Anexo 1. Esquema numérico empleado en openFOAM

a. Esquemas numéricos de primer orden

divSchemes
{
 default none;
 div(phi,U) Gauss linear;
 div(phi, alpha) Gauss vanLeer;
 div(phib, alpha) Gauss linear;
 div(phid1, p_rgh) Gauss upwind;
 div(phid2, p_rgh) Gauss upwind;
 div(rhoPhi,T) Gauss linearUpwind unlimited;
 div(rhoPhi,K) Gauss upwind;
 div(phi, k) Gauss limitedLinear 1;
 div(phi, epsilon) Gauss limitedLinear 1;
 div((nuEff*dev2(T(grad(U)))) Gauss linear;
}

laplacianSchemes
{
 default none;
 laplacian((1|A(U)),p) Gauss linear limited 0.33; //usado 0.5 hasta la iteración 3.2835661667
 laplacian(nuEff,U) Gauss linear limited 0.33; //usado 0.5 hasta la iteración 3.2835661667
 laplacian(DkEff,k) Gauss linear limited 0.33;
 laplacian(DepsilonEff,epsilon) Gauss linear limited 0.33;
}

interpolationSchemes
{
}
b. Esquemas numéricos de segundo orden

ddtSchemes
{
 default CrankNicolson 0.9;
}

gradSchemes
{
 default Gauss linear;
}

divSchemes
{
 default none;
 div(phi,U) Gauss linear;
 div(phi,alpha) Gauss vanLeer;
 div(phirb,alpha) Gauss linear;
div(phid1,p_rgh) Gauss upwind;
div(phid2,p_rgh) Gauss upwind;
div(rhoPhi,T) Gauss linearUpwind unlimited;
div(rhoPhi,K) Gauss linear;
div(phi,k) Gauss linear;
div(phi,epsilon) Gauss linear;
div((nuEff*dev2(T(grad(U))))) Gauss linear;
}
laplacianSchemes
{
 default Gauss linear corrected;
}
interpolationSchemes
{
 default linear;
}

snGradSchemes
{
 default corrected;
}

fluxRequired
{
 default no;
 p ;
}