ANCLAJES CON BARRA ENROSCADA EN PLACAS ELABORADAS CON CONCRETOS LIVIANOS

Ronald Camilo Ramírez Martínez

Resumen: El estudio de anclajes pos-instalados se ha limitado a estudiase y diseñarse en concretos convencionales, limitando el uso de nuevas tecnologías como concretos de alta resistencia o aligerado, o el uso de aceros enroscados en vez de corrugados.

Debido a lo anterior, se diseñó un programa experimental en el cual se analizó el comportamiento de barras enroscadas tipo B7 post- instaladas en concreto livianos. Por lo tanto, se realizó la fundida y curado a una resistencia a la compresión de 21 MPA, de 7 losas macizas de concreto (Donde 3 son a cortante), en las cuales se anclaron 40 barras corrugadas, 33 de estos anclajes fueron ensayados a tracción, mientras que el restante a cortante.

Los resultados fueron comparados con el método simplificado expuesto en la normativa ACI-318-14, así como la modalidad de falla visualizada en los especímenes. En donde se denoto para anclajes confinados con barra roscada post-instalados con epóxico, se incrementa (en función de la profundidad de anclaje) a tal punto que se traslada la falla al acero de tracción.

En los ensayos no confinados a tracción, predominó la falla por arrancamiento del concreto ligero, identificando que, a mayor diámetro y mayor profundidad, los resultados experimentales se acercaron más a los resultados teóricos.

En los ensayos a cortante, se realizó una profundidad a 1Ca, con lo cual se consiguió una falla a corte representada en el concreto, en donde el Angulo de figuración fue en promedio de 20°, cual es menor al expuesto en la teoría simplificada, por to tanto se evidencio una mayor área de resistencia al arrancamiento a cortante, que en la expresada en la normativa ACI 318.14.

Abstract: The study of post-installed anchors have been restricted in studies and designs of conventional concrete, limiting the use of new technologies such as high strength, lightened concrete, or the use of threaded steel instead of corrugated steel.

Therefore, an experiment was designed to analyze the behavior of type B7 post-installed threaded bars in lightweight concrete. Consequently, placing and curing was carried out at a compressive strength of 21 MPA, of 7 solid concrete slabs (where 3 are shear tested), in which 40 corrugated bars were anchored, 33 of these anchors were traction tested, while the remaining were shear tested.

The results were compared with the simplified method set in the American Concrete Institute (ACI-318-14) standard, as well as the failure type displayed in the slabs. It is noticeable that, the anchors confined with threaded bar post-installed with epoxy, it increases (depending on the depth of anchorage) to the point that the failure is transferred to the tensile steel.

In the tests not confined to traction, the failure in the light concrete prevailed, identifying that at greater diameter and greater depth, the experimental results come closer to the theoretical results.

In the shear tests, a depth of 1Ca was made, it resulted in a shear failure visible in the concrete, where the Angle of fracture was an average of 20 $^{\circ}$, which is less than the stated in the simplified theory. Therefore, a greater area of resistance to shear force was evident than it is inscribed in the ACI 318.14 standard.

Palabras clave: Anclajes, Barras enroscados, concreto liviano, resistencia, falla.

I. INTRODUCCIÓN

En los últimos años, se ha presentado un incremento en el uso del concreto liviano en la construcción y reforzamiento de distintos elementos estructurales, tales como nivelación de entrepisos, remodelación de edificios, muros de relleno, prefabricados ligeros de concreto y rellenos de azoteas. Esto se debe a que estos tipos de concretos tienen unas densidades menores en comparación a la utilizada en concretos normales. Adicionalmente, posee mayor elasticidad y flexibilidad lo cual genera menos agrietamientos y, por último, tiene una excelente resistencia al impacto.

Al examinar la teoría descrita en las normativas vigentes (Norma Colombiana de Construcción Sismo-Resistente NSR 10 capitulo D-C y American Concrete Institute ACI 318 -14), se establece que en esta última si hay una parametrización de varios tipos de anclaje, pero no existe conceptos de análisis y diseño de los elementos de anclaje en concretos livianos y arena de peso normal.

Por lo tanto, nace la necesidad de realizar una investigación de anclajes de pernos enroscados adheridos sometidos a tracción y cortante, que permitan evaluar dicho comportamiento, esto mediante la fabricación de probetas (losas), para la realización de ensayos de extracción de estos anclajes y comparación de resultados teóricos calculados con la teoría expuesta en normativas vigentes con concretos convencionales.

Se analizan una serie de casos particulares como distanciamientos de los anclajes a los bordes de las placas, separación de anclajes, donde se evalúa la resistencia al arrancamiento y cortante con ensayos a extracción de diferentes tipos de diámetros, confinados y no confinados, los cuales contemplan un total de 40 barras enroscadas ancladas, las cuales 33 son ensayadas a tracción y el restante a cortante.

El presente escrito, sintetiza los aspectos más importantes los cuales abarcan el análisis y comparación de resultados experimentales con la teoría existente, esto con el fin de desarrollar una base más sólida del conocimiento existente y aportar para la estructuración de bases de diseño para anclajes en concretos con agregado liviano de arena de peso normal.

II. OBJETIVOS

- Evaluar el comportamiento de anclajes de acero enroscado en concreto liviano mediante el uso de resina epóxica, sometidos a tensión y cortante.
- Caracterizar los materiales y definir la trazabilidad de las pruebas a realizar en campo.
- Realizar un análisis cualitativo sobre el comportamiento de falla de anclajes en concretos, con agregado liviano de arena de peso normal y lo establecido en teoría.

 Evaluar y comparar los resultados obtenidos en cada ensayo realizado, con el método simplificado expuesto en la ACI-318-14 y en otras tesis de grado.

III. RESULTADOS

A continuación, se expondrán los resultados obtenidos a lo largo de la investigación mediante la aplicación de los diferentes tipos de ensayos realizados como se muestran en las tablas 1,2 y 3.

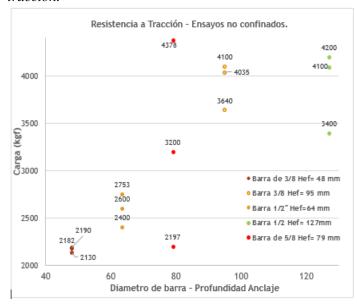
Tabla 1. Resultados ensayos no confinados a tracción.

			Ensayos a Tensió	n No cont	finada.	
М	Diámetro	Diámetro	Profundidad	Carga	Promedio	Modo de falla
IVI	(Pul)	(mm)	(mm)	(Kgf)	Fromedio	Modo de Ialia
1			48	2130		Arrancamiento
2		95	48	2182	2167	Arrancamiento
3	2/0		48	2190		Arrancamiento
4	3/8		95	3640		Arrancamiento
5		95	95	4035	3925	Arrancamiento
6			95	4100		Arrancamiento
7			64	2600		Arrancamiento
8		12.7	64	2400	2584	Arrancamiento
9	1/2		64	2753		Arrancamiento
10	1/2		127	4100		Arrancamiento
11		12.7	127	4200	3900	Arrancamiento
12			127	3400		Falla de borde-esquina
13			79	4378		Arrancamiento
14	5/8	15.9	79	3200	3258	Arrancamiento
15			79	2197		Arrancamiento

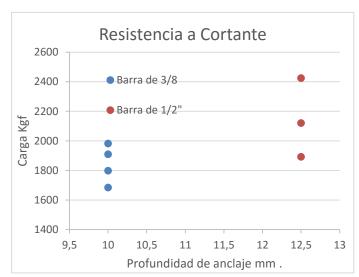
Tabla 2. Resultados obtenidos ensayos a cortante.

	Ensayos de acero Roscado a Cortante.											
М	Diámetro (Pul)	Diámetro (mm)	Tipo	Profundidad (mm)	Carga (Kgf)	Promedio	Modo de falla					
1		9.5	Roscada	10	1982		Concreto					
2	3/8	9.5	Roscada	10	1798	1843	Concreto					
3	3/6	9.5	Roscada	10	1685	1043	Concreto					
4		9.5	Roscada	10	1910		Concreto					
5		12.7	Roscada	12.5	2121		Concreto					
6	1/2	12.7	Roscada	12.5	1892	2146	Concreto					
7		12.7	Roscada	12.5	2425		Concreto					

Tabla 3. Resultados ensayos confinados a tracción.

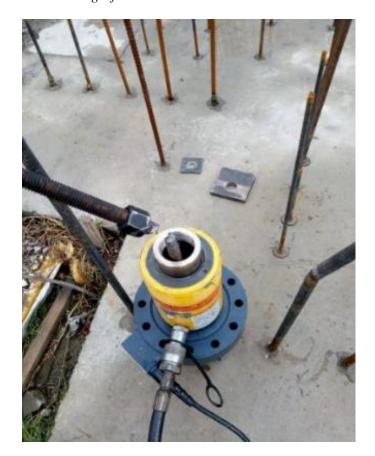

		E	nsayos a 1	Fracción Conf	inados		
М	Diámetro (Pul).	Diámetro (mm).	Tipo barra	Profundidad (mm)	Carga (Kgf)	Promedio (Kgf)	Tipo de Falla
1			Roscada		4390		Adherencia - Borde
2			Roscada	48	4098	3962	Adherencia
3	3/8	9.5	Roscada		3398		Adherencia
4	-,-		Roscada		5522		Acero
5			Roscada	95	4826	5209	Acero
6			Roscada		5280		Adherencia
7			Roscada		3986	4336 6472	Adherencia
8			Roscada	64	4150		Adherencia
9	1/2	12.70	Roscada		4872		Adherencia
10	1/2	12.70	Roscada		6326		Adherencia + Borde
11			Roscada	127	5700		Adherencia
12			Roscada		7390		Adherencia
13			Roscada		4600		Adherencia
14			Roscada	79	5600	4800	Adherencia
15	T 40		Roscada		4200		Adherencia
16	5/8	15.90	Roscada		14000		Falla de borde
17			Roscada	159	15200	13133	Acero
18			Roscada		10200		Acero

A continuación, se muestra de manera gráfica las cargas de falla, para ensayos confinados y no confinados a tensión y cortante, como el tipo de fallas presentadas.


Grafica 1. Cargas de falla en ensayos confinados a tracción.

Grafica 2. Cargas de falla en ensayos no confinados a tracción.

Grafica 3. Cargas de falla en ensayos a Cortante.


El tipo de fallas típicas, se ilustra a continuación:

Fotografía 1. Arrancamiento del concreto.

Fotografía 2. Falla de borde del concreto.

Fotografía 3. Falla del acero.

Fotografía 4. Falla de Adherencia.

Fotografía 5. Falla de borde.

Fotografía 6. Falla por arrancamiento.

A continuación, se presentan en las tablas 4, 5, 6, 7 y 8 las resistencias teóricas correspondientes a la rotura, arrancamiento, adherencia y del acero sometido a cortante y tracción. En las figuras 4, 5, 6, 7, y 8 se evidenciará de manera gráfica las resistencias teóricas, calculadas por el método implicado descrito en la NORMA ACI-314-18 capítulo 17.

Tabla 4. Resistencia teórica al arrancamiento

	B) . Resistencia Teorica al arrancamiento del concreto de un anclaje en Traccion													
Diametro Profundidad h _{ef mm} λa C _{21 mm} A _{Nc} mm ² N _b Kgf ψ_e N C _{max} C _{2c} ψ_e PN ψ_{edN} A _{nco}										N _{cb (KN)}	N _{cb (Kgf)}			
3/8	5φ	48	0.68	95	23780	7	1.4	71	95	1.00	1	20413	11.4	1164.1
3/0	10 ф	95	0.68	190	94763	20	1.4	143	190	0.75	1	81225	24.5	2498.3
4/0	5 φ	64	0.68	127	42339	11	1.4	95	127	0.75	1	36290	13.5	1374.0
1/2	10 ф	127	0.68	254	169355	32	1.4	191	254	0.75	1	145161	39.2	3997.2
5/8	5 φ	79	0.68	159	66214	16	1.4	119	159	0.75	1	56704	19.6	1997.3
	10 ф	159	0.68	318	264855	44	1.4	238	318	0.75	1	226814	53.9	5492.5

Grafica 4. Resistencia teórica al arrancamiento.

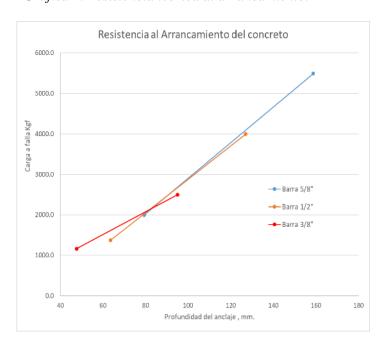


Tabla 5. Resistencia a la rotura del perno.

RESISTENCIA NOMINAL DE LA BARRA ROSCADA -TRACCIÓN-								
Diámetro Ase,N Futa Fya Nsa (in) (mm²) (Mpa) (Mpa) (Kgf)								
3/8	50.0	860	724	4385				
1/2	92.0	860	724	8068				
5/8	146.0	860	724	12803				

Grafica 5. Resistencia a la rotura del perno.

Tabla 6. Resistencia teórica a cortante

RESISTENCIA NOMINAL DE LA BARRA ROSCADA - CORTE-									
Diámetro (in)									
3/8	50.0	860	724	4385					
1/2	92.0	860	724	8068					
5/8	146.0	860	724	12803					

Grafica 6. Resistencia teórica del acero a cortante

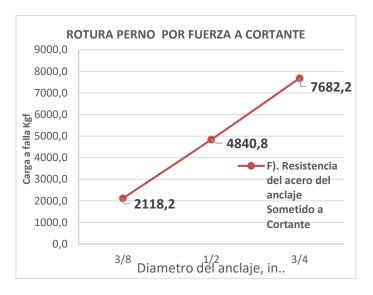


Tabla 7. Resistencia de anclaje en cortante al arrancamiento del concreto

f'c = 21.4 Mpa

G	G). Resistencia al arrancamiento del Concreto de Anclajes a Cortante												
d _a in	d _a (mm)				λα	V _b (kgf)	h _a (mm)	Avc mm²	Avco mm²	$\Psi_{\text{ed,v}}$	$\Psi_{c,v}$	$\Psi_{h,v}$	Vcb (kgf)
3/8	9.53	100	100	100	0.51	713	200	60000	45000	1.0	1.0	1.0	951
1/2	12.70	120	125	120	0.51	1127	200	75000	70313	1.0	1.0	1.0	1202

Grafica 7. Resistencia de anclaje en cortante al arrancamiento del concreto

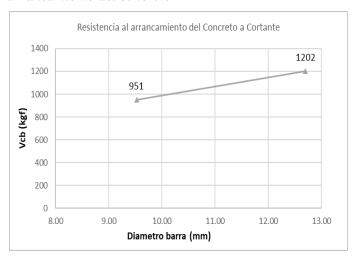
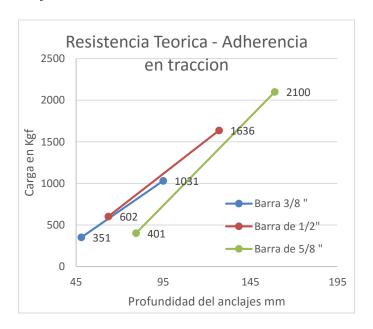



Tabla 8. Resistencia a la adherencia en tracción

	E). Resistencia a la Adherencia en tracción de anclajes Adheridos											
da	h _{ef mm}	Ca _{Min}	C _{NA}	A _{Nao} / A _{na}	λ_a	$ au_{cr}$ Mpa	N _{ba Kgf}	Na ψ_{cp}	Na ψ_{ed}	N _{a Kgf}		
3/8	48	96	105.4	0.74	0.51	9.30	694.9	0.75	0.91	351		
3/0	95	190	105.4	1.00	0.51	3.50	1375.3	0.75	1.00	1031		
1/2	64	127	140.5	0.72	0.51	9.30	1225.7	0.75	0.91	602		
1/2	127	254	140.5	0.89	0.51		2451.4	0.75	1.00	1636		
5/8	79	159	175.6	0.31 0.51		9.30	1915.1	0.75	0.90	401		
3/0	159	318	175.0	0.73	0.01	9.50	3836.3	0.75	1.00	2100		

Grafica 8. Resistencia a la adherencia en tracción

Adicionalmente, se compara los resultados obtenidos con "Comportamiento de anclajes postinstalados en concreto de alta resistencia, sometidos a carga de tensión y corte" realizada por el ingeniero Humberto Morales "Anclajes con barra corrugada en placas elaboradas con concretos livianos" realizada por la ingeniera Calorina Viasus.

En las tablas 9, 10 y 11 se muestra la comparación de los resultados obtenidos experimentalmente y la tesis del ingeniero Humberto Morales Ramírez. Así mismo en las Gráficas 9, 10 y 11 se muestran dichas comparaciones.

Tabla 9. Tracción confinada en concretos de alta resistencia y liviano

Φ BARRA (in)	PROFUNDIDAD mm	EXPERIMENTAL CONCRETO ALTA RESISTENCIA Kgf	TIPO DE FALLA	EXPERIMENTAL CONCRETO LIGERO	TIPO DE FALLA
3/8	47.7	1540	ACERO	3962	ADHERENCIA
3/8	95.3	1550	ACERO	5209	ACERO
1/2	63.5	2784	ACERO	4336	ADHERENCIA
1/2	127	3620	ACERO	6472	ADHERENCIA
5/8	79.4	4109	ACERO	4800	ADHERENCIA
5/8	158.8	4507	ACERO	13133	ACERO

Grafica 9. Comparación grafica entre Tracción confinada en concretos de alta resistencia y liviano en ensayos confinados.

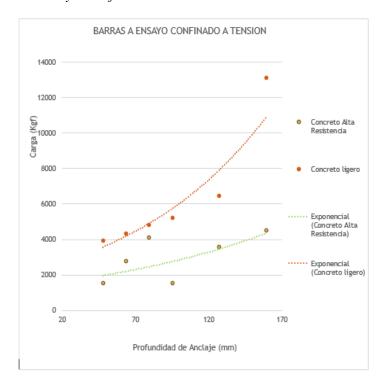


Tabla 10. Tracción NO confinada en concretos de alta resistencia y concreto ligero.

				BARRA							
		CONCRETO		ENROSCADA							
φ		ALTA	TIPO DE	CONCRETO	TIPO DE						
BARRA	PROFUNDIDAD	RESISTENCIA	FALLA	LIGERO	FALLA						
(in)	mm	Kgf		Kgf							
3/8	48	3977	ADHERENCIA	2169	Arrancamiento						
3/8	95	4854	ADHERENCIA	3925	Arrancamiento						
1/2	64	4324	ADHERENCIA	2584	Arrancamiento						
1/2	127	9065	ADHERENCIA	3900	Arrancamiento						
5/8	79	6506	ADHERENCIA	3258	Arrancamiento						


Figura 10. Comparación grafica entre Tracción confinada en concretos de alta resistencia y liviano en no ensayos confinados.

Tabla 11. Ensayo a cortante en concretos de alta resistencia y concreto ligero

ф BARRA (in)	PROFUNDIDAD mm	EXPERIMENTAL CONCRETO ALTA RESISTENCIA Kgf	TIPO DE FALLA	EXPERIMENTAL BARRA ROSCADA CONCRETO LIGERO Kgf	TIPO DE FALLA
3/8	95.3	1540	ACERO	1843	Corte en concreto
1/2	127	2692	ACERO	2146	Corte en concreto

Figura 11. Comparación grafica de cargas de falla para barras corrugadas y roscadas a ensayos a cortante.

En las tablas 12, 13 y 14 se muestra la comparación entre los resultados obtenidos experimentalmente y la tesis desarrollada por la ingeniera Carolina Viasus. Así mismo en las Gráficas 12, 13 y 14 se muestran dichas comparaciones.

Tabla 12. Tracción confinada en concretos livianos con barra corrugada y barra enroscada.

ф BARRA	PROFUNDIDAD	BARRA ENROSCADA	TIPO DE FALLA	BARRA CORRUGADA	TIPO DE FALLA
(in)	mm	Kgf		Kgf	
3/8	48	3962	ADHERENCIA	3817	ADHERENCIA
3/8	95	5209	ACERO	4755	ADHERENCIA
1/2	64	4336	ADHERENCIA	3405	ADHERENCIA
1/2	127	6472	ADHERENCIA	7700	ADHERENCIA
5/8	79	4800	ADHERENCIA	5975	ADHERENCIA
5/8	159	13133	ACERO	11686	ADHERENCIA

Figura 12. Comparación de tracción confinada en concretos livianos entre barra corrugada y barra enroscada.

Tabla 13. Tracción no confinada en concretos livianos con barra enroscada y barra corrugada.

∳ BARRA	PROFUNDIDAD	BARRA Enroscada	TIPO DE Falla	BARRA Corrugada	TIPO DE Falla				
(in)	mm	Kgf		Kgf					
3/8	48	2169	Arrancamiento	1848	Arrancamiento				
3/8	95	3925	Arrancamiento	3724	Arrancamiento				
1/2	64	2584	Arrancamiento	2880	Arrancamiento				
1/2	127	3900	Arrancamiento	5792	Arrancamiento				
5/8	79	3258	Arrancamiento	3800	Arrancamiento				

Figura 13. Comparación de tracción no confinada entre barra corrugada y barra enroscada.

Tabla 14. Comparación de falla a cortante para barras corrugadas y roscadas en concreto liviano, ensayos de cortante.

ф BARRA (in)	PROFUNDIDAD mm	BARRA ENROSCADA Kgf	TIPO DE FALLA	BARRA CORRUGADA Kgf	TIPO DE FALLA
3/8	100	1843	concreto corte	1851	concreto corte
1/2	125	2146	concreto corte	1786	concreto corte

Figura 14. Comparación grafica de falla a cortante para barras corrugadas y roscadas en concreto liviano.

IV. CONCLUSIONES

- Los ensayos presentados, no son suficientes para establecer un comportamiento o desarrollar las ecuaciones de diseño y factores de reducción, por lo tanto, se debe contar con un número considerable de resultados que permitan calcular acertadamente la resistencia de los anclajes en concretos ligeros.
- La resistencia en concreto ligero, para anclajes confinados con barra roscada post-instalados con epóxico, se incrementa (en función de la profundidad de anclaje) a tal punto que se traslada la falla al acero de tracción.
- En el ensayo de tracción confinado donde se presenta falla por acero, el coeficiente de variación (Experimental vs Teórico - ACI-318-14) es muy cercano a la unidad, lo que evidencia que las barras usadas están acordes con las especificaciones técnicas y que la resistencia desarrollada en el ensayo muestra que los anclajes fueron bien elaborados.
- En los ensayos confinados a tracción en concreto ligero, donde predomina la falla por adherencia, es evidente una gran diferencia entre los resultados teóricos - ACI-318-14 y los experimentales, debido a los coeficientes de reducción utilizados por método simplificado.
- En los ensayos no confinados a tracción, predominó la falla por arrancamiento del concreto ligero, identificando que, a mayor diámetro y mayor profundidad, los resultados experimentales se acercaron más a los resultados teóricos expuestos en el método simplificado ACI-318-14, a su vez, a menor diámetro y menor profundidad de anclaje, se presenta un mayor valor experimental respecto al teórico ACI-318-14.
- En los ensayos a corte, en los especímenes de concreto ligero se realizaron inicialmente respetando la profundidad del anclaje como 1.5 Ca, encontrando que la falla se presentaba en el corte del acero, motivo por el cual se redujo a una relación aproximada de 1 a 1 Ca, con lo cual se consiguió que la falla a corte se presentara en el concreto. Ahora bien, de los resultados obtenidos y la tendencia de la fisuración presentada durante la falla, se identifica que el ángulo de inclinación de la fisura originada en la práctica fue en promedio de 20°, ángulo menor al generado por la relación de Ca y 1.5Ca (formando un ángulo de 33.7°). De lo anterior, se genera una mayor área

- resistente al desgarramiento del concreto ligero lo cual se ve reflejado en un mayor valor de los resultados experimentales vs los teóricos ACI-318-14.
- En concreto ligero, para ensayos con barras enroscadas y corrugadas, los resultados muestran similitud entre ellos, con bajos porcentajes de variación y similitud en el tipo de falla.
- De los resultados del concreto ligero con concreto de alta resistencia, se identifica en el ensayo no confinado a tensión, donde contamos con la variable acero, es la misma para los ensayos, pese a que las fallas son de diferente tipo, se identifica que para los concretos de alta resistencia la falla por desgarramiento del concreto no es una limitante y que si entra a ser determinante la falla por adherencia (como era de esperarse, dadas las características del concreto y del acero, B7).
- En el caso del concreto ligero, ocurre lo contrario, al contar con un concreto de resistencia normal, pero con características diferentes en el agregado grueso y con un acero de buenas especificaciones técnicas, B7; se traslada la responsabilidad al adhesivo epóxico y al concreto, del cual se logró resultados de resistencia de los concretos livianos, el cual era uno de los objetivos del presente trabajo. Datos experimentales que aportaran a futuro las investigaciones de este tipo.

V. RECOMENDACIONES

- Evitar realizar los anclajes de barras ya sean enroscadas o corrugadas en ensayos a tracción no confinadas y cortantes, en esquinas de borde y a distancias menores de 10 cm entre barras, con el de generar un adecuado tipo de falla. A menos que se busque estudiar la falla de borde.
- Como recomendación en la estructuración o dimensionamiento de las probetas, se pide aumentar la separación de los anclajes por encima de las distancias teóricas, con el fin de evitar afectaciones por fallas cercanas (arranque de concreto de gran dimensión o prolongación de fisuras).
- Para los ensayos a corte, se recomienda realizar probetas individuales por ensayo, debido al comportamiento de las fisuras generadas (afectan los anclajes cercanos). O en su defecto, realizar la caracterización de los ensayos a realizar, se predimensionan y se fallan para analizar la posible tendencia de las fisuras y de esta forma dimensionar correctamente la probeta.