perímetro túnel	16,7	m
Topografía. Rendimiento propuesto	1,0	min/m ²
Tiempo por ciclo en replanteo de puntos de perforación	88,0	min
N° Desplazamientos cuadrilla topografíca	125,0	
Tiempo total	11000,0	min
Tiempo total	183,3	h

TOPOGRAFÍA

Tipo de terreno	IV	
Longitud máxima recomendada del barreno a partir del tipo de terreno	1,00	m
Definir longitud del barreno	1,00	m
Longitud del tramo	175,0	m
Sección del túnel	88,0	m^2
Diámetro túnel	10,6	m
Perímetro túnel	16,7	m
Topografía. Rendimiento propuesto	1,0	min/m ²
Tiempo por ciclo en replanteo de puntos de perforación	88,0	min
N° Desplazamientos cuadrilla topografíca	175,0	
Tiempo total	15400,0	min
Tiempo total	256,7	h


BARRENOS DE CUELE TIPO DE TERR	RENO	IIIb	
Volabilidad Roca		Mala	
θ Barreno carga (mm)		25	
L bareno de carga (m)		1,0	
θ Barreno expansión (mm)		76	
Cálculo del cuele			
1. Área y numero de barrenos			
ó		54	2
Área necesaria		51	mm ²
N° Barrenos expansión		0,67	
Definir N° de barrenos expansión		1	
2. Distancia entre barreno cargado y lo	os barrenos de ex	pansión	
Distancia mínima 1,75D2 a₁ y a₂		133	mm
Definir distancia mínima		130	mm
Delinii distancia minima		100	
Control expansión			
Área a volar		62	mm^2
Área necesaria (% de expansión)	99,6	123	mm^2
Área disponible		4844	mm^2
3. Distancia entre la abertura y siguien	ntes barrenos car	gados	
Aplicando mismo criterio			
# Barrenos expansión		0,34	
Definir N° de barrenos expansión		1	
Distancia mínima 1,75D ₂		133	mm
Definir distancia mínima		130	mm
Control de expansión		62	mm²
Área a volar (% de expansión)	99,6	123	mm^2
Área necesaria		2821	mm^2

4. Ajuste de a ₃ y a ₄ , reduciendo margen de s	eguridad		
Control de expansión para a ₃ Área a volar (mm²) Área necesaria (% de expansión) Área disponible Control de expansión para a ₄ Área a volar (mm²) Área necesaria (% de expansión) Área disponible	99,6 99,6	400 17686 35301 27010 350 15161 30261 24485	mm mm² mm² mm² mm mm² mm² mm²
5. Piedra B ₁ , en función del ancho base			
Ancho base A ₁ Ancho de base B ₁ (Ilustración 3 – 68) Control de expansión Área necesaria (% de expansión) Área disponible	99,6	0,34 0,25 64778 129294 69622	m m mm ² mm ² mm ²
6. Reducción de la piedra B ₁			
Reducción de B ₁ Área a volar Área necesaria (% de expansión) Área disponible	99,6	300 47978 95762 52822	mm mm² mm² mm²
7. Piedra B ₂ en función del ancho base			
A ₂ B ₂ (Ilustración 3 – 68)		1035 0,60	mm m
Área a volar Área necesaria (% de expansión) Área disponible	99,6	283073 564999 394357	mm ² mm ² mm ²


Proyecto de grado en Maestría en	
Ingeniería Civil. Énfasis en Geotecnia	

ingementa olvii. Emasis en cestesina	túneles en roca.		
8. Reducción de piedra B₂		0,3	m
Área a volar		129116	mm^2
Área necesaria (% de expansión)	99,6	257710	mm^2
Área disponible		240401	mm^2
9. Piedra B ₃ en función del ancho base			
_			
A_3		566	mm
B ₃ (Ilustración 3 – 68)		0,36	m
10. Piedra B4, B5 y B6 en función del ancho	base		
	A_4	609	mm
	A_5	609	mm
	A_6	566	mm
	B_4	305	mm
	B_5	305	mm
	B_6	283	mm

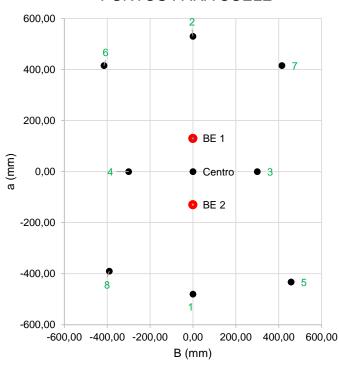
PUNTOS PARA CUELE

- Barreno cargado
- Barreno de expansión
- # Secuencia de explosión

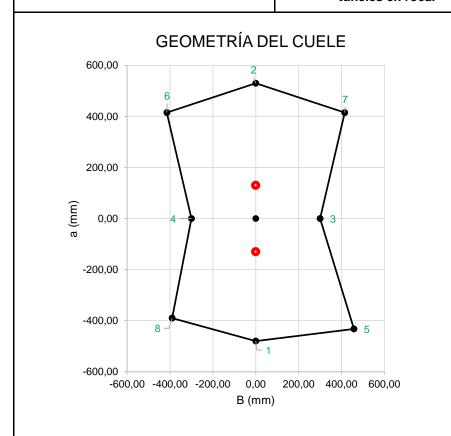
BARRENOS DE CUELE TIPO DE TERRI	ENO	IV	
Valabilidad Bass		Mole	
Volabilidad Roca		Mala 25	
θ Barreno carga (mm)			
L bareno de carga (m)		1,0	
θ Barreno expansión (mm)		76	
Cálculo del cuele			
1. Área y numero de barrenos			
Área necesaria		51	mm^2
N° Barrenos expansión		0,67	111111
Definir N° de barrenos expansión		1	
Definit No de barrenos expansion		'	
2. Distancia entre barreno cargado y lo	s barrenos de ex	cpansión	
Distancia mínima 1,75D2 a ₁ y a ₂		133	mm
Definir distancia mínima		130	mm
Deliliii distancia minima		130	
Control expansión			
Área a volar		62	mm^2
Área necesaria (% de expansión)	99,6	123	mm^2
Área disponible		4844	mm^2
3. Distancia entre la abertura y siguient	tes barrenos car	gados	
Anligando mismo critorio			
Aplicando mismo criterio # Barrenos expansión		0,34	
Definir N° de barrenos expansión		0,34	
Distancia mínima 1,75D ₂		133	mm
Definir distancia mínima			
Denini distancia minima		130	mm
		62	mm^2
Control de expansión			
Control de expansión Área a volar (% de expansión)	99,6	123	mm^2

4. Ajuste de a ₃ y a ₄ , reduciendo margen de s	eguridad		
Control de expansión para a ₃		400	mm
Área a volar (mm²)		17686	mm ²
Área necesaria (% de expansión)	99,6	35301	mm^2
Área disponible		27010	mm^2
Control de expansión para a ₄		350	mm
Área a volar (mm²)		15161	mm^2
Área necesaria (% de expansión)	99,6	30261	mm^2
Área disponible		24485	mm ²
5. Piedra B ₁ , en función del ancho base			
Anaka hasa A		0.04	
Ancho base A ₁		0,34	m
Ancho de base B ₁ (Ilustración 3 – 68)		0,25	m
Control de expansión		64778	mm^2
Área necesaria (% de expansión)	99,6	129294	
Área disponible	,	69622	
6. Reducción de la piedra B₁			
,			
Reducción de B ₁		300	mm
Área a volar		47978	
Área necesaria (% de expansión)	99,6	95762	
Área disponible		52822	mm ²
7. Piedra B ₂ en función del ancho base			
A_2		1035	mm
B ₂ (Ilustración 3 – 68)		0,60	m
Área a volar		283073	mm^2
Área necesaria (% de expansión)	99,6	564999	mm^2
Área disponible		394357	mm^2

Proyecto de grado en Maestría en
Ingeniería Civil. Énfasis en Geotecnia


	tuneles en roca.		
8. Reducción de piedra B ₂		0,3	m
Área a volar		129116	mm^2
Área necesaria (% de expansión)	99,6	257710	mm^2
Área disponible		240401	mm^2
9. Piedra B ₃ en función del ancho base			
, and the second			
A ₃		566	mm
B ₃ (Ilustración 3 – 68)		0,36	m
10. Piedra B4, B5 y B6 en función del ancho	o base		
	A_4	609	mm
	A_5	609	mm
	A_6	566	mm
	B_4	305	mm
	B_5	305	mm

PUNTOS PARA CUELE


 B_6

283

 mm

- Barreno cargado
- Barreno de expansión
- # Secuencia de explosión

33,30

48

m

 L_{recorte}

Análisis de rendimientos para varios sistemas de excavación de túneles en roca.

Elaborado por: Ing. Diego Triana

BARRENOS DE CONTORNO TERRENO TIPO IIIb 1.00 L_{barreno} Forma del explosivo Encartuchado Q_c 2 Kg 1,5 g/cm³ D_{barreno} 0,076 m 76 mm 0,6 m L_{cartucho} R_{c} 0,2 S_c 0,87 m 1. Presión del barreno Explosivo Gel 1,5 g/cm³ VD 160 Digitar VD m/s m/s РΒ 3,98 MPa 2. Presión del barreno crítico Tipo de carga Continua 26 mm D 0,076 m С 1 0,85 PB_{cr} 17,12 MPa 3. Precorte. Espaciamiento entre barrenos σ_s roca 75 MPa PB_e 17,12 MPa 0,038 m 0,017 m 85,52 MPa S 0,093 m F_R 1,301 MPa 33,30 m L_{precorte} 357 4. Recorte. Espaciamiento entre barrenos CE 0,75 Oscila entre 0,5 y 1,0 Kg/cm³ Kg/m Q_{l} 0,52 В 0,87 m S 0,69 m

Análisis de rendimientos para varios sistemas de excavación de túneles en roca.

Elaborado por: Ing. Diego Triana

BARRENOS DE CONTORNO TERRENO TIPO IV

L_{barreno} 1,00 m

Forma del explosivo Encartuchado

 Q_c 2 Kg ρ 1,5 g/cm³

D_{barreno} 0,076 m 76 mm

 $\begin{array}{cccc} L_{cartucho} & & 0,6 & m \\ R_c & & 0,2 & \\ S_c & & 0,87 & m \end{array}$

1. Presión del barreno

Explosivo Gel

ho 1,5 g/cm 3 VD Digitar VD m/s 160 m/s

PB 3,98 MPa

2. Presión del barreno crítico

 Tipo de carga
 Continua

 d
 26
 mm

 D
 0,076
 m

 C
 1
 0,85

 PB_{cr}
 17,12
 MPa

3. Precorte. Espaciamiento entre barrenos

σ_{s} roca	75	MPa
PB_e	17,12	MPa
r_b	0,038	m
r	0,017	m
σ_{t}	85,52	MPa
σ_{t} S	0,093	m
F_R	1,301	MPa
L _{precorte}	33,30	m
N	357	

4. Recorte. Espaciamiento entre barrenos

0.5	0.75	3
CE	0,75	Oscila entre 0,5 y 1,0 Kg/cm ³
Q_I	0,52	Kg/m
В	0,87	m
S	0,69	m
L _{recorte}	33,30	m
N	48	

Proyecto de grado en Maestría en
Ingeniería Civil. Énfasis en
Geotecnia

Elaborado por: Ing. Diego Triana

BARRENOS DE DESTROZA TERREN	NO TIPO	IIIb
BARRENOS DE DESTROZA TERREI	10 HFO	iiib
Datos de entrada		
Longitud barreno	1,00	m
Longitud barreno	1,00	111
1. Barrenos de piso o zapateras		
Diámetro barreno	38,00	mm
Tipo de explosivo	EMULITE 1	150 en cartuchos de papel. Densidad de carga 1,20 Kg/litro
Carga de fondo		
Carga lineal Q _f	1,35	Kg/m
Longitud carga de fondo H _f	0,33	m
Carga de fondo Q _f	0,45	Kg
Carrie de calumana		
Carga de columna $q_c = q_f$	1,35	
B=	1,00	m
		m
H _a =	0,20	m
H _c =	0,47	m
$Q_c = Q_f$	0,63	Kg
Carga total Q	1,08	Kg
Resumen	1,00	Ng
В	1,00	m
S	1,10	m
Q	1,10	Kg
ď	1,00	Ng
2. Barrenos hastiales		
Diámetro barreno	30,00	mm
Tipo de explosivo	DYMANEX	M en cartuchos de papel. Densidad de carga 1,25 Kg/litro
Carga de fondo		
Carga lineal Q _f	0.00	Valm
_	0,88	Kg/m
Longitud carga de fondo H _f	0,17	m
Carga de fondo Q _f	0,15	Kg
Carga de columna		
$q_c = q_f$	0,35	Kg/m
B=	0,70	m
H _a =	0,35	m
H _c =	0,48	m
$Q_c = Q_f$	0,43	Kg
	0,17	·- ড

Proyecto de grado en Mac Ingeniería Civil. Énfas Geotecnia		Análisis de rendimientos para varios sistemas de excavación de túneles en roca.		Elaborado por: Ing. Diego Triana		
Carga total Q		0,32	Kg			
Resumen						
	В	0,70	m			
	S	0,77	m			
	Q	0,32	Kg			
3. Barrenos de techo						
Diámetro barreno		32,00	mm			
Tipo de explosivo		EMULITE	150 en tubos de plástico			
Carga de fondo						
Carga lineal Q _f		0,96	Kg/m			
Longitud carga de fondo H _f		0,17	m			
Carga de fondo Q _f		0,16	Kg			
Carga de columna						
$q_c = q_f$		0,29	Kg/m			
B=		0,70	m			
H _a =		0,35	m			
H _c =		0,48	m			
$Q_c = Q_f$		0,14	Kg			
Carga total Q		0,30	Kg			
Resumen						
	В	0,70	m			
	S	0,77	m			
	Q	0,30	Kg			
4. Destroza hacia arriba y h	orizontal					
Diána dua hama		00.00				
Diámetro barreno		29,00	mm			
Tipo de explosivo		EMULITE	150 en tubos de plástico			
Carga de fondo						
Carga lineal Q _f		0,80	Kg/m			
Longitud carga de fondo H _f		0,33	m			
Carga de fondo Q _f		0,27	Kg			

Proyecto de grado en Maestr Ingeniería Civil. Énfasis e Geotecnia		Análisis de rendimientos para varios sistemas de excavación de túneles en roca.		Elaborado por: Ing. Diego Triana	
Carga de columna					
$q_c = q_f$		0,40	Kg/m		
B=		0,70	m		
H _a =		0,35	m		
H _c =		0,32	m		
$Q_c = Q_f$		0,13	Kg		
Carga total Q		0,39	Kg		
Resumen					
,	В	0,70	m		
,	S	0,77	m		
(Q	0,39	Kg		
5. Destroza hacia arriba y horiz	zontal				
Diámetro barreno		41,00	mm		
Tipo de explosivo		ANFO, car	gado automáticamente		
Carga de fondo					
Carga lineal Q _f		1,03	Kg/m		
Longitud carga de fondo H _f		0,33	m		
Carga de fondo Q _f		0,34	Kg		
Carga de columna					
$q_c = q_f$		0,52	Kg/m		
B=		0,80	m		
$H_a =$		0,40	m		
$H_c =$		0,27	m		
$Q_c = Q_f$		0,14	Kg		
Carga total Q		0,48	Kg		
Resumen					
	В	0,80	m		
'					
	S	0,88	m		

Proyecto de grado en Maestría en Ingeniería Civil. Énfasis en Geotecnia	Análisis de rendimientos para varios sistemas de excavación de túneles en roca.		Elaborado por: Ing. Diego Triana		
6. Número de barrenos					
Consumo específico de explosivo					
RC	150,00	Kg/cm ²			
$D_{barreno}$	41,00	mm			
f	15,00				
α	1,65		Valor que va	ria entre 1,5 a 1,8	
S	88,00	m^2			
CE	0,96	Kg/m ³	Langefors-Ki	histrom, Limitación 4≤S≤1	00 m ²
CE	0,74	Kg/m ³	Protodyakon	ov	
CE	1,06	Kg/m ³	Ucar		
					_
CE _i	1,25				
k	1,7		Coeficiente c	que varia entre 1,4 a 2,0	
v	0,69				Pokrovsky
e	1,00		Factor que va	aría entre 0,8 a 1,2	
CE	2,01	Kg/m ³			
Consumo específico promedio de ex	cplosivo				
CE ₀	7,5	Kg/m ³	Varía entre 7		
S_0	1,5	m^2	Varía entre 1	a 2 m ²	
Q_0	0,11	Kg			
CE ₁	1,15	Kg/m ³	Varía entre 0),8 a 1,5 Kg/m ³	
S ₁	86,50	m^2			
Q_1	0,95	Kg			
CE	1,26	Kg/m ³			
Q_T	1,05	Kg			
Número de barrenos					
L_p	1,00	m			
η	95%		Varia entre 9		
k	1,08		Varía entre 1	,05 a 1,1	
$ ho_{ extsf{e}}$	1,5	g/cm ³			
$d_{explosivo}$	25	mm			
q_{l}	0,78	Kg/m			
L_c	0,59	m			
N	174		Langefors-Ki	histrom, Limitación 4≤S≤1	00 m ²
N	133		Protodyakon		
N	193		Ucar		
• •					

Ν

365

Pokrovsky

Proyecto de grado en Maestría en
Ingeniería Civil. Énfasis en
Geotecnia

Elaborado por: Ing. Diego Triana

		10 7170	
BARRENOS DE DESTROZA	TERREN	IO TIPO	IV
Datos de entrada		4.00	
Longitud barreno		1,00	m
1. Barrenos de piso o zapate	rac		
1. Barrenos de piso o zapate	ias		
Diámetro barreno		38,00	mm
Tipo de explosivo			150 en cartuchos de papel. Densidad de carga 1,20 Kg/litro
Tipo de explosivo		2.11.02.112	Too on canadinos de papen Denoidad de Canga 1,20 1.g/mile
Carga de fondo			
Carga lineal Q _f		1,35	Kg/m
Longitud carga de fondo H _f		0,33	m
Carga de fondo Q _f		0,45	Kg
		, -	~
Carga de columna			
$q_c = q_f$		1,35	
B=		1,00	m
H _a =		0,20	m
H _c =		0,47	m
$Q_c = Q_f$		0,63	Kg
Carga total Q		1,08	Kg
Resumen			
	В	1,00	m
	S	1,10	m
	Q	1,08	Kg
2. Barrenos hastiales			
Diámetro barreno		30,00	mm
Tipo de explosivo		DYMANEX	(M en cartuchos de papel. Densidad de carga 1,25 Kg/litro
Carga de fondo			
Carga lineal Q _f		0.00	Kalm
_		0,88	Kg/m
Longitud carga de fondo H _f		0,17	m Ka
Carga de fondo Q _f		0,15	Kg
Carga de columna			
$q_c = q_f$		0,35	Kg/m
B=		0,33	m
H _a =		0,70	m
H _c =		0,33	m
$Q_c = Q_f$		0,48	Kg
≪ _C − ≪ ₁		0,17	'\y

Proyecto de grado en Mac Ingeniería Civil. Énfas Geotecnia		Análisis de rendimientos para varios sistemas de excavación de túneles en roca.		Elaborado por: Ing. Diego Triana		
Carga total Q		0,32	Kg			
Resumen						
	В	0,70	m			
	S	0,77	m			
	Q	0,32	Kg			
3. Barrenos de techo						
Diámetro barreno		32,00	mm			
Tipo de explosivo		EMULITE	150 en tubos de plástico			
Carga de fondo						
Carga lineal Q _f		0,96	Kg/m			
Longitud carga de fondo H _f		0,17	m			
Carga de fondo Q _f		0,16	Kg			
Carga de columna						
$q_c = q_f$		0,29	Kg/m			
B=		0,70	m			
H _a =		0,35	m			
H _c =		0,48	m			
$Q_c = Q_f$		0,14	Kg			
Carga total Q		0,30	Kg			
Resumen						
	В	0,70	m			
	S	0,77	m			
	Q	0,30	Kg			
4. Destroza hacia arriba y h	orizontal					
Diána dua hama		00.00				
Diámetro barreno		29,00	mm			
Tipo de explosivo		EMULITE	150 en tubos de plástico			
Carga de fondo						
Carga lineal Q _f		0,80	Kg/m			
Longitud carga de fondo H _f		0,33	m			
Carga de fondo Q _f		0,27	Kg			

Proyecto de grado en Maestr Ingeniería Civil. Énfasis e Geotecnia		Análisis de rendimientos para varios sistemas de excavación de túneles en roca.		Elaborado por: Ing. Diego Triana	
Carga de columna					
$q_c = q_f$		0,40	Kg/m		
B=		0,70	m		
H _a =		0,35	m		
H _c =		0,32	m		
$Q_c = Q_f$		0,13	Kg		
Carga total Q		0,39	Kg		
Resumen					
,	В	0,70	m		
,	S	0,77	m		
(Q	0,39	Kg		
5. Destroza hacia arriba y horiz	zontal				
Diámetro barreno		41,00	mm		
Tipo de explosivo		ANFO, car	gado automáticamente		
Carga de fondo					
Carga lineal Q _f		1,03	Kg/m		
Longitud carga de fondo H _f		0,33	m		
Carga de fondo Q _f		0,34	Kg		
Carga de columna					
$q_c = q_f$		0,52	Kg/m		
B=		0,80	m		
$H_a =$		0,40	m		
$H_c =$		0,27	m		
$Q_c = Q_f$		0,14	Kg		
Carga total Q		0,48	Kg		
Resumen					
	В	0,80	m		
'					
	S	0,88	m		

Proyecto de grado en Maestría en Ingeniería Civil. Énfasis en Geotecnia	Análisis de rendimientos para varios sistemas de excavación túneles en roca.		xcavación de	Elaborado por: Ing. Diego Triana	
6. Número de barrenos					
Consumo específico de explosivo					
RC	150,00	Kg/cm ²			
$D_{barreno}$	41,00	mm			
f	15,00				
α	1,65		Valor que va	ria entre 1,5 a 1,8	
S	88,00	m^2			
CE	0,96	Kg/m ³	Langefors-Ki	histrom, Limitación 4≤=S≤	100 m ²
CE	0,74	Kg/m ³	Protodyakon	ov	
CE	1,06	Kg/m ³	Ucar		
CE _i	1,25				
k	1,7		Coeficiente d	que varia entre 1,4 a 2,0	
v	0,69				Pokrovsky
e	1,00		Factor que v	aría entre 0,8 a 1,2	
CE	2,01	Kg/m ³			
Consumo específico promedio de ex	rnlosivo				
CE ₀	7,5	Kg/m ³	Varía entre 7	' a 8 Ka/m ³	
S ₀	1,5	m ²	Varía entre 1		
- 0	1,0		varia oria o	u 2 III	
Q_{o}	0.11	V а			
Q ₀ CE₁	0,11	Kg		3	
•	1,15	Kg/m ³	Varia entre C	1,8 a 1,5 Kg/m ³	
S ₁	86,50	m ²			
Q_1	0,95	Kg			
CE	1,26	Kg/m ³			
Q _T	1,05	Kg			
Número de barrenos					
L_{p}	1,00	m			
η	95%		Varia entre 9	0 y 95 %	
k	1,08		Varía entre 1	,05 a 1,1	
$ ho_{ extsf{e}}$	1,5	g/cm ³			
$d_{explosivo}$	25	mm			
q_l	0,78	Kg/m			
L_c	0,59	m			
N	174		Langefors-Ki	histrom, Limitación 4≤S≤1	00 m ²
N	133		Protodyakon		
N	193		Ucar		
. ,	005		D		

Pokrovsky

Ν

365

Análisis de rendimientos para varios sistemas de excavación de túneles en roca.

Elaborado por: Ing. Diego Triana

Geotecnia	neles en ro	ca.	ing. Diogo iriana		
PERFORACIÓN O BARRENADO TE	RRENO TIPO		IIIb		
Velocidad de penetración VP					
	POT	18	KW		
	D _{barreno}	51	mm		
1. Formulación empírica					
11 Torridadion empirica					
	VP	2,27	m/mim		
2. Índice de perforabilidad DRI					
	0				
	S ₂₀	37			
	S _J DRI	60			
	ואט	43			
3. Método de perforación					
	Martillo en cal				
	VP	0,97	m/min		
4. Tipo de martillo					
•					
	HL710 89 mm	1			
	VP	0,95	m/min		
5. Trabajo de destrucción					
5. Trabajo de destrucción					
	W_z	180	KJ/m ³		
Velocidad o	de penetración	2,37	m/min		
		•			
6. Espaciamiento de las discontinui	dades				
		0.0			
	Espaciamiento	6,3	cm m/min		
velocidad c	de penetración	2,93	m/min		
7. Tiempo por ciclo					
Cuele	Contorno	Destroza	Total		
N _{total} 8	48	216	272		
ml 8	48	216	272		
	\/D promodia	1.00	m/min		
	VP promedio	1,90	m/min		
	Tiempo Tiempo	143 2.30	min h		
	пешро	2,39	11		

Análisis de rendimientos para varios sistemas de excavación de túneles en roca.

Elaborado por: Ing. Diego Triana

Geotecnia	túneles en roca.			ing. Diogo Triana		
PERFORACIÓN O BARRENADO TER	RENO TIPO		IV			
Velocidad de penetración VP						
	POT	18	KW			
	D _{barreno}	51	mm			
	barrono					
1. Formulación empírica						
	VP	2,27	m/mim			
	VI	2,21	111/1111111			
2. Índice de perforabilidad DRI						
	0	00				
	S ₂₀	60				
	SJ DRI	120 74				
	טולו	14				
3. Método de perforación						
	Martillo en cal					
	VP	1,52	m/min			
4. Tipo de martillo						
	HL710 89 mm					
	VP	1,55	m/min			
5. Trabajo de destrucción						
	W_z	180	KJ/m ³			
Velocidad de	e penetración	2,37	m/min			
6. Espaciamiento de las discontinuid	ades					
or Espacialmente de las dissertinada	aaoo					
E	spaciamiento	6,3	cm			
Velocidad de	e penetración	2,93	m/min			
7. Tiempo por ciclo						
7. Hempo por cicio						
Cuele	Contorno	Destroza	Total			
N _{total} 8	48	216	272			
ml 8	48	216	272			
			, .			
	VP promedio	2,13	m/min			
	Tiempo	128	min b			
	Tiempo	2,13	h			

Análisis de rendimientos para varios sistemas de excavación de túneles en roca.

Elaborado por: Ing. Diego Triana

CARGUE DE EXPLOSIVOS

ml	2141	
Rendimiento propuesto	6,0	m/min
Tiempo	357	min
Tiempo	5,95	h

VENTILACIÓN

Sección túnel (s) 88 m²

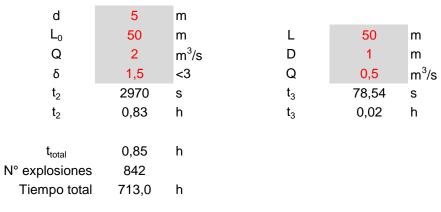
Ventilación soplante

Purga del frente

ε	0,35	
d	5	m
Q	0,5	m ³ /s
t_s	924	S
t_s	0,26	h
N° explosiones	842	
Tiempo total	216,1	h

Desplazamiento del tapón de humos por el túnel

L_0	50	m	
Q	1,5	m ³ /s	
С	0,5	milésimas	
t	2933	S	
t	0,81	h	
Т	1467	T<2000	CUMPLE
N° explosiones	842		
Tiempo total	686,1	h	


Ventilación aspirante

d	5	m
L_0	50	m
Q	2	m ³ /s
δ	1,5	<3
t_2	2970	s
t_2	0,83	h
N° explosiones	842	
Tiempo total	694,7	h

Proyecto de grado en Maestría en
Ingeniería Civil. Énfasis en
Geotecnia

Elaborado por: Ing. Diego Triana

Ventilación por aspiración e impulsión sucesiva

Proyecto de grado en Maestría en
Ingeniería Civil. Énfasis en
Geotecnia

Elaborado por: Ing. Diego Triana

Geotecnia		roca.		ln ₉	g. Diego Triana
RETIRO DE REZAGA TERRENO TIPO	כ	IIIb			
1. Volumen de material volado					
	L _{barreno}	1,0	m		
Sec	ción del túnel	88,0	m^2		
	$ ho_{in-situ}$	2,40	Ton/m ³		
	$ ho_{ m suelto}$	1,80	Ton/m ³		
	V	0,75			
	Volumen _{in-situ}	211,20	m^3		
Tip	o de material	Tierra comun	y marga mojad	a	
	PE	25	%		1
	Definir PE	33	%		
	Volumen _{suelto}	280,90	$^{-}$ m 3		
2. Equipo de transporte					
	Transporte so	obre vía (Tren	y vagones)		
	Capacidad	5,5	m ³		
	Capacidad	9900,0	Kg		
Peso del eq	quipo cargado	36388,0	Kg		
	Tipo de pista	Pista de tierra	con rodadas, b	olanda	
% de inclinaci	ón de la pista	6,0	%		
Esfuerzo por inclinaci	ón de la pista	2183,3			
Resistencia	a la rodadura	7,5			
Definir resistencia	a la rodadura	2,0	%		
Esfuerz	o de rodarura	727,8	Kg		
Esfuerzo a traccio	ón del equipo	13000,0	Kg		
Esfuerzo a tracci	ón disponible	10089,0	Kg		
Tipo d	le rodamiento	Neumaticos			
Peso sobre	e el eje motriz	30000,0	Kg		
Tipo de mater	ial de la pista	Suelo de cant	era sin fragmer	ntar	
Coeficien	te de tracción	0,75			
Esfuerzo de tracción para	que el tipo				
de roda	miento patine	22500,0	Kg	>	13000,0
Rendimientos de los motor	res por altitud				
1	Γipo de motor	Motor diesel o	de 2 tiempo con	aspiración na	atural
	Potencia	350,0	KW		
m	snm proyecto	2100,0	m		
	e rendimiento	0,12			
		,			

308,0

ΚW

Potencia efectiva

Proyecto de grado en Maestría en Ingeniería Civil. Énfasis en Geotecnia	Análisis de rendimientos para sistemas de excavación de roca.		Elaborado por: Ing. Diego Triana		
3. Equipo de carga					
	Cargadora de volteo posterio	r			
	Capacidad (C _c)	2,70	m^3		
	Estado del material a cargar	•	***		
	Factor de eficiencia E	0.80-0.95			
	Definir factor de eficiencia E	0,83			
	TA	10,0	cm		
	C	50,0	cm		
	Tamaño relativo	1/5	_		
	Descripción de material	Muy bien vo	lada, suelos		
	Factor de llenado	0.8-1.0			
	Definir factor de llenado	0,90			
	Nivel de excavabilidad	Excavabilida	ad mala		
	T_c	0,60	min		
	% altura optima	100			
	Factor de corrección H	1,00	%		
	Ángulo de giro	120	0		
	Factor de giro A	0,91			
4. Producción máxima equipo de car	ga				
	_		2		
	P_{max}	183,54	m ³ /h		
Producción bruta equipo de carga					
, ,	P_b	321,19	m ³ /h		
	Tiempo de carga	0,63	min		
	Producción horaria	578,14	Ton/h		
5. Producción máxima equipo de tra	nsporte				
	Condiciones de operación	Favorable			
Tie	mpo de descarga y maniobra	1,00	min		
Definir ti	empo de decarga y maniobra	1,00	min		
Tiemp	o espera del equipo de carga	0,15	min		
	Condición de trabajo	Buena			
Tiempo ciclo de transporte,	según condiciones de trabajo	0,8	min		

	de grado en M iería Civil. Énf Geotecnia			rictamae da avcavación da tilhalae an i			Elaborado por: ng. Diego Triana	
			Distancia	Veloci	dad	Tiempo]	
T	ramo	Estado	(m)	(Km/h)	m/min	(min)		
	lda	Cargado	80	6,5	108,3	0,74		
1	Vuelta	Vacío	80	10	166,7	0,48		
_	Ida	Cargado			,			
2	Vuelta	Vacío					1	
	lda	Cargado					1	
3	Vuelta	Vacío					1	
1	lda	Cargado					1	
4	Vuelta	Vacío					1	
-	lda	Cargado						
5	Vuelta	Vacío						
6	lda	Cargado						
ь	Vuelta	Vacío						
				Promedio	Promedio	Suma		
				8,25	137,50	1,22		
			Tiempo cic	lo de transporte	3,17	min		
				P_{max}		m ³ /h		
			N° de volqu	etes necesarios	4			
				$ ho_{real}$	1,620	Ton/m ³		
				so a transportar	4,4	Ton <=	9900,0	
	Cuantos	minutos cons	sidera como 1	hora de trabajo		min		
				Viajes	16,0			
			Pro	ducción horaria	70,0	Ton/h		
				Tiempo	2,0	h		
1411.	-lt!		olasiću (Nijalo					
alculo	de estaciones	ae remanipi	ulacion (Nich	os)				
				Longitud túnel	1000,0	m		
Peso a desescombrar			505,6	Ton				
				Tamaño optimo	2,70	m ³ <=	2,70	
		Tiemr		e desescombro		min	_,. 0	
		110111	o adigilado a	Tiempo fijo	12,80	min		
					, _ ,			

Tiempo para limpieza del frente

Tiempo restante del ciclo

Distancia entre estaciones

Tiempo variable

Tiempo Total

N° estaciones

Longitud entre el frente del túnel y punto de descarga

Distancia entre frente del túnel y estación de remanipulación

5

80

18,62

36,42

23,58

101,33

181,33

4

min

m

min

min

min

m

m

Proyecto de grado en Maestría en Ingeniería Civil. Énfasis en Geotecnia	Análisis de rendimientos p sistemas de excavación de roca.			laborado por: g. Diego Triana	
Cintas transportadoras					
Tamaños máximos de	bloque recomendados (mm)	Material cor	1 80% de	e finos	
ramanoo mass ss	Ancho de la banda	1000	mm		
Tamaño máx	timo de bloque recomendado	375	mm		
	•	Grava y are			
Ir	nclinación máxima de la cinta	18 a 20	0		
	nclinación máxima de la cinta	18	0		
			inos que	fluver	facilmente en seco
	Ángulo de carga	5 a 10	0		
	Defini ángulo de carga	5	0		
	Velocidad de la banda	3,0-3,5	m/s		
	Definir velocidad de la banda	3,0	m/s		
	Longitud cinta	100	m		
	P_{v}	2,7	KW		
	Capacidad	578,1	Ton/h		
	P_h	6,4	KW		
	Elevación	12,5	m		
	P_{e}	21,3	KW		
	P_{T}	30,4	KW		
	f	0,95			
	M_p	32,0	KW		
	P motor comercial	37	KW	>	32,0
	Peso a transportar	505,6	Ton		
	Tiempo	0,87	h		
Transportadores blindados (Cintas					

 R_0

v K

η Ρ 1500

2,0

1,15

0,96

35,23

Kg

m/s

 KW

varía ente 1.1 y 1.2

Proyecto de grado en Maestría en
Ingeniería Civil. Énfasis en
Geotecnia

Elaborado por: Ing. Diego Triana

9. Transporte sobre vía (Tren y vagones)

R	0,08	KN/Ton
g	9,81	m/s ²
Tipo de vagón	Vagones par	a roca
μ	0,15	
Capacidad vagón	3,6	m^3
Capacidad vagón	6,5	Ton
р	2,5	%
Peso a transportar	505,6	Ton
M_T	18,0	Ton
M_L	37,7	Ton
F_z	4,6	
ζ	89	%
V_{max}	13,2	Km/h
Potencia locomotora	18,9	KW

Condiciones de operación
Tiempo de descarga y maniobra 1,00 min
Definir tiempo de decarga y maniobra 1,00 min
Tiempo espera del equipo de carga 0,15 min
Condición de trabajo Buena

Tiempo ciclo de transporte, según condiciones de trabajo 0,8 min

Tra	Tramo		Distancia	Veloci	dad	Tiempo
110	IIIIO	Estado	(m)	(Km/h) m/min		(min)
1	lda	Cargado	80	13,2	220,0	0,36
'	Vuelta	Vacío	80	26,4	440,0	0,18
2	lda	Cargado				
2	Vuelta	Vacío				
3	lda	Cargado				
3	Vuelta	Vacío				
4	lda	Cargado				
4	Vuelta	Vacío				
5	lda	Cargado				
	Vuelta	Vacío				
6	lda	Cargado				
0	Vuelta	Vacío				
		•		Promedio	Promedio	Suma
				19,80	330,00	0,55

Tiempo ciclo de transporte 2,50 min P_{max} 71,84 m³/h N° de vagones 4 1,620 Ton/m³ Peso a transportar 4,4 Ton 6,5 Cuantos minutos considera como 1 hora de trabajo min 50,0 Viajes 20,0 Producción horaria 87,6 Ton/h Tiempo 1,33 h

Proyecto de grado en Maestría en
Ingeniería Civil. Énfasis en
Geotecnia

Elaborado por: Ing. Diego Triana

Ingenieria Civil. Enfasis en Geotecnia	sistemas de	e excavacion d roca.	le tuneles en	In	g. Diego Triar	ıa
RETIRO DE REZAGA TERRENO TIPO)	IV				
1. Volumen de material volado						
	L _{barreno}	1,0	m			
Sec	ción del túnel	88,0	m^2			
	$ ho_{in-situ}$	2,40	Ton/m ³			
	ρ_{suelto}	1,80	Ton/m ³			
	V	0,75				
	Volumen _{in-situ}	211,20	m^3			
		Tierra comun y		la		
·	PE	25	%			
	Definir PE	33	%			
	Volumen _{suelto}	280,90	m^3			
2. Equipo de transporte						
	Transporte s	obre vía (Tren y	/ vagones)			
	Capacidad	5,5	m^3			
	Capacidad	9900,0	Kg			
Peso del eq	uipo cargado	36388,0	Kg			
	Tipo de pista	Pista de tierra	con rodadas, l	olanda		
% de inclinació	ón de la pista	6,0	%			
Esfuerzo por inclinacio	ón de la pista	2183,3				
Resistencia a	a la rodadura	7,5				
Definir resistencia	a la rodadura	2,0	%			
Esfuerzo	o de rodarura	727,8	Kg			
Esfuerzo a traccio	ón del equipo	13000,0	Kg			
Esfuerzo a traccio	ón disponible	10089,0	Kg			
•	e rodamiento	Neumaticos				
	el eje motriz	30000,0	Kg			
Tipo de mater	ial de la pista	Suelo de cante	era sin fragmei	ntar		
Coeficient	e de tracción	0,75				
Esfuerzo de tracción para	que el tipo					
de rodar	miento patine	22500,0	Kg	>	13000,0	
Rendimientos de los motor	es por altitud					
Τ	ipo de motor	Motor diesel de	e 2 tiempo con	aspiración n	atural	
	Potencia	350,0	KW			
ms	snm proyecto	2100,0	m			
	rendimiento	0,12				

308,0

Potencia efectiva

ΚW

Proyecto de grado en Maestría en Ingeniería Civil. Énfasis en Geotecnia	Análisis de rendimientos para sistemas de excavación de roca.		Elaborado por: Ing. Diego Triana
3. Equipo de carga			
	Cargadora de volteo posterio	r	
	Capacidad (C _c)	2,70	m^3
	Estado del material a cargar	•	***
	Factor de eficiencia E	0.80-0.95	
	Definir factor de eficiencia E	0,83	
	TA	10,0	cm
	C	50,0	cm
	Tamaño relativo	1/5	_
	Descripción de material	Muy bien vo	lada, suelos
	Factor de llenado	0.8-1.0	
	Definir factor de llenado	0,90	
	Nivel de excavabilidad	Excavabilida	ad mala
	T _c	0,60	min
	% altura optima	100	
	Factor de corrección H	1,00	%
	Ángulo de giro	120	0
	Factor de giro A	0,91	
4. Producción máxima equipo de car	ga		
	_		2
	P_{max}	183,54	m ³ /h
Producción bruta equipo de carga			
, ,	P_b	321,19	m ³ /h
	Tiempo de carga	0,63	min
	Producción horaria	578,14	Ton/h
5. Producción máxima equipo de tra	nsporte		
	Condiciones de operación	Favorable	
Tie	mpo de descarga y maniobra	1,00	min
Definir ti	empo de decarga y maniobra	1,00	min
Tiemp	o espera del equipo de carga	0,15	min
	Condición de trabajo	Buena	
Tiempo ciclo de transporte,	según condiciones de trabajo	0,8	min

Proyecto de grado en Maestría en Ingeniería Civil. Énfasis en Geotecnia				Análisis de rendimientos para varios sistemas de excavación de túneles en roca.			Elaborado por: Ing. Diego Triana		
			Distancia	Veloci	dad	Tiempo]		
T	ramo	Estado	(m)	(Km/h)	m/min	(min)			
	lda	Cargado	80	6,5	108,3	0,74			
1	Vuelta	Vacío	80	10	166,7	0,48			
_	Ida	Cargado			,	-, -			
2	Vuelta	Vacío					1		
	lda	Cargado					1		
3	Vuelta	Vacío					1		
1	lda	Cargado					1		
4	Vuelta	Vacío					1		
-	lda	Cargado							
5	Vuelta	Vacío							
6	lda	Cargado							
	Vuelta	Vacío							
				Promedio	Promedio	Suma			
				8,25	137,50	1,22			
			Tiempo cic	lo de transporte	3,17	min			
				P_{max}		m ³ /h			
			N° de volqu	etes necesarios	4				
				$ ho_{real}$	1,620	Ton/m ³			
				so a transportar	4,4	Ton <=	9900,0		
	Cuantos	minutos cons	sidera como 1	hora de trabajo		min			
			Viajes	16,0 70,0					
	Producción horaria					Ton/h			
	Tiempo					h			
1411.	-lt!		olasiću (Nijalo						
alculo	de estaciones	ae remanipi	ulacion (Nich	os)					
Longitud túnel					1000,0	m			
			Peso	a desescombrar	505,6	Ton			
				Tamaño optimo	2,70	m ³ <=	2,70		
		Tiemr		e desescombro		min	_,. 0		
		110111	o adigilado a	Tiempo fijo	12,80	min			
					, _ ,				

Tiempo para limpieza del frente

Tiempo restante del ciclo

Distancia entre estaciones

Tiempo variable

Tiempo Total

N° estaciones

Longitud entre el frente del túnel y punto de descarga

Distancia entre frente del túnel y estación de remanipulación

5

80

18,62

36,42

23,58

101,33

181,33

4

min

m

min

min

min

m

m

Proyecto de grado en Maestría en Ingeniería Civil. Énfasis en Geotecnia	Análisis de rendimientos p sistemas de excavación de roca.			laborado por: g. Diego Triana	
Cintas transportadoras					
Tamaños máximos de	bloque recomendados (mm)	Material cor	1 80% de	e finos	
ramanoo mass ss	Ancho de la banda	1000	mm		
Tamaño máx	timo de bloque recomendado	375	mm		
	•	Grava y are			
Ir	nclinación máxima de la cinta	18 a 20	0		
	nclinación máxima de la cinta	18	0		
		inos que	fluver	facilmente en seco	
	5 a 10	0			
	5	0			
	Velocidad de la banda	3,0-3,5	m/s		
	3,0	m/s			
	Longitud cinta	100	m		
	P_{v}	2,7	KW		
	Capacidad	578,1	Ton/h		
	P_h	6,4	KW		
	Elevación	12,5	m		
	P_{e}	21,3	KW		
	P_{T}	30,4	KW		
	f	0,95			
	M_p	32,0	KW		
	P _{motor comercial}	37	KW	>	32,0
	Peso a transportar	505,6	Ton		
	Tiempo	0,87	h		
Transportadores blindados (Cintas					

 R_0

v K

η Ρ 1500

2,0

1,15

0,96

35,23

Kg

m/s

 KW

varía ente 1.1 y 1.2

Proyecto de grado en Maestría en
Ingeniería Civil. Énfasis en
Geotecnia

Elaborado por: Ing. Diego Triana

9. Transporte sobre vía (Tren y vagones)

R	0,08	KN/Ton
g	9,81	m/s ²
Tipo de vagón	Vagones par	a roca
μ	0,15	
Capacidad vagón	3,6	m^3
Capacidad vagón	6,5	Ton
р	2,5	%
Peso a transportar	505,6	Ton
M_T	18,0	Ton
M_L	37,7	Ton
F_z	4,6	
ζ	89	%
V_{max}	13,2	Km/h
Potencia locomotora	18,9	KW

Condiciones de operación
Tiempo de descarga y maniobra 1,00 min
Definir tiempo de decarga y maniobra 1,00 min
Tiempo espera del equipo de carga 0,15 min
Condición de trabajo Buena

Tiempo ciclo de transporte, según condiciones de trabajo 0,8 min

Tra	Tramo		Distancia	Veloci	dad	Tiempo
110	IIIIO	Estado	(m)	(Km/h) m/min		(min)
1	lda	Cargado	80	13,2	220,0	0,36
'	Vuelta	Vacío	80	26,4	440,0	0,18
2	lda	Cargado				
2	Vuelta	Vacío				
3	lda	Cargado				
3	Vuelta	Vacío				
4	lda	Cargado				
4	Vuelta	Vacío				
5	lda	Cargado				
	Vuelta	Vacío				
6	lda	Cargado				
0	Vuelta	Vacío				
				Promedio	Promedio	Suma
				19,80	330,00	0,55

Tiempo ciclo de transporte 2,50 min P_{max} 71,84 m³/h N° de vagones 4 1,620 Ton/m³ Peso a transportar 4,4 Ton 6,5 Cuantos minutos considera como 1 hora de trabajo min 50,0 Viajes 20,0 Producción horaria 87,6 Ton/h Tiempo 1,33 h

Proyecto de grado en Maestr Ingeniería Civil. Énfasis e Geotecnia	n varios siste	de rendimie emas de exc neles en roc	Elaborado por: Ing. Diego Triana	
SOPORTE TIPO DE TERRENO		IIIb		
Longitud del barreno		1,00	m	Verificar
Tuabaisa da samenta	ماد مداده مداده		£	-
Trabajos de soporte	Inyección de		on	<u> </u>
	Pernos en bó			
	Pernos en pa			<u> </u>
	Concreto lan			V
	Cerchas méta	alicas fijas		~
	Enfilajes			~
	Cerchas méta	alicas deforr	mables	▼
	Pernos en so	lera curva		☑
Inyección de consolidación	APLICA TIPO	DE SOPO	RTE	
	Diametro inyección	0,051	m	
	Área inyección	0,00204	m^2	
_	l inyección (L _{barreno})	1,00	m	
Módulo de ela	sticidad del macizo	80000	KN/m ²	
	Sección túnel	23,2	m^2	
	Separación	5,00	m	
Móc	lulo de la inyección	18114220		
	Área mejorada	0,0613	m ²	
	N° inyecciones	5	2	
Módulo de	el macizo mejorado	127639	KN/m ²	
	ml perforación	5,0	m	
	VP promedio	2,65	m/min	
Tie	mpo de perforación	1,89	min	
Rendimiento propuesto de ir	nyeccón y fraguado	0,60	m/min	
Tiempo in	yección y fraguado	8,33	min	
	Tiempo total	0,2	h	
Pernos en bóveda	APLICA TIPO	DE SOPO	RTE	
		0.05	Varia	
	F	2,25	Varía entre 1	,5 y 3
	S	1,00	m	

С

h

ρ W 1,00

8,00

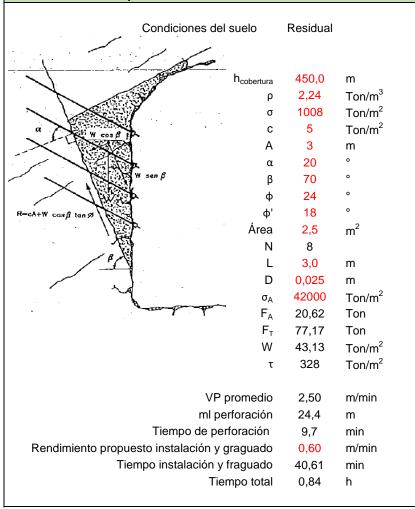
2,55

45,90

m

m

Ton/m³ Ton/m²


Análisis de rendimientos para varios sistemas de excavación de túneles en roca.

Elaborado por: Ing. Diego Triana

N° de pernos		
В	60,0	Ton
L	3,0	m
Área	3,5	m^2
N	7	
ml perforación	21,0	m
VP promedio	2,50	m/min
Tiempo de perforación	8,4	min
Rendimiento propuesto instalación y graguado	0,60	m/min
Tiempo instalación y fraguado	35,00	min
Tiempo total	0,72	h

Pernos instalados en paredes

APLICA TIPO DE SOPORTE

Análisis de rendimientos para varios sistemas de excavación de túneles en roca.

Elaborado por: Ing. Diego Triana

Pernos en solera curva

APLICA TIPO DE SOPORTE

ml perforación	2,4	m
\/P promodio	2.50	m/mir

VP promedio m/min 2,50 Tiempo de perforación 1,0 min

Rendimiento propuesto instalación y graguado 0,60 m/min Tiempo instalación y fraguado 4,0 min h

Tiempo total 0,08

Concreto lanzado

APLICA TIPO DE SOPORTE

Perimetro 7,65 m Espesor concreto lanzado 0,51 m

> m^2 Área 7,65

m³ concreto 3,90 m^3 2,75

Rendimiento propuesto m³/h Tiempo 1,42 h

Soporte metálicos fijos

APLICA TIPO DE SOPORTE

Metodo de Hoek & Brown

Datos del macizo	Datos del tunel

h _{cobertura max}	1100,0	m	R	3,50	m
ρ	2,55	Ton/m ³	b, r	5,1	m
σ_{x}	2805	Ton/m ²	a	0,35	m
С	2,5	Ton/m ²	b	7,00	m
ф	37	0	σ_{c}	3,4	Ton/m ²
K_0	2,5		q	736,31	Ton/m
K	1,33		σ_1	7047,9	Ton/m ²
			σ_{r}	7061,8	Ton/m ³
			σ_{Θ}	7080,1	Ton/m ⁴
			R*	2,69	m
			S	1,00	m

42000 Ton/m² σ_{e} W_{xx} 0,0076 ${\rm m}^{\rm 3}$

 W_{xx} cm^3 76,38

S 2,50 m TH58-29

Tipo de soporte Peso del soporte 29 Kg/m

Rendimiento instalación 3,50 Kg/min Tiempo instalación 63,39 min Tiempo instalación 1,06 h

Proyecto de grado en Maestría en
Ingeniería Civil. Énfasis en
Geotecnia

Elaborado por: Ing. Diego Triana

Geotecnia	tui	neies en ro	ca.	
Cerchas metálicas deformables	APLICA TIPO	DE SOPO	RTE	
Metodo de arcos cendentes				
Datos del macizo		Selecio	ón del tipo de	soporte
$f(\phi)$ 4 ° P_i 2174,5 Ton/m ²	Tipo	σ _∈ o de soporte S	TH58-21	MPa m
		D I _s 6	398 127	mm cm ⁴
		tb A _s	•	m m^2
Rendimien Tiemp	PS _{max} so del soporte to instalación po instalación po instalación	1726,2 21 3,50 51,0 0,85	Ton/m ² Kg/m Kg/min min h	
Enfilajes	APLICA TIPO	DE SOPO	RTE	
	erímetro túnel $H_{\rm f}$ $\alpha_{\rm f}$	7,65 12,0 60	m² m	
	$\begin{array}{c} L_f \\ E_e \\ D_e \\ I_e \\ E_m \\ L_e \end{array}$	171,61 18000000 0,20 7,854E-05 120000 0,43	m	
Т	ïpo de cercha L _a L _d	Fija 2,5 174,63	m m	
	Definir L_d S_e N° enfilajes	10 0,5 4,0	m m	

Posumo	n
Resume	n

Tiempo total de soporte 5,78 h

15,97

1,80

22,22

0,6

min

min

h

m/min

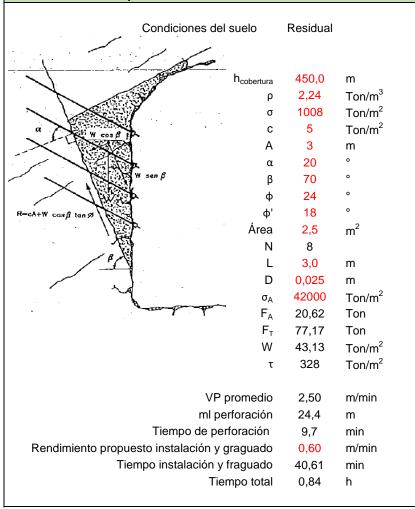
Tiempo de perforación

Tiempo inyección

Tiempo total

Rendimiento propuesto de inyeccón

Proyecto de grado en Maestría Ingeniería Civil. Énfasis en Geotecnia	varios siste	de rendimie emas de exc neles en roc	cavación de	Elaborado por: Ing. Diego Triana
SOPORTE TIPO DE TERRENO		IV		
Langitud dal harrana		1,00	m	Verificar
Longitud del barreno		1,00	m	verillical
Trabajos de soporte	Inyección de	consolidacio	ón	V
	Pernos en bo			~
	Pernos en pa	aredes		▽
	Concreto lan			▽
	Cerchas mét	alicas fijas		~
	Enfilajes	•		▽
	Cerchas mét	alicas deforr	mables	~
	Pernos en so	olera curva		~
Inyección de consolidación	APLICA TIPO	DE SOPO	RTE	
L	Diametro inyección	0,051	m 2	
Longitud	Área inyección inyección (L _{barreno})	0,00204 1,00	m ²	
	sticidad del macizo	80000	m KN/m²	
Modulo de elas	Sección túnel	23,2	m ²	
	Separación	5,00	m	
Mód	ulo de la inyección			
	Área mejorada	0,0613	m ²	
	N° inyecciones	5		
Módulo de	I macizo mejorado	127639	KN/m ²	
	ml perforación	5,0	m	
	VP promedio	2,65	m/min	
	npo de perforación	1,89	min	
Rendimiento propuesto de in		0,60	m/min	
Liempo iny	vección y fraguado	8,33	min	
	Tiempo total	0,2	h	
Pernos en bóveda	APLICA TIPO	DE SOPO	RTE	
	F	2,25	Varía entre	1,5 y 3
	s	1,00	m	
	С	1,00	m	
	h	8,00	m	
	ρ	2,55	Ton/m ³	
	W	45,90	Ton/m ²	


Análisis de rendimientos para varios sistemas de excavación de túneles en roca.

Elaborado por: Ing. Diego Triana

N° de pernos		
В	60,0	Ton
L	3,0	m
Área	3,5	m^2
N	7	
ml perforación	21,0	m
VP promedio	2,50	m/min
Tiempo de perforación	8,4	min
Rendimiento propuesto instalación y graguado	0,60	m/min
Tiempo instalación y fraguado	35,00	min
Tiempo total	0,72	h

Pernos instalados en paredes

APLICA TIPO DE SOPORTE

Análisis de rendimientos para varios sistemas de excavación de túneles en roca.

Elaborado por: Ing. Diego Triana

Pernos en solera curva

APLICA TIPO DE SOPORTE

ml perforación	2,4	m
\/P promodio	2.50	m/mir

VP promedio m/min 2,50 Tiempo de perforación 1,0 min

Rendimiento propuesto instalación y graguado 0,60 m/min Tiempo instalación y fraguado 4,0 min h

Tiempo total 0,08

Concreto lanzado

APLICA TIPO DE SOPORTE

Perimetro 7,65 m Espesor concreto lanzado 0,51 m

> m^2 Área 7,65

m³ concreto 3,90 m^3 2,75

Rendimiento propuesto m³/h Tiempo 1,42 h

Soporte metálicos fijos

APLICA TIPO DE SOPORTE

Metodo de Hoek & Brown

Datos del macizo	Datos del tunel

h _{cobertura max}	1100,0	m	R	3,50	m
ρ	2,55	Ton/m ³	b, r	5,1	m
σ_{x}	2805	Ton/m ²	a	0,35	m
С	2,5	Ton/m ²	b	7,00	m
ф	37	0	σ_{c}	3,4	Ton/m ²
K_0	2,5		q	736,31	Ton/m
K	1,33		σ_1	7047,9	Ton/m ²
			σ_{r}	7061,8	Ton/m ³
			σ_{Θ}	7080,1	Ton/m ⁴
			R*	2,69	m
			S	1,00	m

42000 Ton/m² σ_{e} W_{xx} 0,0076 ${\rm m}^{\rm 3}$

 W_{xx} cm^3 76,38

S 2,50 m TH58-29

Tipo de soporte Peso del soporte 29 Kg/m

Rendimiento instalación 3,50 Kg/min Tiempo instalación 63,39 min Tiempo instalación 1,06 h

Proyecto de grado en Maestría en
Ingeniería Civil. Énfasis en
Geotecnia

Elaborado por: Ing. Diego Triana

Geotecnia	tune	eies en roc	a.	
erchas metálicas deformables APLICA TIPO DE SOPORTE				
Metodo de arcos cendentes				
Datos del macizo Seleción del tipo de			soporte	
f(φ) 4 ° P _i 2174,5 Ton/m²	Tipo (σ_{e} de soporte	TH58-21	MPa m
		D I _s Θ	398 127	mm cm ⁴
		tb A _s	•	m m^2
Rendimien Tiemp	PS _{max} so del soporte so instalación so instalación so instalación	1726,2 21 3,50 51,0 0,85	Ton/m ² Kg/m Kg/min min h	
Enfilajes	APLICA TIPO	DE SOPOR	RTE	
	erímetro túnel H_f α_f	7,65 12,0 60	m ² m	
	D_e	171,61 18000000 0,20 7,854E-05 120000 0,43	m	
T	ipo de cercha Fi L _a L _d Definir L _d	ija 2,5 174,63 10	m m m m	
	S _e N° enfilajes	0,5 4,0	111	

Posiimo	n
Resume	n

Tiempo total de soporte 5,78 h

15,97

1,80

22,22

0,6

min

min

h

m/min

Tiempo de perforación

Tiempo inyección

Tiempo total

Rendimiento propuesto de inyeccón