Mostrar el registro sencillo del ítem

dc.contributor.authorUribe-Jongbloed, Alberto
dc.contributor.authorBishop, Paul L.
dc.date.accessioned2023-03-28T21:22:52Z
dc.date.available2023-03-28T21:22:52Z
dc.date.issued2007
dc.identifier.issn1496-2551spa
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/2228
dc.description.abstractA series of experiments were made in order to compare the removal efficiency of a mixture of four PAHs (naphthalene, phenanthrene, pyrene, and benzo[a]pyrene), under different electron acceptor (NO3 −, SO4 −2) and hydrodynamic conditions (stagnation and high shear). In all cases naphthalene showed the highest removal efficiency (from 69% up to 100%) as compared with the other PAHs. The fastest rate was obtained for the denitrifying-high shear condition followed by denitrification-no shear, sulfate-reduction-high shear and the lowest for sulfate reduction-no shear. However, most of the perceived removal of the heavier PAHs could be due to aging. No lag time was observed for the denitrifying experiments, and the denitrification rate was the same regardless of the hydrodynamic condition. A lag time of 64 d was observed under conditions of sulfate reduction and high shear. Sulfate reduction did not commence under no shear conditions. No toxic effect was observed for the four PAH mixture under all the conditions tested.eng
dc.description.abstractDes essais ont été effectués pour comparer l’efficacité d’élimination d’un mélange de quatre HAP (naphtalène, phénanthrène, pyrène et benzo[a]pyrène) sous différentes conditions d’accepteur d’électrons (NO3 −, SO4 −2) et hydrodynamiques (stagnation et fort cisaillement). Dans tous les cas, le naphtalène montrait la meilleure efficacité d’élimination (de 69 % à 100 %) par rapport aux autres HAP. Le taux le plus rapide a été obtenu pour la condition de dénitrification à fort cisaillement, suivie par la dénitrification sans cisaillement, la sulfatoréduction à fort cisaillement et, le plus lent, pour la sulfatoréduction sans cisaillement. Cependant, la plus grande part de l’élimination détectée des HAP les plus lourds pourrait être causée par le vieillissement. Aucun temps mort n’a été observé lors des expériences de dénitrification et le taux de dénitrification était le même, peu importe la condition hydrodynamique. Un temps mort de 64 jours a été remarqué en conditions de sulfatoréduction avec fort cisaillement. La sulfatoréduction doit présenter des conditions de cisaillement pour être effective. Aucun effet toxique n’a été observé pour le mélange des quatre HAP sous toutes les conditions d’essais.fra
dc.description.abstractSe realizó una serie de experimentos para comparar la eficacia de eliminación de una mezcla de cuatro HAPs (naftaleno, fenantreno, pireno y benzo[a]pireno), bajo diferentes aceptores de electrones (NO3 -, SO4 -2) y condiciones hidrodinámicas (estancamiento y alto cizallamiento). En todos los casos, el naftaleno mostró la mayor eficacia de eliminación (desde el 69% hasta el 100%) en comparación con los demás HAP. La tasa más rápida se obtuvo en la condición de desnitrificación-alto cizallamiento seguida de desnitrificación-sin cizalla, sulfato-reducción-alta cizalla y la más baja para sulfato-reducción-sin cizalla. Sin embargo la mayor parte de la eliminación percibida de los HAP más pesados podría deberse al envejecimiento. No se observó ningún retraso en los experimentos de desnitrificación. y la tasa de desnitrificación fue la misma independientemente de la condición hidrodinámica. Se observó un tiempo de retraso de 64 d en condiciones de reducción de sulfato y alto cizallamiento. La reducción de sulfato no comenzó en condiciones sin cizallamiento. de cizallamiento. No se observó ningún efecto tóxico para la mezcla de cuatro HAP en todas las condiciones probadas.spa
dc.format.extent9 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourcehttps://www.icevirtuallibrary.com/doi/epdf/10.1139/s06-057spa
dc.titleComparative study of PAH removal efficiency under absence of molecular oxygen: effect of electron acceptor and hydrodynamic conditionseng
dc.typeArtículo de revistaspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupCentro de Estudios Ambientalesspa
dc.identifier.doi10.1139/s06-057
dc.identifier.eissn1496-256Xspa
dc.publisher.placeCanadáspa
dc.relation.citationendpage376spa
dc.relation.citationissue4spa
dc.relation.citationstartpage367spa
dc.relation.citationvolume6spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalJournal of Environmental Engineering and Scienceeng
dc.relation.referencesAWWA, APHA, and WEF. 1995. Standard methods for the examination of water and wastewater. 19th ed. American Public Health Association, Washington D.C.spa
dc.relation.referencesBedessem, M.E., Swoboda-Colberg, N.G., and Colberg, P.J.S. 1997. Naphthalene mineralization coupled to sulfate reduction in aquiferderived enrichments. FEMS Microbiol. Lett. 152: 213–218.spa
dc.relation.referencesBishop, P.L. 2000. Pollution prevention: fundamentals and practice. McGraw-Hill, New York, N.Y.spa
dc.relation.referencesBispo,A., Jourdain, M.J., and Jauzein, M. 1999. Toxicity and genotoxicity of industrial soils polluted by polycyclic aromatic hydrocarbons (PAHs). Org. Geochem. 30: 947–952.spa
dc.relation.referencesChang, C.C., Tseng, S.K., and Huang, H.K. 1999. Hydrogenotrophic denitrification with immobilizedAlcaligenes eutrophus for drinking water treatment. Bioresour. Technol. 69(1): 53–58.spa
dc.relation.referencesChang, B.V., Chang, J.S., andYuan, S.Y. 2001. Degradation of phenanthrene in river sediment under nitrate-reducing conditions. Bull. Environ. Contam. Toxicol. 67: 898–905.spa
dc.relation.referencesCoates, J.D., Anderson, R.T., and Lovley, D.R. 1996. Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions. Appl. Environ. Microbiol. 62(3): 1099–1101.spa
dc.relation.referencesCoates, J.D., Woodward, J., Allen, J., Philp, P., and Lovley, D.R. 1997. Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Appl. Environ. Microbiol. 63(9): 3589–3593.spa
dc.relation.referencesEriksson, M., Sodersten, E., Yu, Z., Dalhammar, G., and Mohn, W.W. 2003. Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from northern soils. Appl. Environ. Microbiol. 69(1): 275–284.spa
dc.relation.referencesFlere, J.M., and Zhang, T.C. 1999. Nitrate removal with sulfurlimestone autotrophic denitrification processes. J. Environ. Eng. 125(8): 721–729.spa
dc.relation.referencesGalushko, A., Minz, D., Schink, B., and Widdel, F. 1999. Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium. Environ. Microbiol. 1(5): 415–420.spa
dc.relation.referencesGrosser, R.J., Friederich, M., Ward, D.M., and Inskeep, W.P. 2000. Effect of model sorptive phases on phenanthrene biodegradation: different enrichment conditions influence bioavailability and selection of phenanthrene-degrading isolates. Appl. Environ. Microbiol. 66(7): 2695–2702.spa
dc.relation.referencesHatzinger, P.B., and Alexander, M. 1995. Effect of aging of chemicals in soil on their biodegradability and extractability. Environ. Sci. Technol. 29(2): 537–545.spa
dc.relation.referencesHayes, L.A., Nevin, K.P., and Lovley, D.R. 1999. Role of prior exposure on anaerobic degradation of naphthalene and phenanthrene in marine harbor sediments. Org. Geochem. 30: 937–945.spa
dc.relation.referencesJohnson, K., and Ghosh, S. 1998. Feasibility of anaerobic biodegradation of PAHs in dredged river sediments. Water Sci. Technol. 38(7): 41–48.spa
dc.relation.referencesKilbane, J.J., II. 1998. Extractability and subsequent biodegradation of PAHs from contaminated soil. Water Air Soil Pollut. 104: 285–304.spa
dc.relation.referencesKoenig, A., and Liu, L.H. 2001. Kinetic model of autotrophic denitrification in sulphur packed-bed reactors.Water Res. 35(8) 1969–1978.spa
dc.relation.referencesLaGrega, M.D. 2001. Hazardous waste management. McGraw-Hill, Boston, Mass.spa
dc.relation.referencesLampe, D.G., and Zhang, T.C. 1996. Evaluation of sulfur-based autotrophic denitrification. HSRC/WERC Joint Conference on the Environment, Albuquerque, N.M., 21–23 May 1996.spa
dc.relation.referencesLei, L., Khodadoust, A.P., Suidan, M.T., and Tabak, H.H. 2005. Biodegradation of sediment-bound PAHs in field contaminated sediment. Water Res. 39(2–3): 349–361.spa
dc.relation.referencesMacRae, J.D., and Hall, K.J. 1998. Biodegradation of polycyclic aromatic hydrocarbons (PAH) in marine sediment under denitrifying conditions. Water Sci. Technol. 38(11): 177–185.spa
dc.relation.referencesMcNally, D.L., Mihelcic, J.R., and Lueking, D.R. 1999. Biodegradation of mixtures of polycyclic aromatic hydrocarbons under aerobic and nitrate-reducing conditions. Chemosphere, 38(6): 1313–1321.spa
dc.relation.referencesMeckenstock, R.U., Annweiler, E., Michaelis, W., Richnow, H.H., and Schink, B. 2000. Anaerobic naphthalene degradation by sulfatereducing enrichment culture. Appl. Environ. Microbiol. 66(7): 2743–2747.spa
dc.relation.referencesMihelcic, J.R., and Luthy, R.G. 1988. Microbial degradation of acenaphthene and naphthalene under denitrification conditions in soilwater systems. Appl. Environ. Microbiol. 54(5): 1188–1198.spa
dc.relation.referencesQuantin, C., Joner, E.J., Portal, J.M., and Berthelin, J. 2005. PAH dissipation in a contaminated river sediment under oxic and anoxic conditions. Environ. Poll. 134(2): 315–322.spa
dc.relation.referencesRanderath, K., Randerath, E., Zhou, G.D., Supunpong, N., He, L.Y., McDonald, T.J., and Donnelly, K.C. 1999. Genotoxicity of complex PAH mixtures recovered from contaminated lake sediments as assessed by three different methods. Environ. Mol. Mutagen. 33: 303–312.spa
dc.relation.referencesRockne, K.J., Stensel, H.D., Herwig, R.P., and Strand, S.E. 1998. PAH degradation and bioaugmentation by a marine mathanotrophic enrichment. Bioremediation J. 3: 209–222.spa
dc.relation.referencesRockne, K.J., Chee-Sanford, J.C., Sanford, R.A., Hedlund, B.P., Staley, J.T., and Strand, S.E. 2000. Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions. Appl. Environ. Microbiol. 66(4): 1595–1601.spa
dc.relation.referencesRockne, K.J., Chee-Sanford, J.C., Sanford, R.A., Hedlund, B.P., Staley, J.T., and Strand, S.E. 2000. Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions. Appl. Environ. Microbiol. 66(4): 1595–1601.spa
dc.relation.referencesSchmitt, R., Langguth, H.R., Püttmann, W., Rohns, H.P., Eckert, P., and Schubert, J. 1996. Biodegradation of aromatic hydrocarbons under anoxic conditions in a shallow sand and gravel aquifer of the lower Rhine Valley, Germany. Org. Geochem. 25(1/2): 41–50.spa
dc.relation.referencesTabak, H.H., Lazorchak, J.M., Lei, L., Khodadoust, A.P., Antia, J.E., Bagchi, R., and Suidan, M.T. 2003. Studies on bioremediation of polycyclic aromatic hydrocarbon-contaminated sediments: bioavailability, biodegradability, and toxicity issues. Environ. Toxicol. Chem. 22(3): 473–482.spa
dc.relation.referencesWatts, R.J. 1998. Hazardous wastes: sources, pathways, receptors. Wiley, New York, N.Y., USA.spa
dc.relation.referencesWhite, P.A. 2002. The genotoxicity of priority polycyclic aromatic hydrocarbons in complex mixtures. Generic Toxicol. Environ. Mutagen. 515: 85–98.spa
dc.relation.referencesZhang, X., and Young, L.Y. 1997. Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulidogenic consortia. Appl. Environ. Microbiol. 63(12): 4759– 4764.spa
dc.relation.referencesZhang, X., Sullivan, E.R., and Young, L.Y. 2000. Evidence for aromatic ring reduction in the biodegradation pathway of carboxylated naphthalene by a sulfate reducing consortium. Biodegradation, 11: 117–124.spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.armarcBiodegradaciónspa
dc.subject.armarcBiodegradationeng
dc.subject.armarcHidrocarburos aromáticos policíclicosspa
dc.subject.armarcPolycyclic aromatic hydrocarbonseng
dc.subject.proposalAnaerobic systemseng
dc.subject.proposalBiodegradationeng
dc.subject.proposalDenitrificationeng
dc.subject.proposalHydrodynamic conditionseng
dc.subject.proposalPAHeng
dc.subject.proposalSulfate reductioneng
dc.subject.proposalSystèmes anaérobiesfra
dc.subject.proposalBiodégradationfra
dc.subject.proposalDénitrificationfra
dc.subject.proposalConditions hydrodynamiquesfra
dc.subject.proposalHAPfra
dc.subject.proposalSulfatoréductionfra
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem