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“I said, “I’m empty enough. Fame and fortune are nothing to me."

The abbot shook his head and said, “No, emptiness is not nothingness.

Emptiness is a type of existence. You must use this existential

emptiness to fill yourself.""

Liu Cixin

“Anyone who has to call himself a genius. . . isn’t."

Stephen King

“Regard readers not as being ignorant but, more likely,

innocent of your topic and its jargon. Write for them, not at them."

Alton Blakeslee

“Der Erfolg wird sich steigern, der Ehrgeiz wird wachsen,

die Absturzgefahr nimmt zu, je höher man steigt."

Erick Kästner
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Abstract

In the past years, robotic lower-limb exoskeletons have become a powerful tool to

help clinicians improve the rehabilitation process of patients who have suffered from

neurological disorders such as stroke and spinal cord injury. These robotic devices

have emerged as a promising alternative to restore gait and improve motor function

by applying intensive and repetitive training. However, active subject participation is

considered to be an important feature to promote neuroplasticity during gait train-

ing. To this end, the present study presents the development of two high-level control

strategies in the AGoRA exoskeleton, a wearable device designed to assist overground

walking by actuating five degrees of freedom at the knee and hip joints. The pro-

posed control approaches rely on an admittance controller to render velocity profiles

according to the human-robot interaction forces, thus complying with the assistance-

as-needed rationale, i.e. an assistive device should only intervene when the patient

needs it. As a proof of concept of these control strategies, a pilot study was carried

out to evaluate their short-term effect on the gait pattern of healthy subjects. No

significant difference with respect to the unassisted condition in terms of spatiotem-

poral gait parameters and lower-limb kinematics proves the device to be compliant

enough not to vary the typical walking behavior of able-bodied subjects. Future work

should focus on the improvement of the fastening system and the robust tuning of the

controller constants in pursuit of kinematic compatibility and enhanced compliance.

Keywords: Robot-Assisted Gait Training, Lower-Limb Exoskeleton, Stroke, Gait

Phase Detection, High-Level Control Strategy, Assisted-As-Needed.
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Chapter 1

Introduction

The work presented here focuses on the development and preliminary validation of

a human-robot interaction (HRI) strategy aimed to be implemented in the AGoRA

lower-limb exoskeleton. Some crucial HRI concepts are addressed in the design of

this exoskeleton to ensure natural communication channels between the user and the

assisting device. A preliminary study, in which the developed control strategies are

evaluated in healthy subjects, is also presented in this thesis document. This chapter

comprises the motivation of this study and the research objectives. Additionally, the

main contributions of this work and the document structure are included at the end

of the present chapter.

1.1 Motivation

Different neurological pathologies, such as stroke, spinal cord injury (SCI) and cerebral

palsy (CP), may affect human mobility to a total or partial extent. Particularly, the

cerebrovascular accident (CVA) or stroke is considered to be a leading cause of severe

disability in the US and Europe [1] with an estimation of at least 70 million victims

suffering from this pathology around the world by 2030 [2]. Stroke survivors may

2



suffer from neurological deficiencies, such as hemiparesis, communication disorders or

cognitive deficits [3]. Furthermore, according to recent studies, the incidence rate

of SCI has been found to range between 250.000 and 500.000 people worldwide [4].

SCI victims might experience physical complications such as skin breakdown, muscle

atrophy, and pain [5], in addition to being unable to walk, which leads to an increased

risk of depression and the reduction of their life quality [6]. With the emergence

of such neurological injuries, parts of the sensory-motor control loop responsible for

locomotion may be disrupted, and the necessity for interactive solutions for these

people with motor disabilities in need of daily assistance arises.

By addressing the problematic of lower-extremity impairments from a worldwide per-

spective, a survey from the United Nations has revealed that people older than 60

years represented ∼13% of the global population in 2017, and the growth rate of such

a population is estimated at about 3% per year [7]. On this basis, one may infer that

this aging behavior might progressively result in stronger pressure on health care bud-

gets since nearly three-quarters of all strokes occur in people older than 65 y.o. [8] and

the estimated cost of stroke in 2010 for the US was $73.7 billion (mean lifetime cost for

an ischemic stroke of $140.048) [1]. Concerning mobility recovery, the proportion of

patients reaching independence by 1 year after stroke ranges between 10% and 15% in

a residential clinical institution [9], which underlines the lack of new strategies to pro-

mote, maintain and rehabilitate functional capacities of individuals with disabilities.

By implementing such strategies, the attendance requirements and costs that these

conditions pose to the patient, rehabilitation centers and society might be reduced

[10].

This problem is even more evident in low and middle-income Latin American coun-

tries, where the disability rate has proven to be even greater compared to developed

countries, according to a study conducted in 54 countries around the world [11]. By

means of a survey containing 4 questions on functional limitations and a compari-

son with the world report on disability conducted by the World Health Organization
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(WHO) in 2007, it is possible to envision the current panorama of disability in Latin

America. Brazil, the Dominican Republic, and Ecuador take the first places on dis-

ability rate, with 16.8%, 11.8%, and 10.5%, respectively; whereas, in Colombia, the

general population census carried out by the National Administrative Department of

Statistics (DANE) revealed in 2005 that there are as many as 2.6 million people with

permanent disabilities (6,3% of the total population). Out of this minority, 29.3%

experience mobility-related difficulties with Vichada, Boyacá, and Nariño being the

Colombian departments with the greatest mobility-related disability rate (each with

over 1.5%) [12]. Despite the fact that these statistics on disability are more encourag-

ing for the Colombian scenario, only 1 million people with disabilities are registered

with the “Registro para la localización y caracterización de personas con discapacidad"

(RLCPD, abbreviated in Spanish) [13], which makes an increase in the efficiency of

national rehabilitation programs mandatory for ethical and financial reasons.

New technologies, early discharge after intensive training, and home rehabilitation are

among the innovations proposed to achieve this aim [14]. Current literature suggests

that rehabilitation interventions are more effective if they ensure early, intensive, task-

specific and multisensory stimulation, thus favoring brain plasticity, i.e., the functional

restoration of affected limbs through the reorganization of neuronal circuits [15, 16].

In fact, there is growing evidence proving that, particularly in the first 3 months of

recovery after stroke, the motor system is plastic and motor training can be of great aid

[17]. For the sake of physical therapy, assistive robotic devices have lately appeared

as a potential rehabilitation solution since they are able to increase stability while

empowering the user [18] and relieving the therapist’s workload at a reasonable cost

[19].

In recent years, a new category of lower-extremity orthotics, known as robotic lower-

limb exoskeletons, has come along to integrate technology, electronics, and mechanics

for purposes of physical rehabilitation [20]. The main goal of such powered assistive

devices is to interface with the residual neuromusculoskeletal structures, so that the



human support, control, and actuation loops are reconnected. A robust control system

for such orthoses is therefore recommended, in order to take into account the HRI and

consistently accommodate gait patterns that are potentially far-removed from the

nominal condition [21]. This provides the immediate benefit of reenabling locomotive

activities of daily living (ADL), and potentially the long-term benefit of rehabilitating

and retraining abnormal gait patterns over time [22].

In spite of the mentioned promising potential of the robotic rehabilitation technologies,

which would undoubtedly improve the patient’s quality of life, their benefits are still

to be explored through research. Within this context, the Colombian Ten-Year Plan

for Public Health (2012-2021) [23] also aims to develop a model of comprehensive

health care for people with disabilities which guarantees rehabilitation focused on

their own characteristics and needs. The AGoRA lower-limb exoskeleton, which is

framed within the AGoRA project, intends to contribute to these ends by promoting

feasible rehabilitation alternatives based on compliant HRI strategies.

1.2 Framework

This thesis is developed in the context of the project “Development of an Adaptable

Platform for Gait Rehabilitation and Assistance" (AGoRA), supported by the Colom-

bian Administrative Department of Science, Technology and Innovation Colciencias

(grant 801-2017), CYTED research network REASISTE (grant 216RT0505), and fund-

ing from the Colombian School of Engineering Julio Garavito (Escuela Ing.). This

project is mainly led by Dr. Carlos A. Cifuentes (professor of the Dpt. of Biomedical

Engineering, research group GiBiome and head director of the Center for Biomecha-

tronics at Escuela Ing.) and receives collaboration from the main clinical partner in

this project "Clínica Universidad de la Sabana", and international research groups

around the world: the Group of Neural and Cognitive Engineering from the Spanish

National Research Council (led by Dr. Eduardo Rocon), the Automation Institute of
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San Juan, Argentina (led by Dr. Ricardo Carelli), and the Group of Robotics and

Industrial Automation from the Federal University of Espírito Santo in Vitória, Brazil

(led by Dr. Anselmo Frizera).

The main purpose of this project is the development of a gait rehabilitation plat-

form comprised by: (i) a smart walker, and (ii) an active lower-limb exoskeleton,

controlled by a multimodal interface which serves as a communication channel among

the patient, the health professionals, and the rehabilitation therapy. Additionally, a

second interface is expected to sense information from the environment and ensure safe

navigation within the rehabilitation setting by taking into account the human-robot-

environment interaction (HREI). Fig. 1.1 shows a sketch with the main components of

this platform such as a common microcontroller, actuation mechanisms (e.g., construc-

tion motor-encoder-gearbox), and sensors in charge of assessing human’s performance

(e.g., electromyography (EMG) sensors), measuring the HRI (e.g., strain gauges and

triaxial force sensors) and HREI (e.g., laser range finder (LRF) and video camera).

Motor + encoder + reductor
Strain Gauges

Laser Range Finder (LRF)

Tri-axial Force sensor

Video Camera

EMG sensor

Processing System 

Motor + encoder

Figure 1.1: AGoRA project. Development of an adaptable platform for gait rehabil-
itation and assistance, which comprises a processing system, actuation mechanisms,
and sensors for HRI and HREI.

Within this context, the present project intends to make a breakthrough in rehabilita-

tion therapies and robotic gait assistance, improving the conditions of bioinspiration

and interaction with the environment of the devices found in the literature. This

project also proposes a framework for the training of teachers and young Colombian



researchers in the field of rehabilitation robotics and seeks to answer the following

research question: Is it possible to perform a more efficient gait rehabilitation, with

better results than traditional therapies, implementing an adaptable robotic platform?

1.3 Objectives

The main goal of this thesis is to implement high-level control strategies on a modular

lower-limb exoskeleton and validate its functionality in healthy subjects to answer

the following research question: what are the most significant effects of the AGoRA

exoskeleton on the gait pattern of male healthy subjects? Along with the primary

objective, some specific objectives are presented below.

• Conduct a systematic literature review to understand the human control of pos-

tural balance, and the different mechanisms that help towards overcoming mo-

bility impairments.

• Control the actuation mechanism based on electric motors by means of a low-

level approach and achieve the integration of different sensing devices oriented

at the HRI, e.g. strain gauges, inertial measurement units (IMU), and encoders.

• Develop a state-of-the-art high-level control strategy for ensuring an appropriate

HRI between the exoskeleton and its user, and implement it with the ready

available hardware.

• Evaluate the short-term effects of the final system on healthy users without any

mobility impairments.

1.4 Contributions

This thesis mainly contributes to the AGoRA project, which primarily focuses on

the development of an adaptable platform for gait rehabilitation and assistance. By
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conducting this master thesis, a series of technical and scientific contributions are

obtained:

1. The design and implementation of a low-level software architecture mounted on

the Robot Operating System (ROS) which integrates the AGoRA exoskeleton’s

sensory interface and actuation mechanism. Such architecture was constructed

in such a way that it initializes each connected module (e.g., the actuation mech-

anism and sensors at each exoskeleton joint), and set their corresponding con-

figuration parameters. This allows the device to be modular, by only assisting

the human joints that have been affected.

2. The design and validation of a machine-learning-based gait phase detection algo-

rithm which only makes use of a single IMU placed on the dorsal side of the foot

to accurately segment the gait cycle. This partitioning method is used as the

middle layer of the overall control architecture whose output is used to actuate

the exoskeleton in accordance with each user’s gait pattern.

3. The design and implementation of several high-level control strategies, known as

Assisted-As-Needed (AAN), which take into account the user’s motion intention

to move the actuation mechanisms only when the user needs it. By estimating

the interaction force between the mechanical structure and the subject via strain

gauges, admittance-based controllers make a non-backdrivable device more com-

pliant to the user’s movements.

4. The overall electronic construction and the preliminary evaluation of the robotic

lower-limb exoskeleton “AGoRA" meant for gait rehabilitation, which will be of

great help for other master students who will be completing their thesis within

the AGoRA project.

5. The implementation of this device also presents a promising potential as a re-

habilitation alternative that will be further validated once long-term trials with

pathological subjects are conducted within a clinical setting.



1.5 Document Organization

This master thesis document specifically comprises the mechanical, electronic and

control design of the AGoRA exoskeleton. Additionally, it presents the experimental

trials conducted with six healthy subjects as a preliminary evaluation of the different

types of control implemented on the device. The document is organized in 7 chapters.

Chapter 1 presents the motivation of the present work and its main objectives and

contributions. Chapter 2 summarizes the main causes of mobility impairments and the

state of the art of currently-available rehabilitation alternatives, ranging from conven-

Low level
Execution Layer: Device-specific control
-Error calculation
-Feedback control loops

High level
Perception Layer: Intention estimation 
-Transparency and assistance modes

HIERARCHICAL CONTROLLER

User

Environment

User gait
and intent

Sensory
Stimuli

Artificial sensory
feedback

Sensory
Stimuli

Interactions: Signal (transduced) Physical (forces, velocities) Signal and physical

Mid level
Translation Layer: Intent-to-state conversion
-Gait phase detection

Figure 1.2: Generalized control framework of the lower-limb exoskeleton AGoRA. The
proposed framework illustrates the physical and signal-level interactions among the
powered orthotic device, its user and their environment. A hierarchical control struc-
ture is implemented with the estimation of the user’s locomotive intent taking place at
the high level and a device-specific controller responsible for accomplishing the desired
device state at the low level. Adapted from [22].
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tional therapy to robot-assisted gait training. Chapter 3 describes the hardware and

low-level control architectures implemented in the AGoRA exoskeleton (see Low level

in Fig. 1.2), which integrates the actuation mechanism and different sensors in such a

manner that the device joints may be arranged depending on each user’s requirements.

A middle layer of the control system, consisting of an online machine-learning-based

gait phase detection algorithm, is included in Chapter 4 (see Middle layer in Fig. 1.2).

Chapter 5 further addresses the proposed high-level control strategies that take into

consideration the human-robot force interaction to intervene just when it is mandatory

(see High level in Fig. 1.2). The preliminary validation of the implemented control

strategies in healthy subjects and the analysis of the outcomes of such trials are pre-

sented in Chapter 6. Finally, Chapter 7 gathers the main conclusions of this work

and some future work planned for the use of the AGoRA exoskeleton in the clinical

setting.



Chapter 2

Assistive Devices: Human Mobility

and Gait Rehabilitation

2.1 Introduction

Mobility is one of the most important human faculties and can be defined as the

ability of an individual to freely move through multiple environments and perform

activities of daily living (ADL) with ease [18, 24]. Following a neurological dysfunction,

such as stroke, mobility may be affected and only a short-time period might remain

to take advantage of the inherent adaptability and plasticity of the central nervous

system (CNS) [17]. Reestablishing effective mobility for individuals with lower-limb

impairments is often a complex challenge and frequently involves the interdisciplinary

efforts of many medical, surgical, and rehabilitative specialists [25]. Thus, robotic-

based training is considered to be a potential aid, not only for patients but for health-

care professionals as well.

This chapter provides a brief overview of some of the most common lower-limb neuro-

logical dysfunctions which may lead to some level of disability, and the loss of quality

of life and independence. This summary mainly focuses on those conditions which

11
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impair mobility and the different treatment strategies and assistive devices currently

used to overcome the subsequent limitations.

2.2 Causes of Mobility Impairment

Several conditions affect mobility and understanding their implications at different

cultural and socio-economical levels is crucial to propose novel therapeutic alterna-

tives. Therefore, a brief description of the most common walking diseases is included

hereunder. These conditions include, but are not limited to, stroke, Spinal Cord In-

jury (SCI), Cerebral Palsy (CP) and aging. Their physiological, functional, social

and economic impacts highlight the importance of rehabilitation for promoting gait

restoration.

2.2.1 Cerebrovascular accident (CVA) or Stroke

Brain damage occurs when the blood supply stops flowing to the brain, resulting in

the rapid death of brain cells. If oxygen and glucose are not restored soon, the brain

starts experiencing irreversible damages. This loss of brain functions due to insufficient

blood flow is known as stroke [26]. Risk factors include age, hypertension, diabetes,

high cholesterol, smoking, sedentary lifestyle, overweight and atrial fibrillation [27].

Stroke can be either ischemic and hemorrhagic, with the ischemic type being the most

prevalent category (∼ 85% of all cases) [28].

Stroke is considered to be one of the most significant causes of disability in adults

worldwide, affecting mobility during ADL, as well as communication and cognition

[29]. As a result of this condition, compensatory mechanisms may come along to

counteract the loss of structure and function post-disease. Chronic stroke often re-

sults in contralateral hemiparesis or hemiplegia, i.e., the weakness or paralysis on one

side of the body, respectively [25]. Furthermore, several spatiotemporal and kinematic

parameters are affected by the appearance of the stroke, which include speed decrease,



timing asymmetry, shorter stride and step length, impaired swing initiation, and weak-

ness in the hip flexor, quadriceps and plantarflexor muscles. In addition, CVA might

provoke different gait disorders, such as foot drop, alterations in postural stability,

spasticity (i.e., velocity-dependent resistance to sudden passive movement), increased

risk of falls, reduced dexterity, fatigability, ankle dorsiflexion and knee flexion limited

or absent in swing phase, and reduced hip flexion [30–32].

Regarding the post-stroke recovery rate, a 2008 study carried out in Italy (involving

up to 500 study subjects) showed that about 45% of patients with stroke leave the

rehabilitation unit on a wheelchair, less than 15% are able to walk indoor without aids,

less than 10% are able to walk outdoors, and less than 5% are able to climb stairs [33].

Thus, the widely-recognized problem of stroke is not death, but motor impairment,

which makes the CVA a serious global health-care problem that costs more than 4%

of the total health-care expenses in developed countries [34].

2.2.2 Spinal Cord Injury (SCI)

SCI is the consequence of damage in the spinal cord nerves, either temporary or per-

manent, and can affect the motor, sensory and autonomic function. Depending on

where the spinal cord and nerve roots were damaged, the severity level may be classi-

fied into complete (total loss of function) or incomplete (which can vary from having

no effect on the patient to severe mobility impairment) [30, 35, 36]. This condition

significantly compromises spatiotemporal and kinematic parameters, so that SCI vic-

tims may suffer from reduced cadence, short stride length, reduced knee excursion,

weakness in quadriceps, and hip and knee flexor muscles, excessive co-activation of

antagonist muscles, and hyperactive stretch reflexes. Additionally, gait disorders, e.g.,

impaired balance, increased risk of falls, foot drop and abnormal muscular tone, may

appear post-SCI [30, 31, 35].

Since there exist no interventions able to promote regeneration of spinal cord nerve
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pathways nowadays [37], the aim of rehabilitation interventions for such patients is

mostly focused on helping them to achieve greater autonomy in daily life. In most

cases, this is made through the use of a wheelchair, which is currently the main tool

capable of helping SCI patients to regain a degree of mobility, even though the pur-

suit of greater independence can be often hindered by obstacles, both physical and

psychological [37].

2.2.3 Other Conditions

Cerebral palsy (CP) is related to a non-progressive movement and posture develop-

ment disorder, attributed to a defect or lesion in the brain that appears in infancy

or early childhood [38]. CP is often associated with different physical and associative

dysfunctions such as sensory deficits, cognitive impairment, communication and mo-

tor disabilities, behavior issues, seizure disorder, pain, and secondary musculoskeletal

problems [38, 39]. The Centers for Disease Control and Prevention in the United

States have estimated that the lifetime cost to care for an individual with CP is nearly

$1 million (2003), and the combined lifetime costs for all people with CP who were

born in 2000 will total $11.5 billion in direct and indirect costs [40].

On top of the above-mentioned CNS dysfunctions, the continuous aging tendency has

become a global issue due to the socio-economical implications produced by the impact

of physical deterioration in elderly people on health-care systems around the world.

By the year 2050, the aging problem is expected to be even worse since the proportion

of the world’s population over 60 years will nearly double from 12% in 2015 to 22%

[41]. The frailty of elderly people is reflected by reduced daily physical activities such

as walking less because of significantly reduced muscle mass and strength. In the

worst-case scenario, their muscles could further deteriorate and an accelerated decline

of the neuromusculoskeletal systems may occur [8, 42]. Particularly, one-fourth of all

SCIs [25] and nearly three-quarters of all strokes [8] occur in people older than 65 y.o.

This relevant issue highlights the need for new affordable and practical rehabilitation



strategies that can be deployed in the context of developing countries.

2.3 State of the Art of Gait Rehabilitation

The present review on gait rehabilitation is mainly focused on therapy approaches for

stroke patients since the requirements for promoting neural plasticity should be taken

into account in the design and implementation of control strategies in the AGoRA

exoskeleton.

2.3.1 Traditional Therapy

At present, gait rehabilitation is mostly based on physical therapy interventions with

robotic-based training still only seldom employed. Regardless of the specific technique,

each approach requires customized preparatory exercises, physical therapist’s obser-

vation and direct manipulation of lower limbs during gait over a regular surface [16].

According to the theoretical principles included in a Cochrane review in 2007, neuro-

logical gait rehabilitation can be classified into two main categories: neurophysiological

and motor learning [43].

In the neurophysiological technique, the therapist acts as a problem solver and decision-

maker by supporting the correct movement patterns, so that the patient is a relatively

passive recipient [16]. Among the neurophysiological approaches, Bobath stands as the

most widely accepted treatment in Europe. This method consists of trying to inhibit

increased spasticity by passive mobilization associated with tactile and proprioceptive

stimuli [44].

The motor learning approaches, on the other hand, encourage active patient involve-

ment [16], thus making patient cooperation a prerequisite and the neurophysiological

assessment a mandatory feature. Since therapy should target each patient’s specific

needs, task-specific and context-specific training are widely-acknowledged principles
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in the motor-learning framework. Although several neurorehabilitation techniques

have been developed to restore neuromotor function by involving therapist guidance

for support and demonstration (instead of providing sensory input), tailored meth-

ods for specific pathologies and subjects are still considered to be the gold standard

[16]. Within this context, the combination of rehabilitation devices and conventional

approaches appears to be more effective than over-ground gait training alone in the

recovery of independent walking in the sub-acute phase of stroke (especially within

the first 3 months after CVA) [45, 46].

2.3.2 Rehabilitation Machines

A rehabilitation machine is a mechatronic system able to support the therapist during

the administration of customized rehabilitation programs. There are different types

of gait rehabilitation devices which can be basically classified into two categories:

alternate and augmentative devices [47]. The alternate devices are mainly used by

individuals with total disability or very limited mobility. They do not generally exercise

the affected lower limbs, e.g., wheelchairs or autonomous special cars [48]. On the

contrary, the augmentative devices are primarily aimed at individuals with reduced

mobility, but who can generate some movements that are useful for their rehabilitation

process [47]. The latter will be the main focus of this section.

Robot-assisted gait therapy relies on a robotic orthosis to help the patient retrain

motor coordination by undertaking carefully directed, repetitive, task-specific motor

activities [49]. The history of robot-assisted training started with the adaptation

of industrial robotic actuation mechanisms to the field of rehabilitation and evolved

to more advanced robotic devices that can be divided into exoskeletons (or active

orthoses) and end-effector-based systems [50]. Exoskeletons and active orthoses can

be considered wearable robots, and present a slight difference between them. The

term exoskeleton generally refers to a mechanical device that is able to enhance its

user’s strength and endurance. Conversely, an active orthosis is a device with powered



actuation, usually used to modify or recover lost motor functionalities. However, this

distinction is not clear-cut [51], and for the case of this document, both terms are used

interchangeably.

Lower-limb exoskeletons are primarily developed for three main applications nowa-

days. The first application of exoskeletons is aimed at enhancing the physical abilities

of able-bodied subjects (i.e., human strength augmentation) [51]. The second ap-

plication is human locomotion assistance, which is frequently targeted at paralyzed

individuals who have lost lower-limb motor and sensor function [52]. And finally,

the third application focuses on gait rehabilitation, i.e., helping people with mobility

impairments in the restoration of musculoskeletal strength, motor control, and gait

[51].

Since the repetitive movements performed by therapists during gait training represent

a tiring job because they have to manually move the patients’ paretic legs continuously,

rehabilitation robotics appears as an opportunity to increase the sustaining time of

each training session [37, 53] while easing the workload of health specialists and closely

monitoring the patient’s progress throughout treatment [37]. Preliminary findings

suggest that exoskeletal gait training is equivalent to traditional therapy in chronic

stroke patients, whereas sub-acute survivors may experience further benefits from

robotic-based gait training [5]. Although the robotic gait method has shown improved

patient outcomes, there is not yet enough statistical evidence to assure a definitive

advantage of robotic training [37].

Within this context, a thorough literature review on the most cited lower-limb active

exoskeletons was carried out in Scopus, Web of Science and Pubmed till May 2019.

Different pathologies were included in this literature search even though the present

work mainly focuses on stroke rehabilitation since the assistive strategies applied in

other frameworks might contribute to the control paradigm addressed in this work.

Further sections comprise the devices mentioned most frequently in the literature while
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classified into two main categories, namely stationary and ambulatory rehabilitation

machines. The following search terms were used in this study to conduct the mentioned

literature review:

{leg ∨ hip ∨ knee ∨ ankle ∨ foot ∨ [lower ∧ (limb∗ ∨ extremity ∨ body )]} ∧

(robot∗ ∨ exoskeleton ∨ “powered orthosis") ∧ (stroke ∨ CVA ∨

“cerebrovascular accident" ∨ “cerebral infarct" ∨ hemiplegia ∨ hemiparesis ∨

paraplegia ∨ paralysis ∨ SCI ∨ “spinal cord injury" ∨ “cerebral palsy") ∧

(gait ∨ walk∗ ∨ ambulation)

2.3.2.1 Stationary Rehabilitation Alternatives

The stationary systems mainly consist of a fixed structure and a mobile ground plat-

form (e.g., treadmill or footplates). The treadmill approach uses a robotic device

connected to the patient’s lower limbs together with a body-weight support (BWS)

system, fundamental to off-load a part of the patient’s weight, whilst programmable

footplates simulate the gait phases [54]. There is conflicting evidence proving that

treadmill-based robotics might not be as effective as conventional therapy or body-

weight supported treadmill training (BWSTT), since pre-set belt speed creates an

environment where patients do not self-initiate gait and there is a lack of variability

in visuospatial flow (highly present in overground gait) [5, 55].

2.3.2.1.1 Lokomat

Lokomat [57] (Hocoma, Switzerland) is the best-selling commercial gait rehabilitator

and trainer for clinical patients nowadays. It is a robotic device consisting of a powered

orthosis with integrated computer-controlled linear actuators at each hip and knee



Figure 2.1: Lokomat. Extracted from [56]

joints, BWS and a treadmill (Fig. 2.1). Gait pattern and guidance force are adjusted

depending on the patient’s needs to optimize the functional training in the sagittal,

frontal and transverse planes [54]. The orthosis has 4 Degrees of Freedom (DoF)

in total, and the hip and knee joints are actuated by linear drives to assist along

the sagittal plane. Force sensors mounted between the actuator and the orthosis

measure force interaction [8]. Lokomat also possesses an augmented feedback module

which offers the possibility to provide stimulating, interactive and direct feedback to

the patient by displaying the results of the exercises on a screen to enhance patient

motivation. By adjusting the level of difficulty, training sessions can be tailored to each

subject’s specific requirements [54]. The effectiveness of Lokomat in gait rehabilitation

for neurological patients has been verified through worldwide clinical studies [57].

2.3.2.1.2 LOPES

The Lower Extremity Powered ExoSkeleton (LOPES) [59] (University of Twente,

Netherlands) is a robotic device that assesses motor skills and assists stroke patients

in stroke rehabilitation (Fig. 2.2). LOPES uses the concept of series elastic actua-
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Figure 2.2: LOPES. Extracted from [58].

tors (SEA) based on a Bowden-cable-based actuation mechanism [19]. Three actuated

rotational joints and a great number of DoF on the exoskeleton offer a wide range

of possibilities to adjust the support to each individual and to regain motor func-

tion [54]. Different from other orthoses, LOPES is connected to the fixed world at

pelvis height, so that its weight can be compensated and corrective joint torque can

be applied to the patient’s pelvis [50]. Two gait training modes have been used by

LOPES, namely patient-in-charge (unhindered walking) and robot-in-charge modes

(fully-passive walking) [19]. The impedance-based control implemented in this de-

vice has proven to be beneficial in chronic incomplete SCI patients, improving speed,

walking distance, spatio-temporal parameters and hip range of motion (RoM) [58].

2.3.2.2 Ambulatory Rehabilitation Alternatives

Overground walking systems follow the patient’s walking movements and allow them

to move under their own control through an autonomous wearable robot, rather than

moving only according to predetermined movement patterns [54]. Overground gait

training, in comparison with BWSTT, has the potential of higher therapeutic outcomes



due to its associated biomechanics being close to that of natural gait [60]. Moreover,

these devices present additional advantages in the rehabilitation field on account of the

task-specific training associated with this robot-based approach and how it encourages

the patient’s involvement during therapy [37].

2.3.2.2.1 Rewalk

Figure 2.3: ReWalk. Extracted from [60].

The ReWalk (Argo Medical Technologies, Israel) was the first exoskeleton suit cleared

by the U.S. Food and Drug Administration (FDA) in 2014 to be used as a personal

device at home (Fig. 2.3). Currently, ReWalk also has the capacity for stair climb-

ing/descent but this feature has not been yet approved by the FDA and is not avail-

able outside the research environment [52]. The exoskeleton is controlled by on-board

computers carried in a backpack on one’s shoulders, encourages self-initiated gait by

sensing the forward tilt of the upper body through a motion sensor, and mimics the

typical gait pattern [8, 54]. ReWalk is intended to be used with two Canadian sticks
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to ensure the stability of standing and walking [54]. Moreover, clinical trials with this

device have shown that paralyzed subjects are able to stand upright and walk with

increased independence after undergoing therapy with it [61].

2.3.2.2.2 Ekso

Figure 2.4: Ekso. Extracted from [20].

Ekso (Ekso Bionics, USA) is a self-powered exoskeleton, able to increase the strength

and endurance of the human being. In earlier stages, it was called the BLEEX and

then eLegs. In April 2016, Ekso Bionics received approval from the FDA to market

the device for SCI, and also for people with post-stroke hemiplegia (first FDA approval

for use with stroke survivors) [62]. Ekso weighs 20 kg, has a maximum speed of 0.8

m/s and a battery life of 6 h and is suitable for users weighing up to 100 kg, who

can transfer themselves from a wheelchair to a chair [54]. Similar to the HAL and

ReWalk, Ekso bilaterally actuates the knee and hip joints [20] whilst the exoskeleton

ankle joints allow passive spring movement limited to the sagittal plane. Ekso requires

provided crutches whose bottoms are instrumented with force sensors so that a step

will not be triggered unless both crutches are firmly held against the ground [63]. The

feasibility for using it has been proven for SCI [64] and larger-scale clinical trials are



being undertaken around the world [8].

2.3.2.2.3 Vanderbilt Exoskeleton

Figure 2.5: Vanderbilt lower-limb orthosis. Extracted from [65]

The Vanderbilt lower-limb orthosis [66] (Vanderbilt University, USA) is designed to

assist the hip and knee joints of SCI patients by means of two brushless DC motors

on each thigh segment. Its total weight is 12 kg, which is relatively light compared to

other similar exoskeletons [8]. The orthosis controller consists of four motion states:

standing, right forward, left forward, sitting. For each state, the joint angles are pre-

programmed based on recorded trajectories drawn from healthy subjects and transi-

tions between states are triggered by user’s vocal commands [65]. This orthosis has

been implemented in patients with a T10 motor and sensory injury, enabling them

to walk faster after 1 year of therapy with amplitudes of intervened joints similar to

those of healthy subjects [67].

The main features of the above-mentioned lower-limb exoskeletons are summarized in

Table 2.1 for both the stationary and ambulatory approaches.
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Table 2.1: Summary of stationary and ambulatory lower-limb active exoskeleton reviewed in the state of the art. TBI:
Traumatic Brain Injury, CoP: Center of Pressure, BMI: Brain-Machine Interface.

Exoskeleton Application Target

Pathology

Actuated DoF Actuator Sensors Control Strategy

Lokomat

[8, 47, 54]

Gait rehabili-

tation

Stroke, SCI,

TBI

Hip and knee flexo-

extension (two

legs)

Electric mo-

tors

Force sensors be-

tween actuators

and orthosis

Impedance control

and conventional PD

controller

LOPES

[47, 54, 59]

Gait rehabili-

tation

Stroke & SCI Vertical and hor-

izontal pelvis

translation, hip

and knee flexo-

extension & hip

abd/adduction

Servomotors

and Linear

Motors

EMG and torque

sensors

Impedance control

ReWalk [8,

47, 54]

Human loco-

motion assis-

tance

SCI Hip and knee flexo-

extension (double

legs)

Electric mo-

tors

Series of sensors

that measure

upper-body tilt

angle, joint an-

gles and ground

reaction

Closed-loop PID con-

troller



Ekso [8,

47]

Gait reha-

bilitation

& human

locomotion

assistance

Stroke, SCI,

multiple scle-

rosis & CP

Hip and knee flexo-

extension (double

legs)

Electric mo-

tors

Force sensors at

the bottom of

crutches

Augmentative and

progressive training

Vandelbilt

[8, 65]

Human loco-

motion assis-

tance

SCI Hip and knee flexo-

extension (double

legs)

Electric mo-

tors

Accelerometers

and joint angle

sensors to esti-

mate CoP in the

sagittal plane

Predefined gait trajec-

tory control
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2.4 Conclusions

All currently existing lower-limb wearable robots have been developed aiming at assis-

tance, i.e., they are configured in such a way that patients are able to rehearse a typical

gait pattern (usually drawn from healthy subjects) while wearing such a device. The

repetition of these predefined gait kinematics is expected to result in the improvement

of motor function [37]. Robot-based training has an additional advantage with respect

to conventional therapy, namely the online/offline quantitative, objective assessment

of several parameters associated with the patient’s performance during therapy [14].

Additionally, significant advances have been made in terms of the safety and portabil-

ity of the lower-limb exoskeletons, the skills they train and the reduction of the effort

needed to command them [64, 68].

In spite of the great number of advantages of the robotic-based gait training, the use

of robots should not replace the neurorehabilitation therapy performed by a physio-

therapist. Rehabilitation machines, as all technological devices, must be considered

as tools available for the health professional and never rehabilitative per se [69]. The

robot should alleviate the labor-intensive phases of physical therapy, thus allowing

the physical therapist to concentrate on functional rehabilitation during individual

training and to supervise multiple patients at the same time. With this approach, the

expertise and time of qualified personnel are optimized, increasing the rehabilitation

program’s efficacy and efficiency [14, 70].

Even though these assistive and rehabilitation devices continue to improve, likely

providing psychological and physical benefits, their inter-subject anticipated benefits

are only starting to gather (mostly focusing on SCI) and need further research [5, 64,

68].



Chapter 3

Hardware and Control Architectures

of the AGoRA Exoskeleton1

3.1 Introduction

Physical Human-Robot Interaction (HRI) involves the use of sensors, actuators, algo-

rithms and control strategies that are capable of recognizing the complex human ex-

pressions and its physiological phenomena [71]. In considering the design of wearable

robots, the physical interaction represents the most critical aspect, as any movement

or force applied to the patient’s body must be consistent with their capabilities [72].

Therefore, during the design process of an exoskeleton, one has to ensure that the

data acquisition scheme is well-defined and that such a module is able to detect the

device’s current state, its interaction with the environment, and the HRI forces [72].

Apart from that, in order to interact with humans, wearable robots are expected to be

flexible, adaptable, and, most importantly, safe. One of the benchmarks for achieving

this goal is compliance. Compliance plays an important role in human adaptations
1Part of this chapter is based on the following conference proceedings:

Sanchez-Manchola, M., Gomez-Vargas, D., Casas, D., Munera, M., & Cifuentes, C. A. (2018). De-
velopment of a Robotic Lower-Limb Exoskeleton for Gait Rehabilitation: AGoRA Exoskeleton. In
2018 IEEE ANDESCON, ANDESCON 2018 - Conference Proceedings.
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to environmental changes and securing stable gait [73]. However, compliance has not

yet found its way into commercial wearable robots, which usually use direct-drive

actuation due to its high bandwidth and controllability [74].

Based on these requirements, a thorough explanation of the hardware architecture

and control system of any wearable system is important to understand its capabilities

and justify the fulfillment of the target population’s needs. This chapter aims at this

end by presenting the mechatronic design and the low-level control architecture of the

AGoRA exoskeleton.

3.2 Hardware Architecture

3.2.1 Mechanical Design

Bioinspiration has been extensively adopted in the development of wearable robots

in recent years [20]. In particular, the bio-inspired exoskeleton proposed here is built

in such a way that it possesses an anthropometric topology. The exoskeletons with

anthropomorphic topology intend to resemble the human topology as much as possible.

This is possible by taking into account the lower and upper-limb power trains, the

DoF of each human joint of interest and the exoskeleton’s dimensions, which must

avoid bulkiness and high weight. These design criteria are meant to allow the assistive

technologies to apply the right amount of assistance at the right time while maintaining

normal human biomechanics.

The AGoRA exoskeleton is an active assistive device which is mainly intended as a

rehabilitation tool for stroke patients, but that could be also used for gait compensation

in patients who have suffered a spinal cord injury and present lower-limb paralysis as

a consequence. It is primarily conceived for overground gait training in a clinical

environment as a bilateral (unilateral, as the case might be), wearable device. The

exoskeleton has 4 actuated DoF which correspond to the hip and knee flexo-extension



(i.e., movement along the sagittal plane), as shown in Fig. 3.1. The hip joint has an

additional passive abd/adduction DoF which plays an important role in the lateral

balance control [75]. This abd/adduction DoF is part of the originality of the present

device since most robot-based assistive technologies frequently hinder this particular

movement [20].

Although the Range of Motion (RoM) in the frontal plane is relatively small at the hu-

man hip joint (∼ 10◦) [76], the hip abd/adduction DoF presents a high correlation be-

tween strength and gait velocity at a comfortable pace [77]. Thus, the abd/adduction

axis on the exoskeleton consists of a self-aligning hinge that, in parallel with a com-

posite material, conditions the user’s hip RoM. This system tenses two composite

Figure 3.1: Hip and knee joints of the AGoRA exoskeleton. The human hip and knee
joints are assisted in the sagittal plane, whilst a passive DoF in the frontal plane does
not hinder the hip abd/adduction.
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tendons (fishing rod around a 2.85 mm Filaflex thread) which are connected to a steel

link for load transmission to the lateral structures, so that hip abd/adduction RoM is

restricted within a nominal human range (as may be seen in Fig. 3.2).

Figure 3.2: Hip abd/adduction DoF of the AGoRA exoskeleton. A passive variable-
stiffness system, which utilizes composite tendons, enable such hip DoF with a certain
level of stiffness.

As weight is a crucial aspect in the design and fabrication of wearable robots [21],

choosing a light but high-resistant material is critical. For the case of this exoskeleton,

most of its mechanical structure is made of duralumin, a material with both the men-

tioned properties and low corrosion (an important attribute for clinical settings). Even

though this structure can be considered rigid, its design possesses a soft geometry, i.e.,

sharp points, sharp edges, and protrusions are avoided, so that stress risers disappear

and aesthetics improve. These design criteria allow the device to have a total weight

of 15 kg with the actuation mechanisms mounted on all hip and knee joints.

An assistive device is also intended to follow the wearer’s kinematics by guaranteeing

kinematic compatibility, i.e., the correct alignment of the exoskeleton hinges with the

biological axes of rotation. Hence, another significant design factor is the adjustability

of each link length [78]. To this end, the length of each exoskeleton segment can

be adjusted to different anthropometric measures without losing functionality. Via a

mechanism of two telescopic bars that can be pushed one inside the other, the thigh

and shank segments can be adjusted to encompass a wide range of body dimensions.

The setting spectrum covers heights ranging from 1.70 to 1.83 m, which satisfies most

of the Colombian male population [79], and a maximum bodyweight of up to 90 kg



(loading capacity validated by means of a 3D finite-element analysis (FEA)).

Revolute design
of knee module

3D-printed
Fastening
System

Actuation
Mechanism

Figure 3.3: Knee module of the AGoRA exoskeleton. A 3D-printed fastening system
ensures proper torque transmission of a motor-gearbox construction which serves as
actuation mechanism on the exoskeleton knee module.

Moreover, another feature that contributes to reaching a proper transfer of torque is

the fastening system, and its design must be undertaken on the basis of compliance,

comfort, adjustability, and wear resistance [80]. In particular, adjustable rounded leg

braces carriers with Velcro straps (see Fig. 3.3) were 3D-printed using a composition

of PLA and carbon fiber (the latter being a highly stress-resistant material). The

interface in contact with the user is also 3D-printed using TPU, which is a comfortable

material that minimizes pressure against the user’s skin and prevents injury [79]. The

mechanical design described in this subsection has been conceived and become real

thanks to the effort of an interdisciplinary team which includes mechanical engineers.

3.2.2 Actuation Mechanism

The main selection criteria used for the actuators of the AGoRA exoskeleton were the

specific power (ratio of actuator power to actuator weight) and portability. In wearable

robotics, different actuator technologies, e.g., electric, pneumatic, hydraulic and Series

Elastic Actuators (SEA), are commonly used. Hydraulic and pneumatic actuators are
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known for their high force density and high force or torque characteristics and have

been used in many applications [81]. However, hydraulic and pneumatic actuators have

the disadvantage of being bulky and requiring complex control systems. Conversely,

SEA-based actuation involves an elastic element, usually a spring, placed in series with

the actuator’s output [82]. Nonetheless, the smooth coordination of force and position

between patient and device still represents a challenge among different users for this

type of actuators [83].

Based on the fact that electric motors provide a reduction in power consumption

during gait [84], and, particularly, DC motors meet the criteria of necessary power

with a compact and portable structure, a brushless flat DC motor (EC-60 flat 408057,

Maxon Motor AG, Switzerland) (see Fig. 3.4a) coupled with a harmonic drive gear

(CSD-20-160-2AGR, Harmonic Drive LLC, USA) (see Fig. 3.4b) were selected to

be the actuation mechanism for the hip and knee joints of the AGoRA exoskeleton.

This coupling of a harmonic drive to the motor shaft output was chosen because this

construction provides more torque at lower speeds (gear ratio of 160:1) while preserving

lightweight and reduced volume. The proposed assembly (shown in Fig. 3.5) provides

a continuous net torque of 35 Nm and peak torques of 180 Nm, which is in accordance

with the design requirements for most patients [85, 86]. As control strategies meant

to assist the human gait cycle do not require continuous torque, but higher torque

(a) (b)

Figure 3.4: (a) Brushless DC motor and (b) Harmonic Drive gear of the AGoRA
exoskeleton. Their combination can provide a peak torque of up to 180 Nm.



profiles at specific times, the peak torque profile of the selected actuators is more than

sufficient for the application presented in this work.

3.2.3 Sensors

HRI is an important factor to ensure user’s comfort, safety and a reduced energy

consumption [87]. Accordingly, the AGoRA exoskeleton is designed in such a way

that there are no sensors physically attached to the user’s skin. The exoskeleton is

equipped with two types of sensors: kinematic and kinetic. Kinematic sensors are used

for measuring hip and knee angular position, and foot angular velocity, whilst kinetic

sensors measure the force of interaction between the user’s limbs and the mechanical

structure of the exoskeleton.

Besides the internal relative incremental encoder of each DC motor (used for the

implementation of position and impedance controllers), the exoskeleton has an absolute

Harmonic

Drive

Force

Sensor

EPOS4

Driver

DC Motor

External

EncoderInternal

Encoder

Figure 3.5: Schematic drawing of each joint assembly of the AGoRA exoskeleton.
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magnetic encoder placed concentrically to each joint assembly (see Fig. 3.5). This

absolute rotary encoder produces a unique digital code for each position of the motor

shaft, whereas voltage outputs of the motor encoders proportionally vary to the joint

angular displacement. Additionally, the motor drivers are able to measure motor

velocity and position by means of embedded incremental encoders and hall effect

sensors.

Further, strain gauges (632-180, RS Pro, UK) mounted on each exoskeleton link are

used as force sensors (see Fig. 3.5). The resistance gauge consists of a thin semiconduc-

tor grid that is bonded to the metal rods of the exoskeleton. Under certain torsional

stress, the wired grid undergoes a change in length and cross-section which produces

a proportional variation of resistance [81]. Their placement on the exoskeleton was

determined through FEA, ensuring that the chosen points presented high deflection

upon slight interaction forces. These force sensors are connected in a half Wheatstone

bridge configuration to enhance their measurement accuracy and to correct changes

resulting from temperature variations. A commercial 24-bit Analog-Digital Converter

(ADC) for weigh scales (HX711, Avia Semiconductors, Czech Republic) is used to
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Figure 3.6: Strain gauge characterization curve.



balance the bridge and to amplify the output 50 times. Its output signal covers torque

measurements ranging from -40 to 40 Nm, thus complying with the maximum contin-

uous torque of the actuators. This construction provides the estimation of the HRI

torque by using a linear equation (as depicted in Fig. 3.6), which was obtained through

a calibration process done with several known weights (as shown in Fig. 3.7) and the

least-square algorithm. Once the strain gauges were attached to the exoskeleton links,

they were covered and protected with a hard resin. This material avoids humidity

and external contamination that could damage the strain gauges or interfere with the

measurements.

Figure 3.7: Strain gauge calibration setup. A set of calibrated weights was used to
model an estimation of the interaction torque.

In addition to the above-mentioned sensors, a custom insole instrumented with Force

Sensitive Resistors (FSR) (Ref. 402, Interlink Electronics, USA), and an Inertial

Measurement Unit (IMU) (BNO055, BOSCH, Germany) placed on the dorsal side

of the foot are used to accurately detect four gait phases (see Fig. 3.8). The used

FSR consists of a conductive polymer film with a circular sensing area of 18.22 mm

in diameter and a negligible thickness of 0.5 mm, while the used IMU integrates a

triaxial 14-bit accelerometer, a triaxial 16-bit gyroscope, with a measurement range

of ±2000 ◦/s, a triaxial geomagnetic sensor and a 32-bit cortex M0+ microcontroller

in a single package. The gait phase partitioning module, which serves as a control

middle-layer, is discussed in depth in Section 4.
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3.3 Low-Level Control Architecture

The low-level control architecture of the AGoRA exoskeleton is represented in Fig.

3.8. The electronic hardware is divided into three main parts:

• The main board, responsible for setting all configuration parameters and target

setpoints of the low-level controllers, as well as synchronizing all joint movements.

• The motors drivers, dedicated to sensor data acquisition and the implementation

of low-level controllers on each joint’s actuator independently.

• The data bus, a real-time network connecting the main board and the motors

drivers through a gateway communication protocol.

Figure 3.8: Low-level control architecture of the AGoRA exoskeleton. Main board
communicates with motor drivers through a data bus to actuate each joint module
independently.

Modularity is an important consideration when designing an exoskeleton control ar-

chitecture for patients whose needs may vary in terms of the affected joints, the tasks



meant to be performed in therapy and the assisted DoF. Therefore, a centralized archi-

tecture would hinder easy donning/doffing and processing processes [88]. With this in

mind, we rather opted for a distributed architecture with motor drivers commanding

each joint module independently for the design of the AGoRA exoskeleton. By this

means, unilateral hip-knee construction or individual joint versions of the device can

be prepared according to each patient’s requirements.

The main board of the AGoRA exoskeleton is mainly based on a Raspberry Pi 3

Model B (Raspberry Pi Foundation, UK), whose small size (85.6 × 56.5 × 17 mm)

allows it to be placed on the exoskeleton back frame. The board also has several

communication ports: Serial, I2C, USB, and Wifi. A non-standardized serial protocol

is used by the strain-gauge acquisition board to transmit the voltage measured on

each joint module. Further, the I2C bus is meant for the acquisition of IMU data,

whilst the USB module allows the device to communicate with the master motor driver

(configured at the hip exoskeleton joint by default). Likewise, the Wifi-based protocol,

known as Secure Socket Shell (SSH), is used to send data wirelessly to a laptop, where

sensor data coming from the exoskeleton can be displayed in real-time and stored for

offline analysis. While the laptop is connected to the Wifi hotspot created by the

main board, this external computer can also be used to carry out costly processing

algorithms that may be disrupting the normal operation of the main board.

3.3.1 Motor Drivers

The AGoRA exoskeleton is a multi-DoF device with a considerable number of sensor

inputs and control outputs. By creating a network structure with a single node on each

joint module, only three wires are required: the one distributing power supply, and

the others corresponding to the USB communication between main board and master

motor driver, and the CAN (Controller Area Network) bus for the communication

among motor drivers (as shown in Fig. 3.8).
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Taking this distributed approach into consideration, the four exoskeleton joints are

equipped with an EPOS4 (Maxon Motors AG, Switzerland) developed by the manu-

facturer specifically for the brushless DC motors described in Section 3.2.2. The motor

drivers are in charge of the sensor data acquisition of each joint module: angular po-

sition, motor torque, motor velocity, and motor position. The sensor analog inputs

are converted to a digital value of 12 bits by an ADC embedded in the EPOS4 with

a resolution of 5.64 mV [89]. Fig. 3.9 illustrates the motor driver and its functional

scheme.

The EPOS4 motor driver is commanded through an object dictionary (OD) which is

the heart of the device. It represents the link between the data bus and the application.

The application uses the data from the OD as input to perform its task and also

writes its results and outputs to the same dictionary. This configuration also allows

communication among different motor drivers to be carried out by sharing their ODs

with each other. By using this setup, communication with each exoskeleton joint

comes down to writing and reading parameters from the corresponding OD [90].

The EPOS4 controller architecture contains three built-in low-level control loops: cur-

rent regulation is used in all operation modes, whilst position or velocity regulation are

(a) (b)

EPOS4

Data
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Power
Supply

Analog FilterAbsolute
Encoder

Brushless DC
Motor

Control
Outputs

Motor
Status

Figure 3.9: (a) EPOS4 motor driver. (b) Functional scheme of the motor driver
responsible for sensor data acquisition and control of brushless DC motor in each joint
module.



only used in position-based or velocity-based modes, respectively [91]. Fig. 3.10 shows

an overview of the low-level control architecture of each exoskeleton joint module.

Position demand value
Position

Controller

Velocity demand value

Current demand value

Estimated
motor

velocity

Velocity
Controller

Low Pass Filter
or

Observer

Current
Controller Power Device

Motor current

Motor position

Motor
+

Load

Figure 3.10: Overview of the low-level control architecture of each exoskeleton joint
module

3.3.1.1 Current Controller

During a movement within the drive system, forces or torques must be controlled.

Therefore, as a principal regulation structure, the EPOS4 offers current-based control.

Fig. 3.11 displays the scheme of the current regulator. Current controller parameters

can be used in analytical or numerical simulations via the transfer function shown in

Equation 3.1.

ccurrent(s) = Kp +
Ki

s
(3.1)

where Kp and Ki are the current controller proportional and integral gains, respec-

tively. Total transport delay of the current regulation is always smaller than 0.06 ms.

In order to prevent degradation of the control performance when the control input
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stays at the limit value for long time, an anti-windup algorithm is implemented pre-

venting the integral part of the PI controller to take values larger than the ones bound

on the control input [91].

PI
Controller Power Device

Motor
+

Load
+Current setpoint

-
Measured current

Figure 3.11: Low-level current controller of the EPOS4.

3.3.1.2 Position Controller (with feedforward)

The EPOS4 is able to close a positioning control loop based on the subordinated cur-

rent control. Fig. 3.12 shows the scheme of this low-level position controller. The

position controller is implemented as PID controller. To improve the motion system’s

setpoint following, positioning regulation is implemented by feedforward (FFw) con-

trol. Thereby, velocity FFw serves for compensation of speed-proportional friction,

whereas acceleration FFw considers known inertia. In addition, the differential part of

the PID controller signal is low-pass filtered before it is added to the proportional and
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Feedforward

PID
Controller+
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+ Current
Controller Power Device

Motor
+

Load

Motor position

Current
demand
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Figure 3.12: Low-level position controller of the EPOS4 with feedforward.



integral parts. Low-pass filtering is done to prevent negative influence on the control

performance by the differentiation of noisy-measured motor position. Position con-

troller parameters can be used in analytical or numerical simulations via the transfer

function shown in Equation 3.2.

cposition(s) = Kp +
Ki

s
+

Kd · s
1 + Kd

10·Kp
· s

(3.2)

where Kp, Ki and Kd are the position controller proportional, integral and derivative

gains, respectively. The anti-windup method is also used to prevent integration wind-

up in the PID controller when the actuators are saturated [91].

3.3.1.3 Velocity Controller (with feedforward)

The EPOS4 also offers velocity regulation on the subordinated current control. Fig.

3.13 displays the scheme of this low-level velocity controller. Velocity controller pa-

rameters can be used in analytical or numerical simulations via the transfer function

shown in Equation 3.3.

cvelocity(s) = Kp +
Ki

s
(3.3)

where Kp and Ki are the velocity controller proportional and integral gains, respec-

tively. The anti-windup algorithm is also implemented here to prevent integration

wind-up in the PI controller when the actuators are saturated. The estimation of the

motor velocity is done by using the measured time between consecutive sensor edges,

which is then low-pass filtered to eliminate the effects of measurement noise.
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Figure 3.13: Low-level velocity controller of the EPOS4 with feedforward.

3.3.2 Bus Data

The data bus used in the AGoRA exoskeleton consists of a network structure with a

deterministic real-time communication based on CAN technology running at 1 Mbps.

CAN is a bus topology for the transmission of messages designed to reduce the volume,

complexity, and difficulty of wiring. To read a message coming from a CAN node,

each motor driver has an identifier associated to it, which allows it to be distinguished

from other data frames by the master motor driver [26, 86]. By using the gateway

functionality of the EPOS4, the main board can access all EPOS4 devices connected to

the CAN bus via the gateway device’s USB port (see Fig. 3.14). Each communication

cycle in the gateway protocol involves the following process:

• The USB master (i.e., main board) sends a command including the node ID to

the device working as a gateway by using a maxon-specific USB protocol (Label

1 in Fig. 3.14).

• The gateway decides whether to execute the command or to translate and for-

ward it to the CAN bus depending on the device ID included in the data frame.
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Figure 3.14: Gateway communication of the AGoRA exoskeleton.

Data between the gateway and the addressed device is exchanged using CANopen

SDO (Service Data Object) protocol according to CiA 301 (Label 2 in Fig. 3.14).

• Once the command has been executed in the addressed device, it sends the

corresponding CAN frame (containing the locally collected sensor data) back

to the gateway. The gateway receives the CAN frame corresponding to a SDO

service (Label 3 in Fig. 3.14).

• Finally, this CAN frame is translated back to the USB frame and sent back to

the main board [92] (Label 4 in Fig. 3.14).
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3.4 Power System

Since the AGoRA exoskeleton is meant for overground walking tasks, there has to

be an energy storage module powering its electronics in order to make the device

autonomous. Thus, a lithium-ion battery pack of 36 VDC and 4.4 Ah is used to power

the exoskeleton. Step-down regulators are used to generate 24 VDC and 5 VDC from the

main power source (References SIG214-45 and LM2596, respectively). These voltages

are used to power the motors and their drives, and the main boards and the force sensor

amplifiers, respectively. The battery pack weighs 960 g and measures 57 × 85 × 135

mm, which allows it to be placed in a small backpack that the user wears, containing

also the main board and voltage regulators. Fig. 3.15 displays a scheme of the power

transmission described above, which is expected to allow the exoskeleton run for at

least one hour of continuous operation.

Lithium-ion 
Battery Pack

36 VDC

Step-down
Regulators

36 VDC

24 VDC

5 VDC

Motor Drivers

Main Board

24 VDC

Motors

5 VDC

Strain-gauge
Acquisition Boards

Figure 3.15: Power transmission of the AGoRA exoskeleton.

3.5 Software Design

The control architecture of the AGoRA exoskeleton is mounted on the Robot Opera-

tive System (ROS), a Linux-based meta-operative system widely used in the field of

robotics. It is a trending robot application development platform that provides various



features such as message passing, distributed computing, code reusing, and so on [93].

Among the most important advantages that ROS presents, we find abundant ready-

to-use capabilities, multiple tools for debugging, visualization, and simulation (e.g.,

rqt_gui, RViz, and Gazebo), a lot of sensors and actuators already supported,

inter-platform operability (i.e., ROS runtime processes, also known as nodes, can be

written in C, C++, Python or Java), modularity and robustness against unexpected

disconnections or data loss, concurrent resource handling, and an active developer

community willing to support queries from other users.

Within this software framework, a C-library provided by the manufacturer [94] to

command the EPOS4 motor driver was wrapped in a ROS package (i.e., the most

basic unit of ROS software). This wrapper comprises customized functions to handle

all EPOS4 functionalities such as functions for initialization, communication, config-

uration, operation, data recording, and error overview. As the manufacturer library

supports different computer architectures, the developed ROS package detects the in-

struction set architecture (ISA) of the computer in which it is running and installs the

corresponding library. Thus, this feature allows cross-computer installation on any

Linux-running device, including the Advanced RISC Machine (ARM) processors such

as the one included in the Raspberry Pi. By using this wrapper, a C++ motor class,

which immediately sets several configuration parameters depending on the node ID

and keeps available the mentioned functions, was created.

As motor parameters, position sensors parameters, and controller gains must be set

prior to motor activation, the motor class follows the flowchart shown in Fig. 3.16 to

initialize each actuation mechanism upon class declaration. Table 3.1 shows the pa-

rameters that must be either retrieved or modified during the initialization procedure,

arranged based on each subprocess (A-G). The motor/gearbox parameters were de-

termined based on the motor datasheet [95] and the gearbox specifications [96], while

the controller gains were tuned using the EPOS Studio software available on Windows

[91].
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Set communication
settings A

Set motor
parameters B

Set position sensor
parameters C

Set application
parameters D

Set current 
controller gains E

Set velocity
controller gains F

Set position
controller gains G

Figure 3.16: Initialization of EPOS4 motor driver.

Subprocess Access Right OD entry Object name Value
R 0x2000-00 Node-ID Configured by DIP switchesA W 0x2001-00 CAN bit rate 1 Mbps on master motor driver
W 0x6420-00 Motor type EC motor block commutated
W 0x3001-01 Nominal current 4430 mA
W 0x3001-02 Output current limit 3000 mA (limited to power supply output)
W 0x3001-03 Number of pole pairs 7
W 0x3001-04 Thermal time constant winding 36.8 s
W 0x3001-05 Torque constant 53.4 mNm/A
W 0x6080-00 Max. motor speed 6000 rpm

B

W 0x3003-03 Max. gear input speed 6500 rpm
W 0x3010-01 Encoder resolution 4096 PPRC W 0x3010-02 Encoder type Inc. encoder 1 without index (2-channel)

D W 0x607D-xx Software position limit Custom for each joint module
W 0x30A0-01 Current controller P gain 937.294 mV/AE W 0x30A0-02 Current controller I gain 430.053 mV/A· s
W 0x30A2-01 Velocity controller P gain 427.769 mA· s/rad
W 0x30A2-02 Velocity controller I gain 4442.130 mA/rad
W 0x30A2-03 Velocity FFw gain 0 mA· s/radF

W 0x30A2-04 Aceleration FFw gain 2.575 mA· s2/rad
W 0x30A1-01 Position controller P gain 13723.863 mA/rad
W 0x30A1-02 Position controller I gain 47995.592 mA/rad· s
W 0x30A1-03 Position controller D gain 327.017 mA· s/rad
W 0x30A1-04 Velocity FFw gain 0 mA· s/rad

G

W 0x30A1-05 Acceleration FFw gain 2.597 mA· s2/rad

Table 3.1: Configuration parameters set during the initialization process of the EPOS4.
W: Write-access. R: Read-access. PPR: Pulses per Revolution.

By looking up through a configuration file where the connected joint modules are

declared, the corresponding motor classes can be easily instantiated and configured

depending on their designated parameters (depicted in Table 3.1). This design is thus

versatile and provides the device with modularity at the software level, which is an

important factor in wearable robots as was described earlier. Future iterations of the

present device, which should include a graphical user interface, would only have to

modify the mentioned configuration file before running the initialization processes.

3.6 Safety

Safety is one of the most important features in rehabilitation robotics. Since the

device is secured to the subject’s limbs, its movement should be as compliant as



possible to human movements. Especially in clinical environments, where patients

frequently exhibit muscular weakness and mobility deficits, several safety measures

should be incorporated in the mechanical structure, as well as at different levels of the

exoskeleton control system [26].

In regards to the kinematic configuration, the maximum RoM possible across all joints

is shown in Table 3.2. These values were established based on normal gait on healthy

subjects [24] so that users are also able to perform sit-to-stand and stand-to-sit move-

ments [97]. Based on these anatomical restrictions, the angular joint limitation of the

AGoRA exoskeleton is kept by both software (by default) and hardware (end-stop at

the exoskeleton knee joint). Since some patients present certain flexo-extension limita-

tions (other than those included in Table 3.2) due to their pathological gait, an initial

calibration stage runs at the beginning of each trial to eventually shorten the default

joint RoM (see subprocess D in Fig. 3.1).

Table 3.2: Degrees of Freedom (DoF) and Range of Motion (RoM) across all exoskele-
ton joints.

Joint DoF Actuation RoM
Hip Flexion/Extension Active 100◦ / 20◦

Hip Add/Abduction Passive 10◦ / 10◦

Knee Flexion/Extension Active 100◦ / 3◦

Furthermore, an emergency button is included within the hardware architecture which

is wired in such a way that a single push disconnects most of the exoskeleton (except

for the main board) from the power supply. Therefore, the patient should hold the

button during the therapy at all times, and he/she should be instructed to press

it under any situation that may compromise their safety or comfort. The engineer

responsible for the mainboard can additionally disable the whole system with a simple

keyboard shortcut.
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3.7 Conclusions

This chapter described the mechanical design and development of the AGoRA ex-

oskeleton, as well as the used electronic hardware and the low-level control architec-

ture proposed in pursuit of modularity. The device is an active lower-limb exoskeleton

meant for rehabilitation of stroke patients who usually need early, repetitive, and

task-specific training to overcome their mobility impairment. The AGoRA exoskele-

ton integrates a non-backdrivable actuation mechanism along with multiple sensors

oriented at the proper HRI, which represents one of the proposed specific objectives

of this dissertation.

The AGoRA exoskeleton can be easily adjusted to different anthropometric measures

so that people from 1.70 to 1.83 m in height, and up to 90 kg in weight may fit into

this assistive device. The overall hardware and control architectures also allow the

preparation of different knee-hip versions which may be configured depending on the

patient’s characteristics or needs. Further, for the sake of comfort and reliability, the

exoskeleton is designed with no sensors physically attached to the user’s skin. Most

sensors are integrated into the exoskeleton frame, thus easing the donning/doffing

process with pathological patients.

Finally, several features were implemented in the exoskeleton hardware and software

for increased patient’s safety. In the mechanical design, a physical stop limits the knee

RoM and guarantees that the device will never exceed human RoM. Apart from default

limitations in terms of joint RoM kept by software, each RoM can be customized at

the beginning of each trial if necessary. Also, the electronic hardware uses a CAN bus

that ensures correct communication among motor drivers and, in case of a failure that

cannot be fixed via software, powers off the device.



Chapter 4

Gait Phase Detection of the AGoRA

Exoskeleton1

4.1 Introduction

Gait analysis is used for different applications in the field of medical rehabilitation.

For instance, it is of great help to therapists who wish to monitor the recovery of

patients going through rehabilitation processes [59]. Gait classification can be also

implemented within clinical settings as part of the commanding parameters of func-

tional electrical stimulation [98], the estimation of fall risk in elderly population [99],

the detection of an abnormal gait pattern in patients with paretic limbs and their

classification based on known pathologies [100]. Additionally, in the field of robotics,

researchers have managed to program humanoid robots to use human-based gait tra-

jectories generated via gait classification [101], as well as consistently control wearable

assistive devices such as robotic prostheses [102] and orthoses [103] for the recovery of

lower-limb mobility.
1This chapter is mostly based on the following journal article:

Sánchez Manchola, M. D., Pinto Bernal, M. J., Munera, M., & Cifuentes, C. A. (2019). Gait Phase De-
tection for Lower-Limb Exoskeletons using Foot Motion Data from a Single Inertial Measurement Unit
in Hemiparetic Individuals. Sensors, 19(13), 2988. https://doi.org/10.3390/s19132988
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Due to the recent rise in the use of lower-limb exoskeletons as an alternative for gait

rehabilitation, gait phase detection has become an increasingly important feature in

the control of these devices. Also, in pursuit of highly functional, low-cost recovery

devices, a reduced number of sensors for the partitioning of gait cycle is desirable, es-

pecially in developing countries whereby limited budgets are allocated specifically for

biomedical advances. Taking this into account, two gait phase partitioning algorithms

that use motion data from a single Inertial Measurement Unit (IMU) placed on the

dorsal side of the foot were implemented in order to unveil which detection methodol-

ogy best suits the AGoRA exoskeleton. The present chapter comprises the validation

and comparison of a threshold-based (TB) algorithm and a machine-learning-based de-

tection method via offline processing. Based on the better performance of the latter,

its real-time implementation and the associated preliminary results are also addressed

hereby. For further information on the offline validation, the reader is recommended

to refer the associated journal article [104].

4.2 Gait Phase Detection Systems (GPDS)

In regards to gait partitioning, one may consider different granularities, i.e., number

of involved gait phases. The main nomenclature divides the gait cycle into two events,

namely, stance and swing phases. A two-phase model has proven to be sufficient to

control the knee module of an active orthosis whose actuation is only performed at the

beginning of these gait subsections [105]. Nonetheless, the most widespread approach

relies on a four-phase model, which comprises: (i) the initial foot contact (IC) with

the ground or Heel Strike (HS); (ii) the loading response phase or Flat Foot (FF);

(iii) the heel lifting or Heel-Off (HO); and (iv) the initial Swing Phase (SP) or Toe-Off

(TO) [106]. Such a gait granularity has been used for the actuation of multiple robotic

Ankle-Foot orthoses (AFO) [107, 108]. Taking into account the above, a granularity

of four gait phases was chosen to be employed in the AGoRA exoskeleton which is

expected to integrate an active AFO in the medium term .



(a) (b) (c) (d)

Figure 4.1: Equipment for gait phase detection. (a) Motion capture system, (b)
force platform, (c) Force Sensitive Resistor (FSR), and (d) Inertial Measurement Unit
(IMU).

Regardless of the detection method, various technologies are used to capture gait

phases. On the one hand, non-wearable sensors, such as motion-capture-based systems

(see Fig. 4.1a) and force platforms (see Fig. 4.1b), set the benchmark in accuracy

for walking kinematics [109]. However, such sensors are expensive and limited to

indoor use [110]. For this reason, wearable sensors have become popular due to their

affordability, shorter donning/doffing times, and less complex post-processing [106,

111]. Among wearable sensors meant for gait segmentation, foot pressure insoles or

footswitches (see Fig. 4.1c) are considered the best detection option, since each gait

phase can be related to a specific pressure pattern [112]. Nevertheless, pressure insoles

must be tailored for each subject’s foot, which incurs higher research costs, and are

continuously exposed to tear and friction, which results in a shorter lifetime [113].

Therefore, the use of either whole IMU (consisting of gyroscopes, accelerometers, and

magnetometers), or the combination of such inertial sensing components, has risen

lately. In this work, such sensors (see Fig. 4.1d) are used as means of gait phase

detection thanks to their cost-effectiveness [111], and the fact that inertial quantities

present typical waveform features during a gait cycle [106].

Studies have been conducted positioning IMUs on the waist [114], thigh [115], shank

[116], and foot instep [98, 117]. We considered the shank location due to low inter-

subject variability [118] and the fact that there is less soft tissue movement compared

to the thigh [116]. However, we opted for fastening the IMU to the foot instep because
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of the better performance that scalar classifiers have shown with the sensor placed on

this location, even compared to other vectorial classifiers that involve further inertial

sensors placed at different lower-limb locations [119].

Several computational methods have been previously proposed for the automatic seg-

mentation of the gait cycle, which fall into two main categories. The first category

is comprised of algorithms, which divide the gait phases based on the threshold se-

lection of either raw or processed data [120, 121]. Secondly, some machine-learning

approaches have emerged in recent years to substitute the aforementioned techniques

that rely on hand-crafted feature extraction. Among artificial intelligence schemes,

Hidden Markov Models (HMM) have demonstrated superior performance [106] since

the single supervised training of a continuous HMM, followed by a classification based

on foot gyroscope signals, has proven to be sufficient to achieve an accurate detection

rate [119].

4.3 Theoretical Approach

Two classification strategies have been implemented in the AGoRA exoskeleton for the

automatic identification of four gait phases, drawn from inertial data coming from a

single IMU located at the foot instep. The first and most easily implemented strategy

is a TB algorithm that determines the gait phases of interest by establishing certain

decision rules and thresholds (to be described shortly), which must be met to jump

from one gait phase to another. The other partitioning method may be viewed as a

machine-learning algorithm since it requires a training stage and a posterior testing

stage [105]. Specifically, the implemented algorithm is based on a continuous HMM.

Several approaches have previously been proposed for the automatic segmentation of

the gait cycle. Most of these differ from the present work in that it presents the

comparison among a variety of well-known segmentation approaches with respect to

FSR-based reference values from a considerable number of study subjects with both



typical and pathological gait patterns. By doing so, the performance of such detection

algorithms is assessed in a target population which, to the best knowledge of the

author, has not yet been addressed with this particular experimental setup, namely

hemiparetic adults.

4.3.1 Threshold-Based Detection Algorithm (TB)

The implemented threshold-based (TB) detection algorithm is similar to those devel-

oped by Rueterbories et al. [98], and Catalfamo et al. [116], whose studies use inertial

sensors positioned on the volunteer’s shank to gather linear acceleration and angular

velocity signals. Conversely, for the case of the present study, the mediolateral axis

rotation component of the foot accelerometer (Ay) and gyroscope (Gy) signals are fed

to the TB algorithm as inputs, as the movement of lower-limb joints during walking

occurs mostly along the sagittal plane. Time stamps are also used as algorithm inputs

since this detection algorithm makes use of spatial thresholds as well as temporal lim-

its. By this means, each gait phase can be associated with a sequence of wave-related

features without any complex processing that would result in a high computational

load [122]. For more information on the TB’s feature extraction process, the author

recommends to read the publication associated with this chapter [104].

4.3.2 Classification Using a Hidden Markov Model (HMM)

An HMM is a doubly stochastic process with N underlying discrete states that are

not observable, i.e., its state sequence is hidden to the observer who only has access to

the emissions of each state [123]. The second embedded stochastic process describes

the emissions from Y observations, i.e., either the sensor readout or feature vectors

extracted from them, in terms of discrete probabilities or Probability Density Functions

(PDF) [124]. HMM is a statistical model widely used to estimate a sequence of hidden

states in a time series [105], which for the case of gait phase detection corresponds to

the gait events (N = 4).
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HMM can be expressed as a function of a set λ of statistical measures:

λ = (A,B, π) (4.1)

which includes the probability distribution matrix of state transition A, the probability

distribution matrix of observation symbols B, and the initial state distribution vector

π.

The normal gait pattern repeats itself indefinitely with a known sequence of gait events,

which, probabilistically speaking, means that it may either remain in the current state

or eventually transition to the consecutive state. This behavior has been recently

modeled using a left-right model [119, 124], whose main feature is to limit transitions

to consecutive states of the Markov chain. Since transitions represent a narrow fraction

of the gait cycle, their associated probabilities assume lower values than those related

to permanence in the same state. Thus, the transition matrix A may be implemented

as shown in Equation 4.2 [119].

A = {aij} =


0.9 0.1 0 0

0 0.9 0.1 0

0 0 0.9 0.1

0.1 0 0 0.9

 (4.2)

where aij denotes the transition probability from state Si to state Sj.

Because the initial state of the model is unknown, an initial state distribution vector

π that allocates the same probability to all states, i.e., each state has the same prob-

ability of being the first in a state sequence, was chosen. Finally, a bivariate GMM

with three components was utilized to describe the emissions from each state. These

emissions allude to feature vectors that include the angular velocity measured at any

sampling time, and its time derivative computed by means of a first-order finite dif-



ference approximation, i.e., the angular acceleration [125]. This particular stochastic

model yields the best trade-off between complexity and accuracy for gyroscope signals

[115, 124].

The development of a continuous HMM entails two main procedures: a training stage

and a test stage. The first phase refers to the adjustment of model parameters λ

to optimally adapt them to an observed training dataset [123]. The Baum-Welch

algorithm, the most common solution to this issue, is implemented in the present

first-phase training

Data acquisition

Feature extraction

Test setTraining set

Emission parameter
(B)

estimation

Transition parameter
(π, A)

estimation

Likelihood computation+

Model training
(Baum-Welch algorithm)

Gait phase recognition
(Viterbi algorithm)

ValidationReference system Reference events
evaluation

Outcomes
Gait phases labels

Figure 4.2: Flowchart that illustrates the validation methodology of HMM. A model
is trained by means of the Baum-Welch algorithm, after applying feature extraction
to the acquired dataset. The optimal state sequence is then computed through the
Viterbi algorithm by using feature vectors from the test dataset, and the performance
evaluation is conducted with respect to gait phases labels drawn from the reference
system.
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work. This training procedure basically starts with an initial parameter set (first-phase

training in Figure 4.2), on the basis of which it extracts probabilistically weighted

state sequences. The initial model is repeatedly updated with these new transition

and emission probabilities until a desired level of convergence is reached [115].

Subsequently, the test stage allows feature classification based on the trained model

achieved in the training phase, i.e., the search for the optimal state sequence is un-

dertaken. The most widely used optimality criterion is carried out by the Viterbi

algorithm, which finds the most likely state sequence [123]. Despite its computational

efficiency, this algorithm is not suitable for real-time implementation since the indica-

tors it uses are computed based on a whole observation dataset. The validation of the

classifier outputs is therefore offline compared with respect to an FSR-based reference

system that provides the actual gait phases labels.

4.4 Offline Validation

4.4.1 Experimental Procedure

The experimental protocol was performed with the aim of quantifying the detection

success ratio of the described algorithms within a varied spectrum of walking styles.

To this end, eighteen participants were enrolled in this study, forming two groups:

a control group with nine healthy subjects (H, 4 females, 5 males, 23.22 ± 1.99

y.o., 1.70 ± 0.046 m, 66.87 ± 4.29 kg), who had no known orthopedic, metabolic,

or neurological impairment that could modify their natural walking pattern; and an

experimental group with nine patients (P, 4 females, 5 males, 41.33 ± 15.83 y.o.,

1.71 ± 0.098 m, 72.28 ± 7.73 kg), who had suffered from post-stroke hemiparesis

for at least one year. All subjects were informed about the scope and purpose of

the experiment, and written consent was obtained from each of them prior to the

study. The protocol was approved by the Ethics Committee of the Colombian School

of Engineering Julio Garavito, Bogota, Colombia.



Volunteers were first instructed to perform three 10-m tests at a self-selected speed

in order to determine their normal overground speed, which was successively set on a

rehabilitation treadmill (NIZA RX K153D-A-3, SportFitness, Colombia). Participants

were equipped with a custom insole instrumented with FSR (described in Section 3.2.3)

on their dominant side (for the case of H group) or their affected side (for the case of P

group), which matched each subject’s shoe size and represented the reference system,

and an IMU (Described in Section 3.2.3) placed on their foot instep. Special care was

taken when aligning the IMU y-axis with the sagittal plane since the accelerometer

signal was taken into account within the TB classification [98]. The FSR sampling

rate was 200 Hz, twice as much as the one at which the IMU acquired data (100 Hz),

since there must be a greater amount of reference values in order to accomplish a

proper assessment of the gait phase detection algorithms. Synchronized data capture

was ensured by integrating a data acquisition node in the Robot Operative System

(ROS). The experimental setup described here is illustrated in Fig. 4.3.

Study
Subject

Acquisition
Unit

IMU

FSRs

Figure 4.3: Experimental setup for validation of gait phase detection methods. Each
subject was instrumented on their dominant/affected side with a custom FSR-
equipped insole and an IMU placed on the dorsal side of their foot. Foot motion
data were captured by using a Raspberry Pi running ROS to ensure synchronized
data acquisition.
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Participants were then asked to walk for at least 180 s on the already configured tread-

mill at a zero-degree inclination while wearing a security harness (if they considered

it necessary). H group walked within a speed range of 0.639-0.944 m/s, whereas P

group walked within a speed range of 0.278–0.667 m/s. All tasks were repeated three

times so that enough data to train the HMM-based method were collected. A rest-

ing period of at least 2 min was carried out between tasks to prevent fatigue. Data

acquisition only started once the self-selected speed was reached, and the treadmill

speed was only reduced after all data were acquired to prevent data capture during

the transient state. The entire experiment, including donning/doffing times related to

instrumentation procedures and walking tasks, was completed within 30 min for all

volunteers.

4.4.2 Data Processing

To assess the performance of each detection algorithm with respect to a reference

system, four FSR placed on an insole custom for each user were implemented. The

exact location of these FSR was the hallux, the first and fifth metatarsophalangeal,

and the heel. The reason this distribution of pressure centers was chosen is based on

how the vertical Ground Reaction Force (GRF) shows unique pattern characteristics in

these specific regions [112]. By means of this type of sensors, the gait phases of interest

can be detected through a simple binary algorithm, as can be seen in Fig. 4.4. Only

the heel FSR should be activated at HS since this gait phase consists of the first heel

contact and the start of the gait cycle. In the case of FF, some studies suggest that all

FSR should be activated in order to detect this gait phase [119, 126]. However, even

though this presumption might be true for non-pathological subjects, for the treated

patient sample of this work, the activation of the toe and heel FSR had to be discarded

in this condition to improve the accuracy of the FSR-based gait phase detection (gray

dots in Fig. 4.4). This change was decided during offline data pre-processing from

footage taken during experimental trials. Likewise, the HO occurrence depends not
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Figure 4.4: Gait phase detection based on FSR activation patterns. The gait cycle
may be divided into seven phases, but four detected phases are sufficient for control
purposes of an AFO. With this particular granularity, gait phases can be sequentially
referenced from FSR data as follows: (i) HS State: Heel FSR is activated; (ii) FF State:
first and fifth metatarsal FSR must be activated (black dots), and the activation of
heel and toe FSR is considered depending on specific study subject (grey dots); (iii)
HO State: toe FSR must be activated, and the activation of first metatarsal FSR is
considered depending on specific study subject; and (iv) SP State: all FSR must be
deactivated. Adapted from [126].

only on the toe FSR activation, but the first metatarsus FSR might also be taken into

account depending upon offline video analysis. Finally, SP detection was given under

the release of all FSR.

Data processing was performed offline using MATLAB software (MathWorks, 2018a,

Naticks, USA) and an Asus VivoBook S15 S510UA (IntelCore i5-8250U, CPU@1.80

GHz, China) running Ubuntu 18.04. The gyroscope and accelerometer outputs were

first treated with a median filter to eliminate atypical data values and a second-order
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low-pass filter Butterworth (cut-off frequency: 17 Hz for accelerometer signals, and

15 Hz for gyroscope signals) [117, 119]. Then, inertial signals were interpolated to

match the FSR frequency and partitioned into the gait phases of interest according

to the previously described FSR-based segmentation logic. Finally, the partitioned

angular velocity data of each gait event were time-normalized, and means and standard

deviations of the obtained dataset were used to train parameters of the continuous

HMM by means of the Baum-Welch algorithm.

The training stage of the HMM-based method was conducted by means of two dif-

ferent approaches: the well-known intra-subject procedure, hereafter referred to as

subject-specific training (SST); and the inter-subject procedure, hereafter addressed as

standardized parameters training (SPT). The SST model parameters were trained by

means of a leave-one-out cross-validation applied to the three walking trials, whereby

two trials were used for training and the remaining one for validation [119]. The cross-

validation analysis was repeated in a recursive manner for each subject of both study

groups so that it was repeated for all trials in turn. On the other hand, since patho-

logical gait pattern greatly varies from one subject to another, we decided to validate

an additional SPT procedure. By means of this technique, a standardized parameters

set was computed on the basis of data gathered from healthy subjects, on account of

the low inter-subject variability exhibited by their angular velocity waveforms [127]. A

different validation approach was undertaken for each study group during SPT, in such

a way that for H group, for instance, the training dataset for each examined subject

was collected from the first two trials of the remaining individuals, while the last trial

related to the subject under consideration was used for validation later. Conversely,

for P group, the average of angular velocities acquired from healthy subjects during

the first two trials was used to construct the training dataset. The final trial of each

patient was subsequently involved in the validation stage [105]. Finally, for the case of

the TB algorithm, all walking trials were utilized, one after the other, as the validation

dataset of such a classification method.



4.4.3 Data Analysis

The performance of the proposed gait detection methods was evaluated through two

indices: the timing error, i.e. the time difference of each detected gait event with

respect to the FSR-based reference system, and the goodness index (G). G represents

a Euclidean distance in the Receiver Operating Characteristic (ROC) space, which

poses as a global index of the classifier capability and is based on its sensibility and

sensitivity values [105]. The sensitivity, also known as True Positive Rate (TPR), is

computed as follows:

TPR =
True Positive

True Positive + False Negative
(4.3)

where a true positive is considered if the classifier prediction and the reference value

match within a tolerance window of 60 ms centered at each time step [128], in such a

way that a gait phase was counted as detected even though it was missed by around

six samples. Otherwise, such classification is considered a false positive. Likewise, the

specificity, also known as True Negative Rate (TNR), is computed as follows

TNR =
True Negative

False Positive + True Negative
(4.4)

where the non-transitions similarly detected by classifier and reference signal corre-

spond to true negative; otherwise, they have been accounted for by false negatives. G

is then expressed as:

G =
√

(1− TPR)2 + (1− TNR)2 (4.5)

G can assume values between 0 and
√

2, and a classifier can be considered: (i) optimum

when G ≤ 0.25; (ii) good when 0.25 < G < 0.7; (iii) random if G = 0.7; and (iv) bad
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if G > 0.70 [129].

The software package SPSS (IBM-SPSS Inc., USA) was used for the statistical analysis.

The normal distribution of all performance indices was first verified by means of the

Shapiro-Wilks test. Since most data did not exhibit a normal distribution, Friedman

tests were carried out to find statistically significant differences among classifiers and,

where applicable, differences with respect to the reference values. Bonferroni’s tests

were undertaken as a post-hoc test in case significant differences were found.

4.4.4 Results

Timing differences between the reference gait labels and the corresponding gait phases

detected by either the TB or the HMM-based method are presented in Table 4.1.

Almost all timing errors are negative, which indicates anticipation in the gait detection

regardless of the segmentation method used. A performance improvement by the

HMM-based algorithm was statistically significant for at least one training modality,

i.e., either SST or SPT, for all gait phases in the case of healthy subjects (p < 0.05).

Gait detection for patients, on the other hand, only exhibited a significant difference

between algorithms in terms of timing errors in the detection of FF.

Table 4.1: Timing errors of the detected gait phases (mean ± std) [ms]. These data
were generated by comparing the estimates provided by each classifier with the ref-
erence data. Asterisks and obelisks indicate significant differences between marked
algorithms (Bonferroni, p < 0.05).

H Group P Group

TB Method SST Method SPT Method TB Method SST Method SPT Method

HS −37± 101 * −55± 98 * −17± 10 −17± 20 −22± 16 −20± 17
FF−57± 102 *† −57± 97 * −23± 3 † −28± 12 *† −29± 12 * −29± 12 †

HO 13± 30 * −36± 62 −18± 6 * 9± 29 −19± 18 −19± 19
SP −49± 96 * −58± 108 * −18± 13 −24± 15 −27± 14 −23± 19

In Figure 4.5 the mean values and standard deviations of the Goodness index (G)

for both H and P groups are reported. In addition to that, statistically significant

differences among classifiers are included. The TB algorithm presented not only mean



values of G that were found to be in the bad range (G > 0.7) for both H and P group,

but also significant differences compared to both training modalities of the HMM-

based detection method. As for this latter detection algorithm, their G values were

found to be in the good range (0.25 ≤ G ≤ 0.7) for both study groups, with the best

classification performance presented by SST. Comparing the SST and SPT procedures,

significant differences between the two training approaches were only observed for the

H group.
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Figure 4.5: Goodness index (G) for healthy subjects (H) and subjects with mobility im-
pairments (P) for each detection algorithm. Asterisks indicate statistically significant
differences among classifiers (Bonferroni, p < 0.05).

4.4.5 Discussion

The TB detection method exhibited similar time differences, compared to reference

values established through the FSR insole-mounted system, to those found by Rueter-

bories et al., whose study involved both healthy and hemiparetic participants wearing

biaxial accelerometers on their foot [98]. Furthermore, compared with the findings of

Mannini et al., our TB algorithm presents fewer time differences in the detection of

stance subphases, i.e. FF and HO, for healthy subjects [124]. However, other stud-

ies, which utilized only one inertial sensor, e.g. an uniaxial gyroscope on either the

user’s shank or foot instep [116, 118] or an uniaxial accelerometer on the lower trunk
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[130], showed smaller time delays in a two-phase model (Table 4.1), thereby implying

a better performance than the one achieved by the TB algorithm described here. It

is important to keep in mind that these results were yielded even though this method

was developed based on feature extraction procedures used in previous studies [98,

116], but applied to foot angular velocity and linear acceleration signals. In addi-

tion, it should be noted that the gait phase detection by footswitches such as FSR

depends significantly on the choice of threshold level that is applied to their output sig-

nals, thus producing small differences when applying different threshold settings [117].

Compared to the machine-learning method, HMM outperformed the TB method by

showing significant differences with smaller timing errors for all gait phases in healthy

subjects either using SST or SPT, as found by Mannini et al. [124, 127]. For the

case of hemiparetic subjects, only the detection of FF showed a significant difference

among classifiers, which is an important gait event used to avoid the occurrence of

false positives in the control system of a robotic orthosis while its user remains in an

idle state [119].

Finally, in regards to the goodness index (G), which involves both specificity and

sensibility values in order to precisely evaluate the classifier performance, it is worth

noting that the TB algorithm showed results within the bad range for both healthy

subjects and participants with impairments, which, taking into account the already

analyzed results, makes it the worst classifier for gait phase detection. For the case

of HMM-based methods, on the other hand, G values within the good and excellent

range were observed for both study groups, in spite of some high values of standard

deviation exhibited in the SST timing error results (see Table 4.1). Even though a sig-

nificant difference was found between training techniques for H group, which validates

the presumption formulated on the basis of the accuracy values, the inter-subject ap-

proach based on standardized data drawn from healthy subjects still has an acceptable

segmentation performance (see Fig. 4.5). On the contrary, the training procedures

did not exhibit any noteworthy difference when applied to data drawn from patients,



which implies that similar and even better results may be achieved by an inter-subject

trained model, as was reported in [105, 129]. Therefore, the use of standardized pa-

rameters extracted from healthy subjects seems to lead to a sufficiently robust trained

model that may even match the performance achieved by models constructed with

SST, without the necessity of continuously carrying out a training stage.

4.5 Online Implementation

Knowing that the gait phase classification using an HMM and foot gyroscope signals

is sufficient to make an accurate GPDS, its real-time implementation becomes fun-

damental for it to be used in lower-limb rehabilitation robots. As the reader may

remember from Section 4.3.2, the construction of an HMM entails two main phases:

the training stage and the test stage. For the case of the HMM training procedure (see

Fig. 4.2), the Baum-Welch algorithm applied via the subject-specific approach remains

an appropriate option to fit a model. However, the test stage, which is mostly tackled

by the Viterbi algorithm (see Fig. 4.2), should be addressed by other alternatives for

real-time applications. Therefore, in order to better understand the transition to an

online algorithm, it is worth explaining the differences between the standard approach

to decode the most-likely state sequence and online techniques that rely on fixed ob-

servation windows, along with the implications of the latter in terms of processing

power requirements.

4.5.1 Standard Viterbi Algorithm

The standard Viterbi is a dynamic programming technique that consists in retrieving a

state sequence that maximizes the maximum a-posteriori probability, i.e. the optimal

path s* [131]. This alignment between observations and states is usually performed in

two main iterative steps [132]:
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1. A forward step computes the partial likelihood δt(i) and stores the best prede-

cessor for each state i at time t in a matrix of back-pointers ψt(i).

2. A bactracking step on ψt(i) builds the optimal path starting from the end of the

observation sequence.

The Viterbi algorithm, despite its computational efficiency, is not suitable for online

applications since the back-pointers it uses are computed based on a whole observation

dataset. On this basis, new online decoding approaches such as the Forward-Only

Viterbi (FO) have been developed to overcome this limitation, taking advantage of

the partial backtracking of fixed observation windows.

4.5.2 Forward-only Viterbi (FO)

The FO modification of the Viterbi algorithm is applied to each signal in order to find

the l-th state of likely sequence ltn and the probability associated at each i -th state

δtn(i) [119]. Particularly, this decoding approach can be deployed by implementing

the pseudo-code presented in Algorithm 1.

Algorithm 1 FO algorithm
Require:
1: procedure Initialization
2: δt0(i)← πibi(Y (t0)), 1 ≤ i ≤ N ;
3: lt0 ← argmax1≤i≤N δt0(i);
4: end procedure
Ensure: ltn
5: for each new frame b do
6: δtn(i)← max(δtn−1(i)Aij)×Bi(Y (tn));
7: ltn ← argmax1≤i≤N δtn(i);
8: end for

A study performed by Mannini et al., however, found that this Viterbi decoding pro-

cedure is plagued by erroneous events that consist of missed and additionally detected



gait strides [133]. Contrary to the mentioned study, in which a heuristic strategy dis-

carded detected gait strides if their time duration was less than 250 ms, we do not

take into account gait phases that last less than 150 ms (i.e., the shortest period for

HS in healthy subjects during comfortable walking [134]).

4.5.3 Preliminary Results

After deploying the above-described algorithm in ROS, an experimental protocol was

performed aiming at quantifying its latency values , i.e., the time difference between

the detected gait segmentation produced by the proposed algorithm and the reference

labels generated by means of the custom insole-based system. To this end, one healthy

male subject (27 y.o., 68.4 kg, 1.70 m) without any known lower-limb impairment or

mobility deficit was recruited. Once the subject was equipped, he was instructed

to walk for at least 180 s on a rehabilitation treadmill configured at a zero-degree

inclination level and a comfortable speed (0.833 m/s, computed as the mean value of

three 10-m tests). This walking trial was repeated three times so that enough data

was available to train the model.

Data acquisition and processing were undertaken online using the main board (Rasp-

berry Pi). Both the FSR and IMU sampling rates were set to 100 Hz, and data

acquisition was synchronized by means of timestamps generated by ROS. The train-

ing stage of the HMM-based method was conducted by implementing the well-know

intra-subject approach, i.e., the foot-motion data captured in the two first walking

trials was used to feed the Baum-Welch algorithm, whilst the last trial served as the

dataset for the validation stage.

Fig. 4.6 features the gyroscope signal along the sagittal plane (y-axis for the reference

framework of the used IMU), reference labels drawn from the FSR-based reference

system and gait phases detected via FO . This data is displayed across two gait cycles

from the entire last trial, and better represents the latency values mentioned previously.
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In particular, the latency is comprised within the time window delimited by the online

detected gait phase transition and the reference transition (vertical ascents of red and

green lines, respectively).

By computing such latency of detection for each gait phase of interest, together with
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Figure 4.6: Gyroscope signal along the sagittal plane (y-axis), reference labels and the
detected gait phases across two gait cycles by means of FO.

Table 4.2: Latency values between detected gait subphase and reference label [ms] (mean
± std. deviation), together with typical phase duration for healthy subjects walking
at a comfortable speed and the percentage within the gait cycle (value in parentheses)
are presented as a means of reference.

FO Typical

HS −174± 25 80.1 (8%)
FF −20± 50 320.4 (32%)
HO −322± 13 200.3 (20%)
SP −3.1± 18 400.5 (40%)

Insertions (%) 0
Deletions (%) 0



the percentage of deletions and insertions, online timing errors can be reported as in

Table 4.2. Compared to previous studies that also used similar decoding approaches,

our results seem to be higher since, in such works, the detection latency was found to

be less than 100 ms for almost all gait phases [127]. However, HO was also the gait

phase whose estimate was affected by the higher variability (∼ −322 ms), whereas

SP was the one with better detection rate, which might be helpful in applications in

which the prevention of toe drag is crucial. The reason for the higher latencies and the

fact that almost all gait phases yielded negative values might be underpinned again by

the variability associated with the gait phase detection through footswitches, which

results from small differences that appear among different threshold settings [117].

Furthermore, the absence of insertions and deletions suggests that this approach is

efficient enough not to take into consideration detected phases beyond the established

transitions. On this basis, it is reasonable to state that the accuracy rate found in the

offline validation (Section 4.4) has not been diminished to a significant extent.

4.6 Conclusions

In this chapter, the validation of two algorithms: a TB and a HMM-based method,

in the gait event detection of healthy subjects and patients with gait abnormalities

is addressed, with the objective of figuring out which detection method outperforms

for a GPDS that only makes use of an IMU placed on the subject’s foot instep. The

TB algorithm takes the foot angular velocity and linear acceleration along the sagittal

plane as inputs, since the data fusion of these parameters allows the compensation

of the drift error [106] and the use of a single-axis angular velocity signal may cause

problems in situations where the subject spontaneously changes direction or turns [98].

When implementing only the HMM-based technique, it is not mandatory to take any

special care to align the IMU sensitive axis perpendicular to the sagittal plane or the

use of a Kalman filter for the effects induced by magnetic distortions [124] since only

gyroscope signals are fed to this machine-learning scheme. The training stage used in
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this study is undertaken by implementing two different approaches: an intra-subject

or SST and an inter-subject approach that trains the gait detection model based on

standardized parameters from the dataset of the healthy group.

Its offline validation yielded results in terms of timing errors and goodness index

which indicate that the best classifier is the HMM-based method, whose standardized

parameter training showed similar performance rates to those exhibited by the intra-

subject technique in pathological subjects. Such findings suggest that the use of a

single gyroscope on the dorsal side of the foot is sufficient to accurately detect gait

phases within the control system of a lower-limb orthotic device.

Furthermore, the real-time implementation of the HMM-based detection scheme was

possible by deploying an online hidden-state decoding method, namely the FO Viterbi

algorithm. Preliminary results in terms of latency values, obtained involving a healthy

subject, suggest that this decoding approach might be suitable for its application in

a robotic assistive device meant for gait rehabilitation since no gait subphase yielded

latencies higher than their average duration in healthy subjects walking at a comfort-

able speed. Further research should focus on the recruitment of further healthy and

pathological subjects to validate the efficiency of such decoding algorithms in a wider

patient sample.



Chapter 5

High-Level Architecture of the

AGoRA Exoskeleton1

5.1 Introduction

In order to induce motor learning based on the principle of neuroplasticity, studies have

shown that therapy is only effective if task-oriented activities are performed whereby

patient effort is promoted [135]. In pursuit of that, robot-assisted therapy based on

Assisted-as-needed (AAN) control strategies mainly aims to avoid any intervention as

long as the patient moves along a pre-defined behavior established in the low-level

control modules. On this basis, lower-limb active orthoses should exert a restoring

force that proportionally increases with the path deviation, thus complying with the

rationale of assisting only when it is strictly necessary [136]. The present chapter seeks

to describe in-depth the high-level architecture of the AGoRA exoskeleton which relies

on AAN control strategies to better assist patients with hemiparesis.

1Part of this chapter is based on the following conference proceedings:
Sanchez Manchola, M. D., Arciniegas Mayag, L. J., Munera, M., & Cifuentes Garcia, C. A.
(2019). Impedance-based Backdrivability Recovery of a Lower-limb Exoskeleton for Knee Rehabili-
tation. In 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC) (pp. 1–6). IEEE.
https://doi.org/10.1109/CCAC.2019.8921278
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By the term "high-level", to be further mentioned in this chapter, the author means the

aspects of the control system that are explicitly designed to promote motor plasticity

[136]. “High level" control algorithms are those which infer the human intention and

determine the assistance strategies on its basis, rather than control the actuators to

achieve a desired position, force, etc (i.e. the “low level" approach) [51]. For the

case of the AGoRA exoskeleton, such a "high-level" control approach is supported by

position, velocity, and force low-level controllers, previously described in Section 3.3.

The control architecture proposed in this chapter is intended to be used in a unilateral

version of the AGoRA exoskeleton, i.e. the orthosis is meant to assist the hip and knee

joints of one side of its user. By implementing this configuration, the author expects

to create a device that may contribute to the problem area exposed in Section 1.1,

where stroke survivors play an important role. Since these patients tend to suffer from

hemiparesis or weakness on only one side of their body, unilateral assistance poses a

promising rehabilitation alternative for this population in particular. By modeling the

kinematics of such a structure, its dynamics can be anticipated and compensated to

some extent through a feedforward (FFw) control loop.

5.2 Feedforward Control

One side of the AGoRA exoskeleton may be described as a 2-DoF mathematical model

comprised of two main parts: a kinetic model and a friction model. The kinetic model

relates to the ideal torque behavior of the exoskeleton joints, whereas the friction

model depicts the torque value the actuation mechanism needs to exert to compensate

for the influence of friction. Both models serve as feedforward (FFw) control loops of

the overall high-level architecture to generate compensation torque profiles.



5.2.1 Kinetic Model
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Figure 5.1: Kinetic model of 2-linkage robot. Adapted from [137].

As the actuated motion of the AGoRA exoskeleton takes place along the sagittal plane,

the kinetic model is analyzed in a single plane. Thus, the lower-limb wearable robot

may be simplified as shown in Fig. 5.1. In this study, the method of Lagrange is

used to establish the kinetic model of the exoskeleton. The corresponding Lagrange

equation is given in Eq. 5.1 and 5.2.

L = Ek − Ep (5.1)

Ts =
1

dt

(
∂L

∂θ̇i

)
−
(
∂L

∂θi

)
(5.2)

where Ek is the total kinetic energy of the system; Ep is the total potential energy of

the system; L is the Lagrange function; Ts is the joint torque; and θi and θ̇i (i = 1, 2)

are the generalized coordinate and velocity, respectively [137]. Ep and Ek can be
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rewritten as in Eq. 5.3 and 5.4.

Ep =
2∑

i=1

migyi (5.3)

Ek =
2∑

i=1

[
1

2
mi

(
ẋi

2 + ẏi
2
)

+
1

2
Iiθ̇1

2
]

(5.4)

where mi is the link mass; li is the rotational inertia; g is the acceleration of gravity;

and (xi, yi) is the centroid position of link. For simplicity, the fixed end O(0, 0) in

Fig. 5.1 is chosen as coordinate origin [137]. According to the geometric relation, the

centroid position (xi, yi) can be written as in Eq. 5.5.

xi =
∑i−1

j=1 (lj sin θj) + di sin θi

yi =
∑i−1

i=1(lj cos θj) + di cos θi
(5.5)

where di is the distance of centroid position from joint; li is the link length; and θi

is the angular displacement between link and vertical shaft (generalized coordinate)

[137]. Moreover, the centroid velocity can be also expressed as in Eq. 5.6.

ẋi =
∑i−1

j=1

(
lj θ̇j cos θj

)
+ diθ̇i cos θi

ẏi = −
∑i−1

i=1(lj θ̇j sin θj)− diθ̇i sin θi
(5.6)

where θ̇i is the angular velocity (generalized velocity) [137]. Integrating equations from

5.1 to 5.6, the dynamics of a 2-link exoskeleton robotic system without considering

the human limb dynamics are modelled as presented in Eq. 5.7.

M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = Ts (5.7)



where q, q̇, q̈ ∈ R2 represent position, velocity and acceleration vector in the joint

space, respectively. M(θ) ∈ Rn×n is the symmetric positive definite inertia matrix.

C(θ, θ̇) ∈ R2×2 denotes the Centripetal and Coriolis forces, and G ∈ R2 is the gravi-

tational force vector [137, 138].

The inertia matrix M ∈ R2×2 and the Coriolis matrix C ∈ R2×2 in Equation 5.7 are

determined as shown in Equations 5.8 and 5.9, respectively [138, 139].

M =

M11 M12

M21 M22

 ,
M11 = I1 + I2 +m1d

2
1 +m2l

2
1 +m2d

2
2 + 2m2l1d2 cos θ2,

M12 = I2 +m2d
2
2 +m2l1d2 cos θ̇2,

M21 = I2 +m2d
2
2 +m2l1d2 cos θ2,

M22 = I2 +m2d
2
2.

(5.8)

C =

C11 C12

C21 C22

,
C11 = 2m2l1d2θ̇2 sin θ2, C12 = m2l1d2θ̇2 sin θ2,

C21 = −m2l1d2θ̇1 sin θ2, C22 = 0.

(5.9)

Finally, the gravitational torque vector G ∈ R2 is stated in Equation 5.10 [138, 139].

By exporting the exoskeleton’s kinematics from the CAD software Solidworks (where

it has been initially modeled) and having its position and velocity behaviors monitored

through the motor encoders, the torque related to the device kinematics may be easily

compensated via software.
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G =

g1
g2

 ,
g1 = m2g (d2 sin (θ1 − θ2) + l1 sin θ1) +m1gd1 sin θ1,

g2 = m2gd2 sin (θ1 − θ2).

(5.10)

5.2.2 Friction Model

Kinematic equation 5.7 depicts the rigid kinematic model of the AGoRA exoskeleton,

i.e., the effect of non-rigid forces such as friction is not taken into consideration. Since

friction torque plays an important role in exoskeleton control [140], a better descrip-

tion of the actual system should include the well-known friction torque model, which

encompasses both dynamic friction and steady friction. Such a friction model is given

by Eq. 5.11.

Tf =


Fcsgn(θ̇) + σθ̇, θ̇ 6= 0

Tm, (|Tm| < Fs) & (θ̇ = 0)

Fs, (|Tm| ≥ Fs) & (θ̇ = 0)

(5.11)

where Fc ∈ R2 is the Coulomb friction torque; σθ̇ ∈ R2 is the viscous friction torque;

Fs ∈ R2 is the static friction torque and Tm ∈ R2 is the starting torque of the motor-

gearbox construction [137]. According to the mechanical structure, one can imply

that:

Ts = KgTm − Tf (5.12)

where Kg is the gear ratio. By implementing a FFw control loop both kinematic and

friction behaviors, which are intrinsic to the AGoRA exoskeleton, can be suppressed



to a certain extent via software by using the parameters presented in Table 5.1.

Table 5.1: Parameters of the kinematic and friction models.

Parameter Hip (i = 1) Knee (i = 2)
mi [kg] 2.13 0.84
li [m] 0.498 0.428
di [m] 0.256 0.256

Ii [kg·m2] 0.16 0.05
Fs [N·m] 0.9 0.9
Fc [N·m] 0.8 0.8

σi [N·m/rad·s−1] 1.2 1.2
Kg [N·m] 160 160

5.3 Transparent Mode (TM)

Even though the actuation mechanism used for the AGoRA exoskeleton can exert

torque profiles which are sufficient to assist human lower limbs (as addressed in Section

3.2.2), the assembly motor-gearbox employed in each exoskeleton joint does not allow

the unpowered hardware to comply with the user’s command. Since such behavior

could eventually cause injuries to the patient by restricting their natural gait pattern,

the implementation of compliant control strategies appears to be necessary to mitigate

these adverse effects.

The above-outlined dynamics requires the free movement of each exoskeleton segment,

which can be achieved using a system with force feedback. To this end, admittance

controllers have proven to be stable in high stiffness conditions [141]. An admittance

controller is a variation of the impedance controller (designed by Hogan in 1984 [142])

whose performance highly depends on the precision of the force sensor and actuator

position. The mechanical admittance Y may be expressed as in Eq. 5.13.

Y = v/F (5.13)
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where v is the velocity of the controlled system at the interaction point, and F is the

interaction force. Based on this expression, one may infer that a large admittance

value corresponds to a rapid velocity caused by external forces. If the mechanical

impedance of the exoskeleton could be zero (infinite admittance), its user would not

feel any resistance while wearing it. However, this zero-impedance behavior is only

ideal, given the actuator’s intrinsic inertia and friction, and the controller time delay

[143]. Low impedance, nonetheless, can be achieved if the control system takes into

account the user’s motion intention. This low impedance behavior is widely known as

backdrivability [144], and good backdrivability provides numerous benefits in robot-

assisted gait training, e.g. the ability to act as a monitoring tool for health professionals

[145]. The dynamic behavior of the HRI present in the AGoRA exoskeleton can be

modeled as shown in Fig. 5.2.

D

v
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FA FU

Figure 5.2: Schematic of mass-damping system.

In this model, the exoskeleton is assumed to have a given mass M and a damping

constant B, and an actuator should be exerting a force Fa, while the user a force Fu.

Thus, the equation that describes the system velocity is given by 5.14.

Mv̇ +Dv = Fa + Fu (5.14)



Both Fa and Fu are measured by the strain gauges used as force sensors (see Section

3.2.3), so that an interaction force Fi can be considered as follows: Fi = Fa + Fu. In

the frequency domain, 5.14 can be expressed as in 5.15.

v(s) = F/(Ms+D) (5.15)

The output velocity value is passed through the low-level velocity controller (embedded

within the motor driver, as depicted in Section 3.3.1.3) as an input. Using equations

5.13 and 5.15, the rendered admittance can be modeled as in 5.16.

Y (s) = (Ms+D)−1 (5.16)

The rationale behind the admittance control is to make the actuation mechanism show

low impedance (high admittance) when moved by the patient’s extremities (see Ad-
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Figure 5.3: Transparency controller implemented in the AGoRA exoskeleton to par-
tially compensate the device’s intrinsic dynamics. This control approach takes into
account the interaction forces between human and machine to render limited velocity
profiles accordingly. Additional position limitations are included for the sake of safety.



80 Chapter 5. High-Level Architecture of the AGoRA Exoskeleton

mittance Controller in Fig. 5.3). The admittance controller normally receives the

Human-Robot Interaction (HRI) forces as input and is able to render velocity ac-

cordingly as output. The impedance parameters M and D are set to 0.25 kg and

2.5 N/(m/s), respectively, which are obtained empirically from tests undertaken on a

test bench. Further, since safety plays a relevant role in the actuation of this type of

assistive devices, limits in terms of position are also taken into consideration. This

essentially means that, if the user would try to move within ranges of motion which

are not anatomical, they should not be allowed to do it. Therefore, in order to avoid

exceeding joint limits and subsequently cause damage or instability to the user, TM

also includes some position limitations, i.e. the joint speed proportionally decreases if

the configured position-based thresholds are surpassed (as depicted as Position Lim-

itations in Fig. 5.3). Furthermore, an additional saturation feature also limits the

output velocity value (between Vmin and Vmax) to prevent possible dangerous high-

speed movements (see Velocity Saturation in Fig. 5.3).

As the exoskeleton is expected to be very compliant while using the present controller,

it is suitable to be used as a passive actuator which captures movements during a

preliminary learning phase and reproduces them later during an actual assistance

phase. Having realized this functionality, a stationary robot-assisted training session

aimed at knee rehabilitation was proposed as a proof of concept of the TM described

above (as shown in Fig. 5.4) [146]. During learning mode (LM), the user, being

guided by a physical therapist, moves their leg while the exoskeleton acts compliantly

and records the joint trajectory (q in Fig. 5.3). The learning process ends once the

therapist considers the session to be finished as enough knee flexo-extension repetitions

were performed. After the therapy has been saved, the corresponding trajectory can

be replayed by means of the low-level position controller (embedded in the motor

driver, as depicted in Section 3.3.1.2) coupled together with the FFw loop described

in Section 5.2. This control approach is addressed here as Replay Mode (RM).

One healthy subject was involved during this preliminary evaluation, who did not



Figure 5.4: Stationary therapy of the AGoRA exoskeleton. This approach was un-
dertaken to prove the effectiveness of the transparent mode in terms of the actu-
ator position and velocity. Scan the QR code to watch a demonstration video of
this stationary approach. In case you are unable to scan such code, click here:
https://www.youtube.com/watch?v=eseWTEUN3e4.

suffer from any mobility-related impairment on the knee joint. Once the device was

donned on the subject by using the fastening system, he was instructed to sit on a chair

and press the emergency switch under any unusual situation during therapy. After

the volunteer was instructed about safety measures, LM was undertaken as a physical

therapist drove the subject’s knee throughout three flexo-extension cycles at the speed

and within angular ranges that were considered appropriate. RM was subsequently

performed while position/velocity profiles of the right knee were supervised to evaluate

if the exoskeleton could replicate the recorded trial. Both experimental procedures of

one trial are displayed in the video whose QR code is shown in Fig. 5.4.

The stored trajectory (LM) and the trajectory performed by the exoskeleton (RM)

are depicted in Fig. 5.5a, along with the maximum found position difference among

experimental trials (see Fig. 5.5b). Since the position error was never greater than
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Figure 5.5: Performance assessment of stationary approach in terms of position and
velocity. (a) Knee ROM, (b) Position error, (c) Motor velocity, and (d) Velocity error
compared between LM and RM. Vertical dashed lines denote the end of each knee
flexo-extension cycle. RM depicts a smooth repeated trajectory, since the position
error does not exceed the ±1.5◦ and the velocity error is never greater than ±17% of
the maximum velocity throughout the whole therapy session.

±1.5◦, it can be thus concluded that the device could generate a smooth stationary

therapy. The admittance controller seems to make the exoskeleton compliant enough

to allow the user to move freely while the applied trajectories are being monitored.

Since the RM controller is able to replay this recorded position profile precisely, the

actuation mechanism implemented proves to be suitable for this application.

Fig. 5.5c and 5.5d additionally feature velocity profiles between operational modes

and its corresponding error. Although the controller implemented in RM is not based



on the motor velocity behavior, the replicated movements exhibit a similar pattern

as that corresponding to the recorded therapy, which is borne out by the fact that

the velocity error never exceeded ±17% of the maximum recorded velocity (equal to

1062 rpm). This implies that the speed at which the clinician performed the training

intervention endures during RM.

The described outcomes are in accordance with those found by studies that also in-

volved robotic knee exoskeletons for therapeutic purposes [19, 26, 147] and present

some relevant implications. The performance of the proposed controllers makes the

AGoRA exoskeleton a useful tool in the early stage of the rehabilitation, wherein

patients normally have weak muscle strength at the knee joint, and continuous and

repetitive training is desirable [148].

5.4 Assistance Mode (AM)

While walking, humans change their joint impedance by regulating their posture and

muscle contraction levels to maintain stability. Hence, robotic wearable devices must

integrate robust methods in pursuit of a suitable impedance modulation through-

out gait. An impedance control offers the possibility of regulating the mechanical

impedance at joints according to the user’s impairment level and their voluntary in-

volvement. This control approach has proven to promote a compliant HRI by providing

effective human support in different disability levels [53, 147], thus complying with the

AAN premise, which states that an assistive device should only intervene when the

patient actually needs some assistance.

Taking into account the above, a stance control strategy was implemented in the

AGoRA exoskeleton in order to transition from a stationary therapeutic session to an

actual overground assisted gait. A stance controller applies impedance modulation

to provide stability and prevent the lower limb joints from collapsing during stance

phase, whereas it releases them to allow free movement during swing phase [149].
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Studies, which have used this strategy, have reported that it can be used to increase

walking speed, reduce energy expenditure and gait asymmetry (for both paretic and

non-paretic limbs), thus decreasing muscle stress in patients with muscular weakness

[150].

In order to implement a stance controller with the admittance controller described in

Section 5.3, an impedance modulation is achieved by directly multiplying a variable

gain G by the controller constants M and D (as shown in Eq. 5.17) [147].

Mi = Md ·Gi, 1 ≤ i ≤ 4

Di = Dd ·Gi, 1 ≤ i ≤ 4
(5.17)

where Md and Dd are the default inertia and damping values, respectively, as stated

in Eq. 5.16. G is directly proportional to the system impedance and is updated

according to the different gait sub-phases to adapt both joint impedances during gait.

The gait cycle is divided here into four gait phases by means of an online variation of

the detection algorithm described in Section 4.4 as follows: (i) Heel Strike (HS), (ii)

Flat Foot (FF), (iii) Heel-Off (HO), and (iv) Swing Phase (SP), as you may see in Fig.

5.6a.

When varying the controller gain G in terms of this gait partition, typical lower limb

angular displacement and moment during gait (as shown in Fig. 5.6b and 5.6c, and

Fig. 5.7b and 5.7c, for knee and hip joints respectively) should be displayed. To this

end, a different value of G is defined and varies smoothly for each detected gait phase.

Fig. 5.6d and 5.7d show an example of G variation within a single gait cycle for the

knee and hip joints, respectively. For both cases, Gi, 1 ≤ i ≤ 4 require suitable time

spans ∆ti, 1 ≤ i ≤ 4, in which the controller gain linearly decreases/increases until

it reaches the desired value for HS, FF, HO and SP, respectively. Such linear change

allows the admittance controller to exert smooth velocity profiles in accordance with
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Figure 5.6: Sagittal knee behaviors related to gait phase detection. (a) Gait phases
detected by means of the inertial-based partitioning method. (b) Knee angular dis-
placement and (c) knee moment throughout the gait cycle in healthy subjects at a
comfortable speed [151]. (d) Gain pattern based on the knee moment which ensures
smooth transitions between gait phases. Adapted from [147].
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Figure 5.7: Sagittal hip behaviors related to gait phase detection. (a) Gait phases
detected by means of the inertial-based partitioning method. (b) Hip angular dis-
placement and (c) hip moment throughout the gait cycle in healthy subjects at a
comfortable speed [151]. (d) Gain pattern based on the hip moment which ensures
smooth transitions between gait phases. Adapted from [147].



each subject’s gait pattern. Considering that the weight and gait velocity are the

anthropometric measures that most affect the knee mechanical behavior [152], these

parameters are considered here to define the corresponding G and ∆t values [147].

G variations for knee and hip joints (Fig. 5.6d and 5.7d) correspond to patterns based

on typical moment variation throughout gait (see Fig. 5.6c and 5.7c, respectively),

which are the knee and hip moments reported in a public dataset of overground walking

kinematics and kinetics in healthy subjects [151]. And so, for the case of the knee

joint, the highest gain value is given during HS when the knee experiences its first

flexion, and then it gradually decreases with a slight increase during HO. On the other

hand, the impedance modulation for the hip joint keeps the controller gain at high

values throughout the stance phase, while there is a significant gain decrease during

SP, in pursuit of stability during loading response. For both patterns, the proposed

impedance modulation seeks to promote a shock-damping behavior during gait phases

associated with weight acceptance (i.e., HS and FF where knee and hip apply a large

moment value) [147].

Since time spans ∆ti are fundamental to ensure the smooth variation of G, a relation-

ship between these time periods and known physical properties of the study subject

becomes necessary. To this end, the duration of each gait phase Ti may be expressed

as in 5.18 [147].

Ti = tGC

(
Qi

100

)
fs (5.18)

where tGC is the duration of the gait cycle, Qi is the percentage of each gait phase with

respect to the entire cycle, and fs is the sampling frequency. tGC can be estimated

through Equation 5.19 [153].

tGC =
SL

vu
(5.19)
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where SL is the stride length in meters, and vu is the user’s gait velocity in meters

per second. SL can be also estimated from the user’s height H by multiplying by the

constant 0.826 [153]. Based on this and Equations 5.18 and 5.19, Ti can be expressed

as in 5.20.

Ti =
0.826(H ·Qi · fs)

100 · vu
(5.20)

Experimental trials carried out using the inertial-based detection algorithm (described

in Chapter 4) have resulted in the following percentages for each gait phase for healthy

subjects: 18.3±0.02%, 32.6±0.1%, 16.8±0.08% and 32.1±0.12% for HS, FF, HO and

SP, respectively [126]. However, for the sake of simplicity, Qi is considered to increase

by 10% when a new gait phase has been detected (Qi = 10 · i). Assuming that ∆ti

represents half of its corresponding Ti, a smooth switching of G is finally obtained by

using Eq. 5.21.

∆ti =
0.0413 · i ·H · fs

vu
(5.21)

Algorithm 2 shows the pseudo-code implemented in the Robot Operative System

(ROS) for the online gain pattern generation, where Phd is the default phase from

which the pattern begins to be generated, Phc is the current gait phase detected

through the inertial-based algorithm, and ∆G is the gain increment added every sam-

ple.

Knee moment-based pattern (shown in Fig. 5.6d) is configured to reach the following

gain values: G1 = 0.7 ·W, G2 = 0.2 ·W, G3 = 0.3 ·W and G4 = 0.1 ·W , whereas

hip moment-based pattern (shown in Fig. 5.7d) is set to follow these gain values:

G1 = 0.6 ·W, G2 = 0.8 ·W, G3 = 0.4 ·W and G4 = 0.1 ·W , with W being the user’s

weight in kg. The performance assessment of both TM and AM during overground

robot-assisted gait is described in detail in Chapter 6.



Algorithm 2 Online Gait Pattern Modulation
Require:
1: procedure Initialization
2: Gi; ∆ti ← (0.0413 · i ·H · fs)/vu;
3: Ph← Phd; G← GPhd

;
4: step← 1; ∆G← 0;
5: end procedure
Ensure: G
6: for each new phase Ph do
7: if Phc 6= Ph then
8: ∆G← (GPhc −G)/∆tPhc ;
9: step← 1;
10: Ph← Phc;
11: else
12: G← G+ ∆G;
13: step← step+ 1;
14: if step > ∆tPh then
15: ∆G← 0;
16: end if
17: end if
18: end for

5.5 Software Architecture

In recent years, ROS has become the standard framework for software development

in the field of robotics [93, 154]. However, ROS (at least in its first version) lacks

a real-time communication layer, which represents a fundamental aspect for the con-

trol system of wearable robots [53]. In view of this problem, a useful package called

ros_control has been recently released open-source within this meta-operative sys-

tem. This package provides the capability to implement and manage robot controllers

with a focus on both real-time performance and sharing of controllers in a robot-

agnostic way [154]. This means that ros_control implements solutions aimed at

controller-lifecycle monitoring and hardware resource management by conceiving ab-

stractions (to be further addressed here as hardware interfaces) with minimal assump-

tions on the hardware and operating system used [154].
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Figure 5.8: High-level software architecture of the AGoRA exoskeleton.

The backbone of the ros_control framework is the Hardware Abstraction Layer

which is provided by the hardware_interface::RobotHW class (see Fig. 5.8).

This abstraction serves as a bridge to command either real or simulated robots. Many

specific robot implementations must inherit from this class since its instances model

different hardware resources present in a conventional robot, e.g. electric actuators

and low-level sensors such as encoders and force/torque sensors [154]. The rest of

the hardware_interface package defines read-only or read-write typed joint and

actuator interfaces for hardware abstraction, e.g. state, position, velocity and effort

interfaces. By means of these typed interfaces, this abstraction enables easy introspec-



tion and increased maintainability [154].

Thanks to the simply-structured software architecture of ros_control, only a few

configuration files (deployed as .yaml files in ROS) had to be modified and an Univer-

sal Robot Description Format (URDF) (which is an XML-based robot description [93])

was exported from Solidworks to setup a custom hardware interface for the AGoRA

exoskeleton. Furthermore, as ros_control also provides several libraries to support

writing custom controllers, the control modes proposed in Sections 5.3 and 5.4 were

implemented relatively easily.

Conversely, the controller_manager is responsible for managing the life-cycle

of the controllers and hardware resources, and handling resource conflicts between

controllers. The controller life-cycles are not necessarily static since they can be

queried and modified at runtime through standard ROS services provided by the

controller_manager. Such services (see list_controllers, for instance, in

Fig. 5.8) allow to monitor, start, stop and setup controllers at runtime [154].

Further, ros_control features software libraries addressing transmissions and joint

limits. The transmission_interface package, for instance, supplies classes im-

plementing different joint- and actuator-space conversions. Particularly, the actuation

mechanism of the AGoRA exoskeleton is modeled as a simple reducer to virtually recre-

ate its gear transmission rate (1:160) (see Effort Transmissions in Fig. 5.8). A declar-

ative distribution of transmissions is directly supported with the kinematics and dy-

namics description in the robot’s URDF file. Also, the joint_limits_interface

package contains data structures which represent joint limits and enforce them from

the low-level control system (see Joint Limits in Fig. 5.8) [154].

Once the transmission interfaces and joint limits have been declared, the simulation

of the robot’s controllers can be performed in Gazebo (the main simulation tool used

in ROS) by using ros_control and a simple Gazebo plugin adapter. An overview

between the simulation environment and hardware interface is tagged as Simulation
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(a)

(b)

(c)

Figure 5.9: Gazebo simulation of the AGoRA exoskeleton. (a) Custom controllers
are configured for each joint in pursuit of independent controller handling. (b) The
controller gains are updated while the simulation runs until (c) its performance is
optimal.



in Fig. 5.8. In order to load the appropriate hardware interfaces and controller man-

ager into the simulation environment, the Gazebo plugin (gazebo_ros_control

is commonly used) should be added to the robot’s URDF. Having the declared con-

trollers already configured on each joint, the visualization tool rqt_plot can be then

employed to simulate their response upon, e.g., a sine wave, by publishing the signal

values to the corresponding controller topics (i.e. data buses) at a given transmis-

sion rate (as shown in Fig. 5.9a). Moreover, by adding the Dynamic reconfigure plugin

to rqt, the controller gains may be changed at simulation runtime (see Fig. 5.9b),

without the need to recompile or modify some configuration file, until the desired

performance is reached (see Fig. 5.9c).

By simulating the custom controllers corresponding to TM and AM, one obtains con-

troller gains that are not far away from the optimal values and represent a good start

before its actual implementation on the real hardware. Therefore, only a simple em-

pirical variation of the controller gains obtained via simulation is necessary to reach

the desired performance in the AGoRA exoskeleton (see Hardware in Fig 5.8).

5.6 Conclusions

This chapter features the high-level control architecture of the AGoRA exoskeleton

which essentially comprises two control modes: a transparent mode (TM) and an

assistance mode (AM). Given the non-backdrivability of the device due to its trans-

mission mechanism, the assessment of the unpowered exoskeleton does not appear to

be a feasible option since the proposed hardware is rigid by nature. Therefore, TM

deploys a feedforward control loop in series with an admittance controller in order to

render velocity profiles based on the user’s interaction force with the assistive machine.

As a result, the kinematics and dynamics of the exoskeleton are compensated to some

extent and its behavior is thus more compliant to the subject’s movements. Likewise,

AM applies a similar control scheme as the one of TM, but the admittance controller
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gain varies according to the detected gait subphases. This gain is computed in terms

of the user’s weight and height, and its pattern exhibits a moment-based tendency,

in order to ensure stability during stance phase. The implementation of these control

modes, which take into account the user’s motion intention and their gait pattern dur-

ing overground tasks, represents state-of-the-art control strategies aimed at a proper

HRI and complies with the third objective proposed within this thesis.



Chapter 6

Evaluation with Healthy Subjects

6.1 Introduction

Most-commercially available lower-limb assistive devices move the patient’s limbs

along a predefined, fixed trajectory (i.e., position-controlled approach) [155]. However,

it has already been proven that a monotonous repetition of the same gait pattern re-

sults in decreased neuromuscular activity, decreased energy consumption, and learned

disuse [155, 156]. Whereas passive movements only raise activity in sensory pathways,

activate participation induces voluntary neuromuscular recruitment resulting in acti-

vation of both efferent motor and afferent sensory pathways [157]. Based on the fact

that the patient’s active involvement seems to be what primarily promotes mechanisms

of neuroplasticity and neural repair during rehabilitation [158, 159], the AGoRA ex-

oskeleton integrates AAN control strategies to be deployed during overground walking

in a real environment.

The preceding chapters of this document have provided a detailed description of the

theory and technological developments addressed to design and implement the control

system of the AGoRA exoskeleton. In order to evaluate such features, this chapter

presents the performance assessment of the device and the user’s perception towards

95
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its use. The experimental protocol developed for this study comprises a pilot study

with healthy subjects walking overground during three experimental conditions: unas-

sisted walking, walking in transparency mode (TM) (see Section 5.3), and walking in

assistance mode (AM) (see Section 5.4). The comparison between experimental con-

ditions aims at debugging and optimizing the hardware and software architectures of

the AGoRA exoskeleton, and the validation of its control approach before the trials

with pathological subjects are conceived.

6.2 Selection Process

The experimental protocol, including all the proposed procedures with healthy sub-

jects, were approved by the local Ethics Committee at the Colombian School of Engi-

neering. All participants recruited for this study signed an informed consent in which

they stated to be aware of the possible risks they were facing while undergoing these

trials and agree to participate in spite of them. The volunteers of this study were

selected based on their health status and physical conditions by taking into account

the inclusion and exclusion criteria listed below.

6.2.1 Inclusion Criteria

Male able-bodied adults aged between 18 and 65 y.o. who met the following criteria:

• No history of neurological, neuromuscular or physical disability that may hinder

their normal gait pattern.

• Height within the range of 170-185 cm.

• Weight not greater than 100 kg.

• Some specific anthropometric measurements:

– Femur length: 42-48 cm.



– Distance between trochanters: 32-37 cm.

– Tibia length: 28-31 cm.

These inclusion criteria are established based on the functional range within which the

exoskeleton can be adjusted (see Section 3.2.1).

6.2.2 Exclusion Criteria

• Uncontrolled arterial hypertension.

• Some lower-limb abnormality that prevents the participant from wearing the

exoskeleton.

• Uncontrolled epilepsy.

• Being under the influence of alcohol, drugs or any kind of narcotic substance

during the experimental procedure.

• Any cognitive impairment that prevents the volunteer from reading, understand-

ing or signing the informed consent.

6.3 Experimental Protocol

In order to assess the influence of the proposed control strategies on gait spatiotemporal

parameters and lower-limbs kinematics in healthy subjects during exoskeleton-assisted

overground gait, a pilot study was conducted at the Institut de Biomécanique Humaine

Georges Charpak (Paris, France) involving six neurologically intact subjects (6 males,

25.5±6.07 y.o., height of 1.8±0.027 m, and weight of 71.5±10.9 kg) with no neurological

injuries or gait disorders. A unilateral version of the exoskeleton was used for this study

in such a way that only right hip and knee joints were actuated, while the left leg was

only attached to the mechanical frame (no actuation mechanisms assembled), as may

be seen in Fig. 6.1.
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At the beginning of the test, the subject’s anthropometric features were measured to

adjust the exoskeleton segments accordingly and to set up the initial parameters of the

admittance controller on the basis of the user’s weight and height. Subsequently, the

AGoRA exoskeleton was mounted on the volunteer by attaching the Velcro straps to

their limbs and donning the backpack containing the battery and the main board. The

emergency button was then handed to the subject, as he was instructed to press under

any situation that might compromise his safety or comfort. Once the exoskeleton was

already worn and powered, ten level-ground 10-m walking trials were performed for

each of the two following experimental conditions: TM and AM. Both conditions were

randomized for each subject in such a way that he was not aware of which operation

mode he was experiencing. After the exoskeleton was removed from the volunteer,

ten additional 10-m walking trials were conducted for the assessment of the unassisted

Force
Platforms

Motion
Capture
System

Marker
set

Figure 6.1: Experimental setup for trials with healthy subjects wearing the AGoRA
exoskeleton.



mode (baseline level of this study). All subjects were encouraged to walk at their self-

selected comfortable speed, while different kinematic and kinetic data were captured

as described below.

6.4 Data Acquisition

• Experimental assistive device: The first prototype of the AGoRA exoskele-

ton (described in previous chapters of this document) was not only involved as

an assistive tool for overground walking, but also as a means of kinematics and

kinetics monitoring. Data acquisition nodes broadcasted the control inputs so

that an external computer, which communicated with the main board via Wifi

connection, could locally save these parameters for offline analysis.

• Human joint kinematics: A 3D-motion analysis system Vicon, equipped with

twelve high-speed infrared cameras (Vicon Motion Systems Ltd, Vicon-Oxford,

U.K.), was used to monitor human and exoskeleton joint angular displacements

at a sampling rate of 200 Hz. The marker set consisted of sixty-five reflective

markers, thus allowing a full-body analysis in an indoor analysis laboratory (EPF

École d’Ingénieurs, France) (see Fig. 6.1) [160]. The exoskeleton segments were

tracked by using custom clusters designed to be taped over the rigid part of the

fastening system while they were carrying a set of four markers per-interface

(on both assisted and unassisted sides). The subject was instructed to tap the

floor once firmly at the beginning of each trial, so that a distinctive peak was

recognizable by both measurement systems as a means of data synchronization.

Additionally, three force platforms were assembled along a straight pathway to

monitor Ground Reaction Forces (GRF) while capturing data at a sampling

rate of 1000 Hz [160]. During walking trials, it was ensured that all subjects

completely stepped on each force platform at least once. Otherwise, the subjects

had to repeat the trial.
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6.5 Data Processing

Marker trajectories were first smoothed with an average sliding window (5 values)

with two passes in reverse direction to minimize the shifting effect. Any gaps in the

raw motion data were filled using a C2-spline interpolation (gaps shorter than 15

frames) within the Vicon’s software Nexus [161]. Marker trajectories and kinetic data

were then imported into OpenSim v.3.3. software and processed through a multibody

kinematic optimization technique. To this end, a full-body model was implemented

based on Raabe’s model [162] to generate a generic full-body model with 25 segments

and 54 generalized coordinates. The generic model was then scaled to each participant

on the basis of a static acquisition captured before all walking trials. This scaled model

was subsequently used to create a second model with a simplified kinematic chain for

hip and knee joints. All trials were finally processed using both models and the inverse

kinematics tool present in Opensim software in order to obtain gait spatiotemporal

parameters and hip-knee kinematics [155, 163].

6.6 Statistical and User’s Satisfaction Analysis

Regarding statistical analysis, gait spatiotemporal parameters (e.g. step length, ca-

dence, etc) and hip and knee kinematics from the six involved subjects were loaded

into the SPSS software v.23.0 (IBM-SPSS Inc., Armonk, NY, USA), and either one-

way repeated-measures ANOVA tests or Friedman tests (non-parametric version of

ANOVA test) were conducted to compare among experimental conditions with a sta-

tistical significance level of ρ < 0.05, depending on whether the data exhibited a

normal distribution or not. Bonferroni’s tests were carried out as a post-hoc test in

case significant differences were found.

Finally, a questionnaire (adapted Quebec User Evaluation of Satisfaction with Assis-

tive Technology, QUEST 2.0) was used to evaluate the subject’s perception towards

the assistive device [164]. QUEST 2.0 may be also used to assess the user’s satisfaction



through questions related to the service provided. However, only the questions related

to assistive technology (e.g. weight, safety, durability, simplicity of use, and comfort)

were used in this study since the AGoRA exoskeleton is still undergoing validation

stages. The score for each question ranges from 1 to 5 (1: not satisfied at all; 2: not

very satisfied; 3: more or less satisfied; 4: quite satisfied; and 5: very satisfied), and a

final score is obtained from the median value of the valid responses.

6.7 Experimental Results

Spatiotemporal gait parameters among the three experimental conditions, i.e. unas-

sisted, TM, and AM, are presented in Table 6.1. For the six involved participants,

these results only demonstrate a significant difference from the unassisted condition for

the case of gait velocity while walking in AM (ρ = 0.048). Conversely, the other spa-

tiotemporal parameters show no significant difference from the unconstrained baseline

(i.e. unassisted condition) which lies close to typical gait parameters found previously

for healthy subjects [155].

Table 6.1: Spatiotemporal gait parameters for all experimental conditions assessed :
Unassisted, Transparent Mode (TM), and Assistance Mode (AM) (mean ± std).
Asterisks indicate significant differences from the unassisted condition (Bonferroni,
p < 0.05).

Parameter Unassisted TM AM

Gait velocity [m/s] 1.12± 0.34 0.78± 0.35 0.66± 0.23 *
Cadence [steps/min] 83.38± 21.71 61.95± 21.21 58.77± 18.33
Stride length [cm] 161.68± 9.47 146.88± 20.91 135.88± 27.77

Step duration (right leg) [s] 0.90± 0.46 1.16± 0.60 1.15± 0.65
Step duration (left leg) [s] 0.70± 0.096 1.06± 0.51 1.14± 0.4

Stride duration [s] 1.59± 0.51 2.21± 1.02 2.28± 0.94
Stance phase (right leg) [%] 53.8± 9.52 50.32± 11.9 48.28± 13.07
Stance phase (left leg) [%] 45.91± 9.6 49.32± 12.01 51.31± 13.09

Likewise, the peak joint angles during unassisted walking and exoskeleton-assisted gait

are presented in Table 6.2. Significant differences from the unconstrained condition
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were found for the peak knee flexion on the right leg (i.e. the actuated side) during

both operation modes: TM (ρ = 0.001) and AM (ρ = 0.000). Also, the left side, i.e.

the inactive side, shows a significant reduction in knee range of motion (RoM) during

TM (ρ = 0.01). On the other hand, hip kinematics remains untouched while being

assisted by the AGoRA exoskeleton since no noteworthy differences were found while

the hip RoM lies close to typical values found for healthy subjects during unconstrained

overground walking [165].

Table 6.2: Lower-limb kinematics for all experimental conditions assessed : Unassisted,
Transparent Mode (TM), and Assistance Mode (AM) (mean ± std). Asterisks indicate
significant differences from unassisted condition (Bonferroni, p < 0.05).

Parameter Unassisted TM AM

Peak knee flexion (right leg) [◦] −66.80± 5.59 −47.33± 7.10 * −46.48± 5.44 *
Peak knee flexion (left leg) [◦] −64.02± 5.65 −52.37± 9.46 * −53.84± 11.47
Peak hip flexion (right leg) [◦] 26.00± 4.62 25.62± 7.35 21.97± 9.45
Peak hip flexion (left leg) [◦] 24.74± 4.67 25.04± 4.94 26.30± 7.71

Peak hip extension (right leg) [◦] −17.22± 4.41 −11.58± 6.08 −13.86± 7.28
Peak hip extension (left leg) [◦] −17.38± 4.02 −17.00± 3.58 −18.83± 5.22

Additionally, the user survey regarding their satisfaction towards the AGoRA ex-

oskeleton controlled by the proposed approaches produced the following median val-

ues: weight: 4, dimensions: 3, adjustment (meaning the user’s perception towards the

system used to attach the exoskeleton to their limbs, i.e. the fastening system and

telescopic bars): 3, safety: 5, stability (meaning how close the subject felt as though

they were about to fall): 4, durability: 3, ease of use (i.e. how intuitive it is to use):

4, and comfort: 3, within a range between 0 and 5.

Based on the experiences gained during the experimental trials, further use with the

designed platform would require a therapist or assistant well aware and capable of

adjusting and mounting the exoskeleton on the user. The total time needed for the

donning process was found to be around 25-30 min when the orthosis is being used

for the first time since more time is required to measure the subject’s anthropometric

measurements and properly adjust the length of thigh and shank segments.



6.8 Discussion

This work presents the short-term effects on the walking pattern of six healthy subjects

while wearing the AGoRA exoskeleton. This lower-limb active orthosis operates using

a TM that suppresses the dynamics of a non-backdrivable structure to some extent,

and an AM that is meant to provide support to both knee and hip joints during stance

phase whereas it allows free movement during swing phase. AM essentially relies on

a stance-control approach which varies hip and knee impedances on the basis of two

anthropometric measurements: height and weight. Such consideration has been widely

taken into consideration in previous designs of stance-controlled orthoses [147, 150].

Regarding spatiotemporal gait parameters, only gait velocity appeared to be signifi-

cantly affected by the exoskeleton while operating in AM. Even though a slight reduc-

tion in gait velocity during AM is not ideal, previous studies have demonstrated that

this parameter can reduce up to 0.57 m/s while wearing an orthosis commanded by

a stance control approach [150]. Thus, such a variation seems not to be critical, also

because further gait parameters did not demonstrate any significant influence by the

exoskeleton while they remained close to those which are considered typical among

able-bodied individuals. For instance, a study with similar experimental conditions to

those imposed in this study found cadence to be around 79.7±3.66 steps/min, whereas

the step duration was equal to 0.76 ± 0.04 and 0.75 ± 0.03 seconds for right and left

legs respectively, during normal overground walking in a study [155]. Furthermore,

a study of gait analysis using an active knee orthosis reports the swing phase to be

between 36% and 51% of the gait cycle [166], thus complying with the stance phase

percentages found in this work for exoskeleton-aided walking (as may be seen in Table

6.1).

Regarding lower-limb kinematics, at least one significant difference per side was found

for the case of the peak knee flexion. Such a reduction in terms of knee angular

displacement seems to be attributable to some hardware issue (in particular, to the
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fastening system), since the left side, which has no actuation mechanism assembled and

thus perceives no electromechanical activation, also shows a significant reduction in

knee RoM during TM. An improper attachment to the user’s limbs mainly produces

joint misalignments which are a well-known problem when dealing with physically

coupled systems, e.g. humans wearing exoskeletons [167]. If perfectly-aligned joints

are assumed, exoskeleton forces can be modeled as equal. However, the presence of

joint misalignment results in the imperfect transmission of torque from the exoskeleton

to the user’s body [80], thus introducing undesirable forces parallel to the human

limb which can cause discomfort or unintended changes in the behavior of the control

system. In spite of this, hip kinematics present no considerable change from the

baseline condition, which may imply a better attachment to the pelvic region, and

thus, better compliance of the exoskeleton’s control system on the hip joint.

In relation to user satisfaction, results show that the lowest score (3) was related

to the items regarding “dimensions”, “adjustment”, “durability”, and “comfort”. It is

worth noting that the insight concerning dimensions might be related to the inherent

protrusion of the actuation mechanisms which are placed laterally, and whose bulkiness

is even more notorious in a unilateral device such as the version proposed for this pilot

study. Further, the comfort factor in wearable devices is commonly associated with

features such as sensors, straps, and weight [51]. Besides, offering unilateral hip and

knee assistance for healthy subjects may be an additional factor that promotes the

discomfort experienced by the participants, since some of them expressed to feel some

pain at the upper back after wearing the exoskeleton. Physiological theories have

been developed to address these limitations [168], but this issue remains to be a major

problem for autonomous powered orthoses. On this basis, some hardware modifications

are needed to obtain a more robust system and improve the mentioned items, e.g. new

materials able to properly adjust the exoskeleton and to suppress relative movement

between human and machine.

Finally, it is important to note that this study is limited by the reduced number of



subjects recruited for the pilot study, which compromises to some extent the power

of the applied statistical tests. However, since the participants were rather homo-

geneous in terms of age and anthropometric measures due to the reduced operating

spectrum the exoskeleton provided, the outcomes should allow the work team to debug

several hardware and software issues discovered during experimental trials for further

iterations of the device and prior to the trials with real patients.

6.9 Conclusions

This chapter comprises the performance evaluation of the AGoRA exoskeleton in the

short term in healthy subjects. Six neurologically-intact subjects were recruited to per-

form several overground trials under three experimental conditions: unassisted walking

(i.e. no further aids were involved), and exoskeleton-assisted walking while operating

in TM and AM (described in previous chapters). Spatiotemporal gait parameters and

lower-limb kinematics were processed from measurements captured by the assistive

device itself and a motion capture system based on passive optical markers. Addition-

ally, in order to assess the exoskeleton’s performance both objectively and subjectively,

an user survey was conducted to collect data regarding their satisfaction towards the

implemented technology.

Most spatiotemporal parameters did not exhibit any significant change from the unas-

sisted condition for both operation modes, and only knee kinematics was compromised

while the user was wearing the exoskeleton. This last issue has been underpinned by

an improper attachment to the subject’s limbs, as a consequence of a deficient fasten-

ing system that did not ensure kinematic compatibility and could have influenced the

effect of the torque profiles coming out of the control system. Further iterations of

the current device are expected to include a more robust fastening system, in order to

improve the impact of the robot-assisted gait training on the knee joint and the user’s

perception towards the device’s adjustment, durability, and comfort. The assessment
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of the influence of the AGoRA exoskeleton on the gait pattern of healthy users com-

plies with the final specific objective of this document and represents an advance in

the process of actually applying this technology to an impaired patient.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

A robotic lower-limb orthosis, known as the AGoRA exoskeleton, has been designed

as a rehabilitation device meant for overground gait training. The long-term goal is to

create a tool to help health professionals in the rehabilitation process of stroke and SCI

patients. The device mainly consists of a mechanical structure made out of duralumin

which is powered along the sagittal plane of both hip and knee joints. A novel passive

DoF is included in this design for the hip abduction/adduction motion which is not

commonly incorporated in this type of wearable devices. Telescopic bars allow the

device to accommodate users from 1.70 to 1.83 m in height. The joint actuators are

DC brushless motors coupled with gearboxes: a powerful, energy-efficient, lightweight

solution for an ambulatory solution powered via a lithium-ion battery pack. Each actu-

ation mechanism is commanded by an associated motor driver that provides low-level

controllers based on position, velocity, and current. This configuration represents a

distributed architecture and allows the device to be modular and adapt to the require-

ments and needs of each user. In order to comply with this modularity, the software

architecture also instantiates each connected motor with its characteristic features and

107
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functionalities ready to be used instantly.

Since the gait pattern of neurologically-affected individuals is known to be far removed

from the typical walking behavior of healthy subjects, machine-learning-based meth-

ods have been lately implemented within the control system of wearable robots to

accurately segment the gait cycle. On this basis, the present study proves the op-

timal performance of an HMM-based detection algorithm trained by means of both

intra-subject and inter-subject approaches to partition the gait pattern of healthy and

pathological individuals into four gait phases (i.e. HS, FF, HO, and SP), even outper-

forming the detection via a conventional threshold-based segmentation method. This

detection method represents a control middle layer of the AGoRA exoskeleton since

the computed gait phase feeds its high-level architecture.

Current control paradigms usually implement normalized kinematics [169], muscle

amplification [170] or finite-state controllers [171]. However, relying on pre-defined

kinematic trajectories or muscle firing patterns might not be task-specific, thus being

inappropriate for rehabilitation purposes [167]. Based on this, the AGoRA exoskeleton

operates using a TM that integrates a feedforward control loop and an admittance

controller to suppress the dynamics of the non-backdrivable structure to some extent,

and an AM that is meant to provide support to both knee and hip joints during stance

phase whereas it allows free movement during swing phase. AM virtually amplifies the

constants of the impedance controller by a variable gain. This gain varies as a function

of the detected gait phase and some user’s anthropometric measure (height and weight)

and follows a pattern based on the typical walking knee and hip moments. This control

strategy intends to behave under the AAN, which dictates that a rehabilitation device

should only intervene when the patient needs it.

In order to assess the performance of the control strategies described above, a pilot

study involving 6 healthy subjects was conducted within a laboratory setting. An op-

toelectronic motion capture system collected the trajectories of passive markers placed



at known locations during overground walking trials for three experimental conditions:

no exoskeleton attached to the user, the user walking with the device in TM, and the

user walking with the exoskeleton operating in AM. These marker trajectories were

used to compute spatiotemporal gait parameters and lower-limb kinematics. Since

the gait pattern of the involved healthy subjects was significantly compromised dur-

ing robot-assisted trials, the first prototype of the AGoRA exoskeleton needs further

development to reduce this negative influence, and issues such as the fastening system

and the resistive nature of the implemented controllers might require reconsideration

to this end. Therefore, the findings consigned here should encourage the creation of

further versions of the proposed device and should guide subsequent studies regarding

the exoskeleton’s effectiveness with a larger cohort of participants (potentially patho-

logical).

7.2 Future Work

The research conducted in this study together with the results obtained should serve

as preliminary evaluation of the usability of the AGoRA exoskeleton when applied to

healthy subjects. However, this work has not intended yet to prove its effectiveness

within a gait rehabilitation program. Although the gait pattern of healthy subjects

seems to remain unaffected by the actuation of the exoskeleton, further studies should

involve actual stroke survivors so that a real comparison with respect to traditional

therapy is feasible.

Further modifications should be carried out in the hardware and software architectures

prior to trials with pathological patients. Firstly, the fastening system of the device

should rely on more resistant and robust materials that prevent relative movement and

thus transmit better the torque profiles produced by the control system. Addition-

ally, the author would recommend a different approach for the tuning process of the

impedance controller embedded in the proposed strategies, since the current method-
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ology is essentially based on empirical tryouts with healthy subjects, and a more

robust calibration process might be necessary with pathological individuals. Further,

safety-related considerations must be taken into account in subsequent iterations of the

current device, e.g. what should happen if a sensor is unintentionally unplugged? what

measures should the exoskeleton conduct to avoid eventual malfunction or misopera-

tion? Finally, a graphical user interface should be developed for its use within clinical

settings to facilitate the programming and monitoring of the exoskeleton parameters,

ranging from inputs such as the patient’s info to outcomes such as knee angle and

torque.
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