Mostrar el registro sencillo del ítem

dc.contributor.authorRosell, Jan
dc.contributor.authorSuárez, Raúl
dc.contributor.authorRosales, Carlos
dc.contributor.authorPérez Ruíz, Alexander
dc.date.accessioned2023-05-11T22:05:53Z
dc.date.available2023-05-11T22:05:53Z
dc.date.issued2011
dc.identifier.issn0929-5593spa
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/2324
dc.description.abstractThe paper deals with the problem of motion planning of anthropomorphic mechanical hands avoiding collisions and trying to mimic real human hand postures. The approach uses the concept of “principal motion directions” to reduce the dimension of the search space in order to obtain results with a compromise between motion optimality and planning complexity (time). Basically, the work includes the following phases: capturing the human hand workspace using a sensorized glove and mapping it to the mechanical hand workspace, reducing the space dimension by looking for the most relevant principal motion directions, and planning the hand movements using a probabilistic roadmap planner. The approach has been implemented for a four finger anthropomorphic mechanical hand (17 joints with 13 independent degrees of freedom) assembled on an industrial robot (6 independent degrees of freedom), and experimental examples are included to illustrate its validity.eng
dc.description.abstractEl artículo aborda el problema de la planificación del movimiento de manos mecánicas antropomórficas evitando colisiones e intentando imitar posturas reales de manos humanas. El enfoque utiliza el concepto de "direcciones principales de movimiento" para reducir la dimensión del espacio de búsqueda con el fin de obtener resultados con un compromiso entre la optimalidad del movimiento y la complejidad de la planificación (tiempo). Básicamente, el trabajo incluye las siguientes fases: capturar el espacio de trabajo de la mano humana utilizando un guante sensorizado y mapearlo al espacio de trabajo de la mano mecánica, reducir la dimensión del espacio buscando las direcciones principales de movimiento más relevantes, y planificar los movimientos de la mano utilizando un planificador probabilístico de hojas de ruta. El enfoque se ha aplicado a una mano mecánica antropomórfica de cuatro dedos (17 articulaciones con 13 grados de libertad independientes) montada en un robot industrial (6 grados de libertad independientes), y se incluyen ejemplos experimentales para ilustrar su validez.spa
dc.format.extent16 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherSpringerspa
dc.sourcehttps://link.springer.com/article/10.1007/s10514-011-9232-5#article-infospa
dc.titleAutonomous motion planning of a hand-arm robotic system based on captured human-like hand postureseng
dc.typeArtículo de revistaspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupGrupo de Investigación Ecitrónicaspa
dc.identifier.doihttps://doi.org/10.1007/s10514-011-9232-5
dc.identifier.eissn1573-7527spa
dc.identifier.urlhttps://link.springer.com/article/10.1007/s10514-011-9232-5#article-info
dc.publisher.placeEstados Unidosspa
dc.relation.citationendpage102spa
dc.relation.citationissue1spa
dc.relation.citationstartpage87spa
dc.relation.citationvolume31spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalAutonomous Robotseng
dc.relation.referencesAli, M. S., Kyriakopoulos, K. J., & Stephanou, H. E. (1993). The kinematics of the Anthrobot-2 dextrous hand. In Proc. of the IEEE int. conf. on robotics and automation (Vol. 3, pp. 705–710).spa
dc.relation.referencesBekey, G. A., Tomovic, R., & Zeljkovic, I. (1990). Control architecture for the Belgrade/USC hand (pp. 136–149). New York: Springer.spa
dc.relation.referencesBerenson, D., Diankov, R., Nishiwaki, K., Kagami, S., & Kuffner, J. (2007). Grasp planning in complex scenes. In Proc. of the IEEERAS international conference on humanoid robots.spa
dc.relation.referencesBerenson, D., Srinivasa, S., Ferguson, D., & Kuffner, J. (2009). Manipulation planning on constraint manifolds. In Proc. of the IEEE int. conf. on robotics and automation (pp. 625–632).spa
dc.relation.referencesBiagiotti, L., Lotti, F., Melchiorri, C., & Vassura, G. (2004). How far is the human hand? a review on anthropomorphic robotic endeffectors (Tech. rep.). University of Bologna.spa
dc.relation.referencesBicchi, A. (2000). Hands for dexterous manipulation and robust grasping: a difficult road toward simplicity. IEEE Transactions on Robotics and Automation, 16(6), 652–662.spa
dc.relation.referencesBluethmann, W., Ambrose, R., Diftler, M., Askew, S., Huber, E., Goza, M., Rehnmark, F., Lovchik, C., & Magruder, D. (2003). Robonaut: a robot designed to work with humans in space. Autonomous Robots, 14(2), 179–197.spa
dc.relation.referencesBoor, V., Overmars, M. H., & van der Stappen, A. F. (1999). The Gaussian sampling strategy for probabilistic roadmap planners. In Proc. of the IEEE int. conf. on robotics and automation (pp. 1018–1023).spa
dc.relation.referencesButterfass, J., Fischer, M., Grebenstein, M., Haidacher, S., & Hirzinger, G. (2004). Design and experiences with DLR hand II. In Proc. of the world automation congress (Vol. 15, pp. 105–110).spa
dc.relation.referencesCaffaz, A., & Cannata, G. (1998). The design and development of the DIST-Hand dextrous gripper. In Proc. of the IEEE int. conf. on robotics and automation (Vol. 3, pp. 2075–2080).spa
dc.relation.referencesCheng, H. L., Hsu, D., Latombe, J. C., & Sanchez-Ante, G. (2006). Multi-level free space dilation for sampling narrow passages in prm planning. In Proc. of the IEEE int. conf. on robotics and automation (pp. 1255–1260).spa
dc.relation.referencesChoset, H., Lynch, K. M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L. E., & Thrun, S. (2005). Principles of robot motion. Cambridge: MIT Press.spa
dc.relation.referencesCiocarlie, M. T., & Allen, P. K. (2009). Hand posture subspaces for dexterous robotic grasping. The International Journal of Robotics Research, 28(7), 851–867.spa
dc.relation.referencesCortés, J., & Siméon, T. (2004). Sampling-based motion planning under kinematic loop closure constraints. In Proc. of the 6th int. workshop on the algorithmic foundations of robotics (pp. 59–74).spa
dc.relation.referencesGabiccini, M., & Bicchi, A. (2010). On the role of hand synergies in the optimal choice of grasping forces. In Proc. of robotics: science and systems.spa
dc.relation.referencesGazeau, J. P., Zehloul, S., Arsicault, M., & Lallemand, J. P. (2001). The LMS hand: force and position controls in the aim of the fine manipulation of objects. In Proc. of the IEEE int. conf. on robotics and automation (Vol. 3, pp. 2642–2648).spa
dc.relation.referencesGeraerts, R., & Overmars, M. H. (2006). Sampling and node adding in probabilistic roadmap planners. Robotics and Autonomous Systems, 54, 165–173.spa
dc.relation.referencesGropp, W., Skjellum, A., Lusk, E. (1999). Using MPI: Portable parallel programming with the message-passing interface. Cambridge: MIT Press.spa
dc.relation.referencesHalton, J. (1960). On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numerische Mathematik, 2, 84–90.spa
dc.relation.referencesHsu, D., Jiang, T., Reif, J., & Sun, Z. (2003). The bridge test for sampling narrow passages with probabilistic roadmap planners. In Proc. of the IEEE int. conf. on robotics and automation (pp. 4420–4426).spa
dc.relation.referencesHsu, D., Sanchez-Ante, G., & Sun, Z. (2005). Hybrid PRM sampling with a cost-sensitive adaptive strategy. In Proc. of the IEEE int. conf. on robotics and automation (pp. 3874–3880).spa
dc.relation.referencesHsu, D., Latombe, J. C., & Kurniawati, H. (2006). On the probabilistic foundations of probabilistic roadmap planning. The International Journal of Robotics Research, 25(7), 627–643.spa
dc.relation.referencesJacobsen, S. C., Wood, J. E., Knutti, D. F., & Biggers, K. B. (1984). The UTAH/M.I.T. dextrous hand: work in progress. The International Journal of Robotics Research, 3(4), 21–50.spa
dc.relation.referencesJolliffe, I. (2002). Springer series in statistics. Principal component analysis. Upper Saddle River: Springer.spa
dc.relation.referencesKavraki, LE, & Latombe, J. C. (1994). Randomized preprocessing of configuration for fast path planning. In Proc. of the IEEE int. conf. on robotics and automation (pp. 2138–2145).spa
dc.relation.referencesKavraki, L. E., Svestka, P., Latombe, J. C., & Overmars, M. K. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4), 566–580.spa
dc.relation.referencesKawasaki, H., Komatsu, T., & Uchiyama, K. (2002). Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu hand II. IEEE/ASME Transactions on Mechatronics, 7(3), 296–303.spa
dc.relation.referencesKuffner, J. J., & LaValle, S. M. (2000). RRT-connect: an efficient approach to single-query path planning. In Proc. of the IEEE int. conf. on robotics and automation (pp. 995–1001).spa
dc.relation.referencesKuffner, J. J., Kagami, S., Nishiwaki, K., Inaba, M., & Inoue, H. (2002). Dynamically-stable motion planning for humanoid robots. Autonomous Robots, 12(1), 285–300.spa
dc.relation.referencesKuipers, L., & Niederreiter, H. (2005). Uniform distribution of sequences. New York: Dover.spa
dc.relation.referencesKurniawati, H., & Hsu, D. (2006). Workspace-based connectivity oracle: an adaptive sampling strategy for PRM planning. In S. Akella et al. (Eds.), Algorithmic foundations of robotics VII. Berlin: Springer.spa
dc.relation.referencesLin, L. R., & Huang, H. P. (1996). Mechanism design of a new multifingered robot hand. In Proc. of the IEEE int. conf. on robotics and automation (Vol. 2, pp. 1471–1476).spa
dc.relation.referencesLotti, F., Tiezzi, P., Vassura, G., Biagiotti, L., Palli, G., & Melchiorri, C. (2005). Development of UB hand 3: early results. In Proc. of the IEEE int. conf. on robotics and automation (pp. 4488–4493).spa
dc.relation.referencesLovchik, C. S., Diftler, M. A. (1999). The robonaut hand: a dexterous robot hand for space. In Proc. of the IEEE int. conf. on robotics and automation (Vol. 2, pp. 907–912).spa
dc.relation.referencesLozano-Perez, T. (1987). A simple motion-planning algorithm for general robot manipulators. IEEE Journal of Robotics and Automation, 3(3), 224–238.spa
dc.relation.referencesMurrieta-Cid, R., Tovar, B., & Hutchinson, S. (2005). A samplingbased motion planning approach to maintain visibility of unpredictable targets. Autonomous Robots, 19(3), 285–300.spa
dc.relation.referencesPeña, E., Yang, J., & Abdel-Malek, K. (2005). SantosTM hand: a 25- degree-of-freedom model. In Proc. of SAE digital human modeling for design and engineering, Iowa City, Iowa, USA.spa
dc.relation.referencesPérez, A., & Rosell, J. (2009). A roadmap to robot motion planning software development. Computer Applications in Engineering Education. doi:101002/cae20269.spa
dc.relation.referencesRoa, M., & Suárez, R. (2009). Finding locally optimum force-closure grasps. Robotics and Computer-Integrated Manufacturing, 25(3), 536–544.spa
dc.relation.referencesRodríguez, A., Pérez, A., Rosell, J., & Basañez, L. (2009). Samplingbased path planning for geometrically-constrained objects. In Proc. of the IEEE int. conf. on robotics and automation (pp. 2074– 2079).spa
dc.relation.referencesRosales, C., Ros, L., Porta, J. M., & Suárez, R. (2011). Synthesizing grasp configurations with specified contact regions. The International Journal of Robotics Research, 30(4), 431–443.spa
dc.relation.referencesRosell, J., Sierra, X., Palomo, L., & Suárez, R. (2005). Finding grasping configurations of a dexterous hand and an industrial robot. In Proc. of the IEEE int. conf. on robotics and automation (pp. 1178–1183).spa
dc.relation.referencesRosell, J., Roa, M., Pérez, A., & García, F. (2007). A general deterministic sequence for sampling d-dimensional configuration spaces. Journal of Intelligent and Robotic Systems, 50(4), 361–374.spa
dc.relation.referencesRosell, J., Suárez, R., Rosales, C., García, J. A., & Pérez, A. (2009). Motion planning for high DOF anthropomorphic hands. In Proc. of the IEEE int. conf. on robotics and automation (pp. 4025– 4030).spa
dc.relation.referencesSafonova, A., Hodgins, J. K., & Pollard, N. S. (2004). Synthesizing physically realistic human motion in low-dimensional behaviorspecific spaces. ACM Transactions on Graphics, 23(3), 514–521.spa
dc.relation.referencesSaha, M., Latombe, J. C., Chang, Y. C., & Prinz, F. (2005). Finding narrow passages with probabilistic roadmaps: the small-step retraction method. Autonomous Robots, 19(3), 301–319.spa
dc.relation.referencesSantello, M., Flanders, M., & Soechting, J. F. (1998). Postural hand synergies for tool use. Journal of Neuroscience, 18(23), 10,105– 10,115.spa
dc.relation.referencesSchunk GmbH & Co KG (2006). Schunk anthropomorphic hand. http://www.schunk.com/.spa
dc.relation.referencesShadow Robot Company (2003). Design of a dextrous hand for advanced clawar applications. In Climbing and walking robots and the supporting technologies for mobile machines (pp. 691–698).spa
dc.relation.referencesStilman, M. (2010). Global manipulation planning in robot joint space with task constraints. IEEE Transactions on Robotics, 26(3), 576– 584.spa
dc.relation.referencesSuárez, R., & Grosch, P. (2005). Mechanical hand MA-I as experimental system for grasping and manipulation. In VideoProc. of the IEEE int. conf. on robotics and automation, Barcelona.spa
dc.relation.referencesSuárez, R., Rosell, J., Pérez, A., & Rosales, C. (2009). Efficient search of obstacle-free paths for anthropomorphic hands. In Proc. of the IEEE/RSJ int. conf. on intelligent robots and systems (pp. 1773– 1778).spa
dc.relation.referencesTsoli, A., & Jenkins, O. C. (2007). 2D subspaces for user-driven robot grasping. In Proc. of the RSS 2007 workshop on robot manipulation: sensing and adapting to the real world.spa
dc.relation.referencesvan der Berg, J. P., & Overmars, M. H. (2005). Using workspace information as a guide to non-uniform sampling in probabilistic roadmap planners. The International Journal of Robotics Research, 24(12), 1055–1071.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.armarcManos robóticasspa
dc.subject.armarcRobot handseng
dc.subject.armarcManipuladores (Mecanismo)spa
dc.subject.armarcManipulators (Mechanism)eng
dc.subject.armarcRobóticaspa
dc.subject.armarcRoboticseng
dc.subject.proposalMotion planningeng
dc.subject.proposalGraspingeng
dc.subject.proposalManipulationeng
dc.subject.proposalMechanical handseng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem