Show simple item record

dc.contributor.advisorCastellanos Tache, German Darío
dc.contributor.authorDetemmerman, Thomas
dc.date.accessioned2023-11-15T17:55:18Z
dc.date.available2023-11-15T17:55:18Z
dc.date.issued2020
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/2728
dc.description.abstractSociety relies more than ever on the availability of wireless networks. Due to the mobility of a UAV, a UAV-aided network is able to provide this necessary access in case the existing terrestrial network gets damaged. Therefore, each UAV will be equipped with a femtocell base station. However, the public is concerned about the potential health effects of the electromagnetic radiation caused by these networks. Therefore, mobile devices and base stations have to comply to strict legislation enforced by the government. This research investigates how different scenarios influence power consumption, electromagnetic exposure and specific absorption rate. These different scenarios are defined by various flying heights, number of UAVs available and population sizes. Further, the proper microstrip patch antenna is defined and attached to the UAV. The antenna will be responsible for the communication between the UAV and the users it covers. Its performance is compared to an equivalent isotropic radiator. Thereafter, the network will be optimized towards goals like electromagnetic exposure of the average user or power consumption of the entire network; which results in conflicting requirements. To accomplish this goal, the capacity based deployment tool of the WAVES research group at Ghent University will be extended so it would be able to calculate electromagnetic exposure. Further, the tool now also provides support to optimize the networks towards electromagnetic exposure or power consumption. It looks from the results that the microstrip patch antenna with an aperture angle of 90° is a suitable starting point for an antenna. This directional antenna focusses electromagnetic radiation where it is needed. Unwanted sideways radiation is therefore reduced by design. The sufficiently large aperture angle covers enough users. The antenna is recommended to be deployed in a power consumption optimized network since less drones are required and therefore iv also less expensive. The optimal flying height for the city centre of Ghent is believed to be situated at 80 metres since lower flying heights require much more UAVs and higher flying heights have a negative influence on the electromagnetic exposure. When this configuration is applied to a network with 224 users, the average user will experience a SAR of around 0.2 µW/kg and a downlink electromagnetic exposure of 114 mV /m. The network will require on average 96 UAVs with a total power consumption of 69.5 W, which is 7.24 W per UAV.eng
dc.description.abstractDe hedendaagse samenleving vertrouwt meer dan ooit op de aanwezigheid van draadloze netwerken. Dankzij de mobiliteit van drones kan een drone-gestuurd netwerk de nodige mobiele data voorzien indien het bestaande netwerk beschadigd is. Elke drone wordt daarom uitgerust met een femtocell base station. Er is echter een groeiende vrees voor mogelijke gezondheidseffecten veroorzaakt door deze mobiele netwerken. De overheid stelt strikte wetgevingen op waaraan deze mobiele netwerken dienen te voldoen. Dit onderzoek bekijkt hoe verschillende scenario’s het energieverbruik, elektromagnetische blootstelling en specifieke absorptietempo kunnen beïnvloeden. Drie verschillende scenario’s zijn gedefinieerd waarbij verschillende vlieghoogtes, aantal drones en populatiegroottes onderzocht worden. Verder is er ook een microstrip patch antenne gedefinieerd en bevestigd op een drone. De antenne zal de communicatie tussen de drone en de gebruikers verzorgen. De performantie van deze antenne zal vergeleken worden met een isotrope antenne. Vervolgens zal het netwerk geoptimaliseerd worden naar elektromagnetische straling van het individu of naar het energieverbruik van het gehele netwerk. Deze twee doelstellingen resulteren in tegenstrijdige vereisten. Om dit doel te bereiken is de capacity based deployment tool van de onderzoeksgroep WAVES op de Universiteit Gent verder uitgebreid zodoende dat elektromagnetische straling berekend kan worden. Verder is de tool nu ook in staat om te optimaliseren naar elektromagnetische straling of energieverbruik. Uit de resultaten blijkt dat een microstrip patch antenne met een openingshoek van 90° een geschikt startpunt is voor een antenne. Deze directionele antenne focust de elektromagnetische straling daar waar het nodig is. Ongewenste zijwaartse straling wordt gereduceerd door het design. Het wordt aangeraden om de antenne toe te passen in een netwerk dat energieverbruik minimaliseert omdat hierbij minder drones nodig zijn en daardoor goedkoper is. De optimale vlieghoogte voor het stadscentrum in Gent bevindt zich rond 80 meter. Lagere vlieghoogtes vereisen veel meer drones terwijl hogere vlieghoogtes de elektromagnetische straling laten toenemen. Wanneer deze configuratie toegepast wordt op een netwerk met 224 gebruikers zal de gewogen gemiddelde gebruiker een SAR ondervinden van 0.2 µW/kg en een downlink elektromagnetische straling van 114 mV /m. Het netwerk zal hiervoor gemiddeld 96 drones vereisen met een totaal energieverbruik van 69.5 W. Dat is 7.24 W per drone. (Neerlandés)deu
dc.description.abstractLa sociedad depende más que nunca de la disponibilidad de redes inalámbricas. Debido a la movilidad de los UAV, una red asistida por UAV puede proporcionar este acceso necesario en caso de que la red terrestre existente resulte dañada. Por ello, cada UAV estará equipado con una estación base femtocelular. Sin embargo, la población está preocupada por los posibles efectos sobre la salud de la radiación electromagnética causada por estas redes. Por ello, los dispositivos móviles y las estaciones base tienen que deben cumplir una estricta legislación gubernamental. Esta investigación estudia cómo influyen distintos escenarios en el consumo de energía, la exposición electromagnética y la tasa de absorción específica. Estos distintos escenarios se definen en función de las distintas alturas de vuelo, el número de UAV disponibles y el tamaño de la población. También se define la antena de parche microstrip adecuada y se fija al UAV. La antena será responsable de la comunicación entre el UAV y los usuarios que cubre. Su rendimiento se compara con el de un radiador isotrópico equivalente. A partir de ahí, la red se optimizará en función de objetivos como la exposición electromagnética del usuario medio o el consumo de energía de toda la red, lo que da lugar a requisitos contradictorios. Para lograr este objetivo, se ampliará la herramienta de despliegue basada en la capacidad del grupo de investigación WAVES de la Universidad de Gante para que pueda calcular la exposición electromagnética. Además, la herramienta ahora también ofrece soporte para optimizar las redes en función de la exposición electromagnética o el consumo de energía. De los resultados se desprende que la antena de parche microstrip con un ángulo de apertura de 90° es un punto de partida adecuado para una antena. Esta antena direccional concentra la radiación electromagnética donde se necesita. Por tanto, la radiación lateral no deseada se reduce por diseño. El ángulo de apertura suficientemente grande cubre suficientes usuarios. Se recomienda desplegar la antena en una red de consumo energético optimizado, ya que se necesitan menos vehículos aéreos no tripulados y, por tanto, también son menos costosos. Se cree que la altura de vuelo óptima para el centro de la ciudad de Gante está situada a 80 metros, ya que alturas de vuelo inferiores requieren muchos más UAV y alturas de vuelo superiores tienen una influencia negativa en la exposición electromagnética. Cuando esta configuración se aplica a una red con 224 usuarios, el usuario medio experimentará un SAR de alrededor de 0,2 µW/kg y una exposición electromagnética de enlace descendente de 114 mV /m. La red necesitará una media de 96 vehículos aéreos no tripulados con un consumo total de energía de 69,5 W, es decir, 7,24 W por vehículo aéreo no tripulado.spa
dc.format.extent130 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.language.isodeuspa
dc.publisherGhent Universityspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourcehttps://lib.ugent.be/en/catalog?q=Thomas+Detemmermanspa
dc.titleEvaluating Human Electromagnetic Exposure in a UAV-aided Networkeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupGrupo de Investigación Ecitrónicaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Informáticaspa
dc.identifier.urlhttps://lib.ugent.be/en/catalog?q=Thomas+Detemmerman
dc.publisher.facultyMaster of Science in Industrial Sciences: Computer Sciencespa
dc.publisher.placeBélgicaspa
dc.publisher.programMaestría en Informáticaspa
dc.relation.indexedN/Aspa
dc.relation.references“kaart van mobiel netwerkbereik.” https://www.test-aankoop.be/hightech/gsms-ensmartphones/module/kaart-van-mobiel-netwerkbereik. Accessed: 03-03-2020.spa
dc.relation.references“Vijf jaar geleden sloeg het noodlot toe op pukkelpop,” Het nieuwsblad, 2016.spa
dc.relation.references“Base overschreed stralingsnormen na aanslagen,” De standaard, 2016.spa
dc.relation.referencesL. Hardell and C. Sage, “Biological effects from electromagnetic field exposure and public exposure standards,” Biomedicine and Pharmacotherapy, vol. 62, no. 2, pp. 104 – 109, 2008.spa
dc.relation.references“What are electromagnetic fields.” https://www.who.int/peh-emf/about/WhatisEMF/ en/index1.html. Accessed: 15-10-2019.spa
dc.relation.referencesS. Thomas and T. Albertina, “Health scares slow the rollout of 5g cell towers in europe,” Bloomberg. Accessed: 25-05-2020.spa
dc.relation.references“Elektromagnetische velden en gezondheid: Uw wegwijzer in het elektromagnetische landschap,” Federale overheidsdienst: volksgezondheid, veiligheid van de voedselketen en leefmilieu, vol. 5, 2014.spa
dc.relation.references“Normen zendantennes.” https://omgeving.vlaanderen.be/normen-zendantennes. Accessed: 19-03-2020.spa
dc.relation.referencesA. Ahlbom, U. Bergqvist, J. Bernhardt, J. Cesarini, M. Grandolfo, M. Hietanen, A. Mckinlay, M. Repacholi, D. H. Sliney, J. A. Stolwijk, et al., “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 ghz),” Health physics, vol. 74, no. 4, pp. 494–521, 1998.spa
dc.relation.referencesW. H. Bailey, R. Bodemann, J. Bushberg, C.-K. Chou, R. Cleveland, A. Faraone, K. R. Foster, K. E. Gettman, K. Graf, T. Harrington, et al., “Synopsis of ieee std c95. 1™-2019 “ieee standard for safety levels with respect to human exposure to electric, magnetic, and electromagnetic fields, 0 hz to 300 ghz”,” IEEE Access, vol. 7, pp. 171346–171356, 2019.spa
dc.relation.referencesE. Commission, “Council recommendation of 12 july 1999 on the limitation of exposure of the general public to electromagnetic fields (0 hz to 300 ghz),” Official Journal of the European Communities, vol. 59, 1999.spa
dc.relation.references“Wireless devices.” https://www.health.belgium.be/en/wireless-devices. Accessed: 13-05-2020.spa
dc.relation.referencesA.-K. Lee, S.-E. Hong, M. Taki, K. Wake, and H. Do Choi, “Comparison of different sar limits in sam phantom for mobile phone exposure,” in 2018 Asia-Pacific Microwave Conference (APMC), pp. 687–689, IEEE, 2018.spa
dc.relation.references“iphone 11 pro rf exposure information.” https://www.apple.com/legal/rfexposure/ iphone12,3/en/. Accessed: 13-05-2020.spa
dc.relation.references“Sar information.” https://www.samsung.com/sar/sarMain. Accessed: 13-05-2020.spa
dc.relation.referencesD. Plets, W. Joseph, K. Vanhecke, and L. Martens, “Exposure optimization in indoor wireless networks by heuristic network planning,” Progress In Electromagnetics Research, vol. 139, pp. 445–478, 01 2013.spa
dc.relation.referencesM. Deruyck, E. Tanghe, D. Plets, L. Martens, and W. Joseph, “Optimizing lte wireless access networks towards power consumption and electromagnetic exposure of human beings,” Computer Networks, vol. 94, 12 2015.spa
dc.relation.referencesD. Plets, W. Joseph, S. Aerts, K. Vanhecke, G. Vermeeren, and L. Martens, “Prediction and comparison of downlink electric-field and uplink localised sar values for realistic indoor wireless planning,” Radiation Protection Dosimetry, vol. 162, no. 4, pp. 487–498, 2014.spa
dc.relation.referencesD. Plets, W. Joseph, K. Vanhecke, and L. Martens, “Downlink electric-field and uplink sar prediction algorithm in indoor wireless network planner,” in The 8th European Conference on Antennas and Propagation (EuCAP 2014), pp. 2457–2461, IEEE, 2014.spa
dc.relation.referencesS. Kuehn, S. Pfeifer, B. Kochali, and N. Kuster, “Modelling of total exposure in hypothetical 5g mobile networks for varied topologies and user scenarios,” Final Report of Project CRR816, Available on line at: https://tinyurl. com/r6z2gqn, 2019.spa
dc.relation.referencesD. Plets, W. Joseph, K. Vanhecke, G. Vermeeren, J. Wiart, S. Aerts, N. Varsier, and L. Martens, “Joint minimization of uplink and downlink whole-body exposure dose in indoor wireless networks,” BioMed research international, vol. 2015, 2015.spa
dc.relation.referencesZ. Mahfouz, A. Gati, D. Lautru, J. Wiart, and V. F. Hanna, “Sar assessment and analysis of cumulative body exposure to multi transmitters from a mobile phone,” in 2012 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), pp. 77–80, IEEE, 2012.spa
dc.relation.referencesC. Lazarescu, I. Nica, and V. David, “Sar in human head due to mobile phone exposure,” in 2011 E-Health and Bioengineering Conference (EHB), pp. 1–4, IEEE, 2011.spa
dc.relation.referencesG. Bit-Babik and A. Faraone, “Standardization of sar simulation techniques for rf exposure compliance in and around vehicles,” in 2013 7th European Conference on Antennas and Propagation (EuCAP), pp. 1984–1986, IEEE, 2013.spa
dc.relation.referencesE. Piuzzi, P. Bernardi, M. Cavagnaro, S. Pisa, and J. C. Lin, “Analysis of adult and child exposure to uniform plane waves at mobile communication systems frequencies (900 mhz–3 ghz),” IEEE transactions on electromagnetic compatibility, vol. 53, no. 1, pp. 38–47, 2010.spa
dc.relation.referencesA. Hirata, O. Fujiwara, T. Nagaoka, and S. Watanabe, “Variability of whole-body average sar in human models for far-field exposures,” in 2008 Asia-Pacific Microwave Conference, pp. 1–4, IEEE, 2008.spa
dc.relation.referencesT. Shiina and K. Yamazaki, “Assessment of human exposure to radiofrequency electromagnetic fields in the vicinity of smart meter at 920 mhz and 2.45 ghz,” in 2019 Joint International Symposium on Electromagnetic Compatibility, Sapporo and Asia-Pacific International Symposium on Electromagnetic Compatibility (EMC Sapporo/APEMC), pp. 744–747, IEEE, 2019.spa
dc.relation.referencesA. Gati, E. Conil, M.-F. Wong, and J. Wiart, “Duality between uplink local and downlink whole-body exposures in operating networks,” IEEE transactions on electromagnetic compatibility, vol. 52, no. 4, pp. 829–836, 2010.spa
dc.relation.referencesY. Zeng, Q. Wu, and R. Zhang, “Accessing from the sky: A tutorial on uav communications for 5g and beyond,” Proceedings of the IEEE, vol. 107, no. 12, pp. 2327–2375, 2019.spa
dc.relation.referencesY. Kawamoto, H. Nishiyama, N. Kato, F. Ono, and R. Miura, “Toward future unmanned aerial vehicle networks: Architecture, resource allocation and field experiments,” IEEE Wireless Communications, vol. 26, no. 1, pp. 94–99, 2018.spa
dc.relation.referencesR. Gangula, O. Esrafilian, D. Gesbert, C. Roux, F. Kaltenberger, and R. Knopp, “Flying rebots: First results on an autonomous uav-based lte relay using open airinterface,” in 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5, IEEE, 2018.spa
dc.relation.referencesM. Deruyck, J. Wyckmans, W. Joseph, and L. Martens, “Designing uav-aided emergency networks for large-scale disaster scenarios,” EURASIP Journal on Wireless Communications and Networking, vol. 2018, 12 2018.spa
dc.relation.referencesG. Castellanos, M. Deruyck, L. Martens, and W. Joseph, “Performance evaluation of directlink backhaul for uav-aided emergency networks,” Sensors, vol. 19, no. 15, p. 3342, 2019.spa
dc.relation.referencesM. Mozaffari, W. Saad, M. Bennis, Y.-H. Nam, and M. Debbah, “A tutorial on uavs for wireless networks: Applications, challenges, and open problems,” IEEE communications surveys & tutorials, vol. 21, no. 3, pp. 2334–2360, 2019.spa
dc.relation.referencesM. Mozaffari, A. T. Z. Kasgari, W. Saad, M. Bennis, and M. Debbah, “Beyond 5g with uavs: Foundations of a 3d wireless cellular network,” IEEE Transactions on Wireless Communications, vol. 18, no. 1, pp. 357–372, 2018.spa
dc.relation.referencesM. Deruyck, A. Marri, S. Mignardi, L. Martens, W. Joseph, and R. Verdone, “Performance evaluation of the dynamic trajectory design for an unmanned aerial base station in a single frequency network,” in 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1–7, IEEE, 2017.spa
dc.relation.referencesH. Huang and A. V. Savkin, “A method for optimized deployment of unmanned aerial vehicles for maximum coverage and minimum interference in cellular networks,” IEEE Transactions on Industrial Informatics, vol. 15, no. 5, pp. 2638–2647, 2018.spa
dc.relation.referencesA. V. Savkin and H. Huang, “Deployment of unmanned aerial vehicle base stations for optimal quality of coverage,” IEEE Wireless Communications Letters, vol. 8, no. 1, pp. 321– 324, 2018.spa
dc.relation.referencesQ. Wu, L. Liu, and R. Zhang, “Fundamental trade-offs in communication and trajectory design for uav-enabled wireless network,” IEEE Wireless Communications, vol. 26, no. 1, pp. 36–44, 2019.spa
dc.relation.referencesC. T. Cicek, H. Gultekin, B. Tavli, and H. Yanikomeroglu, “Uav base station location optimization for next generation wireless networks: Overview and future research directions,” in 2019 1st International Conference on Unmanned Vehicle Systems-Oman (UVS), pp. 1–6, IEEE, 2019.spa
dc.relation.referencesJ. Wyckmans, W. p. v. Joseph, and L. c. v. Martens, “Emergency ad hoc networks through mobile base stations,” 2016.spa
dc.relation.referencesA. Rizwan, D. Biswas, and V. Ramachandra, “Impact of uav structure on antenna radiation patterns at different frequencies,” in 2017 IEEE International Conference on Antenna Innovations & Modern Technologies for Ground, Aircraft and Satellite Applications (iAIM), pp. 1–5, IEEE, 2017.spa
dc.relation.referencesY. Zheng, J. Zhou, W. Wang, and M. Chen, “A low-profile broadband circularly polarized antenna array for uav ground-to-air communication,” in 2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP), pp. 219–220, IEEE, 2018.spa
dc.relation.referencesC. Sairam, T. Khumanthem, S. Ahirwar, and S. Singh, “Broadband blade antenna for airborne applications,” in 2011 Annual IEEE India Conference, pp. 1–4, IEEE, 2011.spa
dc.relation.referencesB. A. Arand, R. Shamsaee, and B. Yektakhah, “Design and fabrication of a broadband blade monopole antenna operating in 30 mhz–600 mhz frequency band,” in 2013 21st Iranian Conference on Electrical Engineering (ICEE), pp. 1–3, IEEE, 2013.spa
dc.relation.referencesM. Nosrati, A. Jafargholi, R. Pazoki, and N. Tavassolian, “Broadband slotted blade dipole antenna for airborne uav applications,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 8, pp. 3857–3864, 2018.spa
dc.relation.referencesM. Nosrati, A. Jafargholi, and N. Tavassolian, “A broadband blade dipole antenna for uav applications,” in 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), pp. 1777–1778, IEEE, 2016.spa
dc.relation.referencesL. Akhoondzadeh-Asl, J. Hill, J.-J. Laurin, and M. Riel, “Novel low profile wideband monopole antenna for avionics applications,” IEEE transactions on antennas and propagation, vol. 61, no. 11, pp. 5766–5770, 2013.spa
dc.relation.referencesM. Park and J. Jung, “An analysis of communication performance according to antenna directionality in uav operation environment,” in 2010 2nd IEEE InternationalConference on Network Infrastructure and Digital Content, pp. 854–857, IEEE, 2010.spa
dc.relation.referencesI. Singh and V. Tripathi, “Micro strip patch antenna and its applications: a survey,” Int. J. Comp. Tech. Appl, vol. 2, no. 5, pp. 1595–1599, 2011.spa
dc.relation.referencesK. Kashwan, V. Rajeshkumar, T. Gunasekaran, and K. S. Kumar, “Design and characterization of pin fed microstrip patch antennae,” in 2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), vol. 4, pp. 2258–2262, IEEE, 2011.spa
dc.relation.referencesS. S. Siddiq, G. Karthikeya, T. Tanjavur, and N. Agnihotri, “Microstrip dual band millimeter-wave antenna array for uav applications,” in 2016 21st International Conference on Microwave, Radar and Wireless Communications (MIKON), pp. 1–4, IEEE, 2016.spa
dc.relation.referencesX. Sun, R. Blázquez-García, A. García-Tejero, J. M. Fernández-González, M. BurgosGarcía, and M. Sierra-Castañer, “Circular array antenna tor uav-uav communications,” in 2017 11th European Conference on Antennas and Propagation (EUCAP), pp. 2025–2028, IEEE, 2017.spa
dc.relation.referencesA. Sudarsan and A. Prabhu, “Design and development of microstrip patch antenna,” International Journal of Antennas (JANT) Vol, vol. 3, 2017.spa
dc.relation.referencesT. K. Sarkar, Zhong Ji, Kyungjung Kim, A. Medouri, and M. Salazar-Palma, “A survey of various propagation models for mobile communication,” IEEE Antennas and Propagation Magazine, vol. 45, no. 3, pp. 51–82, 2003.spa
dc.relation.references“Specific absorption rate (sar) for cellular telephones.” https://www.fcc.gov/general/ specific-absorption-rate-sar-cellular-telephones. Accessed: 27-03-2020.spa
dc.relation.referencesA. Christ, M.-C. Gosselin, M. Christopoulou, S. Kühn, and N. Kuster, “Age-dependent tissue-specific exposure of cell phone users,” Physics in Medicine & Biology, vol. 55, no. 7, p. 1767, 2010.spa
dc.relation.referencesP. Joshi, D. Colombi, B. Thors, L.-E. Larsson, and C. Törnevik, “Output power levels of 4g user equipment and implications on realistic rf emf exposure assessments,” IEEE Access, vol. 5, pp. 4545–4550, 2017.spa
dc.relation.references“Bundesamt für strahlenschutz.” http://www.bfs.de/SiteGlobals/Forms/Suche/BfS/ EN/SARsuche_Formular.html. Accessed: 14-10-2019.spa
dc.relation.referencesR. Mullner, C. F. Ball, K. Ivanov, J. Lienhart, and P. Hric, “Contrasting open-loop and closed-loop power control performance in utran lte uplink by ue trace analysis,” in 2009 IEEE International Conference on Communications, pp. 1–6, IEEE, 2009.spa
dc.relation.referencesM. Lauridsen, A. R. Jensen, and P. Mogensen, “Reducing lte uplink transmission energy by allocating resources,” in 2011 IEEE Vehicular Technology Conference (VTC Fall), pp. 1–5, 2011.spa
dc.relation.referencesN. Bhatia et al., “Survey of nearest neighbor techniques,” arXiv preprint arXiv:1007.0085, 2010.spa
dc.relation.referencesS. Dhanabal and S. Chandramathi, “A review of various k-nearest neighbor query processing techniques,” International Journal of Computer Applications, vol. 31, no. 7, pp. 14–22, 2011.spa
dc.relation.referencesJ. L. Bentley, “Multidimensional binary search trees used for associative searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalDeployment tooleng
dc.subject.proposalElectromagnetic exposureeng
dc.subject.proposalLTE Microstrip patch antennaeng
dc.subject.proposalPower consumptioneng
dc.subject.proposalRadiation patterneng
dc.subject.proposalSpecific absorption rate (SAR)eng
dc.subject.proposalUAVeng
dc.subject.proposalUnmanned aerial base stations Wireless access networkeng
dc.subject.proposalEmergency networkeng
dc.subject.proposalLTEdeu
dc.subject.proposalElektromagnetische blootstellingdeu
dc.subject.proposalEnergieverbruikdeu
dc.subject.proposalDronedeu
dc.subject.proposalFemtocelldeu
dc.subject.proposalMicrostrip patch antennedeu
dc.subject.proposalStralingspatronendeu
dc.subject.proposalSpecifiek absorptietempo (SAT)deu
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/