Axiomatic Set Theory a la Dijkstra and Scholten

Ernesto Acosta', Bernarda Aldana', Jaime Bohdrquez', and Camilo Rocha*

! Escuela Colombiana de Ingenieria Julio Garavito, Bogot4, Colombia
2 Pontificia Universidad Javeriana, Cali, Colombia

Abstract. The algebraic approach by E. W. Dijkstra and C. S. Scholten to formal
logic is a proof calculus, where the notion of proof is a sequence of equivalences
proved — mainly — by using substitution of *equals for equals’. This paper presents
Set, a first-order logic axiomatization for set theory using the approach of Dijk-
stra and Scholten. The approach is novel in that the symbolic manipulation of
formulas is shown to be an effective tool for teaching axiomatic set theory to
sophomore students in mathematics. This paper contains many examples on how
argumentative proofs can be easily expressed in Set and points out how Set can
enrich the learning experience of students. These results are part of a larger ef-
fort to formally study and mechanize topics in mathematics and computer science
with the algebraic approach of Dijkstra and Scholten.

Keywords: Axiomatic set theory - Dijkstra-Scholten logic - Derivation - Formal sys-
tem - Zermelo-Fraenkel (ZF) - Symbolic manipulation - Undergraduate-level course.

1 Introduction

Axiomatic set theory is the branch of mathematics that studies collections of objects
from the viewpoint of mathematical logic. In general, axiomatic set theory focuses on
the properties of the membership relation *€’, given the existence of some basic sets
(e.g., the empty set). Unlike ‘naive’ set theory — where definitions are given in natural
language, and Venn diagrams and Boolean algebra are used to support reasoning about
collections — the axiomatic study of sets begins with a set of axioms and then associates
axiomatic rules to suitably defined sets and constructive relations. Because other the-
ories across different branches of mathematics (e.g., number theory, topology) can be
encoded in set theory, it plays an important role as foundational system.

An axiomatic theory for sets is usually given as a first-order logic theory, i.e., as a
formal system that uses: (i) universally and existentially quantified variables over non-
logical objects, and (i1) formulas that can contain variables, function symbols, and pred-
icate symbols. Variables range over collections; function symbols include the empty set,
projections, and cardinality; and predicate symbols include membership and equality.
The Zermelo-Fraenkel (ZF) is the most common axiomatic set theory [7], sometimes
including the axiom of choice (ZFC), which aims at formalizing the notion of pure set

* The first three authors have been supported in part by grant DII/C004/2015 funded by Escuela
Colombiana de Ingenieria.

2 Ernesto Acosta, Bernarda Aldana, Jaime Bohorquez, and Camilo Rocha

or hereditary well-founded set so that all entities in the universe of discourse are such
collections.

This paper presents an axiomatization for set theory using the calculational ap-
proach developed by E. W. Dijkstra and C. S. Scholten to formal logic [1]. Its main
contribution is a first-order theory for sets having as its key feature the symbolic ma-
nipulation of formulas under the principle known as Leibniz’s rule: the substitution of
‘equals for equals’. While there are many deductive systems for first-order logic, both
sound (i.e., all provable statements are true in all models) and complete (i.c., all state-
ments which are true in all models are provable), the notion of proof in the Dijkstra-
Scholten logic focuses on logical equivalence rather than implication. In general, the
Dijkstra-Scholten logic can be seen as a correct choice of connectives, axioms, and in-
ference rules, allowing for proofs of logical formulas by symbol manipulation, without
the need for introducing unnecessary assumptions.

The algebraic approach by E. W. Dijkstra and C. S. Scholten to formal logic, in
general, is a proof calculus [8)]. For the proposed axiomatic theory, Dijkstra-Scholten
refers to the logical system resulting from the combination of first-order logic and their
proof style. The notion of “proof” in the Dijkstra-Scholten system is actually a deriva-
tion [10], i.e., a sequence of equivalences proved, mainly, by using Leibniz principle: if
two formulas are provably equivalent, then substituting one for the other does not alter
the meaning of any formula. In a nutshell, a derivation can follow various approaches
and can always be translated into a formal proof [10] (e.g., in a Hilbert-like system). For
an axiomatic theory of sets, derivations result in rigorous and elegant counterparts to ar-
gumentative proofs, commonly found in textbooks, which can help proving theorems
succinctly.

The results presented in this paper are a partial report on a two-term seminar experi-
ence to solve all exercises and symbolically rewrite all proofs in sections 1, 2, and 9 of
Chapter 1 in [6], using the Dijkstra-Scholten approach. The meta-mathematical aspects
of set theory such as the aspects of semantics, completeness, and axiom independence
are not considered since the main interest is to realize how to teach formal thinking
to undergraduates. A sophomore-year course with this approach has been successfully
taught twice.

This work is also a part of a larger effort to formally study and mechanize topics
in mathematics and computer science with the algebraic approach of E. W. Dijkstra
and C. S. Scholten. In particular, the set theory axiomatization of ZF in first-order logic
presented in this paper is the first step towards a mechanization in rewriting logic [9], a
logic in which concurrent rewriting coincides with logical deduction. What is appealing
about mechanizing theories i 1a Dijkstra-Scholten is that they are written in a relatively
strict format that can be easily accessed by humans (which is seldom the case with most
tools). In the setting of rewriting logic, the notion of substitution of ‘equals for equals’
is a natural part of deduction because it is a more general case of equational logic.

To sum up, the main contributions are:

— a set theory axiomatization of ZF in first-order logic using the calculational style of
E. W. Dijkstra and C. S. Scholten;

— examples of some proofs obtained by using derivations, compared to their argu-
mentative versions found in textbooks; and

Axiomatic Set Theory a la Dijkstra and Scholten 3

— a discussion on how student experience has improved in a sophomore-year under-
graduate-level axiomatic set theory course taught a la Dijkstra and Scholten .

The rest of the paper is organized as follows. Section 2 presents the first-order
Dijkstra-Scholten system. Section 3 presents the axiomatic set theory a la Dijkstra-
Scholten and Section 4 presents examples of proofs in this theory based on derivations.
Section 5 presents a discussion explaining how the use of the proposed approach has
helped in teaching an undergraduate-level course on axiomatic set theory. Finally, Sec-
tion 6 presents some related work and concluding remarks.

2 The Formal System of Dijkstra and Scholten

This section overviews the Dijkstra and Scholten first-order formal system, summariz-
ing sections 2-5 in [10].

A formal system uses an alphabet to construct a formal language from a collection
of axioms through inferential rules of formation. More precisely, a formal system [3]
consists of: a (possibly infinite) collection of symbols or alphabet; a grammar defining
how well-formed formulas are constructed based on symbols in the alphabet; a collec-
tion of axioms; and a collection of inference rules. The collections of formulas of the
formal systems presented here, all have a decidable membership problem.

Definition 1. Let F be a formal system, I" a collection of F-formulas, and ¢, a F-
formula. A proof of ¢, from I' in F is a sequence of F-formulas ¢y, ¢, ...,@, such
that for any 0 < i < n: (i) ; is an axiom, (ii) ¢; € I, or (iii) @; is the conclusion of
an inference rule with premises appearing in @y, . . ., @;_1. An F-formula ¢ is a theorem
from I" in F, denoted as I v o, if and only if there is a proof of ¢ from I in F; in the
case when I' = @, @ is called a theorem of F, denoted as v .

The first-order system of E. W. Dijkstra and C. S. Scholten (with equality) is pre-
sented as the formal system DS(L), which is parametric on a first-order language £.

Definition 2. The symbols of DS(L) are:

— An infinite collection X of variables xp, x1, X2,

— A collection F of function symbols.

— A collection P of predicate symbols, which includes infinitely many constants
P{], P], Pg, .

— An arity function ar : F UP — N for function and predicate symbols.

— Left parenthesis “(’, right parenthesis *)’, and comma *,’.

— The logical connectives frue, false, -, =, %, V, A, —, «, ¥, 1.

The infinitely many constant predicate symbols assumed to be in 7 are key for
formula manipulation in the formal system. The logical connectives of DS(Z) include
the Boolean constants frue and false, negation ‘=’ equivalence ‘=", discrepancy ‘%,
disjunction ‘V’, conjunction ‘A’, implication ‘—’", consequence ‘<, “¥" for universal
quantification, and “J’ for existential quantification.

4 Ernesto Acosta, Bernarda Aldana, Jaime Bohorquez, and Camilo Rocha

Terms and formulas in DS(L) are built in the usual way. A term is built from vari-
ables and the application of a function symbol to a sequence of terms. A formula is built
from the Boolean constants, term equality, and Boolean combination of formulas, with
the application of a predicate symbol to a sequence of terms and universal/existential
quantified formulas. The atomic formulas of DS(L) are the Boolean constants true and
false, equality of terms, and the formulas obtained by applying a predicate symbol to
zero or more terms. Definition 3 introduces the terms and formulas of DS(.L).

Definition 3. The collection of terms and the collection of formulas of the formal sys-
tem DS(L) are given by the following BNF definitions, where x € X, ¢ € F with
ar(c) =0, feF withar =m >0, Pe Pwithar(P) =0, Q e Pwithar(Q) =n >0, t
is a term, and @ is a formula:

tu=xle| f(r,....0
wu=true | false |t =t | P| Q(t,....0 | (@) | (e =¢) | (g Z@) | (¢ V @)
[(erp) (@@ (v | (Vx| (dxe).

The expressions T (X, F) and T (X, F .P) denote the collection of terms and the collec-
tion of formulas over X, ¥, and P, respectively.

In the Dijkstra-Scholten first-order logic, the textual substitution operator _[_ := _]
is overloaded both for replacing variables for terms and for replacing constant predicate
symbols for formulas. The concept of a free occurrence of a variable in a formula in
the Dijkstra-Scholten logic is the traditional one, i.e., an occurrence of a variable x in
a formula ¢ is free iff such an occurrence of x is not under the scope of a Vx or Jx.
Similarly, a term ¢ is _free for x in a formula ¢ iff every free occurrence of x in ¢ is such
that if it is under the scope of a Yy or dy, then y is not a variable in r.

Definition 4. Let x € X, 1 € T(X,F), and ¢, € T(X,F,P). The collection of axioms
of DS(L) is given by the following axiom schemata:

Ax]) (=W =1)=(¢=y¢)=1).
(Ax2) (g =yY) =W =y)).

(Ax3) ((@ = true) =).

(Axd) (v vT) =gV V).
(Ax5) (V) =WV).

(Ax6) ((¢ V false) =).

(AxT) (@ V@) = @)

(Ax8) (evWw=1)=((eVY)=(p V1))
(Ax9) ((—¢) = (¢ = false)).

(Ax10) (¢ 2 ¢¥) = ((—g) = ¥)).

(Ax11) (e A) = (= = (@ V).
(Ax12) ((¢ =) = (g V) =).

(Ax13) (¢ =) =W — @)

(Bxl) (Vx@) = @), if xis not free in ¢.
(Bx2) (Vv (Vxu)) = (Vx(e V), if xisnot free in ¢.
(Bx3) (Vxg) A(Yxy)) = (Vx(p AY))).

Axiomatic Set Theory a la Dijkstra and Scholten 5

(Bx4) (Wxg) — wlx :=1t]), iftis free for x in .

(Bx5) ((Ax¢) = (= (Yx(=¢)))).

(Bx6) (x = x).

(BxT) ((x=1) = (¢ =wlx:=1]), iftis free for x in @.

The axioms of DS(L) can be divided into two groups, namely, (Ax1)-(Ax13) and (Bx1)-
(Bx7). Axioms (Ax1), (Ax2), and (Ax3) define that equivalence is associative, commu-
tative, and has identity element true. Similarly, axioms (Ax4), (Ax5), and (Ax6) define
that disjunction is associative, commutative, and has identity element false. Disjunction
is idempotent by Axiom (Ax7) and distributes over equivalence by Axiom (Ax8). The
remaining axioms (Ax9)-(Ax13) present axiomatic definitions for the connectives in the
propositional fragment of DS(L). Axiom (Bx1) states that a universal quantifier on vari-
able x can be omitted whenever the formula it quantifies has no free occurrences of x.
Axiom (Bx2) states that disjunction distributes over universal quantification whenever
there is no variable capture, while Axiom (Bx3) states that conjunction and universal
quantification commute. By Axiom (Bx4), it is possible to particularize any universal
quantification with a term r whenever the variables in ¢ are not captured by the substi-
tution. Finally, Axiom (Bx5) is an axiomatic definition for existential quantification.
Note that by having {Py, P;,...}] € P in Definition 2, propositions over proposi-
tional variables {pg, p1,...} can be represented as atomic formulas in 7 (@, @, P) via
the mapping p; +— P;. With this embedding, axioms (Ax1)-(Ax13) characterize the set
{true, false, =, v} as a complete collection of connectives for the propositional fragment
of DS(L). Likewise, {true, false,=, v,¥} is a complete collection of connectives for

DS(L).

Definition 5. Lerx € X, P € Pwithar(P) =0, and ¢,, 7 € T (X, F,P). The inference
rules of DS(L) are:

w Eoquanimvrry w=1 Lemniz

GENERALIZATION.
® (o|P =] =¢P:=1]) (Vx¢)

Rules Equanmvity and Lemniz allow for symbolic manipulation based on equality
by substitution of ‘equals for equals’. Rule GeneraLizaTION is the usual first-order rule
stating that universally quantifying any theorem results in a theorem. The assumption
about the infinite collection of constant predicate symbols in DS(L) is key for the Rule
Lemniz to work when substituting formulas in any given formula. Another important
fact regarding Rule Lemniz is that from it some meta-properties can be proved with
almost no effort: (i) any substitution instance of a tautology (i.e., of a theorem in the
propositional fragment of DS(L)) is a theorem of DS(L) and (ii) the collection of the-
orems of DS(L) is closed under formula substitution.

‘Proofs’ in the Dijkstra-Scholten calculational style are not strict in the sense of a
formal system. Instead, they are sequences of formulas related, mainly, by equivalence.
This approach takes advantage of the transitive properties of the connectives to obtain
compact proof calculations.

Definition 6. Let I” be a collection of formulas of DS(L). A derivation from I in DS(L)
is a non-empty finite sequence of formulas ¢y.¢1,. ..., of DS(L) satisfving, for any
0<k<n I'vrpgp (@r-1 = @)

6 Ernesto Acosta, Bernarda Aldana, Jaime Bohorquez, and Camilo Rocha

The connection between a derivation and a proof is made precise in Proposition 1.

Proposition 1. [10] Let I be a collection of formulas of DS(L) and ¢y, ¢, . .., ¢, be
a derivation in DS(L) from I'. It holds that I" Fps(sy (@0 = @n).

It is important to note that any proof in the formal system DS(L) is a derivation in
DS(L) but a derivation is not necessarily a proof. Consider, for instance, the sequence
“false, false” which is a derivation because Boolean equivalence is reflexive, but this
sequence 1s not a proof because false is not a theorem. The key fact about proofs in a
formal system is that every formula in a proof is a theorem, while this is not necessar-
ily the case in a derivation. There are other types of derivations where implication or
consequence can be combined with equivalence (see [10] for details).

In practice, derivations are not written directly as a sequence of formulas but as a
bi-dimensional arrangement of formulas and text explaining each derivation step.

Remark 1. A derivation ¢y, ¢, - - . ,@, from I" in DS(L) is usually written as:

o
= (“explanation;”™)

@1

[
[
= (“explanation, ,”)
Ln

in which “explanation;” is a text describing why I Fps (¢; = @is1).

Finally, the Dijkstra-Scholten logic proposes an alternative notation for writing
quantified formulas. The main idea is that proof verification and derivation in such a
syntax becomes simpler thanks to the resemblance between, for example, the notation
of a (finite) quantification and the operational semantics of repetitive constructs in an
imperative programming language.

Remark 2. Let x € X and ¢, i be formulas of DS(L).

— The expression (Vx | & : @) is syntactic sugar for (Vx (¢ — ¢)); in particular, (Vx | true - ¢)
can be written as (Vx |2).

— The expression (dx | ¢ :) is syntactic sugar for (Ax (& A ¢)); in particular, (Jx | true : ¢)
can be written as (Jdx |:).

In the formulas (Vx| ¢ :) and (dx | ¢ : @), ¢ is called the range and ¢ the subject of
the quantification.

3 An Axiomatic Set Theory

This section presents Set, a Zermelo-Franekel first-order system in the language L. =
(X, F,9), that results from extending DS(Ls.) with axioms for sets. In L, the in-
finitely many variables X range over elements in the domain of discourse, F contains

Axiomatic Set Theory a la Dijkstra and Scholten 7

the constant @ and the unary symbols |_J, P, and the only predicate symbol in is the
binary symbol €. Intuitively, the function symbols represent the empty set, generalized
union, and the power set; the predicate symbol € represents membership. The axioms
of Set in Definition 7 include axiomatic definitions for all symbols in %, meaning
that € is a complete connective for Set (i.e., the entire language of set theory can be
built from the membership predicate symbol). Symbols not in L., such as the binary
function symbols U and N denoting union and intersection, respectively, and the binary
predicate symbol C denoting inclusion can be added by means of the usual axiomatic
definitions. Some examples will be given at the end of the section.

Note that in Lg,, there is no mention of the common ‘curly braces’ notation {_ | _}
used for identifying collections, because this notation can also be seen as an abbrevia-
tion just like @ or C. Technically, {_ | _} is a binary meta-symbol used as a term-forming
operator that can be defined with the definite description operator ¢, for any variable
x € X and formula ¢ € T(X, F,P), as follows:

Xl =] (Vx| x ey =@x)).

It can be shown, although it is beyond the scope of this paper, that {x | ¢} identifies
a unique element. Therefore, Set allows the “curly braces’ notation to be used as an
abbreviation for a unique clement in the domain of discourse. The reader is referred
to [13, p. 126] for details on the definite description operator and its properties.

The notion of univalent formula is needed before introducing the axioms of Set. A
formula ¢ € T(X,F,P) is univalent ift (Vx,y,z | @(x,2) A @(y,z) : x = y). Intuitively,
if ¢ is univalent and ¢(x, z) is true, then x is the only element that makes ¢(_, z) true.

Definition 7. Let @,y € T(X,F,P) be such that ¢ has one free variable and ¥ is
univalent. The axioms of Set are given by the following axiom schemata:

(Cxl) (Vx|:x=2=(¥y|:=veEx).

(Cx2) (Vx,yl:x=y=Mul:uecx=ucy)).

(Cx3) (Ve y,zlix={vzl=Vul:(uex=u=yVvu=7z))).
(Cxd) (Vx,yliyv={uex|ew))=Nultuecy=uecxnqpu)).
(Cx5) (Mx,yl:y=Jx=MVuluey=(dz|zex:ue€z)).
(Cx6) (Vx,y|:y=Px=Nuluey=Nz|lzeu:zex)).
(CxT) (Vx,yl:y=vlx]=(Vul:uey=Tz|z € x: ¥u,2))).
(Cx8) (Adx|@ex: (Vy|yex:yuU{yle x)).

The axiom of existence (Cx1) serves two purposes: first, it states the existence of
an unique set without elements, namely, the empty set; second, it is a ‘definitional ex-
tension” for the function symbol @, which is the name assigned to the empty set. Note
that, by identifying ‘the’ set without elements with @, there is the need to prove that
such a set is unique (this proof is left to the reader as a routine exercise after covering
this section). The axiom of extensionality (Cx2) characterizes equality: two clements
are equal whenever they have the same elements. The axiom of pairing (Cx3) states the
existence of an element having two given elements. The axiom schema of separation
(Cx4), which represents as many axioms as formulas ¢ with exactly one variable are,
states how an element can be obtained from other element by selecting exactly those

8 Ernesto Acosta, Bernarda Aldana, Jaime Bohorquez, and Camilo Rocha

clements that satisfy a given formula. The axiom of union (Cx5) and the axiom of power
(Cx6), respectively, define generalized union and the power element construction. The
axiom schema of replacement (Cx7) uses an univalent formula to define an element
Y[x] comprising precisely those elements witnessing the satisfaction of ¢(_, z), for each
z € x. Finally, the axiom of infinity (Cx8) introduces the existence of (at least) one in-
ductive set: (1) @ belongs to this set; and (ii) if x belongs to this set, then x U {x} (i.c., its
successor set) is also one of its members. It is easy to see that such sets must necessar-
ily have infinitely many elements starting from @, the successor of @, and so on. Also
note that in Definition 7 the only axiom schemata are (Cx4) and (Cx7) because they are
parametric on given formulas.

In general, these axioms are similar to the ones usually studied in graduate-level
axiomatic set theory courses. A contribution of Set is a rewrite of the axioms in the no-
tation of Dijkstra-Scholten. However, as illustrated in Section 4, the main contribution
of Set is that it enables an undergraduate proof-based course on set theory using simple
algebraic manipulation.

One important cornerstone of any axiomatic sct theory, including Set, is the distinc-
tion between elements that are “well-behaved’ and those that are not. More precisely,
axiomatic sct theory distinguishes the elements that can be called a set from others that
are not, namely, the broader concept of a class. Technically, a class is any collection,
but a set is a more refined version of a class: a set is a collection that can be identified
by only using the axioms in Definition 7. For instance, @ and {@} arc scts because of
axioms (Cx1) and (Cx8). Theorem 1 presents a fundamental thcorem of Set, with a
proof i la Dijkstra-Scholten, and identifies a class that is not a set: the collection of all
sets.

Theorem 1. There exists no universal set.

Proof. Towards a contradiction, assume such a sct V exists. Thus, Fget (VX |1 x € V).
Consider the set § = {x € V | x € x}. in which x ¢ x abbreviates —x € x:

Ses

= (definition of §)
Sef{xeV|x¢x}

= (axiom of separation (Cx4))
SeVAaSeéS

= (Visa universal set)
ftrue NS & §

= (propositional logic }

5 ¢8.
That is, Feet S €5 =8 € S, which is a contradiction. Therefore, V cannot exist. O

As mentioned at the beginning of this section, other usual function and predicate
symbols can be added to Set by means of definitional extensions. Some of these sym-
bols are included in Definition 8.

Axiomatic Set Theory a la Dijkstra and Scholten 9

Definition 8. The following axioms define pairing, binary union and intersection, dif-
ference, and inclusion:

(Cx10) (Vv zlx=0aD=MVulucx=u={y}vu=I{yz}))

(Cx11) (Yx.vzlix=yUz=(Yu|u€x=u€c€yvucz).

(Cx12) (Vx,v,zl:x=yNz=MNul|uex=ucyAucz).

(Cx13) (Vx,v,zl:x=y\z=(Vul|fuex=uecyhrutz).

(Cx14) (Vx,yv,zlix=yXz=Mulucx=Av,wlveyAawez:u=(v,w)))).
(Cx15) (Vx,yl:xCy=(Vuluex:ucy)).

Other operations such as the generalized Cartesian product and generalized inter-
sections, and the axiom of choice can be defined similarly in the syntax of Set.

4 Calculational Proofs for the Classroom

This section presents some notorious features of Set that have been identified, mainly,
by teaching a 16-wecks undergraduate set theory course. It is important to note that
most of the students in such a course are in their sophomore year and have had very
little exposure to mathematical logic. First, as it is often the case in set theory, computa-
tion of operations between sets depends heavily on the axiom of extensionality (Cx2).
Since Set is based mainly on Boolean equivalence, algebraic manipulations are sim-
ple to grasp and can help a student in discovering proofs. Second, the precise language
required for writing formulas exposes their logical structure, thus making it possible
in a proof to transform one formula into another in a clean way. Furthermore, in the
Dijkstra-Scholten style a student can deal symbolically with the parts of a proof argu-
ment that have to do exclusively with propositional logic, usually hidden in a rhetorical
argument. Finally, Set helps to identify the logical structure of a theorem text and to
anticipate relevant lemmas for its proof.

4.1 Algebraic Exploration

One of the advantages of Set is that it facilitates the computation of operations between
clements in the domain of discourse. The axiom of extensionality (Cx2) is key in situ-
ations when the goal is to transform a formula x € A to another formula x € B. In this
setting, A is a set whose definition is known, while B is a set to be found.
Example 1. The goal is to simplify [_J{@, {@}}:
x € U@, {2}}
= (axiom of union (Cx5) }
Avlyeie.i2l}:xey)
= (axiom of pair (Cx3) }
@yly=ovy={2}:x€y)
= (syntactic sugar for existential quantification; propositional logic)
Ayl:y=2AxeyVi={B}Axecy)
= (axiom of empty set (Cx1): no element belongs in the empty set)
(Ay|: false vy ={@} AxEY)

10 Ernesto Acosta, Bernarda Aldana, Jaime Bohorquez, and Camilo Rocha

= (syntactic sugar for existential quantification; propositional logic)
Fyly=12}:xey)
= (exactly one element satisfies the range)
x e {@}.
Thus, [{2, {2}} = {2} m}

Another illustrative example is reasoning with function composition. If f and g are two
functions, then g o f is defined by:

Ve, yl:(x,y)€go f=z]: (x,2) € fA(z,y) € g))-
As in [4], the expression {f; | i € I} denotes the function f with domain 7. For example,
the function f(x) = x> with domain [0, 1] can be represented as <_x2 | xe]0,1 |>. The
formula (u,v) € <x3 | x € [0, ll) means that v = u? and that u € [0, 1]. An example

in [4] is to calculate < Vx| x> (J> o <x2 +1]xe€ R) For that purpose, the authors use
an extra theorem to first determine the domain of the composition and then proceed to
compute it. As presented by Example 2, the preliminary theorem is not required because
the domain of the composition can be obtained simultaneously with the proof.

Example 2. The goal is to compute (Vxlx> {}) o <_r2 -1|xe R):

(u,v)e(v'}|x>0)o(x2—1 |xeR>
= (definition of function composition }
(Tl e (P-1]xeR)A@v) e(Vx|x>0))
= (syntactic sugar ; (_ |) notation }
(lz=w?-1AueRAV=VZAZ>0)
= (Axiom (Bx3); Axiom (Bx1))
MERI\(EZI::’.:HQ—]IU!: -\,E!\z>()]

{ only one element satisfies the range)
ueRAv=Vi2— 1Al -1>0
= (syntactic sugar ; (- | -) notation }

wv) e (V2 -112-1>0).
Thcrcforc,(ﬁlx>()>o<x2—l |xER)=<Vx3—I|x3>~ l). O

4.2 Discovery of Logical Structure

The calculative style requires writing the propositions in a very precise language that
ultimately reveals their logical structure. This makes it possible to carry out the required
transformations from one proposition to another in a proof more transparently than
when using a language that has not been designed for such a purpose. In an axiomatic
theory, arguments in a proof are expected to be very precise, leaving aside — as far as

Axiomatic Set Theory a la Dijkstra and Scholten 11

possible —, colloquial ones. For example, it can be shown that the Cartesian product of
two sets is empty iff one of its factors is empty. Of course, nobody doubts this fact but,
in order to proceed formally, it requires a proof.

Example 3. Provebgg (Vx,y | xXy=0=(x=023Vy=a)).

XXy=@

= (axiom of empty set (Cx1))
(Y, v |- =(u, vy € x % y)

= (axiom of Cartesian product (Cx14) }
Mu,v:=(uexnrvey))

= (propositional logic: De Morgan’s law)
Mu,viugxvvegy

= (first-order logic)
Multuégx)vdvi:vey)

= (axiom of empty set (Cx1))
X=@Vy=0a.

Therefore, (Vx,y - xXy =3 =(x = @V y = @)) is a theorem of Set. m}

One of the objectives of teaching a set theory course is to develop the ability to prop-
erly write all arguments of a proof in natural language. This task is usually a complex
one for students, especially when the arguments are related with Boolean reasoning.
This is because such a reasoning is used implicitly in proofs, leaving the bitter feeling
that the argument is correct but without clarifying the reasons. In argumentative proofs,
in general, the reasoning rests more on aesthetic matters rather than on logical ones.
Within the Set formal system all arguments are made explicit, which helps to improve
the clarity and forcefulness of the proofs without resorting to the elegance and skill in
the use of the natural language.

In Example 4, it is proved that a function is invertible iff it is one to one. This is a
case of use of appropriate language when scarching for a proof. The predicate fun(f)
stands for *f is a function”, inv(f) for “ f is invertible”, and oto(f) for *f is one to one™.
Symbolically,

(Vf |: fun(f) = (Vx, y,z| (x,y) € f A(x,2) € f 1y =2)).

(V£ I inv(f) = fun(f)).
(Vf|-oto(f) = (Vx, v,z | (x,2) € fA(v,2) € fzx=).

Example 4. Prove Fger (Vx |2 inv(f) = oto(f)).

inv(f)

= (definition of invertible function)
fun(f ")
= (definition of function)

(Vry.zl@ynef ' A@aesfy=g

12 Ernesto Acosta, Bernarda Aldana, Jaime Bohorquez, and Camilo Rocha

{ definition of inverse relation)
Mx,vz|(mx)efAlz,x)efv=2z
) y

{ definition of one to one function)

oto(f).

O

Example 5 presents a proof in Set that natural numbers with the usual order <
are a well-ordered set. The set I of natural numbers is the smallest inductive set and
membership is a strictly linear relation. Well-ordering of I means that all non-empty
subsets of IT have a first (or <-minimal) element. Consider the set of least numbers X,
of a given set x C I:

Vx| xCN:xyn={yex|(Vzlzex:z<y}).

Of course, if xy;, is not empty, then it is unitary. Next consider the unary predicate wo..
defined as follows:

(Vx| xCN:wo(x)=(Vy | yCX:VF D — Vmin # D))

Note that wo-(I¥) means that the set of natural numbers is well-ordered. The definition
of well-order can equivalently be written, thanks to Fpgi) (¢ = ¥) = (= — —), as:

(Vx| xCN:wo ()= (V| VC X Yin =@ = y=3@)).

In addition, Example 5 uses a form of derivation in which logical implication is allowed
to relate a deduction step. Such a sequence is called relaxed derivation and the reader
is referred to [10] for its definition and properties.

Example 5. Provebge (Vx| X C N Xpin = @ — x = @).

Xpin = D
= { axiom of empty set (Cx1))
(¥n |2 n & Xuin)
= (definition of x.;,)
(VYnl:neéxv(@k|kex:k<n)
= { first-order logic)
(Vn|: (Vk|k<n:kéx)—>néx)
— { induction principle for natural numbers)
(Yn|:né€x)
= {axiom of empty set (Cx1))
x=a.

Axiomatic Set Theory a la Dijkstra and Scholten 13

4.3 Proof Structure and Organization

The calculative style can be used to anticipate auxiliary lemmas. Indeed, this is the
case in some induction theorems, such as the proof of commutativity of natural number
addition. Addition of natural numbers is as a function + : W x N — I defined a la
Peano by:

(VYm|mel: +(0,m) =m),
(fmpn|meMAneN: +(m,+(n 1)) =+(+(m, n), 1)).

The goal is to prove that natural number addition is commutative, i.e, that
(VYm,n|lmeMNAneN: +(m,n) =+(n,m).

In [4, Thm.4.4, p.53]), the proof of this fact is hard to follow because there is an auxil-
iary induction proof inside the main induction proof:

‘We prove that every n € I commutes, by induction on n. To show that () commutes, it
suffices to show that 0 + m = m for all m. Clearly 0+ 0 = 0, and if 0 + m = m, then
O+(m+1)=(0+m)+1 =m+ 1. So the claim follows by induction (on m). Let us
assume that n commutes, an let us show that n + 1 commutes. We prove, by induction
onm, thatm +(n+ 1) = (n + 1) + mfor all n € M. ...(proof follows)...

In [2, Sec.13, p.50], the following is the proof of the same property:

The proof that addition is commutative ... is a little tricky: a straightforward attack might
fail. The trick is to prove, by induction on a, that (i) O+ #n = nand (i) m' +n = (m+n)’
and then to prove the desire commutativity equation by induction on m, via (i) y (ii).

It will be better for a student to identify beforehand some lemmas needed for the proof.

Example 6. Note that the theorem statement has the form (Vn | n € I : g(n)), where
gn)=(Vm|meXN: p(m.n)).

Some lemmas can be found from this formulation:

(¥n|neM:g(n))
« { induction principle)
g A (Yn|gn):gn+1)).

Therefore, the goal now is to first prove (Ym | m € I} : p(m, 0)) and then, under hypoth-
esis (Vm |m e N : p(m,n)), prove (Vm |m e N : p(m,n + 1)).

5 Classroom Experience

With the calculational style there is an opportunity to read differently theorem state-
ments and to rethink theorem formulations in the teaching of mathematics. Sometimes
the logical complexity of the statements exceeds the capacity of the students and the

14 Ernesto Acosta, Bernarda Aldana, Jaime Bohorquez, and Camilo Rocha

complexity of informal speech can blur the simplicity of logical structure. It is gratify-
ing to have a language to explore the meaning of the statements by cleansing them from
literary linguistic figures. The style of Dijkstra and Scholten does precisely that. Read-
ing and writing proofs in the style of Dijkstra and Scholten reveals structural proposi-
tions that are hidden in the nooks and crannies of literary languages.

Sophomore students in the axiomatic set theory class, in which Set is taught, are
familiarized quickly with the formal system DS(L) before beginning the study of set
theory. Without being logic experts and after learning these logic rudiments, they de-
velop an ability to translate the statements of the thecorems and proofs contained in a
textbook such as [4]. Students are bound by their teacher to do the inverse process of
reading and writing in literary language what they have written symbolically.

Later on, students in the class begin to propose their own proofs, aside from those
found in the textbook. At a later stage, they see the need to introduce new symbols to
the language (e.g., a predicate symbol) in the quest to incorporate what is said of objects
as part of the symbolic discourse. The instructors are very strict in requiring students to
write sentences in symbolic language and precise spelling is enforced. Finally, students
have no difficulty in accepting the need to introduce new sets to the theory in order to
‘package’ information and to be able to argue on a more abstract level: ‘set-set’ rather
than ‘set-element’ (e.g., instead of referring to the minimum of a set x, they need to
refer to the subset xp,;, of x).

6 Concluding Remarks

Most textbooks on set theory avoid dealing with formal logic directly. They include not
only the introductory textbooks such as [2], but also graduate-level ones such as [4.6,7].
It is believed among the mathematical community, that detailed formal proof involves
a large amount of trivial details that would make a standard hundred-page mathemat-
ical book run thousands of pages. However, this is hardly the case with the approach
of Dijkstra and Scholten, as shown with Set. First-order logic systems such as natural
deduction or sequent calculus are suitable for mechanical reasoning but not for hu-
man reasoning. It is fair to say that the substitution of ‘equals for equals’ is ultimately
the reason why the calculational approach is practical for human reasoning. Important
meta-mathematical aspects of DS(L) that have been omitted in this paper, such as the
deduction, soundness, and completeness results can be found in [12,10]. Moreover, a
sequent-like formalization of DS(ZL) can be found in [12], as well as an explanation
about the relationship between the propositional fragment of DS(L) and the celebrated
rewrite-based decision procedure for Boolean rings of J. Hsiang [5].

Perhaps, the only textbook that takes a sclf-contained approach to set theory, in the
sense that includes all tools needed from mathematical logic, is [13] by Tourlakis. His
work is situated between opposite poles: on the one hand, it works within the theory,
that is, uses the tools and the axioms for the sole purpose of proving theorems. On the
other hand, it takes the entire theory as an object of study and “from the outside™ an-
swers questions about its power and reliability. Although the use of formal reasoning
as a tool to calculate proofs is recommended, not many proofs in the book are obtained
in this way. Furthermore, the author of [13] states that “we do not have to be that for-

Axiomatic Set Theory a la Dijkstra and Scholten 15

mal always, nor can we afford to be so when our arguments get more involved. We will
frequently relax the proof style to shorten proofs. This relaxing will invariably use short-
hand tools such as English text, class terms, and a judicious omission of (proof) details.”
Its level of exposition is designed to fit a spectrum of mathematical sophistication, well
beyond the reach of most inexperienced undergraduate students. Set encourages the use
of formal proofs when teaching set theory.

The results presented in this paper are part of a larger effort to formally study and
mechanize topics in mathematics and computer science with the algebraic approach
of E. W. Dijkstra and C. S. Scholten. The next step is to mechanize Set in rewriting
logic [9]. There is already experience by some of the authors in mechanizing logical
systems in rewriting logic [12,11]. Finally, there is also interest in exploring the for-
malization and use of the Dijkstra-Scholten style in other branches of mathematics and
computer science such as topology, number theory, and finite model theory.

Acknowledgments. The authors would like to thank the members of the two-term semi-
nar for fruitful discussions on these ideas, and Jorge Finke and the anonymous referees
for comments that helped to improve the paper.

References

1. E. W. Dijkstra and C. S. Scholten. Predicate Calculus and Program Semantics. Texts and
monographs in computer science. Springer-Verlag, New York, 1990.

2. P.R. Halmos. Naive Set Theory. Undergraduate texts in mathematics. Springer-Verlag, New
York, 1974.

3. R. E. Hodel. An Introduction to Mathematical Logic. Dover Publications, Inc., Mineola,
New York, 2013. OCLC: 892599098.

4. K. Hrbacek and T. J. Jech. Introduction to Set Theory. Number 220) in Monographs and
textbooks in pure and applied mathematics. M. Dekker, New York, 3rd ed., rev. and expanded
edition, 1999,

5. I. Hsiang. Refutational theorem proving using term-rewriting systems. Artificial Intelligence,
25(3):255-300, Mar. 1985.

6. T. I. Jech. Set Theory. Number 79 in Pure and applied mathematics, a series of monographs
and textbooks. Academic Press, New York, 1978.

7. K. Kunen. Set Theory. Number 34 in Studies in logic. College Publications, London, revised
edition edition, Oct. 2013. OCLC: 915461876.

8. I. Meseguer. General Logics. In Logic Colloguium *87: Proceedings, volume 129 of Studies
in Logic and the Foundations of Mathematics, pages 275-33(). Elsevier, Granada, Spain, first
edition edition, Aug. 1989.

9. I. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical
Computer Science, 96(1):73-155, Apr. 1992.

10. C. Rocha. The Formal System of Dijkstra and Scholten. In N. Marti-Oliet, P. C. Olveczky,
and C. Talcott, editors, Logic, Rewriting, and Concurrency, volume 9200, pages 580-597.
Springer International Publishing, Cham, 2015.

11. C. Rocha and J. Meseguer. A Rewriting Decision Procedure for Dijkstra-Scholten’s Syllo-
gistic Logic with Complements. Revista Colombiana de Computacion, 8(2):101-130, Dec.
2007.

16

12.

Ernesto Acosta, Bernarda Aldana, Jaime Bohorquez, and Camilo Rocha

C. Rocha and J. Meseguer. Theorem Proving Modulo Based on Boolean Equational Proce-
dures. In R. Berghammer, B. Moller, and G. Struth, editors, Relations and Kleene Algebra in
Computer Science, volume 4988, pages 337-351. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2008.

. G. 1. Tourlakis. Lectures in Logic and Set Theory. Number 82-83 in Cambridge studies in

advanced mathematics. Cambridge University Press, Cambridge, UK ; New York, 2003.

