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Abstract: We investigate about exponential convergence for generic quantum Markov semi-
groups using an generalization of the Lipschitz seminorm and a noncommutative analogue of
Wasserstein distance. We show turns out to be closely related with classical convergence rate
of reductions to diagonal subalgebras of the given generic quantum Markov semigroups.In

particular we compute the convergence rates of generic quantum Markov semigroups.
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1. Introduction

We consider the von Neumann algebra B(h) of all linear bounded operators
on a given complex separable Hilbert space h and a Quantum Markov semi-
group (QMS) T = (T¢)¢>0 which acts on B(h), i.e., T is a weakly*-continuous
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semigroup of completely positive, preserving, normal maps on B(h). Quan-
tum Markov semigroups (QMS) are a non-commutative extension of Markov
semigroups defined in classical probability, they represent an evolution with-
out memory of a microscopic system in accordance with the laws of quantum
physics and fit into the framework of open quantum systems. The semigroup
T corresponds to the Heisenberg picture in the sense that given any observable
x, Ti(x) describes its evolution at time ¢. In this way, given a density matrix
p, its dynamics (Schrodinger picture) is given by the semigroup 7..(p), where
tr(pTi(z)) = tr(Tu(p)).

Several aspects of temporal evolutions described by QMSs have been inves-
tigated. By example, in [4],[5], and [6], the exponential speed of convergence of
the quantum Markov semigroup is studied using the quantum L?-spectral gap
(gap(L)). In [3] a Wasserstein-type distance, denoted by Wy, has been defined
and applied to measure deviations from equilibrium, in other words, to define
an entropy production index (see [16, 17]). Wy is a non commutative analogue
of the classical Wasserstein distance wy used in optimal transport (see [12],[22],
23)).

In this paper we use a generalization of the Lipschitz seminorm and a non-
commutative analogue of Wasserstein distance to study exponential convergence
of generic QMSs. This research is motivated by the exploration of relation be-
tween exponential convergence of QMSs and his classical reductions given by
classical Markov semigroups. The exponential convergence in the classical case
is represented by a Wasserstein curvature (or Chen exponent) o4 linked with
the classical Wasserstein distance (see [8],[9],[19] ,[22]). Moreover, we show that
in the generic QMSs case the exponent convergence is related with o4 and the
parameters of QMS.

The paper is organized as follows. In Section 2 we recall the basic aspects
about classical Wasserstein distance. We recall generalization of the Lipschitz
seminorm and a noncommutative analogue of Wasserstein distance introduced
in [3]. After, some useful estimates on norms of commutators are showed in the
Section 4. Finally, we apply these estimates. Specifically, we see in Section 5
that if T is a generic quantum Markov semigroup and

r = Sup max
n#m

(4 450 <

then for all states p1, p2

Wa(To(p1), Tu(p2)) < (V2 + 1+ 2V2r)e FWy(p1, p2)
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Hn +An ‘;Nm +Am A o4

with k := min,, -, { } . Where p,, A, are coefficients genera-

tor of semigroup and oy is a rate convergence of classical reduction of semigroup.

2. Exponential Convergence: Classical Case

We start this section by reviewing the Wasserstein distance and Wasserstein
curvature for classical Markov processes.

Let (2, (Ft)i>0, F,P) be a filtered probability space, E a Polish space en-
dowed with metric d, and A = L*°(FE). Consider a E-valued cadlag Markov
process {(X¢)e>0, (Pz)zer}, with (7;)i>0 associated Markov semigroup acting
on A as follows

ﬂﬂ@zéﬂwMa@»fmwwﬂmxe@»er

The predual semigroup of (7;):>0 acts on probability measures p as
Tan) = [ nldn)Pia.)
We denote by P4(FE) the space of probability measures v on E such that
/Ed(:c,y)y(dy) < 400 for some (or equivalently for all) x € E.

Moreover, we consider Lipy(F) the space of Lipschitz functions on E with a
Lipschitz seminorm defined by

[f(z) = f(y)]
| flLip, = sup —————
’ ’ ba TH#Y d(x,y)
Remark 1. Under the previous assumptions, if a Markov kernel P;(z,-)
belongs to Py(E) for all t > 0 and for all x € E then Tj(f) is well defined for
all f € Lipy(E).

We can therefore define

< +o0.

a4(t) = —sup{log | T f|[Lipa; [ f |l Lipa = 1}, ¢ 20

Remark 2. Is easy to see that

a(t) = —sup{1og | Ty f || Lipg: | flLipg = 1. F = f}, £t =0.

i.e, the supremum does not change if we restrict to self-adjoint elements.
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Note that 4(0) = 0. By the semigroup property of T3, it follows that the
function 74(t) is super-additive so that the following limit is well defined:

oq(t oq(t
oq = lim 7a(t) = inf 7al )
tlo t t>0 ¢

(1)

Moreover, the number o, is the best (maximal) constant A in the contraction
inequality
ITeflzipa < €N fllLipas | € Libg(E), t>0. (2)
Definition 1. The number o4 given by (1) is called Wasserstein curvature
of the process (X¢);>0 with respect to metric d.

This notion of curvature was introduced by Joulin [19],[20] and Ollivier
[21] and is connected to the notion of Ricci curvature on Riemannian manifolds
[24]. In this remainder of this section, we will assume implicitly that the Markov
kernel P;(z,-) belongs to the space Py(FE) for all t > 0,z € E.

The coefficient o4 is linked with the classical Wasserstein distance.

Remark 3. The classical Wasserstein distance is defined by

wq(p,v) = inf / d(m,n)dd(m,n)
VeE(nv) S Mx M

where (M,d) is a metric space and Z(u, ) is the set of all Borel probability
measures 9 on M x M such that for all measurable subsets A, B C M

9(A x M) = u(A), 9(M x B) = v(B).

When M is a separable space and u,v € Py(M) the Kantorovich-Rubinstein
theorem provides another representation for the Wasserstein metric:

wilir) =sup{ [ fau-vi FeLildla—s 115 1)
M
(for a proof of the Kantorovich-Rubinstein theorem see for example [12], The-
orem 11.8.2 p.421).

By remark 3, the Wasserstein curvature o4 is the best (maximal) constant
A in the inequality

wa(Tt (1), Tt (p2)) < € Sd(pr, ), ¢ >0, ©)

where p1 and po are o-finite measures.
Then o4 is the best (maximal) constant A holding simultaneously the in-
equalities (2) and (3).
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3. An Non Commutative Extension of the Lipschitz Seminorm and
a Wasserstein-Type Distance

We start our discussion about a non commutative extension of the Lipschitz
seminorm and a Wasserstein-type distance. In the quantum case, we consider
h complex separable Hilbert space with orthonormal basis fixed (e)rey (V' is
a finite or countable set).

In [3], we proposed a quantum version of wg, we recall the definition.

Definition 2. The quantum Wasserstein distance between two states

Por (1) = tr(01();  $on () =tr(oa()) in B(h)

is defined by:

Wa (017 02) =Wy (9001790(72) = sSup ‘t’l” ((01 - 02) a)’

llallLrp, <1
with
1
e (Sd (5d - m m|/» Y
lallzzp, e | 6mi(a) [, Gpy(a) D) [(lem) (el + ler)(eml), a]

and d a distance defined on the set V.

Note that the usual deriviation d,,;(a) = [(lem)(e1] + |e1){em]), a] satisfies
Ot = d(mv l)(sgql

We collect here some preliminary results on the quantum Wasserstein dis-
tance that we need in the sequel.

Proposition 3. The quantum Wasserstein distance Wy(¢o, , ¢o,) is equal
to the infimum of |tr ((o1 — o2)a)| on self-adjoints elements a € B(h) with
lallzrp, <1

Proof. To prove our statement is enough to suppose that Wy(¢s, , 95,) < 00
(the procedure is analogous if Wy(¢s, , ¢o,) = 00 ). For any e > 0 there exists
a < B(h) with HaHL[pd <1

Wa(@o1,p0,) — € < |tr (01 — 0)a) | = [tr (o1 — 02)a”) |.
Let 0 be the phase of the complex number ¢r ((o7 — 02)a) so that

e Ptr((o1 — 02)a) = |tr((o1 — 02)a)| = €tr((oy — 02)a®), (4)
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The operator y = (e~ ?a+e?a*)/2 is clearly self-adjoint and has Lipschitz norm

smaller than 1, indeed

sup %, (5)1] < 5 sup (I (a)] + 155a(a)]) <1

m,l
Moreover, by (4),
tr (01 = 02)y) | = |tr (01 — 02)a) | > W (s, ¢oy) — €
This completes the proof. ]
We call diagonal algebra, and denote it by D the Abelian algebra generated

by one-dimensional projections |eg)(er|. Let € : B(h) — D be the conditional
expectation with range D defined by

z) =Y wjjle;) el =Y x(j)le;) (el (5)
J J
and let &, be the predual map on trace class operators with range I3 (V)
w) =Y wjjlej){esl. (6)
J

Proposition 4. For all z € B(h) it follows that
() l€@) | L1p, = $UPpievimer qomgy 12D — (m)].

(b) N&@)Lrpy < llllzir,
Proof. (a) If x € B(h) then £(x) = > .y x(s)|es)(es| where z2(s) € C
and the convergence of the sum is in the weak* topology, then
d(n, m)op,,, (€ (@) = (x(1) — z(m))ler) (em| — (@(1) — z(m))|em) (el.
Since the norm of an anti self-adjoint matrix is the largest eigenvalue,
computing the norm of the above 2 x 2 matrix (thought as an operator
on the linear span of ¢, e,;,) we find

1E@)lLrp, = sup lll%(g(x))\\

m,leV,m

= swp ———[|(@(t) — a(m)ler)lem] — (1) — 2(m))lew) el

m,leV,m#l d(m l)

m)Plem)(em| + (1) — x(m)[?ler) (edl|

mlGVm;él

= sup

eVt A(m )|x(l) —z(m)| = |lz()||zrp,-
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(b) First notice that if n 7 m and @ =}, x;;]e;)(e;| then

d(n7m)5;’inn(x) = (Tnm — Tmn)|€m)(€m| + (Tmn — Tnm)|en) (en]

+ (@ — Tmm)|em) (en| + Z Tnjlem) (e

7
JFm

+ (xmm - xnn)’en><€m’ + Z xmj’6n><€j’
7
JFm

= > wimlei)(en] = Y Tinles) (em-

Let ppm be a projection defined by pum = |en){en| + |em){em| so

d(?’L, m)an&lm(fl«“)an = (xnm - xmn)‘€m> <em‘ + (xmn - xnm)‘€n><€n’

+ (Tnn — Tmm) lem) €n] + (Tmm — Tnn)l€n) (em|

Since the norm of an anti self-adjoint matrix is the largest eigenvalue,
computing the norm of the above 2 x 2 matrix (thought of as an operator
on the linear span of e, e,,) we find

d(n,m)QHpnmégm(:c)panQ = ||(lznm — xmn|2 + [Tnn — xmm|2)em><€m|
+ (25}36((mx$nn - xmm)))‘€m><€n’
+ (2Re((Trm — Tomn) (Trn — Zom)))|€n ) (€]
+ (|2nm — xmn‘2 + |Tnn — xmm’2)‘€n><€n’”

= |xnm - -Tmn|2 + |-Tnn - xmm|2

+ \/(2%6((37717% - xmn)(xnn - xmm)))2a

so, by item (a), we see that |6, (E(@)|| < |Pnm0%, (2)prum |, then

167 (E@NI < 1PrmOgn ()Prm | < P 1670 (@) 1P| < 1187 ()]

therefore |07, (£(@)| < 107, (@)l < llzlLrp, for all n,m, n # m, so

1@z, < llzlLrip,-
O
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Let 01,09 be states on B(h) then &,(01),E.(02) are diagonal states with
respect to (e;);jcy (i.e. measures probabilities on V'), then

tr((o1 — 02)€(x)) = tr(Ei(o1 — 02)E(x)) = Zx(s)(al —09)(s)

— [ st () = 20,
14

Note that, since tr(oj|p a) = tr(o;|pE(a))) = tr(o;j€(a)) for all a € B(h)),

Wa(oilp,o2lp) = sup [tr((o1 — 02)a)l
a€D,a=a*
= sup [ir((o1 —02)€(a))]
a€D,a=a*

= wq(o1("), 02("))

for all pairs (o1,02) of states. Then the restriction of Wy to the diagonal
subalgebra of B(h) coincides with the classical Wasserstein distance wy.

4. Estimates of Lipschitz Seminorm

In this section we prove some useful estimates on the norms of commutators
dmn(z). These estimates turn out to be useful for computing the exponential
convergence rate of a generic quantum Markov semigroup. We begin by some
simple lemma.

Lemma 5. Let e, f be two unit vectors in h and a,b € h. Then

9 1/2
mww+wxﬂW—§<WW+MW+(OMF—MW)+mew) )

In particular
1
3 <||a||2 + ||b||2) < |[1a){el + [B)(fII* < llall® + [1b]®

Proof. Let x = |a){e| + |b)(f|. Then z*zx is a rank-two self-adjoint operator
that can be represented by the 2 x 2 matrix

lall*  |{a,b)]
(|<a,b>| IIbH2>

Recalling that ||z||> = |lz*z| and computing the biggest eigenvalue we ob-
tain the squared norm of x. The last inequalities immediately follow from the
Schwarz inequality |(a,b)| < ||a|| - ||| O
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The previous Lemma will be used to deduce bounds of ||0,,, ()]

Proposition 6. For all n # m and all x € B(h) we have

||5nm(x)||2 < 2 (2 |Znn — xmm|2 + 2 [Tpm — xmn|2 (7)
ST ST SAT S |xm-|2>
j#Em,n j#Fmmn i#Fm,n i#m,n

Proof. Note that the above series converge because x is a bounded operator.
Computing

Omn(T) = |em)(Tno| + lem)(Tme| — |Tom){€n] — |Ton)(€ml

where x,, ¢ and x,, ¢ (resp. Tey and ey, ) denote the n and m row (resp. column)
vector of z. Keeping into account cancellations for i, 7 = n,m we find then

Omn (%) = lem)(Pn] + len)(¥m| — [€m)(enl — |1n)(em] (8)
where
an = (-’Enla---’-rnmfl’-rnm_xmn’xnerl’---axnn_xmm’-rnnJrl’---)
Q;Z)m = (-’Emla---’xmmfluxmm_-Tnnaxmerla---’xmn_xnmaxanrl’---)
fm = (_:Clmu"' a_fEmflmaO’ —Tm+1ms--- ,—CCnflm,O, _-TnJrlma---)
T = (_xlna"'a_xm—lnaoa _xm—f—lna-“a_xn—lnaoa _xn—f—lna"')

It follows then, from Lemma 5 and the elementary inequality ||z+y||? < 2||z||*>+

2]lyll?
18mn(@)1* < 2|llem)(@nl + len) Wil + 2 (1€m) (enl + Ima) {eml)*|

< 2 (gnll> + lbmll® + 1l + lrall?)

N IN

The proof is completed writing explicitly the norms of the four vectors ¢,,, ¥,
&n, Tim - ]

Proposition 7. For all n # m and all x € B(h) we have

”‘SRW(%)”2 > T — xmm’2 + [Znm — xmn‘Q 9)

+ max Z |-Tm'|27 Z |-’Emz|2}

i#m,n i#m,n
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Proof. Let p,, be the orthogonal projection onto the subspace generated
by e, and e,, Clearly, for all unit vector u € h we have

16m (@)1 2 16 (@)l 2 IS ()l

Note that vectors &,,n,, in (8) are orthogonal to e, e, and so the right-hand
side is equal to

{&n, ) en + (W, 1) eml® = [{dn, w)* + [($m, w)]*
Maximizing the right-hand side on the unit sphere in h we find

8nm (@) 1> = max { i gnll” [5m*|

and the claimed inequality follows computing the norms of ¢,, and ¥, O

For a self-adjoint = we can also find an upper bound for the norm of d,,,(x)
as a multiple of the right hand side of (9).

Theorem 8. For all self-adjoint x € B(h) and all n,m we have
Mpm(z) < Hénm(x)HQ < 8 My ()

where

i#m,n i#Fm,n

Mnm(x) = ‘xnn - xmm’2 + ’xnm - xmn‘Q + max Z ‘xm“Qa Z ‘xmz‘Q}

Proof. It suffices to apply Propositions 6 and 7 noting that, for a self-adjoint

operator x
Szl D il D il D el

Jj#Emmn jEm.n i#Em,n i#Emyn

is dominated by

4 max Z |Zni]?, Z ]a:mz\Q}

i#m,n i#Em,n

O

Remark 4. A straightforward application of Theorem 8 shows that our
Wasserstein norm is equivalent to the Hilbert-Schmidt norm for a finite V' (with
card(V') > 2) and, more generally, for a set V with a distance d such that

inf  d(m,l) >0 d d(m,1) < .
¥ ) > 0 and s dlm, 1) < oc
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5. Lipschitz Seminorm and Generic QMSs

Generic QMS arise in the stochastic limit of a open discrete quantum system
with generic Hamiltonian, interacting with Gaussian fields through a dipole
type interaction (see Refs.[1],[2] and [6]).

The generator is given by

L(x G*z + Z Ly, oLy + 2@,
k.j;k#j

H =" rglex)exl,

keV

D R WD V- N

jEV,K]'<I€k jEV,Kj<Kk

where

and operators G, Ly; given by

\/ Vijlei(exl, if K < kg
,/’yk. lej)(ex|, if kr < Kj,

e+ A
(B ) T e

kev k,j;k#j

We denote by D, and call it the diagonal subalgebra, the Abelian subalgebra
of B(h) of operators = such that (e;,xzer) = 0 for all k # j € V and D,y
the operator space of off-diagonal operators namely the closed (in the norm,
strong and weak* topologies) subspace of z € B(h) such that (eg,zer) = 0
for all £ € V. Finally, we also denote by (P;)¢>0 the strongly continuous
contraction semigroup on B(h) generated by G (see (10) and Theorem 3.1 of
[6]). The diagonal algebra D is clearly isometrically isomorphic to the Banach
space [*°(V). Identifying D with [°°(V') and taking the restrictions of T; to D
we find a weakly-* continuous classical sub-Markov semigroup 7" = (1})¢>0 on
[°°(V). Its generator L is characterized (see [13] Lemma 2.19) by

Dom(L) = Dom(L)NI>®(V), Lf=L(f) forall fe Dom(L).
A straightforward computation shows that the operator L satisfies

Lj, = Vjks for all j, k with sy < K4,
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Ly = 7];;., for all j, k with r; < kg,

L = — Z Vik Z Ve = — (kg +N).
{k,j€V|I€k<f€j} {k,jev‘fﬁj<f€k}
The following properties are important in this section.
Theorem 9. Let (T;):>0 be a generic QMS then:

(a) The Abelian subalgebra D and the operator space D,¢s are Ti-invariant
for all t > 0. Moreover Ty(x) = PjxP; for all x € Dyyy.

(b) The spectral gap of a generic generator L is always equal to the spectral
gap of the corresponding diagonal restriction L.

For a proof of the previous theorem, see Theorems 3 and 15 of [6].

Lemma 10. For all selfadjoint x € D,¢s and all t > 0 we have
18m (PP < 22 (|8m ()] + |8 (2)]])

where 1
c:§min{)\n—|—,un—|—)\m—|—,um]n7ém} (11)

andm'=m+1ifm+1#nandm' =m—-1ifm+1=n.
Proof. Clearly

PfxP, = Z et Nk (24805 k) g e Y (e .
J#k
In other words, the action of P;* - P; on matrix elements x5, of x corresponds to

multiplication by a scalar. As a consequence, by Proposition 6, for all n # m,
16 (PraP,)||? is smaller than

2
—2ct it(kn—kK —it(kn—kK 2 2
de Tpm€ (Rn—rm) _ Tmn€ (rin m)‘ + max E |xnz| s E |xm2| }}

i#Emyn i#Fmymn

Unfortunately

xnmeit(nn—nm) - xmne—it(nn—fcm) (12)

‘2
is not dominated by any multiple of |z, — xmn\2 (this happens, for instance,
when Z,;, = Ty, € R), therefore we bring into action another derivation &,
where, for instance m’ =m+1ifm+1#nandm' =m—-1ifm+1=n.
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Since z is self-adjoint, by Proposition 7, we have

2

it(kn—Km) —it(Kkn—FKm)

Tnm€ — Tmn€

2 .
‘ = 2 ‘S(mnme’t(ﬁnfﬁm))
< 20 |? < 2d(n, ) (|8 ()]

and the max{-,-} term is dominated by |8, (z)||>. The estimate of the norm
6pm (PFaP;)| now follows from the elementary inequality (r + s)%/2 < r1/2 4
s1/2 for all r, s > 0. O

Lemma 11. For all selfadjoint x € D,ss and all t > 0 we have

1P 2P prp, < 2V2(2+7r)e 2l Lrp,

where c is given by (11) and

7 = sup max
n#m

TR

Proof. Note that, for all n # m, we have

1onm (Prz Pl 2\/§€—ct(”5nm(x)u d(n,m/)ll%mf(w)\\)

_l’_

d(n,m) d(n,m) d(n,m) d(n,m’)
< 2B (14 ) ol
< 2B (14 AR g
< 227 (2 + ) /P, -

The conclusion is now immediate.

O

Remark 5. It is worth noticing here that if the set V' = N and the distance
is d(n,m) = |n — m|, then r = 1.

Given the structure of generic QMS 7T is clear that T restricted to D de-
fines a classical semigroup 7; satisfying an inequality with classical Wasserstein
curvature o4 Moreover:

Proposition 12. Let T be a generic QMS and let

Noge.

k := min
n#m

2
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Suppose that

7 = Sup max
n#m

(4 450 <

then
ITe(@)llLip, < (4V2+ 1+ 2V2r)e™ 2 1p,
for all t > 0 and for all x € B(h), = selfadjoint.

Proof. Let € : B(h) — D, where D is the diagonal subalgebra and £+ :=
I —&:B(h) = D,ss then, by Lemma 11 and propostion 4, we obtain that
ITe)ere, < ITeE@Nlsre, + ITE @) e,
< e M E@)||rp, + |PFES (@) P|Lrp,
< e % al|Lrp, +2V2(2 + r)e” | E x| L,
e~ |zl|rp, +2v2(2 + r)e” (|E(@) | Lip, + l|zllLrp,)
< (4V2 41+ 2V2r)e M|zl 1y p,

IN

with ¢ = %min{)\n + i + A+ |1 # m}.

Using the las sentence it follows that if

A A
k:_min{un+ n t pm m/\ad}.
n#m 2

and

d(m,m +1) d(m,m—l)} o~

P max{ d(n,m) 7 d(n,m)

n#m

we obtaint that

then taking y = (4\/§+1+§\/§r)6_m

Wa(Tet(p1), Tet(p2))
= (4V2+1+2V2r)e ™ sup  tr(pr— p2)T: (v)

lzllLrp, <1
< @V2+14+2v2r)e ™ sup  tr(pr - po)Ti ()
I7eW)lleip,
SAVEH142V20)e ™ sup tr(py — po)Ti (2)
lzllLrp, <1

= (4\/§ +1+ 2\/§7a)e_tde(p17 p2)7
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i.e., for all py, ps states in B(h) and for all ¢ > 0
WaTut(p1): Tt (p2)) < (AV2+ 14 2V27)e *Wa(p1, po) (13)

i.e., in other words, we obtain the following corollary

Corollary 13. Let T be a generic QMS and let

ke mi {un+An+um+Am }
= min Noge.
n#m 2

Suppose that

Uity o} <

r = sup max
n#m
then
Wa(Tat(p1): Tae(p2)) < (AV2 + 1+ 2v21)e " Wa(p1, p2)

for all states p1, p2.
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