Optimización del Problema de Ruteo y Programación de Buses Escolares con Restricciones de Congestión de Tráfico para Políticas de Rutas Compartidas (Mixed-Load) e Independientes (Single-Load)

Germán Ricardo Rodríguez Parra
Ingeniero Industrial

Escuela Colombiana de Ingeniería Julio Garavito
Decanatura de Ingeniería Industrial
Maestría en Ingeniería Industrial
Bogotá D.C., Colombia
2017
Optimización del Problema de Ruteo y Programación de Buses Escolares con Restricciones de Congestión de Tráfico para Políticas de Rutas Compartidas (Mixed-Load) e Independientes (Single-Load)

Germán Ricardo Rodríguez Parra
Ingeniero Industrial

Trabajo de investigación para optar al título de Magíster en Ingeniería Industrial

Director
Angélica Sarmiento Lepesqueur
Ingeniera Industrial, M. Sc.

Co-Director
William Javier Guerrero
Ingeniero Industrial, PhD.

Escuela Colombiana de Ingeniería Julio Garavito
Decanatura de Ingeniería Industrial
Maestría en Ingeniería Industrial
Bogotá D.C., Colombia
2017
AGRADECIMIENTOS

Agradezco a mi familia, a mi hijo Martín, a mi madre y a mi hermana por acompañarme durante el desarrollo de este proyecto; su apoyo incondicional fue de gran ayuda para poder llevar esta investigación a un feliz término.

Asimismo, agradezco especialmente a mi directora Angélica Sarmiento y a mi codirector William Guerrero por el acompañamiento, consejos y sugerencias durante todo este proceso. Ambos, con su amplio conocimiento, aportaron significativamente en la presente investigación. Del mismo modo, agradezco a las instituciones que ellos representan: la Escuela Colombiana de Ingeniería Julio Garavito y la Universidad de la Sabana, respectivamente.

Además, agradezco a mi gran amigo y filólogo Simón Balsero por su cooperación en la revisión de estilo y traducción del artículo científico que se elaboró con base en esta tesis de maestría. Al igual, agradezco al Ingeniero David Montaño por su colaboración en el desarrollo del algoritmo de la heurística propuesta.

Por último, doy gracias a todo el cuerpo de profesores del programa de Maestría en Ingeniería Industrial de la Escuela Colombiana de Ingeniería, así como a mis compañeros de programa, ya que el conocimiento adquirido durante el desarrollo de los diferentes cursos contribuyó significativamente para poder llevar a cabo esta investigación.

“Solos llegamos más rápido; juntos llegamos más lejos”
TABLA DE CONTENIDO

AGRADECIMIENTOS .. 4
LISTA DE FIGURAS ... 6
LISTA DE TABLAS ... 7
RESUMEN .. 8
ABSTRACT ... 8

1. INTRODUCCIÓN .. 9
2. OBJETIVOS Y PREGUNTA DE INVESTIGACIÓN .. 12
 2.1. Pregunta de Investigación .. 12
 2.2. Objetivos ... 13
 2.2.1. Objetivo General .. 13
 2.2.2. Objetivo Específicos ... 13
3. ESTADO DEL ARTE ... 13

4. FORMULACIÓN MATEMÁTICA DEL PROBLEMA ... 18
 4.1. Formulación Del Problema De Ruteo Y Programación De Buses Escolares Para Un Sistema De Rutas Independientes “Single Load” .. 18
 4.2. Formulación Del Problema De Ruteo Y Programación De Buses Escolares Para Un Sistema De Rutas Compartidas “Mixe Load” .. 22

5. DESARROLLO MÉTODO HEURÍSTICO .. 24

6. RESULTADOS .. 27
 6.1. Resultados Método Exacto ... 28
 6.1.1. Estrategia de rutas independientes (single load) .. 29
 6.1.2. Estrategia de rutas compartidas (mixed load) ... 32
 6.2. Resultados Método heurístico .. 36
 6.2.1. Estrategia de rutas independientes (single load) .. 37
 6.2.2. Estrategia de rutas compartidas (mixed load) ... 40

7. CONCLUSIONES E INVESTIGACIONES FUTURAS .. 43

REFERENCIAS .. 44

ANEXOS .. 46
 Anexo 1: Detalle Generación Instancia Aleatoria ... 46
 Anexo 2: Detalle de los Resultados Instancias Modelos Single Load – Método Exacto 47
 Anexo 3: Detalle Construcción Instancia Mixed Load .. 50
 Anexo 4: Detalle de los Resultados Instancias Modelos Single Load – Método Heurístico 51
LISTA DE FIGURAS

Figura 1. Mapa del Norte de Bogotá – Zona Colegios. Fuente: Google MAPS

Figura 2. Ejemplo de Grafo del Sistema de Rutas Independientes. Fuente: Elaboración Propia

Figura 3. Ejemplo de Grafo del Sistema de Rutas Compartidas. Fuente: Elaboración Propia

Figura 4. Ejemplo Ingreso Buses Autopista Rutas ML (Mixed Load) y SL (Single Load). Fuente: Elaboración Propia

Figura 5. Ejemplo de cálculo de número de buses objetivo. Fuente: Elaboración propia

Figura 6. Ejemplo de generación de clusters homogéneos. Fuente: Elaboración propia

Figura 7. Ejemplo construcción de rutas. Fuente: Elaboración propia

Figura 8. Ejemplo aplicación heurística LPT. Fuente: Elaboración propia

Figura 9. Ejemplo secuenciación aplicando heurística LPT. Fuente: Elaboración propia

Figura 10. Diagrama de flujo heurística desarrollada. Fuente: Elaboración propia

Figura 13. Tiempos de Ejecución Modelos Base y CDV. Fuente: Elaboración Propia

Figura 17. Tiempo Llegada Buses a Autopista. Estrategias SL y ML. Fuente: Elaboración Propia

LISTA DE TABLAS

Tabla 1. Variaciones de las características del SBRP. Fuente: Tomado y adaptado de (Park & Kim, 2010) ... 14
Tabla 2. Resumen Variaciones Revisión Literatura. Fuente: Elaboración Propia .. 16
Tabla 3. Clasificación Resumen Revisión Literatura. Fuente: Elaboración Propia ... 17
Tabla 4. Resumen Artículos Cross-Dock. Fuente: Elaboración propia .. 17
Tabla 5. Tiempos Ruta 1 – Instancia 27-12. Fuente: Elaboración Propia .. 30
Tabla 7. Resumen Resultados Consolidados Instancias Modelo Single Load - (N.S.E.: No solución encontrada) - Fuente: Elaboración Propia ... 31
Tabla 8. Tiempos Ruta 1 – Solución Single Load – Colegio1. Fuente: Elaboración Propia ... 34
Tabla 13. Resumen Resultados Instancias Modelo MLCDV y Comparativo con Resultados SLCDV. Fuente: Elaboración Propia ... 36
Tabla 15. Tiempos Ruta 2 – Instancia 27-12. Fuente: Elaboración Propia .. 38
Tabla 17. Resultados Instancias 100 Estudiantes .. 40
Tabla 18. Tiempos Ruta 1 – InstanciaML6-18 – Método Heurístico. Fuente: Elaboración Propia 41
Tabla 19. Tiempos Ruta 1 – InstanciaML6-18 – Método Heurístico. Fuente: Elaboración Propia 41
Tabla 20. Tiempos Ruta 1 – InstanciaML6-18 – Método Heurístico. Fuente: Elaboración Propia 41
Tabla 22. Resumen Resultados Instancias Modelo Base (OMM: Out Of Memory; NSE: No solución encontrada). Fuente: Elaboración Propia ... 48
Tabla 23. Resumen Resultados Instancias Modelo CDV (OMM: Out Of Memory; NSE: No solución encontrada). Fuente: Elaboración Propia ... 50
Tabla 24. Detalle de Coordenadas Instancia7-6. Fuente: Elaboración Propia .. 50
Tabla 25. Detalle de Coordenadas Instancia8-6. Fuente: Elaboración Propia .. 50
RESUMEN

El diseño de la operación de transporte para estudiantes tiene retos importantes, específicamente en el norte de la ciudad de Bogotá se presenta una agrupación significativa de colegios y existe una única vía que conecta esta zona de colegios con las zonas residenciales. Como es natural, la congestión vehicular es elevada, generando largos tiempos de espera en los buses para los niños, altos costos de operación para los colegios, y problemas de movilidad en la ciudad. Este trabajo busca estimar los impactos de implementación de una estrategia de cooperación entre operadores logísticos de transporte escolar, a través de un modelo matemático de programación entera mixta, con el fin de encontrar el diseño óptimo de rutas de buses escolares para una red con la tipología que describe el sistema vial que conecta diferentes zonas residenciales con los colegios del norte de la ciudad de Bogotá, Colombia.

El modelo matemático que se desarrolla incluye la secuencia ordenada de los buses en el nodo que representa el paso por la autopista (nodo que comunica los hogares de los estudiantes con los centros educativos), de tal forma que se contribuya a la disminución de la congestión vehicular de esta zona, al generar una planeación y programación óptima de rutas.

Se definen dos modelos de programación entera mixta: rutas independientes (estudiantes de diferentes colegios no pueden compartir bus) y rutas compartidas (estudiantes de diferentes colegios pueden compartir bus). Estos modelos buscan minimizar el costo total de la operación utilizando una flota de buses homogénea que permita satisfacer los requerimientos de los colegios. Se presentan los resultados de ambos modelos (Single Load y Mixed Load) con los dos métodos propuestos (exacto y heurístico) y se realiza un análisis comparativo de los mismos.

ABSTRACT

The transport operation design for students has important challenges. This is the case of the north of the city of Bogotá, where an important cluster of schools is located in the same zone, but there is only one road that connects these school zones to residential zones. For this reason, the traffic congestion is high, which generates long travel times of students in a bus, high operation costs for schools, and mobility problems for the city. This paper seeks to estimate the implementation impacts of a cooperative strategy among logistic operators of school transportation by using a mixed integer programming mathematical model, to find the optimal design of school routes on a network with the topology that describes the road system that connects different residential zones with schools in the north of the city of Bogotá, Colombia.

The proposed mathematical model includes the scheduling of the buses in the main highway (the only road connects students' homes with schools in the city), to contribute to the reduction of the vehicular congestion in this zone by generating an optimal planning and scheduling of routes.

Two strategies are compared using optimization models: mixed loads strategy, where students from different schools share buses; and single loads strategies, where students from different schools that cannot share buses. These models seek to minimize the total operation costs by using a homogenous fleet of buses that satisfy schools requirements. Furthermore, the results of the two models (exact and heuristic method) are presented, and also a comparative analysis of the mentioned models is shown.
1. INTRODUCCIÓN

Uno de los grandes retos para las ciudades del siglo XXI es lograr definir un modelo de movilidad urbana sostenible con el objetivo de mejorar o mantener la calidad de vida de los habitantes de dichas ciudades (Mollinedo, 2006). Es de especial interés estudiar los diferentes sistemas de transporte que coexisten en estas metrópolis con el fin de encontrar alternativas que garanticen cortos tiempos de recorrido para los ciudadanos. Los altos niveles de congestión vehicular siguen aumentando a pesar de las grandes inversiones en infraestructura por parte de los gobiernos nacionales y municipales, como resultado del incremento del parque automotor, tanto de vehículos privados como públicos (Jaramillo Molina, Ríos Rivera, & Ortiz Lasprilla, 2009). Esta congestión genera desorden y contaminación en la ciudad. Además, obliga a los ciudadanos a permanecer largos períodos de tiempo en vehículos, por lo cual, se ven obligados a recortar su recreación, dejar de compartir tiempo con sus familias, aumentando así, sus niveles de estrés y disminuyendo su productividad.

Las rutas escolares hacen parte de los sistemas de transporte en las ciudades y contribuyen de forma significativa a la congestión vehicular, ya que toma lugar en las horas pico de movilidad (mañana y tarde). Por tal razón, surge el interés de analizar este tipo de sistemas a través del problema de ruteo de buses escolares (SBRP “School Bus Routing Problem” por sus siglas en inglés). Este problema fue estudiado por primera vez por (Newton & Thomas, 1969), quienes proponen diseñar un programa eficiente para la flota de vehículos escolares que deben recoger a los estudiantes en diferentes puntos geográficos y llevarlos a sus respectivos colegios, satisfaciendo distintas condiciones, como por ejemplo: no exceder la capacidad de los buses, imponer un tiempo máximo de viaje, cumplir con los horarios de llegada a clases, entre otros. Adicionalmente, este tipo de problemas se han estudiado con diferentes variantes como las siguientes: considerar una flota heterogénea de buses, considerar un único o múltiples colegios, sistemas en zonas urbanas o rurales, con diferentes horizontes de planeación (en la mañana, tarde o ambos), permitir rutas en las que vayan estudiantes de diferentes colegios, o rutas con estudiantes del mismo colegio, para tipos especiales de estudiantes (con discapacidades o prioritarios) o sin segregación de estudiantes. Finalmente se han considerado diferentes objetivos tales como la reducción del número de buses usados, la distancia o tiempo en recorrido de los buses o de los estudiantes, minimizar la distancia que caminan los estudiantes a los puntos de recogida, procurar un balance de carga de los buses, limitar la longitud máxima de las rutas, entre otros (Park & Kim, 2010).

En el caso particular de Bogotá, la capital de Colombia, y del corredor vial de la Autopista Norte, todos los días se encuentran niveles de congestión vehicular elevados en las horas pico, por ser ésta la única vía que comunica la zona de colegios del Norte, con las zonas residenciales en los diferentes puntos de la ciudad (Ver Figura 1). Lo anterior repercute en un incremento importante en los tiempos que los estudiantes de estos colegios permanecen dentro de los buses mientras son transportados desde y hacia los colegios.

La problemática descrita anteriormente ha sido objeto de análisis por el gobierno distrital, de hecho, para inicios del 2017 se implementó una medida por la Secretaría Distrital de Movilidad (Redacción Bogotá, 2017), la cual consiste en dar exclusividad a uno de los carriles de la autopista, para que sólo sea usado por buses escolares en los horarios pico de la mañana y la tarde. De acuerdo al piloto realizado a finales del 2016, los tiempos de desplazamientos por la autopista se redujeron de 43 a 25 minutos. Es importante mencionar, que, a pesar de esta medida, las rutas se siguen diseñando de manera independiente por cada una de las instituciones educativas y no hay un trabajo colaborativo.
El presente proyecto de investigación, busca estudiar el impacto de generar estrategias colaborativas de transporte de estudiantes para el contexto de la zona norte de la ciudad de Bogotá, a través del uso de modelos de optimización. En primer lugar se analizará el sistema de transporte considerando rutas independientes, esta estrategia es conocida como “Single load” (Bodin, 1979) y consiste en diseñar rutas para recoger a los estudiantes de un único colegio (Ver Figura 2). También se discute y analiza la estrategia de rutas compartidas en donde estudiantes de diferentes colegios pueden compartir el mismo bus. Esta estrategia es conocida como “Mixed load” (Braca, Bramel, Posner, & Simchi-Levi, 1997) (Ver Figura 3).

El presente documento analizará los beneficios e implicaciones de implementar ambas estrategias y concluirá sobre el diseño eficiente de rutas para el sistema vial en el que funciona el sistema de transporte desde/hacia los colegios del norte en la ciudad de Bogotá. Se considera una flota de buses de capacidad limitada y homogénea, además, se plantea una secuenciación de los buses al pasar por el nodo que representa la autopista aplicando conceptos de programación de camiones en sistemas cross-doking (Vahdani & Zandieh, 2010), con el fin de contribuir a la disminución de la congestión vehicular en el sector.
La secuenciación en la autopista supone una mejor coordinación para el caso de la estrategia de rutas compartidas (Mixed Load), ya que se tiene la ventaja de llevar a cabo una planeación colaborativa de las rutas para los diferentes colegios, mientras que, para el caso de la estrategia de rutas independientes, se puede coordinar únicamente el ingreso de los buses que suplen el servicio de rutas de cada colegio, por lo que las rutas de diferentes colegios ingresarían de forma descontrolada a la autopista, como se observa en la Figura 4.
Lo anterior, podría sugerir que la planeación y ejecución de la estrategia colaborativa tendría beneficios potenciales como los siguientes:

- Rutas más cortas (menor tiempo de viaje para los estudiantes)
- Menos costos de operación (disminución de la flota de buses) y operaciones más verdes (menor consumo de combustible)
- Mayor coordinación para minimizar la congestión en la autopista.

Este documento está organizado de la siguiente forma: La sección 2 los objetivos y pregunta de investigación, mientras que la 3 presenta una revisión de la literatura del problema de ruteo de vehículos, de buses escolares y programación de vehículos en sistemas cross-docking. La sección 4 propone la formulación matemática para el problema de ruteo y programación de buses escolares en sistemas “Single load” (Bodin, 1979) y “Mixed load” (Braca, Bramel, Posner, & Simchi-Levi, 1997), la cual se utilizó para solucionar el problema a través de un método exacto; la sección 5 explica el desarrollo del método heurístico, mientras que, en la sección 6 se muestran los resultados obtenidos al solucionar el problema con instancias aleatorias con ambos métodos. Este documento termina con las conclusiones del trabajo y posibles líneas de investigación futuras se muestran en la sección 7.

2. OBJETIVOS Y PREGUNTA DE INVESTIGACIÓN

2.1. Pregunta de Investigación

¿Cómo se puede caracterizar, por medio de un modelo matemático, el sistema de rutas que obedece a la distribución geográfica de los colegios del Norte de Bogotá y que tenga la congestión vehicular por el corredor vial de la autopista Norte y qué método de solución puede ser eficiente para dar solución a este problema?
2.2. Objetivos

2.2.1. Objetivo General

Analizar y comprender las implicaciones que tiene la utilización de métodos de optimización, tanto exactos como heurísticos, en las decisiones de ruteo para los buses escolares de un conjunto de colegios cuando se comparan en función de los costos operacionales las estrategias de rutas compartidas (mixed-load) e independientes (single-load), para un grafo que describe la distribución geográfica y congestión vehicular de la zona escolar del norte de Bogotá.

2.2.2. Objetivo Específicos

- Formular y solucionar con un enfoque exacto para instancias aleatorias un modelo de programación lineal entera mixta para el problema de ruteo y programación de buses escolares, teniendo en cuenta la congestión vehicular, para las estrategias de rutas independientes (single-load) y compartidas (mixed-load).

- Solucionar con un método heurístico y para instancias aleatorias el problema planteado, de tal forma que se demuestre que el método es competitivo en calidad y/o en eficiencia computacional.

- Realizar un análisis comparativo de los costos asociados a la flota de buses que requiera cada una de las estrategias bajo análisis, basado en las soluciones obtenidas con los métodos exacto y heurístico.

3. ESTADO DEL ARTE

En esta sección se presenta un resumen del estado del arte de la literatura académica con relación al problema de ruteo de buses escolares, y, además, se introducen nociones referentes a la programación de vehículos en sistemas cross-doking, con lo que se logra conceptualizar el problema de ruteo y programación de buses escolares.

El objetivo del SBRP es planear un programa eficiente para la flota de vehículos escolares que deben recoger a los estudiantes en diferentes puntos geográficos y llevarlos a sus respectivos colegios (Park & Kim, 2010). El SBRP es una aplicación específica del problema de ruteo de vehículos (VRP “Vehicle Routing Problem” por sus siglas en inglés). En este problema se tienen diferentes clientes a atender por un grupo de vehículos, los cuales dejan un depósito, atienden el requerimiento de los clientes y regresan al depósito luego de terminar la respectiva ruta (Montoya-Torres, López Franco, Nieto Isaza, Felizzola Jiménez, & Herazo-Padilla, 2015). Una de las extensiones de la familia de problemas del VRP que más se asemeja al SBRP que se plantea en la presente investigación, es el problema de ruteo de vehículos abierto con depósitos múltiples (MDVRP “Multi-depot Open Vehicle Routing Problem”) estudiado por autores como (Liu, Jiang, & Geng, 2014), en este problema los vehículos que se tienen disponibles parten de diferentes depósitos, con el objetivo de entregar productos a los clientes que conforman cada una de las rutas definidas, cuando el vehículo termina de visitar a todos los clientes, no es necesario que éste retoque el depósito donde dio inicio a la ruta (Lalla-Ruiz, Expósito-Izquierdo, Taheripour, & Voß, 2015), si se hace la analogía con el SBRP, los depósitos coinciden con los puntos donde los buses inician las rutas y los clientes que se deben visitar corresponden a los estudiantes que se deben incluir en las diferentes rutas, finalmente, los
buses escolares terminan su recorrido en el colegio destino, lo cual hace referencia al último cliente en el MDOVRP.

El SBRP es estudiado por primera vez por (Newton & Thomas, 1969), quienes analizaron el problema para un sistema de un único colegio, con una flota homogénea de buses, con instancias aleatorias que variaban entre 50 y 80 paradas. Desde entonces, el problema se ha estudiado con diferentes variaciones, como las que se muestran en la tabla 1:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Variación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de colegios</td>
<td>Único colegio</td>
</tr>
<tr>
<td></td>
<td>Múltiples colegios</td>
</tr>
<tr>
<td>Entorno de servicio</td>
<td>Urbano</td>
</tr>
<tr>
<td></td>
<td>Rural</td>
</tr>
<tr>
<td>Alcance del problema</td>
<td>Mañana</td>
</tr>
<tr>
<td></td>
<td>Tarde</td>
</tr>
<tr>
<td></td>
<td>Ambos</td>
</tr>
<tr>
<td>Tipos de rutas</td>
<td>Rutas independientes (single load)</td>
</tr>
<tr>
<td></td>
<td>Rutas mixtas (mixed load)</td>
</tr>
<tr>
<td>Tipos de estudiantes</td>
<td>Estudiantes especiales son considerados</td>
</tr>
<tr>
<td></td>
<td>Sólo se consideran estudiantes regulares</td>
</tr>
<tr>
<td>Tipo de flota de buses</td>
<td>Flota homogénea</td>
</tr>
<tr>
<td></td>
<td>Flota heterogénea</td>
</tr>
<tr>
<td>Objetivos</td>
<td>Número de buses usados</td>
</tr>
<tr>
<td></td>
<td>Distancia o tiempo total de viaje del bus</td>
</tr>
<tr>
<td></td>
<td>Distancia o tiempo total de viaje del estudiante</td>
</tr>
<tr>
<td></td>
<td>Distancia caminada por el estudiante</td>
</tr>
<tr>
<td></td>
<td>Balanceo de carga</td>
</tr>
<tr>
<td></td>
<td>Longitud de ruta máxima</td>
</tr>
<tr>
<td></td>
<td>Tiempo perdido del estudiante</td>
</tr>
<tr>
<td>Restricciones</td>
<td>Capacidad del bus</td>
</tr>
<tr>
<td></td>
<td>Tiempo máximo de estancia en el bus</td>
</tr>
<tr>
<td></td>
<td>Ventanas de tiempo de los colegios</td>
</tr>
<tr>
<td></td>
<td>Máximo tiempo o distancia de caminata</td>
</tr>
<tr>
<td></td>
<td>Tiempo de recogida más temprano</td>
</tr>
<tr>
<td></td>
<td>Mínimo número de estudiantes para crear una ruta</td>
</tr>
</tbody>
</table>

Tabla 1. Variaciones de las características del SBRP. Fuente: Tomado y adaptado de (Park & Kim, 2010)

En los últimos años, el enfoque con el que la mayoría de los autores han desarrollado las investigaciones sobre el SBRP ha sido el de minimización del costo de transporte de las flotas de buses escolares que ejecutan las rutas, (Thangiah, Fergany, Wilson, Pitluga, & Mennell, 2008) solucionaron un problema de enrutamiento de buses escolares en un distrito escolar rural en el estado de Pennsylvania, con el uso de varias heurísticas, de manera similar, (Euchi & Mraihi, 2012) desarrollaron su investigación para el caso de estudio de la ciudad de Túnez y solucionaron el problema mediante la aplicación de un algoritmo de Colonia de Hormigas. (Riera-Ledesma & Salazar-González, 2012), por su parte, desarrollaron dos modelos matemáticos con un enfoque exacto para su solución, en la cual se determinan además de las rutas de cada bus, la estación a la que deben caminar los estudiantes para ser recogidos por los buses. Por otro lado, (Zhang & Li,
2012) propusieron un algoritmo eficiente por enjambre de partículas para resolver un problema típico de ruteo de vehículos escolares.

En cuanto a la complejidad del problema, es importante mencionar que el SBRP hace parte de la familia de problemas considerados como NP-Hard, por lo cual, las investigaciones que se han desarrollado han utilizado métodos heurísticos y meta-heurísticos para solucionar problemas de gran tamaño, y métodos exactos para aplicaciones con instancias pequeñas. Recientemente los autores que han estudiado el SBRP han mantenido esta tendencia, (Schittekat, Kinable, Sörensen, Sevaux, & Spieksma, 2013) con su estudio que busca comprobar la eficiencia de un método heurístico respecto a un método exacto en un problema que se busca solucionar con el objetivo de determinar de forma conjunta el grupo de paradas a visitar, los estudiantes que deben caminar hacia estas paradas y las rutas de los buses, de tal forma que se minimice la distancia total recorrida, y (Manumbu, Mujuni, & Kuznetsov, 2014) quienes proponen un modelo matemático para optimizar el servicio de rutas escolares de dos escuelas en la ciudad de Dar Es Salaam, modelo que es solucionado con un método exacto en dos pequeñas instancias.

Sobre el SBRP para rutas compartidas (mixed load), el cual será objeto de esta investigación, ha sido estudiado recientemente por (Park, Tae, & Kim, 2012) quienes desarrollaron un algoritmo para mejorar los resultados arrojados por el algoritmo de (Braca, Bramel, Posner, & Simchi-Levi, 1997). Por otro lado, (Ellegood, Campbell, & North, 2015) analizaron diferentes instancias con el objetivo de comparar la implementación de un servicio compartido de transporte (mixed load) de pasajeros con un servicio tradicional (single load), para identificar cuál estrategia es más conveniente. Lo anterior también es objeto de esta investigación, pero contemplando adicional al ruteo de los buses, la secuenciación de los mismos en el nodo que representa el paso por la autopista que comunica los colegios con las casas de los estudiantes.

A nivel nacional, el SBRP ya ha sido estudiado en un caso aplicado de un colegio privado de la ciudad de Bogotá (Colombia) por (Arias-Rojas, Jiménez, & Montoya-Torres, 2012), ellos modelaron el sistema como un problema clásico de ruteo de vehículos capacitados (CVRP “Capacitated Vehicle Routing Problem” por sus siglas en inglés) y lo resolvieron en dos fases: La primera consistió en asignar estudiantes a cada autobús y la segunda en determinar la ruta real de cada vehículo mediante el algoritmo Colonia de Hormigas, con lo anterior, se logró reducir la distancia total recorrida por los buses en 8,3% en la mañana y 21,4% en la tarde, sin embargo, esta investigación no tiene en cuenta tiempos de tráfico.

Por otro lado, esta investigación integra en simultáneo el ruteo de vehículos y la programación de los mismos como en un sistema cross-doking (Yin, Lyu, & Chuang, 2016), sin embargo, la secuenciación de los buses se lleva a cabo únicamente en el nodo que representa la autopista, por lo que se podría hacer la analogía con un sistema cross-doking de un único muelle, en donde se secuencia el ingreso de los vehículos mientras son descargados y abandonan la estación (Vahdani & Zandieh, 2010).

A continuación, en la Tabla 2 se presenta un resumen de las variaciones en términos de variables de decisión, función objetivo, restricciones y métodos de solución que se encontraron en la revisión de la literatura que se llevó a cabo para el desarrollo de la presente investigación.
En la siguiente tabla (Tabla 3), se muestran los artículos revisados en el tema de ruteo de buses escolares, con su respectiva clasificación de acuerdo a la numeración presentada en la Tabla 2 en términos de variables de decisión, función objetivo, restricciones y métodos de solución. Adicional, en la tabla 4, se presenta un resumen de los artículos consultados con relación al tema de secuenciación cross-dock de vehículos.

Finalmente, es importante mencionar que la presente investigación recoge diferentes conceptos de lo presentando en esta sección, con el fin de generar un aporte innovador al combinar la programación y secuenciación simultánea de vehículos en un sistema de transporte escolar de rutas independientes y compartidas, en un contexto donde se contempla tráfico en la autopista que deben atravesar los vehículos para poder llevar a los estudiantes a sus colegios destino. También se discutirá el impacto que tiene el uso de diferentes estrategias de transporte de niños en rutas escolares en el caso estudiado.
Tabla 3. Clasificación Resumen Revisión Literatura. Fuente: Elaboración Propia

<table>
<thead>
<tr>
<th>NOMBRE DEL ARTÍCULO</th>
<th>Variables de Decisión</th>
<th>Función Objetivo</th>
<th>Restricciones</th>
<th>Método de Solución</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Corberán, Fernández, Laguna, & Marti, 2002)</td>
<td>X X</td>
<td>Minimizar makespan</td>
<td>Tiempo ascendente entre el ingreso, descargue, cargue y salida de camiones. Conservación de flujo de productos que entran y salen del crossdock</td>
<td>Heurístico</td>
</tr>
<tr>
<td>(Pacheco & Marti, 2006)</td>
<td>X X</td>
<td>Minimizar makespan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Hanley, 2007)</td>
<td>X X X</td>
<td>X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Thangiah, Fergany, Wilson, Ptiluga, & Mennell, 2008)</td>
<td>X X X</td>
<td>X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Fugenschuh, 2009)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Perugia, Moccia, Cordeau, & Laporte, 2011)</td>
<td>X X X</td>
<td>X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Bró, Viegas, & Martínez, 2011)</td>
<td>X X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Luhua, Yin, & Xinkai, 2011)</td>
<td>X X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Martínez & Viegas, 2011)</td>
<td>X X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Kim, Kim, & Park, 2012)</td>
<td>X X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Euchi & Mraihi, 2012)</td>
<td>X X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Park, Tae, & Kim, 2012)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Hiera-Ledesma & Salazar-González, 2012)</td>
<td>X X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Zhang & Li, 2012)</td>
<td>X X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Arias-Rojas, Jiménez, & Montoya-Torres, 2012)</td>
<td>X X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Pacheco, Caballero, Laguna, & Molina, 2013)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Schittekat, Kinable, Sörensen, Sevaux, & Spieksma, 2013)</td>
<td>X X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Wagale, Pratap Singh, Sarkar, & Arkatkar, 2013)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(López-Sánchez, Hernández-Díaz, Vigo, Caballero, & Molina, 2014)</td>
<td>X X</td>
<td>X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Manumbu, Mujuni, & Kuznetsov, 2014)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Ellegood, Campbell, & North, 2015)</td>
<td>X X</td>
<td>X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Lalla-Ruiz, Expósito-Izquierdo, Taheripour, & Voß, 2015)</td>
<td>X X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4. Resumen Artículos Cross-Dock. Fuente: Elaboración propia

<table>
<thead>
<tr>
<th>Autor (es)</th>
<th>Variables de Decisión</th>
<th>Función (es) Objetivo</th>
<th>Restricciones</th>
<th>Método de Solución</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Vahdani & Zandieh, 2010)</td>
<td>- Unidades de producto que se transfieren del camión entrante al camión saliente - Makeplan</td>
<td>Minimizar makespan</td>
<td>Tiempo ascendente entre el ingreso, descargue, cargue y salida de camiones. Conservación de flujo de productos que entran y salen del crossdock</td>
<td>Heurístico</td>
</tr>
<tr>
<td>(Yin, Lyu, & Chuang, 2016)</td>
<td>- Vehículos que van de un nodo de origen a uno destino - Asignación de vehículo a muelle de descargue</td>
<td>Minimizar costo de operación de las rutas - Minimizar makespan.</td>
<td>Cada proveedor y cliente en visitado sólo una vez. Conservación de flujo de productos. Capacidad máxima de vehículos. Entrega de productos no superior a stock disponible. Descargar y cargar un vehículo a la vez en cada muelle.</td>
<td>Heurístico</td>
</tr>
</tbody>
</table>
4. FORMULACIÓN MATEMÁTICA DEL PROBLEMA

A continuación, se presenta la formulación matemática propuesta para el modelo de programación lineal entera mixta para el sistema de rutas independientes “Single Load” (estudiantes de diferentes colegios no pueden compartir bus) y para el sistema de rutas compartidas “Mixed Load” (estudiantes de diferentes colegios pueden compartir bus).

- **Características del problema:**
 - Número de colegios: Único para el caso de “Single Load” y Múltiples para el caso “Mixed Load”.
 - Tipos de estudiantes: Se estudiará el sistema sin segregación de estudiantes, es decir, no se tendrán estudiantes con requerimientos especiales de transporte como cuando se estudian sistemas en los que se incluyen estudiantes discapacitados o prioritarios.
 - Tipo de flota de buses: homogénea.
 - Transbordos: El sistema que se estudia supone que el transbordo de estudiantes entre diferentes buses no es permitido, es decir, el bus que recoge al estudiante en su casa es aquel que lo lleva a su colegio destino.
 - Adelantos de rutas en la autopista: No son permitidos los adelantos entre buses una vez ingresan a la autopista y experimentan el tráfico que se da en este punto.

4.1. Formulación Del Problema De Ruteo Y Programación De Buses Escolares Para Un Sistema De Rutas Independientes “Single Load”

- **Conjuntos:**
 - v: $\{\theta_k\} \cup \{j\} \cup \{a\} \cup \{m\}$
 - k: Conjunto de buses
 - θ_k: Conjunto que representa el punto de inicio de la ruta que hace el bus k.
 - j: Conjunto de estudiantes (recogidas).
 - a: Nodo autopista norte
 - m: Conjunto que representa el colegio destino.
 - $v1$ alias de v
 - $j1$ alias de j
 - $k1$ alias de k
 - Dada la configuración del grafo $\theta < j < a < m$.

- **Parámetros:**
 - Q: Capacidad de los buses
 - d_v: Número de estudiantes que se recogen en el nodo v
 - s_v: Tiempo de servicio en nodo v
 - w_1, w_2: ventana de tiempo del colegio, w_1: hora en la que abre el colegio; w_2: hora de inicio de clases
 - C: Constante con un valor grande arbitrario (número total de estudiantes en el sistema)
 - $t_{i(v,v1)}$: Tiempo para ir del nodo v al nodo $v1$
 - $C_{i(v,v1)}$: Costo variable asociado a la operación del bus, el cual es calculado con la expresión: $D_{i(v,v1)} \cdot Cud$, donde $D_{i(v,v1)}$ hace referencia a la distancia entre los nodos v y $v1$, parámetro que se calcula con la siguiente expresión $(t_{i(v,v1)} \cdot V)$, donde V es una constante que representa la velocidad promedio de los buses y $t_{i(v,v1)}$ el tiempo para ir del nodo v al nodo $v1$, además, el parámetro Cud es una constante que hace referencia al costo por unidades de distancia.
 - Cf: Costo fijo de operación del bus
 - R: tiempo que se utiliza para la secuenciación de los buses en el ingreso al nodo que representa la autopista.

- **Variables de decisión:**
 - $X_{v,v1,k}$: 1 si el bus k usa el arco $(v,v1)$, 0 sino.
- \(Y_{k,k1} \): 1 si el bus \(k \) precede al bus \(k1 \) en la secuencia de pasar la autopista, 0 sino.
- \(L_{v,k} \): Cantidad de niños con los que el bus \(k \) sale del nodo \(v \).
- \(T1_{v,k} \): Tiempo de llegada del bus \(k \) al nodo \(v \), sólo definida para los \(\theta_k \) y \(j \) (inicios de rutas y casas de niños).
- \(T2_{a,k} \): Tiempo de llegada del bus \(k \) al nodo \(a \).
- \(T3_{a,k} \): Tiempo de salida del bus \(k \) al nodo \(a \).
- \(T4_{m,k} \): Tiempo de llegada del bus \(k \) al nodo \(m \).

Función Objetivo:

\[
\min Z = \sum_{k} \sum_{j} C_f \cdot X_{\theta_k,j,k} + \sum_{v} \sum_{v_1} \sum_{k} C_{v,v_1} \cdot X_{v,v_1,k} \tag{1}
\]

La función objetivo (1) del modelo de programación lineal entera mixta es minimizar el costo total de operación de la flota de buses, el cual está en función del costo variable de la ruta y el costo fijo de operación de cada bus, los cuales ya se explicaron anteriormente.

Sujeto a:

Restricciones de arcos no permitidos:

\[
X_{v,\theta_k,k1} = 0; \forall v, \forall k, \forall k1 \tag{2}
\]

\[
X_{a,j,k} = 0; \forall j, \forall k \tag{3}
\]

\[
\sum_k X_{v,v,k} = 0; \forall v \tag{4}
\]

\[
\sum_v \sum_{k1} X_{\theta_k,v,k1} = 0; \forall k \neq k1 \tag{5}
\]

\[
\sum_v X_{m,v,k} = 0; \forall m, \forall k \tag{6}
\]

\[
Y_{k,k} = 0, \forall k \tag{7}
\]

El primer grupo de restricciones tiene como objetivo reducir la complejidad del modelo indicando que rutas no son posibles. La ecuación (2) garantiza que no se visite un punto de inicio luego de iniciar la ruta, la expresión (3) prohíbe que los buses recojan estudiantes después de haber visitado el nodo \(a \) (autopista), la ecuación (4) impide que los buses salgan de un nodo y regresen a éste de forma consecutiva, la ecuación (5) obliga a las buses a no iniciar la ruta en la base de otro bus, la expresión (6) garantiza que la ruta se termine cuando el bus llega al colegio, finalmente, la ecuación (7) evita el escenario en el que \(k \) se precede a sí mismo.

Restricciones de ruteo:

\[
\sum_v \sum_k X_{v,j,k} = 1; \forall j \tag{8}
\]

\[
\sum_v X_{v,j,k} = \sum_v X_{j,v,k}; \forall j, \forall k \tag{9}
\]

\[
\sum_v X_{v,a,k} = \sum_v X_{a,v,k}; \forall k \tag{10}
\]
\[
\sum_{j} X_{\theta, j, k} \leq 1; \forall k
\]
\[
X_{v, v1, k} \leq \sum_{j} X_{\theta, j, k}; \forall k, \forall v, \forall v1, v \neq v1
\]
\[
\sum_{j} X_{\theta, j, k} \leq \sum_{j1} X_{j1, a, k}; \forall k
\]
\[
L_{j, k} \geq d(j) \times \sum_{v < a} X_{v, j, k}; \forall k, \forall j
\]
\[
L_{j, k} \leq Q \times \sum_{v < a} X_{v, j, k}; \forall k, \forall j
\]
\[
L_{v, k} + (d(v1) \times X_{v, v1, k}) \leq L_{v1, k} + C \times (1 - X_{v, v1, k}); \forall v, \forall v1 \leq a, \forall k
\]
\[
L_{v, k} + (d(v1) \times X_{v, v1, k}) \geq L_{v1, k} - C \times (1 - X_{v, v1, k}); \forall v, \forall v1 \leq a, \forall k
\]
\[
L_{v1, k} \leq C \times \sum_{v} X_{v, v1, k}; \forall v1 \leq a, \forall k
\]
\[
L_{\theta, k1} = 0; \forall k, \forall k1
\]

El segundo grupo de restricciones son las que hacen referencia al ruteo en el sistema de transporte de los colegios, la expresión (8) obliga a recoger a todos los niños una única vez, las expresiones (9) y (10) son de conservación de flujo en los nodos que representan a los estudiantes y a la autopista, es decir, garantizan que si un bus recoge a un estudiante, éste continúe la ruta saliendo del nodo que visitó, la ecuación (11) garantiza que cada ruta inicia desde su propia base máximo una vez, la ecuación (12) garantiza que cuando un bus recoge a un estudiante, éste parte de su base, la expresión (13) garantiza que el nodo que representa la autopista se incluya en todas las rutas de los buses que se usen, las ecuaciones (14) y (15) controlan la cantidad de estudiantes que se recogen en un nodo que se visita (en nuestro caso un estudiante), y que no se exceda la capacidad del bus que hace la ruta respectivamente, las expresiones (16) y (17) garantizan que se vaya acumulando la cantidad de estudiantes que recoge un bus, mientras que, la ecuación (18) garantiza que sólo se acumulen niños en el bus k cuando efectivamente son recogidos por este bus, finalmente, la expresión (19) garantiza que los buses k inicien vacíos los trayectos.

- **Restricciones de programación:**

\[
T_{1, v, k} + s(v) + ti(v, v1) \leq T_{1, v1, k} + w_{2} \times (1 - X_{v, v1, k}); \forall v, \forall v1 < a, \forall k
\]
\[
T_{1, v, k} + (s(v) + ti(v, v1)) \times X_{v, v1, k} \geq T_{1, v1, k} - w_{2} \times (1 - X_{v, v1, k}); \forall v, \forall v1 < a, \forall k
\]
\[
T_{1, j, k} + s(j) + ti(j, a) \leq T_{2, a, k} + w_{2} \times (1 - X_{j, a, k}); \forall j, \forall k
\]
\[
T_{1, j, k} + (s(j) + ti(j, a)) \times X_{j, a, k} \geq T_{2, a, k} - w_{2} \times (1 - X_{j, a, k}); \forall j, \forall k
\]
\[
T_{2, a, k} + s(a) \leq T_{3, a, k} + w_{2} \times (1 - X_{j, a, k}); \forall j, \forall k
\]
\[
T_{2, a, k} + s(a) \times X_{j, a, k} \geq T_{3, a, k} - w_{2} \times (1 - X_{j, a, k}); \forall j, \forall k
\]
\[
T_{3, a, k} + ti(a, m) \leq T_{4, m, k} + w_{2} \times (1 - X_{a, m, k}); \forall m, \forall k
\]
\[
T_{3, a, k} + (ti(a, m) \times X_{a, m, k}) \geq T_{4, m, k}; \forall m, \forall k
\]
\[
T_{2, a, k1} \geq T_{3, a, k} - R - w_{2} \times (1 - Y_{k, k1}); \forall k, \forall k1, k \neq k1
\]
El tercer grupo de restricciones son las que controlan las variables de tiempo y garantizan la correcta secuenciación de los buses en el nodo que representa la autopista, las expresiones (20) a (27) calculan y controlan el tiempo desde que el bus \(k \) inicia la ruta en el nodo \(k \), recoge a las estudiantes \(j \), atravieza la autopista \(a \), hasta que la termina en el colegio \(m \), la expresión (28) garantiza secuenciación cuando el bus \(k \) precede al bus \(k1 \) respetando un mínimo de tiempo \(R \) en el cual el bus \(k1 \) no puede ingresar a la autopista, la ecuación (29) garantiza coherencia entre el tiempo de llegada del bus \(k \) a la autpista y el tiempo de salida del bus \(k1 \) de la autopista cuando el bus \(k \) no precede al bus \(k1 \), por otra parte, se tienen las ecuaciones (30) y (31) que garantizan que se lleven los niños en las horas establecidas por los colegios (dentro de la ventana de tiempo), y finalmente, están las expresiones (32), (33) y (34), las cuales garantizan que si un bus \(k \) no inicia una ruta no se calcule su tiempo \(T1, T2, Y T3 \), respectivamente.

- **Variables binarias y positivas:**

 \[X_{v1,k1}, Y_{v,k1} = \{1,0\}, \forall v, \forall v1, \forall k, \forall k1 \]
 \[L_{v,k}, T1_{v,k}, T2_{a,k}, T3_{a,k}, T4_{m,k}, Z \geq 0; \forall v, \forall k, \forall m \]

Finalmente se tienen las restricciones (35) y (36) que garantizan la naturaleza de las variables, binarias y positivas respectivamente.

Los anteriores 4 grupos de restricciones dan lugar al modelo base. Adicionalmente, se tiene un último grupo de expresiones denominadas desigualdades válidas, las cuales aumentan la eficiencia del modelo al reducir el espacio de solución, lo cual se verá en detalle en la sección 5 de Resultados.

- **Desigualdades válidas:**

 \[\sum_{k} X_{v1,k1} + \sum_{k} X_{v1,p,k} \leq 1; \forall (v < a), \forall (v1 < a) \]
 \[\sum_{f} X_{\theta_{k+1,j,k+1}} \leq \sum_{f} X_{\theta_{k,j,k}}; \forall k \]
 \[\sum_{v < a} \sum_{k > j} X_{v,j,k} = 0; \forall j \]

Este último grupo de ecuaciones da lugar al modelo con desigualdades válidas, la expresión (37) acota el espacio solución evitando la generación de sub-tours entre 2 nodos visitados consecutivamente, la ecuación (38) y (39) garantizan que las rutas \(k \) se generen de forma ascendente.
4.2. Formulación Del Problema De Ruteo Y Programación De Buses Escolares Para Un Sistema De Rutas Compartidas “Mixe Load”

La formulación del modelo de rutas compartidas tiene un grado de similitud alto respecto a la del modelo de rutas independientes, por lo cual, a continuación, sólo se mostrarán los conjuntos, parámetros, variables y expresiones adicionales a las que ya se presentaron en el numeral 4.1., en cada caso, se hace explícito cuáles son los elementos que se mantienen igual en ambos modelos.

- Conjuntos:
 Para este modelo los conjuntos $j, k, \theta, m, a, v, j_1 y k_1$ se mantienen igual que en el de rutas independientes. Los conjuntos que cambian o que se adicionan, son los siguientes:
 - v: \{ $\theta \} \cup \{ f \} \cup \{ a \} \cup \{ m \} \cup \{ f \}$
 - f: Conjunto que representa un nodo ficticio donde terminan todas las rutas.
 - m alias de m
 - Dada la configuración del grafo $\theta_k < j < a < m < f$

- Parámetros:
 Los parámetros $Q, d, s, w_1, w_2, C, t_i(v,v_1), Cv(v,v_1), Cf$ y R se mantienen igual en este modelo. El parámetro que es nuevo es el siguiente:
 - $Cobertura_{(v,v_1)}$: Matriz binaria de cobertura que indica la relación entre los estudiantes y colegios.

- Variables de decisión:
 Las variables $X(v,v_1,k), Y(k,k_1), L(v,k), T_{1,v,k}, T_{2,a,k}, T_{3,a,k}, T_{4,m,k}$ se mantienen igual en este modelo. Las variables adicionales, son las siguientes:
 - $W_{v,k}$: 1 si el nodo v es visitado por el bus k, 0 sino.
 - $T_{5,m,k}$: Tiempo de llegada del bus k al nodo m luego de haber visitado otro colegio.

- Función Objetivo:
 La función objetivo del modelo de rutas compartidas es igual a la expresión (1) del modelo de rutas independientes.

- Sujeto a:
 - **Restricciones de rutas no factibles:**
 Este grupo de restricciones está conformado por las expresiones (2), (3), (4), (5) y (7) del modelo de rutas independientes. Adicional a las anteriores, se tienen las siguientes expresiones, la (40) que garantiza que desde el nodo que representa la autopista no se puede ir directamente al nodo ficticio que se está utilizando en el modelo de rutas compartidas como punto final de las rutas y la (41) que garantiza que los buses k no visiten más nodos luego de terminar la ruta en el nodo ficticio f.

$$\sum_k X_{a,f,k} = 0; \forall k$$ \hspace{2cm} (40)

$$X_{f,v,k} = 0; \forall v, \forall k$$ \hspace{2cm} (41)

- **Restricciones de ruteo:**
En este grupo de restricciones se mantienen las expresiones (8) a (19) del modelo de rutas independientes, adicional, se definen las siguientes que son exclusivas del modelo de rutas compartidas:

\[\sum_v X_{v,m,k} \leq W_{m,k}; \; \forall m, \forall k \]
(42)

\[\sum_v \sum_k X_{v,m,k} \geq 1; \; \forall m \]
(43)

\[L_{v1,k} \leq C \cdot W_{v1,k}; \; \forall v1 \leq a, \forall k \]
(44)

\[W_{v,k} \leq W_{v1,k}; \; \forall (k < v < a), \forall (v1 > a), \forall k, (v,v1) \in Cobertura(v,v1) > 0 \]
(45)

\[\sum_v X_{v,v1,k} \geq W_{v,k}; \; \forall v, \forall k \]
(46)

\[\sum_v X_{v,v1,k} \leq W_{v,k}; \; \forall v, \forall k \]
(47)

\[\sum_m X_{m,f,k} \leq 1; \; \forall k \]
(48)

La expresión (42) garantiza que el bus \(k \) visita al colegio \(m \) sólo 1 vez, si éste lleva niños de ese colegio, mientras que, la ecuación (43) garantiza que el colegio \(m \) sea visitado al menos 1 vez por los buses \(k \), por otro lado, la expresión (44) garantiza que sólo se acumulen niños en el bus \(k \) cuando efectivamente son recogidos por este bus, la ecuación (45) garantiza que cuando un estudiante se recoge en la ruta \(k \), éste es llevado a su colegio destino, las expresiones (46) y (47) garantizan que si un estudiante es recogido por un bus \(k \), éste tenga un nodo predecesor, finalmente, la ecuación (48) garantiza que los buses \(k \) terminen la ruta en un nodo ficticio \(f \) luego de dejar a los estudiantes en los colegios.

\[\text{● Restricciones de programación:} \]

En este grupo de restricciones se mantienen las expresiones (20) a (29) y (32) a (34) del modelo de rutas independientes, adicional, se definen las siguientes que son exclusivas del modelo de rutas compartidas:

\[T4_{m,k} + s(m) + t(v,m,1) \leq T5_{m1,k} + w_2 \cdot (1 - X_{m,m1,k}); \; \forall m, \forall m1, \forall k \]
(49)

\[T4_{m,k} + (s(m) + t(v,m,1)) \cdot X_{m,m1,k} \geq T5_{m1,k} - w_2 \cdot (1 - X_{m,m1,k}); \; \forall m, \forall m1, \forall k \]
(50)

\[T5_{m,k} + s(m) + t(v,m,1) \leq T5_{m1,k} + w_2 \cdot (1 - X_{m,m1,k}); \; \forall m, \forall m1, \forall k \]
(51)

\[T5_{m,k} + (s(m) + t(v,m,1)) \cdot X_{m,m1,k} \geq T5_{m1,k} - w_2 \cdot (1 - X_{m,m1,k}); \; \forall m, \forall m1, \forall k \]
(52)

\[T4_{m,k} \geq w_1 \cdot X_{a,m,k}; \forall k, \forall m \]
(53)

\[T4_{m,k} \leq w_2 \cdot X_{a,m,k}; \forall k, \forall m \]
(54)

\[T5_{m,k} \geq w_1 \cdot W_{m,k}; \forall k, \forall m \]
(55)

\[T5_{m,k} \leq w_2 \cdot W_{m,k}; \forall k, \forall m \]
(56)

Las ecuaciones (49), (50), (51) y (52) calculan y controlan el tiempo en el que el bus \(k \) llega al nodo \(m1 \) cuando este bus ha visitado inmediatamente antes al nodo \(m \), por otro lado, las expresiones (53) a (56) garantizan que se lleven los niños en las horas establecidas por los colegios.

\[\text{● Variables binarias y positivas:} \]

\[X_{v,v1,k}, Y_{v,k1}, W_{v,k} = \{ 1, 0 \}, \forall v, \forall v1, \forall k, \forall k1 \]
(57)

\[L_{v,k}, T1_{v,k}, T2_{v,k}, T3_{v,k}, T4_{m,k}, T5_{m,k}, Z \geq 0; \forall v, \forall k, \forall m \]
(58)
También se tienen las restricciones (57) y (58) que garantizan la naturaleza de las variables, binarias y positivas respectivamente.

- **Desigualdades válidas:**

En este grupo de restricciones se mantienen las expresiones (37), (38) y (39) que se mencionan en el modelo de rutas independientes.

5. **DEsarrollo método heurístico**

Como se pudo apreciar en la sección anterior, los modelos matemáticos planteados sugieren una alta complejidad del problema en estudio, por ende, se espera tener dificultades para resolverlo usando un método exacto. Dado lo anterior, también se desarrolla una heurística para dar solución al problema de ruteo y secuenciación de buses escolares objeto de la presente investigación. A continuación, se presenta una breve descripción del procedimiento general en que se basa la heurística.

El algoritmo desarrollado inicia con una heurística constructiva “cluster first-route second”, esta estrategia consiste en encontrar los estudiantes a asignar a cada bus (clúster), para luego determinar la ruta que debe seguir cada uno de ellos. Este método de generación de rutas ha sido aplicado por varios autores, como es el caso de (Min, 1989), quien lo utilizó en su investigación que contemplaba puntos de recogida y entrega de manera simultánea o como es el caso de (Sarmiento Lepesqueur & Quintero Araujo, 2014), quienes lo utilizaron para el desarrollo de una meta-heurística de búsqueda tabú para solucionar un problema que incluía balance de carga de los vehículos. La estrategia de agrupación también es usada por autores como (Guerrero, Velasco, Prodhon, & Amaya, 2013), quienes con su meta-heurística resuelven el problema del camino más corto ("elementary shortest path problem (ESPP)" por sus siglas en inglés) visitando clústeres de nodos donde se recauda una ganancia.

Para el caso de la heurística desarrollada en esta investigación, lo primero que se calcula es el número de buses objetivo, éste corresponde al entero obtenido luego de redondear hacia arriba el resultado de la relación \(j/Q \) (\(j \): número de estudiantes; \(Q \): Capacidad buses). Un ejemplo de esto se ilustra en la figura 5.

Figura 5. Ejemplo de cálculo de número de buses objetivo. Fuente: Elaboración propia.
Luego de lo anterior, se procede con la generación homogénea de clústeres en cuanto al número de niños, es decir, se construyen haciendo cortes sobre el eje Y del plano geográfico, de tal forma que, el número de estudiantes que queda en cada clúster es igual cuando j es múltiplo del número de clústeres, o difiere en 1 estudiante en algún clúster cuando j no lo es. Un ejemplo de esto se ilustra en la figura 6.

Una vez son generados los diferentes clústeres, se aplica la estrategia de la heurística constructiva de vecino más cercano para determinar el orden en el que los estudiantes son recogidos y los colegios son visitados (para el caso de la estrategia mixed load), esta estrategia también es usada por (Sarmiento Lepesqueur & Quintero Araujo, 2014) en su trabajo. Es importante resaltar que la estrategia que se utiliza para la generación de rutas garantiza que éstas sean creadas desde el punto más lejano al más cercano a la autopista, es decir, si se visualiza el mapa de la ciudad de Bogotá, las rutas se construyen de Sur a Norte acercándose a la autopista. Un ejemplo de esto se muestra en la figura 7.
Cuando las rutas ya están generadas, se utiliza el concepto clásico de la heurística para programación de máquinas "LPT: longest processing time first", con el objetivo de secuenciar los buses en el nodo que representa la autopista. Lo primero que se hace es identificar la longitud en tiempo de cada una de las rutas, para luego organizar las de la más larga a las más corta (ver ejemplo en figura 8).

![Figura 8. Ejemplo aplicación heurística LPT. Fuente: Elaboración propia.](image)

La secuenciación en este caso se hace hacía atrás, empezando con la ruta más larga hasta la más corta, lo anterior, con el fin de garantizar que la ruta que más tiempo toma llegue en el límite superior de la ventana de tiempo del colegio y, por ende, empiece su recorrido lo más tarde posible. A partir de ahí, desde el segundo bus con tiempo de ruta más largo y hasta la ruta más corta, el ingreso a la autopista se secuencia en intervalos R de tiempo (Ver figura 9 con ejemplo). Dado el caso de que se genere una infactibilidad, debido a que la duración de la ruta es mayor a la línea de tiempo definida (de 0 a w_2), el algoritmo empieza de nuevo el proceso, aumentando en 1 el número de clústeres y hasta máximo el número de clústeres igual al número de estudiantes j.

![Figura 9. Ejemplo secuenciación aplicando heurística LPT. Fuente: Elaboración propia.](image)

En la Figura 10 se muestra el diagrama de flujo de la heurística desarrollada. Es importante mencionar, que esta heurística se desarrolló según lo mencionado en los párrafos anteriores, tanto para la estrategia de rutas independientes como para la de rutas compartidas.
6. RESULTADOS

Los experimentos se llevaron a cabo con instancias aleatorias, para la generación de estas instancias aleatorias tanto del problema de rutas independientes (Single Load), como el de rutas compartidas (Mixed Load) se tuvieron en cuenta los siguientes supuestos:

- La línea de tiempo se manejará desde las 05:00AM hasta las 08:30AM en minutos, donde las 05:00AM es 0 y las 08:30AM es 210.
- El tiempo promedio en tráfico para atravesar la autopista es de 30 minutos.
• Límite inferior de la ventana de tiempo que representa la hora de apertura del colegio es 150, que representa las 07:30AM.

• Límite superior de la ventana de tiempo que representa la hora de inicio de clases en el colegio es 210, que representa las 08:30AM.

• Se tienen disponibles tantos buses como estudiantes hayan, es decir, \(k = j \).

• La capacidad de la flota de buses es homogénea, para los experimentos se asumió de 10.

• En cada parada el bus recoge a un único estudiante.

• El tiempo que se demora un bus en recoger a un estudiante es de 1 minuto.

• El costo fijo del bus hace referencia al salario diario del conductor, para este caso se asume como 50 unidades monetarias, mientras que, el costo variable está en función de la distancia recorrida, por lo que se asume 5 unidades monetarias como el costo por unidad de distancia que recorre cada bus.

• Se asume una velocidad promedio de 36Km/h.

• La ubicación geográfica de cada nodo se generó aleatoriamente en un plano cartesiano de 50Km en el eje horizontal (coordenada X) y 20 Km en el eje vertical (coordenada Y), este plano tiene un área de 1000 \(km^2 \), la cual representa aproximadamente el 75% del área de la ciudad de Bogotá, esta proporción de área genera un cobertura importante en la cual se pueden ubicar los hogares de los estudiantes que estudien en colegios del norte de la ciudad. En el Anexo 1 se detalla cómo se generaron los diferentes conjuntos de nodos y se muestra un ejemplo gráfico de la distribución geográfica en el plano mencionado anteriormente.

• Se asume \(R \) como 15 minutos, es decir, los buses deberán secuenciarse por lo menos cada 15 minutos cuando vayan a ingresar al nodo que representa la autopista norte.

• Las rutas terminan en el colegio destino para el caso del problema de rutas independientes y en el nodo \(f \) para el problema de rutas compartidas.

6.1. Resultados Método Exacto

En este numeral se presentan los resultados de los experimentos realizados con el modelo de rutas independientes (Single Load), así como los que se llevaron a cabo para el modelo que contempla la estrategia de rutas compartidas (Mixed Load). La experimentación se llevó a cabo a través del Sistema General de Modelaje Algebraico (GAMS “The General Algebraic Modeling System” por sus siglas en inglés), versión 23.5.1, software que está diseñado particularmente para modelar y solucionar problemas de programación lineal, no lineal o entera mixta. Para generar la corrida de las instancias, se utilizó un computador personal con procesador Intel® Core™ i3-2310M CPU de 2.10GHz con memoria RAM de 8 GB y sistema operativo de 64 bits.

Las medidas de desempeño que se analizaron en las diferentes instancias son el tiempo de ejecución para encontrar el óptimo y el valor de la función objetivo, de tal forma que se pueda determinar el tamaño máximo del problema que se podría tener para obtener una solución óptima en un tiempo razonable utilizando el método anteriormente descrito.
6.1.1. Estrategia de rutas independientes (single load)

Antes de mostrar el detalle de los resultados computacionales, se presenta un ejemplo para la solución del problema con una de las instancias (Instancia 27 con 12 estudiantes) que se generaron de forma aleatoria. En la Figura 6, se puede observar la distribución geográfica que se obtuvo para los diferentes conjuntos de nodos.

![Figura 6. Distribución Geográfica Instancia 27 con 12 estudiantes](image)

Luego de llevar a cabo la corrida para solucionar esta instancia, el óptimo se obtuvo en 2 horas y 58 minutos y se llegó a la solución que se muestra gráficamente en la Figura 7.

![Figura 7. Solución de la instancia 27 con 12 estudiantes](image)
Los tiempos de recogidas según las rutas mostradas anteriormente se pueden detallar a continuación en las Tablas 5 y 6.

Tabla 5. Tiempos Ruta 1 – Instancia 27-12. Fuente: Elaboración Propia

<table>
<thead>
<tr>
<th>Ruta</th>
<th>Nodo</th>
<th>Tiempo Llegada</th>
<th>Hora Llegada</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>17</td>
<td>5:17</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>24</td>
<td>5:24</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>33</td>
<td>5:33</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>49</td>
<td>5:49</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>58</td>
<td>5:58</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>64</td>
<td>6:24</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>71</td>
<td>6:52</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>84</td>
<td>7:22</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>92</td>
<td>7:30</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ruta</th>
<th>Nodo</th>
<th>Tiempo Llegada</th>
<th>Hora Llegada</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>17</td>
<td>5:17</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>26</td>
<td>5:24</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>37</td>
<td>5:33</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>45</td>
<td>5:49</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>56</td>
<td>5:58</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>64</td>
<td>6:24</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>71</td>
<td>6:52</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>84</td>
<td>7:22</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>92</td>
<td>7:30</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

Como se puede observar en las tablas anteriores, los buses de las rutas 1 y 2 están cumpliendo con las ventanas de tiempo del colegio, por lo cual deben empezar su recorrido a las 05:17 y 05:11, respectivamente, teniendo en cuenta que se demoran 30 minutos atravesando la autopista (nodo a). Además, se puede ver que la secuenciación de los buses en la autopista está llevándose a cabo con 15 minutos de diferencia, lo cual es lo mínimo con la que debe hacerse de acuerdo al valor que se utilizó para el parámetro R en la generación de instancias.

Varios autores han realizado experimentos con instancias aleatorias pequeñas, como por ejemplo (Schittekat, Sevaux, & Sörensen, 2006) quienes resolvieron su modelo con 10 paradas, (Gavish & Shlifer, 1979) para 21 paradas, (Newton & Thomas, 1969) de 50 a 80 paradas, (Ripplinger, 2005) para 131 paradas, entre otros. Para el problema de rutas independientes se generaron 51 instancias teniendo en

cuenta la configuración de la zona de colegios del norte de Bogotá, las cuales contemplan desde 4 hasta 20 estudiantes (3 instancias diferentes para el mismo tamaño de problema).

Para el caso del modelo base, se encontró el óptimo en 21 instancias, en 23 instancias se encontró una solución entera y en 7 instancias no se encontró ninguna solución. En las 21 instancias que se obtuvo el óptimo el número de estudiantes fue máximo de 10, es decir, nunca fue superior a la capacidad del bus.

Lo mencionado anteriormente pone en evidencia la alta complejidad del problema que se está intentando solucionar, ya que sólo se encontraron soluciones óptimas para instancias de tamaño menores a 10 estudiantes, por lo anterior, se desarrolló el modelo agregando las desigualdades válidas explicadas anteriormente (Modelo CDV), con el fin de hacer un poco más eficiente la formulación matemática, y así, encontrar soluciones óptimas en menor tiempo y para instancias de mayor tamaño.

Para el caso del modelo CDV, se logró encontrar la solución óptima para 27 instancias, en 16 casos se encontraron soluciones enteras y en 8 oportunidades no se encontró ninguna solución. Adicional, también se llevó a cabo un análisis comparativo en términos de tiempo para las 21 instancias en las cuales se encontró una solución óptima tanto con modelo base como con el modelo CDV, así, se encontró que en promedio el modelo base tardó 309,1 segundos en solucionar una instancia, mientras que el modelo CDV tomó en promedio 7,87 segundos, es decir, que para esta muestra de 21 instancias el modelo CDV necesitó el 2,5% del tiempo del modelo base para encontrar la solución óptima.

En la Tabla 7 se muestran los resultados consolidados según el tamaño de la instancia (N. Estudiantes) para ambos modelos, la columna “N. Rutas” hace referencia al número de buses promedio que se necesitaron para obtener la solución, la columna “T. Ejecución (Seg)” corresponde al tiempo de corrida promedio en segundos, la columna “Costo Total” hace referencia al valor promedio de la función objetivo y la columna “S.O.E.” hace referencia al número total de soluciones óptimas encontradas en instancias de un determinado tamaño (recordando que de cada tamaño hay 3 instancias). El detalle de los resultados para las 51 instancias para ambos modelos se puede observar en el Anexo 2.

<table>
<thead>
<tr>
<th>N. Estudiantes</th>
<th>Modelo Base</th>
<th>Modelo CDV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N. Rutas</td>
<td>T. Ejecución (Seg)</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0,2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0,4</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0,7</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2,3</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>3,0</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1.936,4</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>220,8</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>8.169,7</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>13.284,9</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>3.915,3</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>6.280,4</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>3.770,4</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>13.980,5</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>3.860,6</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>2.250,7</td>
</tr>
<tr>
<td>19 N.S.E</td>
<td>N.S.E</td>
<td>N.S.E</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>4.001,1</td>
</tr>
</tbody>
</table>

Tabla 7. Resumen Resultados Consolidados Instancias Modelo Single Load - (N.S.E.: No solución encontrada) - Fuente: Elaboración Propia
Finalmente, en la Figura 8 se puede observar gráficamente el comparativo de las líneas de tendencia de los tiempos de ejecución de los modelos base y CDV, las cuales se construyeron con los datos de las instancias en las que se encontró en ambos una solución óptima.

![Comparación Tiempos Ejecución (Seg) Modelo Base vs Modelo](image)

Figura 13. Tiempos de Ejecución Modelos Base y CDV. Fuente: Elaboración Propia

Como se puede observar en las líneas de tendencia de la Figura 8, el tiempo de ejecución del modelo CDV converge hacia valores muy grandes luego de instancias con tamaños de 23 estudiantes, mientras que, el del modelo base lo hace apenas con 13 estudiantes. Lo anterior, deja en evidencia la superioridad en términos de eficiencia el modelo CDV sobre el modelo base.

6.1.2. Estrategia de rutas compartidas (mixed load)

Teniendo en cuenta los resultados obtenidos en la experimentación que se llevó a cabo con el modelo de rutas independientes, se toma la decisión de partir de la estructura del modelo CDV Single Load, para desarrollar el modelo CDV Mixed Load, para éste último, se generaron 10 instancias haciendo combinaciones de instancias Single Load con el fin de obtener un sistema con colegios múltiples de rutas compartidas, y así, poder llevar a cabo un análisis comparativo entre las dos estrategias conservando equidad en las condiciones de los sistemas.

Antes de mostrar el detalle de los resultados computacionales, se presenta un ejemplo para la solución del problema con una de las instancias (InstanciaML6) que se generaron. Para este ejemplo se toman 3 instancias del modelo single load, cada una con 6 estudiantes y se combinan, es decir, que al final se obtiene un sistema mixed load con 18 estudiantes y 3 colegios. En la Figura 9, se puede observar la distribución geográfica que se obtuvo para los diferentes conjuntos de nodos. En el Anexo 3 se explica en detalle cómo se generó la instancia del ejemplo en mención.
En la Figura 10 se muestra la solución que se tuvo cuando esta instancia se trató de forma independiente bajo el modelo de la estrategia Single Load, en este ejercicio, la instancia del Colegio1, Colegio2 y Colegio3 se solucionaron de forma óptima en 0,19, 0,27 y 0,21 segundos (0,67 en total), respectivamente.
Luego de llevar a cabo la corrida para solucionar esta instancia con la estrategia mixed load, el óptimo se obtuvo en 17 minutos y se llegó a la solución que se muestra gráficamente en la Figura 11.

Respecto a los tiempos de recogida, en las Tablas 8, 9 y 10 se muestran para las rutas single load que se ilustraron en la Figura 10.

<table>
<thead>
<tr>
<th>Ruta</th>
<th>1 Single Load – Método Exacto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodo</td>
<td>1 10 12 9 7 8 11 13in 13out 14</td>
</tr>
<tr>
<td>Tiempo Llegada</td>
<td>0 18 27 43 59 73 89 102 132 150</td>
</tr>
<tr>
<td>Hora Llegada</td>
<td>5:00 5:18 5:27 5:43 5:59 6:13 6:29 6:42 7:12 7:30</td>
</tr>
</tbody>
</table>

Tabla 8. Tiempos Ruta 1 – Solución Single Load – Colegio1. Fuente: Elaboración Propia

<table>
<thead>
<tr>
<th>Ruta</th>
<th>2 Single Load – Método Exacto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodo</td>
<td>1 10 12 9 7 8 11 13in 13out 14</td>
</tr>
<tr>
<td>Tiempo Llegada</td>
<td>0 12 20 33 51 69 93 112 142 154</td>
</tr>
<tr>
<td>Hora Llegada</td>
<td>5:00 5:12 5:20 5:33 5:51 6:09 6:33 6:52 7:22 7:34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ruta</th>
<th>3 Single Load – Método Exacto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodo</td>
<td>1 9 12 7 8 10 11 13in 13out 14</td>
</tr>
<tr>
<td>Tiempo Llegada</td>
<td>0 27 48 72 78 106 125 143 173 183</td>
</tr>
<tr>
<td>Hora Llegada</td>
<td>5:00 5:27 5:48 6:12 6:18 6:46 7:05 7:23 7:53 8:03</td>
</tr>
</tbody>
</table>

Por otro lado, en las Tablas 11 y 12 se presentan los que corresponden a las rutas mixed load que se representaron en la Figura 11.

Tabla 11: Tiempos Ruta 1 – Solución Mixed Load InstanciaML6. Fuente: Elaboración Propia

<table>
<thead>
<tr>
<th>Ruta 1 Mixed Load – Método Exacto</th>
<th>(t_{1}) (t_{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodo</td>
<td>1 22 20 31 32 24 23 19 35 21 37in 37out 40 38</td>
</tr>
<tr>
<td>T. Llegada</td>
<td>13 28 37 48 54 65 81 95 106 112 125 155 165 193</td>
</tr>
</tbody>
</table>

Tabla 11.

Como se puede observar en las Tablas 8 a 10, la planeación independiente que proporciona la estrategia Single Load (SL) no garantiza un ingreso homogéneo a la autopista (cuando son rutas de diferentes colegios), ya que los buses de estas tres rutas están ingresando a este nodo a las 06:42, 06:52 y 07:23, respectivamente, están separados entre sí por tiempos distintos \(t_{1} = 10 \) y \(t_{2} = 31 \), mientras que, la estrategia Mixed Load (ML) garantiza que se desarrolle una planeación colaborativa, de tal forma que el ingreso de los buses a la autopista se dé de forma ordenada y homogénea para todos los colegios, que para el caso de este ejemplo y como se muestra en las Tablas 11 y 12, éste se está dando a las 07:05 y 07:20, respectivamente, es decir, el ingreso está separado por un tiempo \(R = 15 \). En la Figura 12, se muestra gráficamente cómo se da el ingreso de las diferentes rutas en la línea de tiempo, tanto para la estrategia Single Load como para la Mixed Load.

Tabla 12: Tiempos Ruta 2 – Solución Mixed Load InstanciaML6. Fuente: Elaboración Propia

<table>
<thead>
<tr>
<th>Ruta 2 Mixed Load – Método Exacto</th>
<th>(t_{1}) (t_{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodo</td>
<td>2 27 36 30 33 28 25 26 34 29 37in 37out 40 39</td>
</tr>
<tr>
<td>T. Llegada</td>
<td>11 21 29 37 51 64 72 90 113 121 140 170 180 201</td>
</tr>
<tr>
<td>Hora Llegada</td>
<td>5:11 5:21 5:29 5:37 5:51 6:04 6:12 6:30 6:53 7:01 7:20 7:50 8:00 8:21</td>
</tr>
</tbody>
</table>

Tabla 12.

Es importante destacar, que la estrategia ML sugiere un número menor total de rutas a utilizar, es decir, que el costo de la operación (función objetivo Z) es de 965 unidades monetarias, mientras que, al totalizar el costo de operación que sugiere la estrategia SL, éste es de 1285 unidades monetarias, 33% más que el mencionado en primer lugar.

Finalmente, en la Tabla 13 se muestran resultados obtenidos para las instancias desarrolladas con la estrategia ML y la comparación con los resultados agregados conseguidos bajo la estrategia SL, según el
tamaño de la instancia (N. Estudiantes), la columna “N. Rutas” que hace referencia al número de buses que se necesitaron para obtener la solución, la columna “T. Ejecución (Seg)” que corresponde al tiempo de corrida en segundos, la columna “Costo Total” que hace referencia al valor de la función objetivo y la columna “Solución Óptima” hace referencia a si se trata o no de una solución óptima. Además, se muestra la relación en términos de número de rutas (R.N.Rutas), tiempo de ejecución (R.T) y costo total (R.CT) de la estrategia ML sobre la estrategia SL. (OOM: Out of memory; N.S.E: No solución encontrada).

Para las instancias ML generadas, se logró encontrar la solución óptima para 7 de las 10 instancias, en 2 se encontró una solución entera y para 1 la máquina quedó fuera de memoria y no se encontró solución. Es importante destacar que, para estas 9 instancias en las que se encontró solución, en promedio el número de rutas utilizado y el valor de la función objetivo bajo la estrategia ML corresponde al 74% y 77%, respectivamente, en comparación con la estrategia SL. Por otro lado, se observa que, en términos de tiempo computacional, la estrategia ML no es competitiva en relación a los tiempos que se obtienen cuando se aplica la estrategia SL, por lo cual, se hace evidente y necesario desarrollar un método heurístico que esté enfocado en mejorar esta medida de desempeño, ya que, en instancias con tamaños adaptados a la realidad, la herramienta debe facilitar la toma de decisiones en tiempo razonables.

<table>
<thead>
<tr>
<th>Instancia-N. Estudiantes</th>
<th>N. Rutas</th>
<th>T. de ejecución (Seg)</th>
<th>Costo Total</th>
<th>Solución Óptima</th>
<th>N. Rutas</th>
<th>T. de ejecución (Seg)</th>
<th>Costo Total</th>
<th>Solución Óptima</th>
<th>R.N.Rutas</th>
<th>R.T</th>
<th>R.CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>InstanciaML1-8</td>
<td>1</td>
<td>0,5</td>
<td>510</td>
<td>SI</td>
<td>2</td>
<td>0,2</td>
<td>755</td>
<td>SI</td>
<td>50%</td>
<td>278%</td>
<td>68%</td>
</tr>
<tr>
<td>InstanciaML2-15</td>
<td>2</td>
<td>74,9</td>
<td>820</td>
<td>SI</td>
<td>3</td>
<td>0,4</td>
<td>1110</td>
<td>SI</td>
<td>67%</td>
<td>17412%</td>
<td>74%</td>
</tr>
<tr>
<td>InstanciaML3-10</td>
<td>1</td>
<td>1,6</td>
<td>480</td>
<td>SI</td>
<td>2</td>
<td>0,3</td>
<td>845</td>
<td>SI</td>
<td>50%</td>
<td>484%</td>
<td>57%</td>
</tr>
<tr>
<td>InstanciaML4-15</td>
<td>2</td>
<td>73,6</td>
<td>815</td>
<td>SI</td>
<td>3</td>
<td>0,5</td>
<td>1195</td>
<td>SI</td>
<td>67%</td>
<td>14723%</td>
<td>68%</td>
</tr>
<tr>
<td>InstanciaML5-12</td>
<td>2</td>
<td>27,805,9</td>
<td>710</td>
<td>SI</td>
<td>2</td>
<td>0,5</td>
<td>795</td>
<td>SI</td>
<td>100%</td>
<td>6018591%</td>
<td>89%</td>
</tr>
<tr>
<td>InstanciaML6-18</td>
<td>2</td>
<td>1,021,9</td>
<td>965</td>
<td>SI</td>
<td>3</td>
<td>0,7</td>
<td>1285</td>
<td>SI</td>
<td>67%</td>
<td>151164%</td>
<td>75%</td>
</tr>
<tr>
<td>InstanciaML7-14</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
<td>N.S.E.</td>
<td>2</td>
<td>0,6</td>
<td>905</td>
<td>SI</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>InstanciaML8-21</td>
<td>3</td>
<td>20,001,2</td>
<td>1,200</td>
<td>NO</td>
<td>3</td>
<td>0,8</td>
<td>1280</td>
<td>SI</td>
<td>100%</td>
<td>2433240%</td>
<td>94%</td>
</tr>
<tr>
<td>InstanciaML9-13</td>
<td>2</td>
<td>68,9</td>
<td>860</td>
<td>SI</td>
<td>3</td>
<td>0,4</td>
<td>1160</td>
<td>SI</td>
<td>67%</td>
<td>17187%</td>
<td>74%</td>
</tr>
<tr>
<td>InstanciaML10-16</td>
<td>3</td>
<td>9,300,6</td>
<td>1,215</td>
<td>NO</td>
<td>3</td>
<td>0,5</td>
<td>1280</td>
<td>SI</td>
<td>100%</td>
<td>1909769%</td>
<td>95%</td>
</tr>
</tbody>
</table>

Tabla 13. Resumen Resultados Instancias Modelo MLCDV y Comparativo con Resultados SLCDV.
Fuente: Elaboración Propia

6.2. Resultados Método heurístico

El desarrollo del algoritmo propuesto se realizó en el lenguaje de programación Python\(^1\). Se desarrollaron dos programas, uno para solucionar las instancias de la estrategia single load y otro para hacer lo propio con las instancias de la estrategia mixed load, ambos programas guardan la misma lógica (como se observó en el numeral 4), a excepción de una actividad diferente que se realiza en la estrategia mixed load, en donde es necesario determinar los colegios que debe visitar el bus luego que pasa la autopista, de acuerdo al colegio al que pertenezcan los estudiantes que van en cada ruta. Para correr las instancias con este método, se utilizó el mismo computador personal usado para correr las instancias en GAMS, el cual cuenta con procesador Intel® Core™ i3-2310M CPU de 2.10GHz, con memoria RAM de 8 GB y sistema operativo de 64 bits.

En los siguientes numerales se presentarán y explicarán los resultados obtenidos con este método, además, se mostrará un análisis comparativo del método heurístico respecto al método exacto, con base en el tiempo de ejecución para encontrar el óptimo y el valor de la función objetivo.

\(^1\) Python Software Foundation: http://www.python.org/
6.2.1. **Estrategia de rutas independientes (single load)**

Antes de mostrar el detalle de los resultados computacionales, el ejemplo trabajado en la sección 5.1.1. se usa para explicar los resultados; este ejemplo muestra la solución para la instancia 27 con 12 estudiantes. En la Figura 13, se presenta de nuevo la solución óptima obtenida con el método exacto, mientras que, en la Figura 14, se muestra gráficamente la solución obtenida con la heurística.

Figura 18. Solución Método Exacto - Instancia 27 con 12 Estudiantes

Los tiempos de llegada a cada nodo para la solución del método exacto se pueden revisar en el numeral 5.1.1. en las tablas 5 y 6.
Los tiempos de llegada según las rutas mostradas en la Figura 14 se pueden detallar a continuación en las Tablas 14 y 15.

<table>
<thead>
<tr>
<th>Ruta</th>
<th>1 – Método Heurístico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodo</td>
<td>1 20 13 24 15 17 19 25 in 25 out 26</td>
</tr>
<tr>
<td>Tiempo Llegada</td>
<td>36 43 52 68 77 98 144 172 202 210</td>
</tr>
<tr>
<td>Hora Llegada</td>
<td>5:36 5:43 5:52 6:08 6:17 6:38 7:24 7:52 8:22 8:30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ruta</th>
<th>2 – Método Heurístico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodo</td>
<td>2 18 22 14 16 23 21 in 25 out 26</td>
</tr>
<tr>
<td>Tiempo Llegada</td>
<td>37 64 72 103 111 119 138 157 187 195</td>
</tr>
</tbody>
</table>

_Con tablas se puede apreciar y entender claramente lo mencionado en el numeral 4, respecto a la lógica que sigue la programación de las rutas con el método heurístico. Como se observa en las tablas 14 y 15, la ruta más larga, que en este caso es la 1, se programa de primera tomando como referencia el límite superior de la ventana de tiempo del colegio, luego, la segunda ruta es secuenciada hacia atrás separada por un espacio de 15 minutos (R), respecto al tiempo en el que la ruta 1 llega a la autopista. Con lo anterior, se garantiza que entre más larga sea la ruta, su inicio va a ser lo más tarde posible, de tal forma que cumpla con la ventana de tiempo del colegio y el mínimo de tiempo que se deben llevar los buses cuando ingresen a la autopista.

Para esta instancia, la solución se encontró en 0,001 segundos y el costo total de la solución fue de 880 unidades monetarias. Con el método exacto, se obtuvo la solución óptima en 10.719,87 segundos y el costo total asociado de ésta fue de 745 unidades monetarias; en este caso, el gap que se tiene con el método heurístico es del 18%, sin embargo, en términos de tiempo computacional, la heurística demuestra
su alta competitividad, ya que apenas toma el 0,00001% del tiempo, respecto a lo que toma GAMS para encontrar la solución óptima.

En la Tabla 16 se muestran los resultados consolidados según el tamaño de la instancia (N. Estudiantes) para ambos métodos, la columna “N. Rutas” hace referencia al número de buses promedio que se necesitaron en la solución, la columna “T. Ejecución (Seg)” corresponde al tiempo de corrida promedio en segundos, la columna “Costo Total” hace referencia al valor promedio de la función objetivo, la columna “N. S. O.” hace referencia al número total de soluciones óptimas encontradas en las instancias de un determinado tamaño, la columna “% GAP” hace referencia a la desviación absoluta porcentual del costo total obtenido con el método heurístico, respecto al costo total de la mejor solución conocida para cada una de las instancias, y, la columna “T. MH/T. ME” hace referencia a la relación del tiempo computacional usado en el método heurístico, respecto al requerido por GAMS para encontrar la solución del método exacto. El detalle de los resultados para las 51 instancias para el método heurístico se puede observar en el Anexo 4.

<table>
<thead>
<tr>
<th>N. Estudiantes</th>
<th>Método Exacto</th>
<th>Método Heurístico</th>
<th>% GAP</th>
<th>T. MH/T. ME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N. Rutas</td>
<td>T. Ejecución (Seg)</td>
<td>Costo Total</td>
<td>N. S. O</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0,1</td>
<td>$373</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0,2</td>
<td>$398</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0,2</td>
<td>$428</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0,3</td>
<td>$427</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0,4</td>
<td>$480</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>52,8</td>
<td>$525</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1,1</td>
<td>$487</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>7,129,4</td>
<td>$747</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>8,481,4</td>
<td>$712</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>10,586,2</td>
<td>$735</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>4,837,1</td>
<td>$742</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>7,001,4</td>
<td>$725</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>5,097,2</td>
<td>$785</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>1,800,6</td>
<td>$840</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>2,600,7</td>
<td>$788</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>3,600,8</td>
<td>$800</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>10,201,0</td>
<td>$840</td>
<td>-</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

Como se puede observar en la tabla 16, con el método exacto se obtuvieron 27 soluciones óptimas, mientras que, con el método heurístico se consiguieron 12 (56% menos), sin embargo, el % gap promedio de las soluciones del método heurístico respecto a las del método exacto es de apenas 6%, lo que sugiere una alta competitividad del método heurístico propuesto. En el caso del método exacto, no fue posible encontrar una solución para 8 de las 51 instancias, mientras que, con el método heurístico se alcanzó una solución para cada una de las instancias aleatorias generadas. Por último, es importante destacar la eficiencia en términos de tiempo computacional que tiene el método heurístico, ya que, en promedio sólo se tomó el 0,12% del tiempo que en promedio usó GAMS para encontrar la solución, es decir, hay una reducción del 99,88%.

Finalmente, para probar la eficiencia del método heurístico, se generaron 3 instancias aleatorias con 100 estudiantes, en las cuales se modificaron los parámetros como sigue: $R = 15$, $Q = 30$, $S_I = 0$, $S_p = 10$, $V = 50$. Al utilizar la heurística para solucionar estas instancias, se obtuvieron los resultados que se muestran en la tabla 17. No se generaron experimentos con instancias más grandes, ya que el generador de instancias aleatorias que se diseñó desbordaba los recursos computacionales de la máquina en la que se generó la experimentación cuando se intentaban generar instancias con más de 100 estudiantes.
6.2.2. Estrategia de rutas compartidas (mixed load)

Antes de mostrar el detalle de los resultados computacionales, se sigue con el desarrollo del ejemplo trabajado en la sección 5.2.1., el cual muestra la solución para la instancia 6 con 18 estudiantes. En la Figura 15, se presenta de nuevo la solución óptima obtenida con el método exacto, mientras que, en la Figura 16, se muestra gráficamente la solución generada con la heurística.

Los tiempos de llegada según las rutas mostradas en la Figura 16 se pueden detallar a continuación en las Tablas 17 a 19.

<table>
<thead>
<tr>
<th>Ruta</th>
<th>1 - Método Heurístico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodo</td>
<td>1-18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41</td>
</tr>
<tr>
<td>Coordenada X</td>
<td>0 30 14 39 9 30 22 11 20 6 7 34 5 20 22 1 32 36 7 45 50 50 46 0</td>
</tr>
<tr>
<td>Coordenada Y</td>
<td>13 13 15 14 13 5 10 10 14 3 8 7 14 16 0 4 16 10 10 20 15 4 0</td>
</tr>
</tbody>
</table>

| Conjunto | k: Puntos inicio | j: Estudiantes | a | m: Colegios | f: Nodo ficticio |

<table>
<thead>
<tr>
<th>Ruta 2</th>
<th>2 - Método Heurístico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodo</td>
<td>2 36 22 26 24 19 29 37in 37out 40 39 38</td>
</tr>
<tr>
<td>Tiempo Llegada</td>
<td>35 48 56 75 79 95 106 125 150 165 186 195</td>
</tr>
<tr>
<td>Hora Llegada</td>
<td>5:35 5:48 5:56 6:15 6:19 6:35 6:46 7:05 7:35 7:45 8:06 8:15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ruta 3</th>
<th>3 - Método Heurístico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodo</td>
<td>3 27 20 31 32 35 21 37in 37out 40 39 38</td>
</tr>
<tr>
<td>Tiempo Llegada</td>
<td>26 36 50 61 67 91 97 110 140 150 171 180</td>
</tr>
<tr>
<td>Hora Llegada</td>
<td>5:26 5:38 5:50 6:01 6:07 6:31 6:37 6:50 7:20 7:30 7:51 8:00</td>
</tr>
</tbody>
</table>

Tabla 18. Tiempos Ruta 1 - InstanciaML6-18 – Método Heurístico. Fuente: Elaboración Propia

Tabla 19. Tiempos Ruta 1 - InstanciaML6-18 – Método Heurístico. Fuente: Elaboración Propia

Tabla 20. Tiempos Ruta 1 - InstanciaML6-18 – Método Heurístico. Fuente: Elaboración Propia
En este ejemplo también se puede observar cómo se lleva a cabo la secuenciación hacia atrás, desde la ruta más larga a la más corta, de tal forma que los buses estén separados por R en el ingreso a la autopista, y al mismo tiempo, se cumpla con las ventanas de tiempo de los 3 colegios.

Para esta instancia, la solución se encontró en 0,004 segundos y el costo total de la solución fue de 1.345 unidades monetarias. Con el método exacto, se obtuvo la solución óptima en 1.021,87 segundos y el costo total asociado a ésta fue de 965 unidades monetarias; en este caso, el gap que se tiene con el método heurístico es del 39%, sin embargo, en términos de tiempo computacional, la heurística demuestra su alta competitividad, ya que apenas toma el 0,0004% del tiempo, respecto a lo que toma GAMS para encontrar la solución óptima. En cuanto al número de rutas, para esta instancia el método heurístico sugiere la utilización de 3 rutas, mientras que, el método exacto emplea 2 rutas para cumplir el requerimiento de los 3 colegios.

En la Tabla 20 se muestran los resultados obtenidos para las instancias desarrolladas con la estrategia ML, tanto con el método heurístico como con el exacto, la columna “N. Rutas” hace referencia al número de buses usados en la solución encontrada, la columna “T. Ejecución (Seg)” corresponde al tiempo de corrida en segundos, la columna “Costo Total” hace referencia al valor de la función objetivo, la columna “% Gap”, la cual hace referencia a la desviación absoluta porcentual del costo total obtenido con el método heurístico, respecto al costo total de la mejor solución conocida para cada una de las instancias, y, la columna “T.MH/T.ME” hace referencia a la relación del tiempo computacional usado en el método heurístico, respecto al requerido por GAMS para encontrar la solución del método exacto.

<table>
<thead>
<tr>
<th>Instancia-N. Estudiantes</th>
<th>Método Exacto</th>
<th>Método Huerístico</th>
<th>% Gap</th>
<th>T. MH/T. ME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N. Rutas</td>
<td>T. Ejecución (Seg)</td>
<td>Costo Total</td>
<td>Solución Óptima</td>
</tr>
<tr>
<td>InstanciaML1-8</td>
<td>1</td>
<td>0,5</td>
<td>$510</td>
<td>SI</td>
</tr>
<tr>
<td>InstanciaML2-15</td>
<td>2</td>
<td>74,9</td>
<td>$820</td>
<td>SI</td>
</tr>
<tr>
<td>InstanciaML3-10</td>
<td>1</td>
<td>1,6</td>
<td>$480</td>
<td>SI</td>
</tr>
<tr>
<td>InstanciaML4-15</td>
<td>2</td>
<td>73,6</td>
<td>$815</td>
<td>SI</td>
</tr>
<tr>
<td>InstanciaML5-12</td>
<td>2</td>
<td>27.805,9</td>
<td>$710</td>
<td>SI</td>
</tr>
<tr>
<td>InstanciaML6-18</td>
<td>2</td>
<td>1,021,9</td>
<td>$965</td>
<td>SI</td>
</tr>
<tr>
<td>InstanciaML7-14</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
<td>O.S.E.</td>
</tr>
<tr>
<td>InstanciaML8-21</td>
<td>3</td>
<td>20.001,2</td>
<td>$1.200</td>
<td>NO</td>
</tr>
<tr>
<td>InstanciaML9-13</td>
<td>2</td>
<td>68,9</td>
<td>$860</td>
<td>SI</td>
</tr>
<tr>
<td>InstanciaML10-16</td>
<td>3</td>
<td>9.300,6</td>
<td>$1.125</td>
<td>NO</td>
</tr>
</tbody>
</table>

Como se puede observar en la tabla 20, con el método exacto se obtuvieron 7 soluciones óptimas, mientras que, con el método heurístico se consiguió sólo 1, sin embargo, el % gap promedio de las soluciones del método heurístico respecto a las del método exacto es de apenas 8%, lo que sugiere una alta competitividad del método heurístico propuesto. En el caso del método exacto, no fue posible encontrar una solución para 1 de las instancias, mientras que, con el método heurístico se alcanzó una solución para cada una de las instancias aleatorias generadas. Por último, es importante destacar la eficiencia en términos de tiempo computacional que tiene el método heurístico, ya que, en promedio sólo se tomó el 0,02% del tiempo que en promedio que usó GAMS para encontrar la solución, es decir, hay una reducción del 99,98%.

Finalmente, al igual que en el caso de la estrategia single load, se generó 1 instancia tomando las 3 instancias más grandes que se generaron para la estrategia single load, con ésta, se pretende probar la eficiencia del método propuesto. Con lo anterior, se obtuvo una instancia de 60 estudiantes, en la cual se modificaron los parámetros como sigue: $R = 8, Q = 15$ y $S_v = 0, S_a = 12$. Al correr el algoritmo, se obtuvo una solución con 5 rutas, con un costo total de 2.165,0 unidades monetarias, en tiempo de 0,002 segundos. Al igual que para el caso del modelo Single Load, no se generaron experimentos con instancias más grandes, ya que el generador de instancias aleatorias que se diseñó desbordaba los recursos.
computacionales de la máquina en la que se generó la experimentación cuando se intentó generar una instancia con las 3 instancias single load de 100 estudiantes cada una.

7. CONCLUSIONES E INVESTIGACIONES FUTURAS

Dado que Bogotá fue la 5ta ciudad del mundo con peor tráfico en el 2016 (según INRIX Global Traffic Scorecard) se evidencia la necesidad de mejorar los indicadores de tráfico en la ciudad. En esta investigación se diseñaron estrategias eficientes para el mejor uso de los recursos (buses, tiempo de viaje, costos operativos, etc.) en sistemas de transporte escolar, ya sea con estrategias de independientes o de cooperación entre colegios.

Durante el desarrollo de la investigación, se analizaron 2 estrategias (rutas independientes y rutas compartidas) para el diseño de rutas del sistema de transporte de estudiantes utilizando modelos de optimización basados en programación entera mixta (MIP). Para ambas estrategias se propuso una formulación matemática que logra representar el comportamiento del sistema cuando hay tráfico al momento de atravesar la autopista, y que permite generar a la vez la secuenciación ordenada de buses en este punto. Lo anterior, permitió generar medidas de desempeño comparables entre ambas estrategias.

El diseño de rutas basado en una estrategia de cooperación (mixed load) entre colegios generó un mejor uso de los recursos en el sistema de rutas escolares. Para el caso de los experimentos desarrollados en esta investigación, la reducción del número de buses en comparación con la estrategia de rutas independientes fue del 25% y 17% para el método exacto y heurístico, respectivamente. Lo anterior, pretende ayudar a la reducción de la congestión vehicular y, por ende, la reducción de tiempos de viaje de los estudiantes.

Además, dada la complejidad del problema (NP-Hard) se desarrolló una heurística que permitió reducir los tiempos de ejecución respecto al método exacto en un 99%, además, permitió encontrar soluciones competitivas para este problema con gaps promedio entre el 6% y 8% respecto a la mejor solución conocida para este problema según la estrategia.

Finalmente, respecto a las investigaciones futuras, se podrían generar experimentos con instancias más grandes, de tal forma que se pueda probar la eficiencia de la heurística diseñada en sistemas cercanos a la realidad, así mismo, el sistema de transporte objeto de la presente investigación podría contemplar estudiantes con necesidades especiales, tiempos de viaje y de tráfico estocásticos, una flota heterogénea de buses y una función multi-objetivo que además de minimizar el costo total de la operación, minimice el impacto ambiental generado por los buses. Además, también se podrían desarrollar nuevas investigaciones enfocadas en la generación de métodos exactos más eficientes y métodos meta-heurísticos más robustos. Para finalizar, este modelo se podría aplicar a sistemas de transporte de rutas empresariales que tengan un grafo homólogo al estudiado con esta investigación.
REFERENCIAS

ANEXOS

Anexo 1: Detalle Generación Instancia Aleatoria

Los diferentes conjuntos de nodos se generaron entre las siguientes coordenadas del plano descrito por las mismas:

Conjunto k: $X = 0; 0 \leq Y \leq 20$
Conjunto j: $1 \leq X \leq 40; 0 \leq Y \leq 20$
Conjunto a: $X = 45; Y = 10$
Conjunto m: $46 \leq X \leq 50; 0 \leq Y \leq 20$
Conjunto f: $X = 0; Y = 0$ (Sólo aplica en las instancias del problema de rutas compartidas)

En la Figura 17 se presenta un ejemplo gráfico de unas de las instancias generadas para el problema de rutas independientes:

![Ejemplo Instancia Single Load con 6 Estudiantes](image)

En la Figura 18 se presenta un ejemplo gráfico de unas de las instancias generadas para el problema de rutas compartidas:
Figura 23. Ejemplo Distribución Geográfica Instancia Aleatoria Mixed Load. Fuente: Elaboración Propia

Anexo 2: Detalle de los Resultados Instancias Modelos Single Load – Método Exacto.

En las Tablas 21 y 22 se muestra el detalle de los resultados para el modelo base y modelo CDV, respectivamente. En estas tablas, la columna "N. Estudiantes" hace referencia a la cantidad de niños que se incluyen en la instancia, la columna "N. Rutas" se refiere al número de buses que se utilizaron en la solución de la instancia, la columna "T. Ejecución (seg)" corresponde al tiempo computacional que usó el solver para encontrar dicha solución, la columna "Costo total" se refiere al valor de la función objetivo para la solución de cada instancia, finalmente, la columna “S.O.E.” dice si la solución que se encontró en o no óptima.

<table>
<thead>
<tr>
<th>Nombre Instancia</th>
<th>N. Estudiantes</th>
<th>N. Rutas</th>
<th>T. Ejecución (Seg)</th>
<th>Costo total</th>
<th>S.O.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instancia1-4</td>
<td>4</td>
<td>1</td>
<td>0,25</td>
<td>370</td>
<td>SI</td>
</tr>
<tr>
<td>Instancia2-4</td>
<td>4</td>
<td>1</td>
<td>0,18</td>
<td>385</td>
<td>SI</td>
</tr>
<tr>
<td>Instancia3-4</td>
<td>4</td>
<td>1</td>
<td>0,07</td>
<td>365</td>
<td>SI</td>
</tr>
<tr>
<td>Instancia4-5</td>
<td>5</td>
<td>1</td>
<td>0,95</td>
<td>405</td>
<td>SI</td>
</tr>
<tr>
<td>Instancia5-5</td>
<td>5</td>
<td>1</td>
<td>0,14</td>
<td>440</td>
<td>SI</td>
</tr>
<tr>
<td>Instancia6-5</td>
<td>5</td>
<td>1</td>
<td>0,15</td>
<td>350</td>
<td>SI</td>
</tr>
<tr>
<td>Instancia7-6</td>
<td>6</td>
<td>1</td>
<td>0,22</td>
<td>395</td>
<td>SI</td>
</tr>
<tr>
<td>Instancia8-6</td>
<td>6</td>
<td>1</td>
<td>1,01</td>
<td>400</td>
<td>SI</td>
</tr>
<tr>
<td>Instancia9-6</td>
<td>6</td>
<td>1</td>
<td>0,78</td>
<td>490</td>
<td>SI</td>
</tr>
<tr>
<td>Instancia10-7</td>
<td>7</td>
<td>1</td>
<td>0,87</td>
<td>455</td>
<td>SI</td>
</tr>
<tr>
<td>Instancia11-7</td>
<td>7</td>
<td>1</td>
<td>3,60</td>
<td>450</td>
<td>SI</td>
</tr>
<tr>
<td>Instancia12-7</td>
<td>7</td>
<td>1</td>
<td>2,31</td>
<td>375</td>
<td>SI</td>
</tr>
<tr>
<td>Instancia13-8</td>
<td>8</td>
<td>1</td>
<td>1,78</td>
<td>520</td>
<td>SI</td>
</tr>
<tr>
<td>Instancia14-8</td>
<td>8</td>
<td>1</td>
<td>0,74</td>
<td>430</td>
<td>SI</td>
</tr>
<tr>
<td>Instancia15-8</td>
<td>8</td>
<td>1</td>
<td>6,52</td>
<td>490</td>
<td>SI</td>
</tr>
<tr>
<td>Instancia16-9</td>
<td>9</td>
<td>1</td>
<td>2,19</td>
<td>370</td>
<td>SI</td>
</tr>
<tr>
<td>Nombre Instancia</td>
<td>N. Estudiantes</td>
<td>N. Rutas</td>
<td>T. Ejecución (Seg)</td>
<td>Costo total</td>
<td>S.O.E.</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
<td>----------</td>
<td>--------------------</td>
<td>-------------</td>
<td>--------</td>
</tr>
<tr>
<td>Instancia17-9</td>
<td>9</td>
<td>1</td>
<td>4,41</td>
<td>450</td>
<td>SI</td>
</tr>
<tr>
<td>Instancia18-9</td>
<td>9</td>
<td>2</td>
<td>5.802,54</td>
<td>755</td>
<td>SI</td>
</tr>
<tr>
<td>Instancia19-10</td>
<td>10</td>
<td>1</td>
<td>642,17</td>
<td>555</td>
<td>SI</td>
</tr>
<tr>
<td>Instancia20-10</td>
<td>10</td>
<td>1</td>
<td>6,28</td>
<td>415</td>
<td>SI</td>
</tr>
<tr>
<td>Instancia21-10</td>
<td>10</td>
<td>1</td>
<td>14,00</td>
<td>490</td>
<td>SI</td>
</tr>
<tr>
<td>Instancia22-11</td>
<td>11</td>
<td>2</td>
<td>6.326,51</td>
<td>765</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia23-11</td>
<td>11</td>
<td>2</td>
<td>8.000,17</td>
<td>700</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia24-11</td>
<td>11</td>
<td>2</td>
<td>10.182,48</td>
<td>775</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia25-12</td>
<td>12</td>
<td>2</td>
<td>13.100,22</td>
<td>695</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia26-12</td>
<td>12</td>
<td>2</td>
<td>19.554,39</td>
<td>695</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia27-12</td>
<td>12</td>
<td>2</td>
<td>7.200,20</td>
<td>750</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia28-13</td>
<td>13</td>
<td>2</td>
<td>6.400,28</td>
<td>755</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia29-13</td>
<td>13</td>
<td>2</td>
<td>4.250,32</td>
<td>680</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia30-13</td>
<td>13</td>
<td>2</td>
<td>1.095,29</td>
<td>790</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia31-14</td>
<td>14</td>
<td>2</td>
<td>1.820,34</td>
<td>655</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia32-14</td>
<td>14</td>
<td>2</td>
<td>14.070,40</td>
<td>765</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia33-14</td>
<td>14</td>
<td>2</td>
<td>2.950,41</td>
<td>805</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia34-15</td>
<td>15</td>
<td>2</td>
<td>5.740,39</td>
<td>715</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia35-15</td>
<td>15</td>
<td>2</td>
<td>2.700,43</td>
<td>735</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia36-15</td>
<td>15</td>
<td>2</td>
<td>2.870,43</td>
<td>735</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia37-16</td>
<td>16</td>
<td>2</td>
<td>15.140,56</td>
<td>790</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia38-16</td>
<td>16</td>
<td>2</td>
<td>24.100,51</td>
<td>745</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia39-16</td>
<td>16</td>
<td>2</td>
<td>2.700,57</td>
<td>825</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia40-17</td>
<td>17</td>
<td>2</td>
<td>2.750,66</td>
<td>750</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia41-17</td>
<td>17</td>
<td>2</td>
<td>4.300,62</td>
<td>820</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia42-17</td>
<td>17</td>
<td>2</td>
<td>4.530,60</td>
<td>795</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia43-18</td>
<td>18</td>
<td>3</td>
<td>2.250,72</td>
<td>1200</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia44-18</td>
<td>18</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
<td>NSE</td>
</tr>
<tr>
<td>Instancia45-18</td>
<td>18</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
<td>NSE</td>
</tr>
<tr>
<td>Instancia46-19</td>
<td>19</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
<td>NSE</td>
</tr>
<tr>
<td>Instancia47-19</td>
<td>19</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
<td>NSE</td>
</tr>
<tr>
<td>Instancia48-19</td>
<td>19</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
<td>NSE</td>
</tr>
<tr>
<td>Instancia49-20</td>
<td>20</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
<td>NSE</td>
</tr>
<tr>
<td>Instancia50-20</td>
<td>20</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
<td>NSE</td>
</tr>
<tr>
<td>Instancia51-20</td>
<td>20</td>
<td>2</td>
<td>4.001,08</td>
<td>840</td>
<td>NO</td>
</tr>
</tbody>
</table>

Tabla 22. Resumen Resultados Instancias Modelo Base (OMM: Out Of Memory; NSE: No solución encontrada). Fuente: Elaboración Propia
<table>
<thead>
<tr>
<th>Nombre Instancia</th>
<th>N. Estudiantes</th>
<th>N. Rutas</th>
<th>T. Ejecución (Seg)</th>
<th>Costo total</th>
<th>S.O.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instancia1-4</td>
<td>4</td>
<td>1</td>
<td>0,08</td>
<td>370</td>
<td>Sí</td>
</tr>
<tr>
<td>Instancia2-4</td>
<td>4</td>
<td>1</td>
<td>0,10</td>
<td>385</td>
<td>Sí</td>
</tr>
<tr>
<td>Instancia3-4</td>
<td>4</td>
<td>1</td>
<td>0,08</td>
<td>365</td>
<td>Sí</td>
</tr>
<tr>
<td>Instancia4-5</td>
<td>5</td>
<td>1</td>
<td>0,23</td>
<td>405</td>
<td>Sí</td>
</tr>
<tr>
<td>Instancia5-5</td>
<td>5</td>
<td>1</td>
<td>0,11</td>
<td>440</td>
<td>Sí</td>
</tr>
<tr>
<td>Instancia6-5</td>
<td>5</td>
<td>1</td>
<td>0,16</td>
<td>350</td>
<td>Sí</td>
</tr>
<tr>
<td>Instancia7-6</td>
<td>6</td>
<td>1</td>
<td>0,19</td>
<td>395</td>
<td>Sí</td>
</tr>
<tr>
<td>Instancia8-6</td>
<td>6</td>
<td>1</td>
<td>0,27</td>
<td>400</td>
<td>Sí</td>
</tr>
<tr>
<td>Instancia9-6</td>
<td>6</td>
<td>1</td>
<td>0,21</td>
<td>490</td>
<td>Sí</td>
</tr>
<tr>
<td>Instancia10-7</td>
<td>7</td>
<td>1</td>
<td>0,28</td>
<td>455</td>
<td>Sí</td>
</tr>
<tr>
<td>Instancia11-7</td>
<td>7</td>
<td>1</td>
<td>0,28</td>
<td>450</td>
<td>Sí</td>
</tr>
<tr>
<td>Instancia12-7</td>
<td>7</td>
<td>1</td>
<td>0,27</td>
<td>375</td>
<td>Sí</td>
</tr>
<tr>
<td>Instancia13-8</td>
<td>8</td>
<td>1</td>
<td>0,38</td>
<td>520</td>
<td>Sí</td>
</tr>
<tr>
<td>Instancia14-8</td>
<td>8</td>
<td>1</td>
<td>0,40</td>
<td>430</td>
<td>Sí</td>
</tr>
<tr>
<td>Instancia15-8</td>
<td>8</td>
<td>1</td>
<td>0,52</td>
<td>490</td>
<td>Sí</td>
</tr>
<tr>
<td>Instancia16-9</td>
<td>9</td>
<td>1</td>
<td>0,56</td>
<td>370</td>
<td>Sí</td>
</tr>
<tr>
<td>Instancia17-9</td>
<td>9</td>
<td>1</td>
<td>0,76</td>
<td>450</td>
<td>Sí</td>
</tr>
<tr>
<td>Instancia18-9</td>
<td>9</td>
<td>2</td>
<td>156,97</td>
<td>755</td>
<td>Sí</td>
</tr>
<tr>
<td>Instancia19-10</td>
<td>10</td>
<td>1</td>
<td>1,66</td>
<td>555</td>
<td>Sí</td>
</tr>
<tr>
<td>Instancia20-10</td>
<td>10</td>
<td>1</td>
<td>1,11</td>
<td>415</td>
<td>Sí</td>
</tr>
<tr>
<td>Instancia21-10</td>
<td>10</td>
<td>1</td>
<td>0,57</td>
<td>490</td>
<td>Sí</td>
</tr>
<tr>
<td>Instancia22-11</td>
<td>11</td>
<td>2</td>
<td>3,779,07</td>
<td>765</td>
<td>Sí</td>
</tr>
<tr>
<td>Instancia23-11</td>
<td>11</td>
<td>2</td>
<td>4,427,21</td>
<td>700</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia24-11</td>
<td>11</td>
<td>2</td>
<td>13,181,97</td>
<td>775</td>
<td>Sí</td>
</tr>
<tr>
<td>Instancia25-12</td>
<td>12</td>
<td>2</td>
<td>3,559,10</td>
<td>695</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia26-12</td>
<td>12</td>
<td>2</td>
<td>11,165,14</td>
<td>695</td>
<td>Sí</td>
</tr>
<tr>
<td>Instancia27-12</td>
<td>12</td>
<td>2</td>
<td>10,719,87</td>
<td>745</td>
<td>Sí</td>
</tr>
<tr>
<td>Instancia28-13</td>
<td>13</td>
<td>2</td>
<td>29,841,18</td>
<td>755</td>
<td>Sí</td>
</tr>
<tr>
<td>Instancia29-13</td>
<td>13</td>
<td>2</td>
<td>1,237,05</td>
<td>680</td>
<td>Sí</td>
</tr>
<tr>
<td>Instancia30-13</td>
<td>13</td>
<td>2</td>
<td>680,28</td>
<td>770</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia31-14</td>
<td>14</td>
<td>2</td>
<td>3,000,34</td>
<td>655</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia32-14</td>
<td>14</td>
<td>2</td>
<td>3,975,39</td>
<td>765</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia33-14</td>
<td>14</td>
<td>2</td>
<td>7,535,45</td>
<td>805</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia34-15</td>
<td>15</td>
<td>2</td>
<td>9,432,26</td>
<td>715</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia35-15</td>
<td>15</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
<td>NSE</td>
</tr>
<tr>
<td>Instancia36-15</td>
<td>15</td>
<td>2</td>
<td>4,570,49</td>
<td>735</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia37-16</td>
<td>16</td>
<td>2</td>
<td>5,000,50</td>
<td>790</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia38-16</td>
<td>16</td>
<td>2</td>
<td>3,990,58</td>
<td>745</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia39-16</td>
<td>16</td>
<td>2</td>
<td>6,300,54</td>
<td>820</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia40-17</td>
<td>17</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
<td>NSE</td>
</tr>
<tr>
<td>Nombre Instancia</td>
<td>N. Estudiantes</td>
<td>N. Rutas</td>
<td>T. Ejecución (Seg)</td>
<td>Costo total</td>
<td>S.O.E.</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
<td>----------</td>
<td>--------------------</td>
<td>-------------</td>
<td>--------</td>
</tr>
<tr>
<td>Instancia41-17</td>
<td>17</td>
<td>2</td>
<td>1.800,58</td>
<td>840</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia42-17</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
<td>NSE</td>
<td></td>
</tr>
<tr>
<td>Instancia43-18</td>
<td>18</td>
<td>2</td>
<td>2.800,82</td>
<td>810</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia44-18</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
<td>NSE</td>
<td></td>
</tr>
<tr>
<td>Instancia45-18</td>
<td>18</td>
<td>2</td>
<td>2.400,66</td>
<td>765</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia46-19</td>
<td>19</td>
<td>2</td>
<td>3.600,77</td>
<td>800</td>
<td>NO</td>
</tr>
<tr>
<td>Instancia47-19</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
<td>NSE</td>
<td></td>
</tr>
<tr>
<td>Instancia48-19</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
<td>NSE</td>
<td></td>
</tr>
<tr>
<td>Instancia49-20</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
<td>NSE</td>
<td></td>
</tr>
<tr>
<td>Instancia50-20</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
<td>NSE</td>
<td></td>
</tr>
<tr>
<td>Instancia51-20</td>
<td>20</td>
<td>2</td>
<td>10.200,96</td>
<td>840</td>
<td>NO</td>
</tr>
</tbody>
</table>

Tabla 23. Resumen Resultados Instancias Modelo CDV (OMM: Out Of Memory; NSE: No solución encontrada). Fuente: Elaboración Propia

Anexo 3: Detalle Construcción Instancia Mixed Load.

En las Tablas 23, 24 y 25 se muestra el detalle de las coordenadas de las 3 instancias del modelo single load que se combinan para generar una del modelo mixed load.

Como se mencionó anteriormente, uno de los supuestos que se tuvo al momento de generar las instancias aleatorias, es que todos los buses tienen el mismo punto de inicio, como se observa en las Tablas 8, 9 y 10, las coordenadas para los puntos de inicio de las rutas son diferentes entre sí, por el mismo hecho de ser generadas de forma aleatoria. Para conservar este supuesto en las instancias del modelo mixed load, las coordenadas de los puntos de inicio de las rutas se asumen como el promedio de las coordenadas X y Y que se combinan para generar el sistema multi-colegio. Para el ejemplo que se está presentando, las coordenadas que tendrán los puntos de inicio de las rutas del sistema mixed load serán (X: 0, Y: 13). En la Figura 19 se muestra la distribución geográfica de la instancia (InstanciaML6) en la cual se basa el ejemplo.

Coordenadas Instancia7-6 Single Load

<table>
<thead>
<tr>
<th>Nodo</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>14</td>
<td>39</td>
<td>9</td>
<td>30</td>
<td>22</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>Y</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>13</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

Tabla 24. Detalle de Coordenadas Instancia7-6. Fuente: Elaboración Propia

Coordenadas Instancia8-6 Single Load

<table>
<thead>
<tr>
<th>Nodo</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>20</td>
<td>6</td>
<td>7</td>
<td>34</td>
<td>5</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>Y</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>14</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td>10</td>
<td>15</td>
</tr>
</tbody>
</table>

Tabla 25. Detalle de Coordenadas Instancia8-6. Fuente: Elaboración Propia

<table>
<thead>
<tr>
<th>Conjunto</th>
<th>k1</th>
<th>k2</th>
<th>k3</th>
<th>k4</th>
<th>k5</th>
<th>j1</th>
<th>j2</th>
<th>j3</th>
<th>j4</th>
<th>j5</th>
<th>j6</th>
<th>a</th>
<th>m1</th>
</tr>
</thead>
</table>

Anexo 4: Detalle de los Resultados Instancias Modelos Single Load – Método Heurístico

En las Tablas 26 se muestra el detalle de los resultados obtenidos con el método exacto en comparación con los que se consiguieron con el método heurístico. En esta tabla, la columna “N. Estudiantes” hace referencia a la cantidad de niños que se incluyen en la instancia, la columna “N. Rutas” se refiere al número de buses que se utilizaron en la solución de la instancia, la columna “T. Ejecución (seg)” corresponde al tiempo computacional que usó el solver para encontrar dicha solución, la columna “Costo total” se refiere al valor de la función objetivo para la solución de cada instancia, la columna “S.O.E.” dice si la solución que se encontró en o no óptima, la columna “% Gap” hace referencia a la desviación relativa en términos de costo total de la solución obtenida con el método heurístico, respecto al método exacto, finalmente, la columna “T.MH/T.ME” hace referencia a la relación del tiempo computacional usado en el método heurístico, respecto al requerido por GAMS para encontrar la solución del método exacto.
<table>
<thead>
<tr>
<th>Nombre Instancia-N. Estudianes</th>
<th>N. Rutas</th>
<th>T. de ejecución (Seg)</th>
<th>Costo Total</th>
<th>S.O.E.</th>
<th>N. Rutas</th>
<th>T. de ejecución (Seg)</th>
<th>Costo total</th>
<th>Mejor solución</th>
<th>S.O.E.</th>
<th>% Gap</th>
<th>T. MH/T. ME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instancia1-4</td>
<td>1</td>
<td>0,08</td>
<td>370</td>
<td>SI</td>
<td>1</td>
<td>4,84E-05</td>
<td>370</td>
<td>370</td>
<td>SI</td>
<td>0</td>
<td>0,06%</td>
</tr>
<tr>
<td>Instancia2-4</td>
<td>1</td>
<td>0,10</td>
<td>385</td>
<td>SI</td>
<td>1</td>
<td>4,58E-05</td>
<td>385</td>
<td>385</td>
<td>SI</td>
<td>0</td>
<td>0,05%</td>
</tr>
<tr>
<td>Instancia3-4</td>
<td>1</td>
<td>0,08</td>
<td>365</td>
<td>SI</td>
<td>1</td>
<td>5,06E-04</td>
<td>365</td>
<td>365</td>
<td>SI</td>
<td>0</td>
<td>0,63%</td>
</tr>
<tr>
<td>Instancia4-5</td>
<td>1</td>
<td>0,23</td>
<td>405</td>
<td>SI</td>
<td>1</td>
<td>1,00E-03</td>
<td>405</td>
<td>405</td>
<td>SI</td>
<td>0</td>
<td>0,44%</td>
</tr>
<tr>
<td>Instancia5-5</td>
<td>1</td>
<td>0,11</td>
<td>440</td>
<td>SI</td>
<td>1</td>
<td>5,01E-04</td>
<td>440</td>
<td>440</td>
<td>SI</td>
<td>0</td>
<td>0,44%</td>
</tr>
<tr>
<td>Instancia6-5</td>
<td>1</td>
<td>0,16</td>
<td>350</td>
<td>SI</td>
<td>1</td>
<td>1,00E-03</td>
<td>355</td>
<td>350</td>
<td>NO</td>
<td>1</td>
<td>0,63%</td>
</tr>
<tr>
<td>Instancia7-6</td>
<td>1</td>
<td>0,19</td>
<td>395</td>
<td>SI</td>
<td>1</td>
<td>1,00E-03</td>
<td>395</td>
<td>395</td>
<td>SI</td>
<td>0</td>
<td>0,52%</td>
</tr>
<tr>
<td>Instancia8-6</td>
<td>1</td>
<td>0,27</td>
<td>400</td>
<td>SI</td>
<td>1</td>
<td>2,11E-04</td>
<td>405</td>
<td>400</td>
<td>NO</td>
<td>1</td>
<td>0,08%</td>
</tr>
<tr>
<td>Instancia9-6</td>
<td>1</td>
<td>0,21</td>
<td>490</td>
<td>SI</td>
<td>1</td>
<td>1,00E-03</td>
<td>515</td>
<td>490</td>
<td>NO</td>
<td>5</td>
<td>0,47%</td>
</tr>
<tr>
<td>Instancia10-7</td>
<td>1</td>
<td>0,28</td>
<td>455</td>
<td>SI</td>
<td>1</td>
<td>1,00E-03</td>
<td>480</td>
<td>455</td>
<td>NO</td>
<td>5</td>
<td>0,36%</td>
</tr>
<tr>
<td>Instancia11-7</td>
<td>1</td>
<td>0,28</td>
<td>450</td>
<td>SI</td>
<td>1</td>
<td>1,00E-03</td>
<td>450</td>
<td>450</td>
<td>SI</td>
<td>0</td>
<td>0,36%</td>
</tr>
<tr>
<td>Instancia12-7</td>
<td>1</td>
<td>0,27</td>
<td>375</td>
<td>SI</td>
<td>1</td>
<td>1,00E-03</td>
<td>375</td>
<td>375</td>
<td>SI</td>
<td>0</td>
<td>0,37%</td>
</tr>
<tr>
<td>Instancia13-8</td>
<td>1</td>
<td>0,38</td>
<td>520</td>
<td>SI</td>
<td>2</td>
<td>2,00E-03</td>
<td>765</td>
<td>520</td>
<td>NO</td>
<td>47</td>
<td>0,52%</td>
</tr>
<tr>
<td>Instancia14-8</td>
<td>1</td>
<td>0,40</td>
<td>430</td>
<td>SI</td>
<td>1</td>
<td>4,43E-04</td>
<td>430</td>
<td>430</td>
<td>SI</td>
<td>0</td>
<td>0,11%</td>
</tr>
<tr>
<td>Instancia15-8</td>
<td>1</td>
<td>0,52</td>
<td>490</td>
<td>SI</td>
<td>1</td>
<td>9,99E-04</td>
<td>555</td>
<td>490</td>
<td>NO</td>
<td>13</td>
<td>0,19%</td>
</tr>
<tr>
<td>Instancia16-9</td>
<td>1</td>
<td>0,56</td>
<td>370</td>
<td>SI</td>
<td>1</td>
<td>5,00E-04</td>
<td>370</td>
<td>370</td>
<td>SI</td>
<td>0</td>
<td>0,09%</td>
</tr>
<tr>
<td>Instancia17-9</td>
<td>1</td>
<td>0,76</td>
<td>450</td>
<td>SI</td>
<td>1</td>
<td>1,00E-03</td>
<td>450</td>
<td>450</td>
<td>SI</td>
<td>0</td>
<td>0,13%</td>
</tr>
<tr>
<td>Instancia18-9</td>
<td>2</td>
<td>156,97</td>
<td>755</td>
<td>SI</td>
<td>2</td>
<td>4,01E-03</td>
<td>795</td>
<td>755</td>
<td>NO</td>
<td>5</td>
<td>0,00%</td>
</tr>
<tr>
<td>Instancia19-10</td>
<td>1</td>
<td>1,66</td>
<td>555</td>
<td>SI</td>
<td>2</td>
<td>4,00E-03</td>
<td>820</td>
<td>555</td>
<td>NO</td>
<td>48</td>
<td>0,24%</td>
</tr>
<tr>
<td>Instancia21-10</td>
<td>1</td>
<td>0,57</td>
<td>490</td>
<td>SI</td>
<td>2</td>
<td>2,00E-03</td>
<td>720</td>
<td>490</td>
<td>NO</td>
<td>47</td>
<td>0,35%</td>
</tr>
<tr>
<td>Instancia22-11</td>
<td>2</td>
<td>3.779,07</td>
<td>765</td>
<td>SI</td>
<td>2</td>
<td>1,00E-03</td>
<td>795</td>
<td>765</td>
<td>NO</td>
<td>4</td>
<td>0,00%</td>
</tr>
<tr>
<td>Instancia23-11</td>
<td>2</td>
<td>4.427,21</td>
<td>700</td>
<td>NO</td>
<td>2</td>
<td>1,00E-03</td>
<td>725</td>
<td>700</td>
<td>NO</td>
<td>4</td>
<td>0,00%</td>
</tr>
<tr>
<td>Instancia24-11</td>
<td>2</td>
<td>13.181,97</td>
<td>775</td>
<td>SI</td>
<td>2</td>
<td>5,06E-04</td>
<td>795</td>
<td>775</td>
<td>NO</td>
<td>3</td>
<td>0,00%</td>
</tr>
<tr>
<td>Instancia25-12</td>
<td>2</td>
<td>3.559,10</td>
<td>695</td>
<td>NO</td>
<td>2</td>
<td>1,00E-03</td>
<td>700</td>
<td>695</td>
<td>NO</td>
<td>1</td>
<td>0,00%</td>
</tr>
<tr>
<td>Instancia26-12</td>
<td>2</td>
<td>11.165,14</td>
<td>695</td>
<td>SI</td>
<td>2</td>
<td>5,03E-04</td>
<td>725</td>
<td>695</td>
<td>NO</td>
<td>4</td>
<td>0,00%</td>
</tr>
<tr>
<td>Instancia27-12</td>
<td>2</td>
<td>10.719,87</td>
<td>745</td>
<td>SI</td>
<td>2</td>
<td>1,00E-03</td>
<td>880</td>
<td>745</td>
<td>NO</td>
<td>18</td>
<td>0,00%</td>
</tr>
<tr>
<td>Instancia28-13</td>
<td>2</td>
<td>29.841,18</td>
<td>755</td>
<td>SI</td>
<td>2</td>
<td>1,00E-03</td>
<td>790</td>
<td>755</td>
<td>NO</td>
<td>5</td>
<td>0,00%</td>
</tr>
<tr>
<td>Nombre Instancia</td>
<td>Número de Rutas</td>
<td>T. de ejecución (Seg)</td>
<td>Z (Unidades Monetarias)</td>
<td>Solución Óptima</td>
<td>T. de ejecución (Seg)</td>
<td>Z (Unidades Monetarias)</td>
<td>Mejor solución</td>
<td>Solución Óptima</td>
<td>% Gap Absoluto</td>
<td>T. MH/T. ME</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
<td>----------------------</td>
<td>------------------------</td>
<td>----------------</td>
<td>----------------------</td>
<td>------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Instancia29-13</td>
<td>2</td>
<td>1.237,05</td>
<td>680</td>
<td>SI</td>
<td>2</td>
<td>1.00E-03</td>
<td>720</td>
<td>680</td>
<td>NO</td>
<td>6%</td>
<td>0,00%</td>
</tr>
<tr>
<td>Instancia30-13</td>
<td>2</td>
<td>680,28</td>
<td>770</td>
<td>NO</td>
<td>2</td>
<td>9,98E-04</td>
<td>870</td>
<td>770</td>
<td>NO</td>
<td>13%</td>
<td>0,00%</td>
</tr>
<tr>
<td>Instancia31-14</td>
<td>2</td>
<td>3.000,34</td>
<td>655</td>
<td>NO</td>
<td>2</td>
<td>1.00E-03</td>
<td>675</td>
<td>655</td>
<td>NO</td>
<td>3%</td>
<td>0,00%</td>
</tr>
<tr>
<td>Instancia32-14</td>
<td>2</td>
<td>3.975,39</td>
<td>765</td>
<td>NO</td>
<td>2</td>
<td>1.00E-03</td>
<td>805</td>
<td>765</td>
<td>NO</td>
<td>5%</td>
<td>0,00%</td>
</tr>
<tr>
<td>Instancia33-14</td>
<td>2</td>
<td>7.535,45</td>
<td>805</td>
<td>NO</td>
<td>2</td>
<td>1.00E-03</td>
<td>915</td>
<td>805</td>
<td>NO</td>
<td>14%</td>
<td>0,00%</td>
</tr>
<tr>
<td>Instancia34-15</td>
<td>2</td>
<td>9.432,26</td>
<td>715</td>
<td>NO</td>
<td>2</td>
<td>9.99E-04</td>
<td>775</td>
<td>715</td>
<td>NO</td>
<td>8%</td>
<td>0,00%</td>
</tr>
<tr>
<td>Instancia35-15</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
<td>N.S.E.</td>
<td>2</td>
<td>3.24E-04</td>
<td>810</td>
<td>810</td>
<td>NO</td>
<td>0%</td>
<td>0,00%</td>
</tr>
<tr>
<td>Instancia36-15</td>
<td>2</td>
<td>4.570,49</td>
<td>735</td>
<td>NO</td>
<td>2</td>
<td>8.65E-04</td>
<td>800</td>
<td>735</td>
<td>NO</td>
<td>9%</td>
<td>0,00%</td>
</tr>
<tr>
<td>Instancia37-16</td>
<td>2</td>
<td>5.000,50</td>
<td>790</td>
<td>NO</td>
<td>2</td>
<td>1.00E-03</td>
<td>800</td>
<td>790</td>
<td>NO</td>
<td>1%</td>
<td>0,00%</td>
</tr>
<tr>
<td>Instancia38-16</td>
<td>2</td>
<td>3.990,58</td>
<td>745</td>
<td>NO</td>
<td>2</td>
<td>9.98E-04</td>
<td>760</td>
<td>745</td>
<td>NO</td>
<td>2%</td>
<td>0,00%</td>
</tr>
<tr>
<td>Instancia39-16</td>
<td>2</td>
<td>6.300,54</td>
<td>820</td>
<td>NO</td>
<td>2</td>
<td>9.99E-04</td>
<td>840</td>
<td>820</td>
<td>NO</td>
<td>2%</td>
<td>0,00%</td>
</tr>
<tr>
<td>Instancia40-17</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
<td>N.S.E.</td>
<td>2</td>
<td>1.00E-03</td>
<td>775</td>
<td>775</td>
<td>NO</td>
<td>0%</td>
<td>0,00%</td>
</tr>
<tr>
<td>Instancia41-17</td>
<td>2</td>
<td>1.800,58</td>
<td>840</td>
<td>NO</td>
<td>2</td>
<td>5.02E-04</td>
<td>860</td>
<td>840</td>
<td>NO</td>
<td>2%</td>
<td>0,00%</td>
</tr>
<tr>
<td>Instancia42-17</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
<td>N.S.E.</td>
<td>2</td>
<td>9.99E-04</td>
<td>850</td>
<td>850</td>
<td>NO</td>
<td>0%</td>
<td>0,00%</td>
</tr>
<tr>
<td>Instancia43-18</td>
<td>2</td>
<td>2.800,82</td>
<td>810</td>
<td>NO</td>
<td>2</td>
<td>1.00E-03</td>
<td>830</td>
<td>810</td>
<td>NO</td>
<td>2%</td>
<td>0,00%</td>
</tr>
<tr>
<td>Instancia44-18</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
<td>N.S.E.</td>
<td>2</td>
<td>5.00E-04</td>
<td>885</td>
<td>885</td>
<td>NO</td>
<td>0%</td>
<td>0,00%</td>
</tr>
<tr>
<td>Instancia45-18</td>
<td>2</td>
<td>2.400,66</td>
<td>765</td>
<td>NO</td>
<td>2</td>
<td>1.00E-03</td>
<td>905</td>
<td>765</td>
<td>NO</td>
<td>18%</td>
<td>0,00%</td>
</tr>
<tr>
<td>Instancia46-19</td>
<td>2</td>
<td>3.600,77</td>
<td>800</td>
<td>NO</td>
<td>2</td>
<td>1.00E-03</td>
<td>865</td>
<td>800</td>
<td>NO</td>
<td>8%</td>
<td>0,00%</td>
</tr>
<tr>
<td>Instancia47-19</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
<td>N.S.E.</td>
<td>2</td>
<td>1.00E-03</td>
<td>975</td>
<td>975</td>
<td>NO</td>
<td>0%</td>
<td>0,00%</td>
</tr>
<tr>
<td>Instancia48-19</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
<td>N.S.E.</td>
<td>2</td>
<td>5.01E-04</td>
<td>745</td>
<td>745</td>
<td>NO</td>
<td>0%</td>
<td>0,00%</td>
</tr>
<tr>
<td>Instancia49-20</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
<td>N.S.E.</td>
<td>2</td>
<td>9.76E-04</td>
<td>895</td>
<td>895</td>
<td>NO</td>
<td>0%</td>
<td>0,00%</td>
</tr>
<tr>
<td>Instancia50-20</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
<td>N.S.E.</td>
<td>2</td>
<td>5.03E-04</td>
<td>805</td>
<td>805</td>
<td>NO</td>
<td>0%</td>
<td>0,00%</td>
</tr>
<tr>
<td>Instancia51-20</td>
<td>2</td>
<td>10.200,96</td>
<td>840</td>
<td>NO</td>
<td>2</td>
<td>1.00E-03</td>
<td>910</td>
<td>840</td>
<td>NO</td>
<td>8%</td>
<td>0,00%</td>
</tr>
</tbody>
</table>