
Summary
Smart farming takes place by using recent UAV-technology
for agricultural profitability. Multiple companies and research
centers are working on realizing real scenarious. But there
are only restricted experiences about how to process the data
faster and better in real-time. Autonomous systems that can
decide instanteously after receiving sensor information could
increase the farming efficiency. The agroindustry research
group from the Escuela Colombiana de Ingeniería and Uni-
versidad de Ciencias Aplicadas y Ambientales en Bogota-Co-
lombia in alliance with the University of Applied Sciences
Wuerzburg-Schweinfurt are committed to that idea.
This project uses an NVIDIA Jetson embedded board to pro-
cess agricultural information in order to find abnormalities.
In this article we prove that this board is able to make the
calculations for a vegetation index in real-time from multi-
spectral images.

Zusammenfassung
Die UAV-Technologie wird zunehmend zur Gewinnoptimie-
rung in der Landwirtschaft im Rahmen des Smart Farmings
eingesetzt. Eine Vielzahl von Unternehmen und Forschungs-
einrichtungen arbeiten an der Realisierung an aktuellen Fra-
gestellungen. Nur begrenzte Kenntnisse sind jedoch zu der
Frage vorhanden, wie die Daten schneller und in Echtzeit ver-
arbeitet werden können. Autonome Systeme, die im Moment
der Sensoraufnahme Entscheidungen treffen können, bieten
ein großes Potenzial der Effizienzsteigerung für die Landwirt-
schaft. Die Forschungsgruppe »Agroindustrie« an der Escue-
la Colombiana de ingenieria und die Hochschule für ange-
wandte Wissenschaften und Umwelt Bogota-Colombia arbei-
ten in Zusammenarbeit mit der Hochschule für angewandte
Wissenschaften Würzburg-Schweinfurt an dieser Idee.
In diesem Projekt wird eine NVIDIA Jetson Grafikkarte zur
Verarbeitung von für die Landwirtschaft relevanter Informa-
tion eingesetzt, um Störungen in der Vegetation zu finden.
Dieser Beitrag zeigt, dass die Berechnung eines Vegetations-
indexes aus Multispektraldaten in Echtzeit auf der Grafik-
karte möglich ist.

Keywords: Parallel programming, plants health, NDVI,
OpenCV, CUDA, NVIDIA Jetson.

1	 Introduction

The world changes fast, the population grows, the water
scarcity increases, the climate warms up and the farming

conditions are in danger. In 2050 the world population
will be about 9.7 billion (European Commission 2018).
This implies a giant challenge for organizations (includ-
ing the European Commission) committed to guarantee
food production using sustainable resources and promot-
ing research activities that respond to the farmers’ needs.

A common approach to work on that is the use of re-
mote sensing techniques to determine whether the crop is
healthy. This discipline has been working along decades
to create methods to acquire information from images
taken from satellites or airbornes. Right now, this kind of
information is easily obtained from images taken from
UAV because this technology has become popular. Aasen
et al. (2018) gives an overview on recent developments.
Specialized software is able to stitch a large amount of
photographs to obtain a high resolution image and, if
that image comes from a multi-spectral camera, it could
create maps with a specific index, like the normalized
differences vegetation index (NDVI).

This kind of software works offline, it means the user
needs to wait until the photographs were taken and the
computer has processed the huge amount of photo-
graphs. The delay between the moment the photographs
are captured and that the user really has the results to be
able to make a decision about the crops’ health could be
more than two days.

The research group of Agroindustry at the Escuela Co-
lombiana de Ingeniería Julio Garavito and Universidad
de Ciencias Aplicadas y Ambientales en Bogotá-Colom-
bia in alliance with the University of Applied Sciences
Wuerzburg-Schweinfurt are aware of that and work on
using drones for abnormalities detection in potato crops.

Parallel Programming to Analyze Crop-Health
in Real-Time

Angie Natalia Molina Muñoz, Ansgar Brunn,
Javier Chaparro and Alexander Pérez

Fig. 1: General structure of the real-time analyses process

M
od

ifi
ed

 f
ro

m
 H

al
fa

cr
ee

 2
01

7

DOI 10.12902/zfv-0249-201972 zfv 2/2019 144. Jg. © Wißner-Verlag

Fachbeitrag Molina et al., Parallel Programming to Analyze Crop-Health in Real-Time

The objective is that a drone can identify in the air if
an area is sick by using information from multi-spectral
cameras, as farmers would do using their eyes but with
the extra information provided by the spectral waves and
a NVIDIA Jetson TK1 as a brain to determine the status of
the plants as you can see at Fig. 1. The main idea is using
the NVIDIA on-board to process farming information ob-
tained through sensors, such as multi-spectral cameras,
IMU, GNSS among others, sending that information or
taking autonomous decisions based on the data.

That goal requires cooperation and a break down of
the general idea into work pieces. Hence, a first step is
to test the feasibility of using the GPU-NVIDIA embed-
ded board for processing real-time images obtained by a
multi-spectral camera for the detection of abnormalities
in potatoes crops in cooperation. It focuses on first de-
velopments with the NVIDIA functionalities, which allow
to create further developments, taking advantage of ma-
chine learning, and figuring out the speed of the image
processing on the NVIDIA Jetson TK1 for the detection of
abnormalities and whether it is as fast as to be considered
real time.

2	 Methods

2.1	 Key devices

2.1.1	 The multi-spectral sensor

The parrot sequoia is a multi-spectral sensor (Parrot Se-
quoia Team 2018). Its low weight enables it to integrate
with a large variety of drones. The multi-spectral camera
captures the amount of light reflected by the plants in
four bandwidth waves: green, red, red edge and near in-
frared, which are invisible to the human eye. It also con-
tains an RGB camera, global navigation satellite system
(GNSS), inertial measuring unit (IMU), internal storage
and wireless local area network connection (WLAN). The
capture features can be configured using an app on a
computer, tablet or smartphone joined to the WLAN.

On the app, it is possible to calibrate the camera and
set the triggering mode: auto trigger captures images
based on a defined overlap, distance trigger take the pic-
tures every distance predefined between 5 m and 1 km,
and time-lapse triggers as fast as 0.5 frames per second
on the RGB images and 1 frame per second for the mul-
ti-spectral channels (Pix4D Team 2018) (cf. Fig. 2 and
Fig. 3).

In this work, we focus on the images of the RED and
the NIR channel.

2.1.2	 The processing board

The NVIDIA Jetson is an embedded board that offers
computational capabilities integrating a central process-
ing unit (CPU), graphic processing unit (GPU) and sockets

to connect a large number of different peripheral devices
such as a camera, a keyboard, a mouse, a Kinect, digital
and analog outputs and inputs, supporting communica-
tion protocols as Ethernet, serial RS232 and I2C among
others. On their web page NVIDIA states: “NVIDIA Jet-
son is the world’s principal AI computing platform for
GPU-accelerated parallel processing based on CUDA in
mobile embedded systems. Ideal for deep learning and
computer vision embedded projects.” (NVIDIA Corpora-
tion 2018). In spite of its capabilities it has a low power
consumption (from 1.5 W to 45 W), which varies depend-
ing on the connected peripherals. These features and its
low weight enable the board to be easily mounted on a
UAV. Massive parallel programming of the GPU provides
its processing speed.

2.2	 Normalized Difference Vegetation Index

Ending the 1970s, scientists found a relationship between
the plants productivity and the radiation absorbed by
them. That association resulted in the Normalized Differ-
ence Vegetation Index (NDVI) (cf. Albertz 2001 or Weier
and Herring 2018). Researchers at NASA have collected
satellite NDVI information to measure the productivity
status from different regions and compare them year-
ly. Both healthy and unhealthy plants reflect the near
infrared light (NIR) but just healthy plants absorb a high

Fig. 2: RGB image of the scene of crop agriculture

Fig. 3: Multi-spectral datasets of the scene. The inputs dis-
played in the windows are the NIR and the RED channel.

73144. Jg. 2/2019 zfv© Wißner-Verlag

FachbeitragMolina et al., Parallel Programming to Analyze Crop-Health in Real-Time

amount of red light (RED) (Fig. 4). The index is calculated
using the equation:

−
=

+
NIR REDNDVI
NIR RED

	 (1)

If the near infrared reflectance (NIR) increases as it does
with vegetation and the red light (RED) reflectance rises
as well, that means they are not using the red lights for
the photosynthesis process, they are less healthy (Fig. 5).
If we subtract the red light from the near infrared, the
numerator will be significantly less than the denominator
and we will obtain values close to 0. Typically values are
between 0 and a threshold t1, which is season dependent.
In this scenario, a threshold t1 = 0.33 has been found to
be appropriate. If the near infrared reflectance increases,
as it does with vegetation, and the red light is almost not
reflected, similar values in the numerator and denomi-
nator are obtained. The result is an index close to 1. The
values from t1 to t2 = 2t1 are considered as moderately
healthy plants and values from t2 to 1 as very healthy
plants. Finally, if the near infrared reflectance is less than
red light, it is not vegetation at all and it could be in most
of the cases considered as soil.

2.3	 The general process structure

The images were captured by members of the Agroindus-
try research group from the Escuela Colombiana de In-
geniería Julio Garavito and the Universidad the Ciencias
Aplicadas in Bogotá and Boyacá, Colombia. For the first
tests, we read the input images from USB memory, which
could be replaced by the USB camera cable. Then, we cal-
culated the NDVI index on the Jetson. We implemented
two programs, one just using OpenCV library functions,
that are executed just on the CPU, and a second version
adding CUDA functionalities to take advantage from the
GPU speed processing, both of them are written in C++.

The basic algorithm for both programs is the same:
load the input images, create the output and extra vari-
ables, calculate the NDVI, measure the process time and
print the results. The specific details vary with the specific
utilities used, the Fig. 6 presents the two code structures

Fig. 4: Both healthy and unhealthy plants reflect the
near infrared waves. With the NDVI we can identify a
vegetation element because just unhealthy reflect a high
amount of red light.

W
ei

er
 a

nd
 H

er
rin

g
20

18

Fig. 6: Parallel CPU and GPU resume process description:
The GPU process implies more complex structure
and a harder work during the programming. The green
frames correspond to the initialization steps, the blue
frames contain the main CPU functions, the purple frames
represent the functions launched on the kernel and
finally the yellow frame symbolizes the output phase.Fig. 5: Four levels of health and their NDVI range

Ta
ip

al
e

20
17

74 zfv 2/2019 144. Jg. © Wißner-Verlag

Fachbeitrag Molina et al., Parallel Programming to Analyze Crop-Health in Real-Time

simultaneously. The GPU process implies a more complex
structure and a harder work during the programming
stage, because of additional necessary commands for the
memory managment.

2.4	 The OpenCV or CPU process structure

“OpenCV is an open source computer vision and machine
learning software library” (OpenCV 2018). It provides
functions for computer vision, augmented reality, gesture
recognition developments, “more than 2500 algorithms”
(OpenCV 2018). You can create from simplest to most
complex applications. Due to its free license, it is current-
ly used by companies, research groups and governmental
institutions. A special OpenCV version is available on the
Jetson board within the JetPack, the software installation
package for the operating system, OpenCV4Tegra, which
is a optimized version for GPU uses.

The first step in the OpenCV or CPU process is to in-
itialize the inputs, outputs and auxiliary variables: we
use the getTickCount() function to measure the time, read
the NIR, RED and RGB images from the USB folder and
create the result images with the same size as the input
images, using one channel and defining a float data type
since we will store the NDVI index, which is a decimal
value. The second step is to calculate the NDVI index: we
walk through the image using two for functions calcu-
lating pixel per pixel the NDVI value accessing the pixel
value with the .ptr function, specifying the data type,
the position and the channel; the third step is to clas-
sify healthy and unhealthy values: we use the thresh-
old function to categorize the pixels as it is showing in
the following equation establishing as threshold value t1
(cf. sec. 2.2). Values lower than the limit are determined
as unhealthy vegetation and soil material. This result will
be displayed with a 0 intensity (black), and values bigger
than the limit are settled as healthy plants (binarization).
Those will be displayed with a 255 intensity (white).

() ()255 if result , 0.33
,

0 otherwise
>

= 


x y
 st x y 	 (2)

2.5	 The CUDA or GPU process structure

“CUDA is a parallel computing platform and program-
ming model” (NVDIA Corporation 2018) that allows ac-
cess to the GPU cores resources in order to accelerate
deep learning, analytics, and engineering applications,
e. g. image processing. Introductory examples can be
found in Sanders and Kandrot (2015) and Storti and Yur-
toglu (2015).

CUDA supports the most common languages C/C++,
Fortran, Phyton, among others. The CPU, which is called
the host, has a sequential code. When a part of the code

consists in processing a huge amount of data, the host
asks the device, the GPU, to process that data in its thou-
sands of threads. The programming model allows to pro-
gram both processors on the same block code. The NVIDIA
compiler divides the work for each one depending on the
instructions indicated by applying a few keywords on the
host. Those keywords let the developer run one piece of
the code in one thread. The amount of threads depends
on the capabilities of the GPU. CUDA assumes the device
is a co-processor to the host, each one having their own
separate memories.

The GPU programming follows a strict structure, since
the execution success depends on it. In short, it requires
on the CPU side: allocating the enough storage on the
GPU, moving the original data from the CPU memory to
the GPU memory; launching the kernel – to ask the GPU
to work; copying the result data on the CPU back from
the GPU. CUDA GPUs have many parallel processors
grouped into Streaming Multiprocessors, or SMs. Each
SM can run multiple thread blocks. To take full advan-
tage of all those threads, it is necessary to launch the ker-
nel with multiple thread blocks. Within the kernel every
thread is responsible for a small piece of data. It knows
its own data using again keywords provided by CUDA:
gridDim.x contains the number of blocks in the grid
(blocks of parallel threads), blockIdx.x indicates the cur-
rent thread block index in the grid, blockDim.x specifies
the threads amount in the thread block, and threadIdx.x
represents the thread index at the thread block (Harris
2017). The .x represents the x dimension, actually a grid
is able to have 2Dims, a block of threads 3Dims and a
thread 3Dims. You can imagine the data structured in a
big cube, which is composed by “smaller” cubes, likewise
they are composed by tiny cubes that contain single in-
formation with 3Dim data. The GPU programming has a
strict structure for mapping the data to the GPU memory
and vice versa, which is a process where each thread also
obtains a single index based on its location in that big
cube. The developer decides on the number of dimen-
sions that are needed.

The NDVI calculation on the GPU process is briefly
desribed in the following. We start on the CPU: reading
the images from the USB folder and declaring the outputs
for the host data, basically as we did during the OpenCV
process, but this time creating a device copy of all of
them. Then, the storage needed for using the data inside
of the GPU is calculated. Afterwards, the space for the
device image copies is allocated using the CUDA func-
tion cudaMalloc. It is necessary to specify the data type.
The input data is copied from the host to the device using
the cudaMemcpy function. In this step we use also the
Mat.ptr() function to copy the images. To define how the
work should be distributed in our big cube, we declare a
2Dim variable block indicating that we use 16 blocks. In
the variable grid we store the quantity of threads needed
to cover the complete image. We create two GPU pro-
cess codings, they just differ on this step: changing the

75144. Jg. 2/2019 zfv© Wißner-Verlag

FachbeitragMolina et al., Parallel Programming to Analyze Crop-Health in Real-Time

amount of blocks from (16,16) to (1,1), which means just
one block. The nvdi kernel is launced (we called our ker-
nel function ndvi since it calculates the NDVI index) like
a standard C++ function is called, indicating between
brackets the variables given to the function, but addi-
tionally specifying inside of three angle brackets the in-
formation of the data distribution – the launch instruc-
tion of our kernel looks something like

ndvi<<<grid,block>>>(var1, var2, var3, ...);

advancing we jump inside our kernel function where we
start: mapping the data from 2Dim to just one index,
we calculate first the start position of every thread block
(block index times the block size: blockIdx.*blockDim)
and adding the thread’s index within the block (thread-
Idx.), in resume

myIndex = blockIdx*blockDim. + threadIdx

(Harris 2017). In the next step, we calculate the NDVI as
a single calculation of just one pixel and binarizing the
result as we did in the OpenCV process (CUDA does the
proliferation). Thereupon, we jump back to the host, cop-
ying the results back from the device to the host variables
and, lastly displaying the final results.

3	 Results

The output is shown in Fig. 7. The result of the NDVI
calculation is on the left. Each pixel represents the index
value in a gray scale equivalence. Dark pixels identify
unhealthy plants or soil elements with an index close
to 0, white pixels contain information from the healthiest
plants with highest values of index calculation close to 1.
Most of the pixels contain a gray value and represent
index values somewhere in the middle. The figure on the
right is the segmentation image, which is a binary im-
age, deviding the vegetation, grouped into healthy and
unhealthy plants. Black pixels mean unhealthy plants.
White pixels represent the healthy plants.

The processing times are shown in Fig. 8 and Fig. 9.
The GPU grouping process dividing the data into blocks
is almost 10 times faster than the CPU process. It took
0.1 seconds for the application without dividing the
data, that is almost 3 times faster during the launching
phase than running multiple blocks. The speed differ-
ence between video recording (typically 20 or 25 frames
per second) and the NDVI calculation is about 0.4 milli-
seconds.

4	 Discussion

We showed that the velocity of the process on the
NVIDIA Jetson board can be considered real time. The
speed is very close to the recording video speed and the
outcome time is even faster than the acquiring time from
the sequoia Parrot camera, which can just take one set of
multi-spectral images per second. This provides enough
time to do extra processes like sending new instructions
to the drone pilot or perform additional calculations, in
order to find extra details about the crops.

Fig. 7: The RESULT image (left) shows the NDVI calcu-
lation and the SEGMENTATION image (right) the binary
image after the thresholding function.

Fig. 8: That’s almost a 3x speedup, from running multi-
ple blocks (82.33 ms down to 30,184ms for the launch).
40.4 milliseconds for the whole CUDA processing.

Fig. 9: The output from nvprof command, showing the
time needed for the NVDIA call: It is shown as well the
detailed time spend for other tasks associated with the
process.

76 zfv 2/2019 144. Jg. © Wißner-Verlag

Fachbeitrag Molina et al., Parallel Programming to Analyze Crop-Health in Real-Time

Up to now, the empirical resulting images give an
unclear view of what is healthy or not after the NDVI
calculation. For this reason, it was necessary to create a
segmentation image that shows just two possible results
more clearly, healthy or unhealthy. However, this output
contains a considerable amount of noise. Following stud-
ies will focus on reducing that effect.

This work is a first step of a bigger project. We started
almost from scratch, including the tool's learning and a
short time for the test part to analyze more inputs with
other features. The next steps will involve the evaluation
of the final output and restructure of the system chang-
ing variables in order to improve the final results, like
capturing closer pictures to get improved classifications,
varying the height of the flight and calculate the healthy
vegetation index taking into account the radiometric
calibration from the camera.

Nowadays, a giant amount of data is coming from
uncountable sensors and tools. This data can be pro-
cessed quickly using parallel programming solving spe-
cifically applied problems. The Jetson Board allows the
implementation of those applications for remote usage
bringing that technology in real time to new application
fields.

Acknowledge
The authors thanks to Prof. Fernando Javier Peña at Uni-
versidad de Ciencias Aplicadas (UDCA) in Bogotá, Co-
lombia by their collaboration to have access to the potato
crops.

References
Aasen, H., Honkavaara, E., Lucieer, A., Zarco-Tejada, P. J. (2018): Quan-

titative remote sensing at ultra-high resolution with uav spectros-
copy: A review of sensor technology, measurement procedures,
and data correction workflows. Remote Sensing, 10 (7), 2018.
ISSN 2072-4292. DOI: 10.3390/rs10071091. www.mdpi.com/2072-
4292/10/7/1091.

Albertz, J. (2001): Einführung in die Fernerkundung: Grundlagen
der Interpretation von Luft- und Satellitenbildern. Wiss. Buch-
ges. ISBN 9783534146246. https://books.google.de/books?id=Kd-
FAAAACAAJ.

European Commission (2018): La investigación y la innovación agraria.
http://ec.europa.eu/agriculture/research-innovation/index_es.htm.

Halfacree, G. (2017): Nvidia Jetson TK1 – Full Board. https://www.flickr.
com/photos/120586634@N05/14672953894.

Harris, M. (2017): An even easier introduction to CUDA. https://
devblogs.nvidia.com/even-easier-introduction-cuda.

NVDIA Corporation (2018): CUDA zone, 2018. https://developer.nvidia.
com/cuda-zone.

NVIDIA Corporation (2018): Embedded system – build something
amazing. https://www.nvidia.com/en-us/autonomous-machines/
embedded-systems.

OpenCV (2018): OpenCV – About. https://opencv.org/about.html.
Parrot Sequoia Team (2018): Parrot Sequoia+. www.parrot.com/

business-solutions-us/parrot-professional/parrot-sequoia#parrot-
sequoia-.

Pix4D Team (2018): Pix4d. https://pix4d.com/sequoia-faq.
Sanders, J., Kandrot, E. (2015): CUDA by Example: An Introduction to

General-Purpose GPU Programming. Addison-Wesley Professional,
6th edition, 2015. ISBN 0131387685, 9780131387683.

Storti, D., Yurtoglu, M. (2015): CUDA for Engineers: An Introduction to
High-Performance Parallel Computing. Addison-Wesley Profession-
al, 6th edition, 2015. ISBN 013417741X, 9780134177410.

Taipale, E. (2017): NDVI and your farm: understanding NDVI for plant
health insights. https://sentera.com/understanding-ndvi-plant-
health.

Weier, J., Herring, D. (2018): Measuring Vegetation (NDVI & EVI).
https://earthobservatory.nasa.gov/Features/MeasuringVegetation.

Contact
Angie Natalia Molina Muñoz  |  Javier Chaparro  |  Alexander Pérez
Escuela Colombiana de Ingeniería Julio Garavito
AK. 45 No. 205-59 (Autopista Norte)
Bogotá, Colombia
angie.molina-m@mail.escuelaing.edu.co
javier.chaparro@escuelaing.edu.co
alexander.perez@escuelaing.edu.co

Ansgar Brunn
University of Applied Sciences Würzburg-Schweinfurt (FHWS),
Faculty of Plastics Engineering and Surveying, Geo group
Röntgenring 8, 97070 Würzburg, Germany
ansgar.brunn@fhws.de

This article also is digitally available under www.geodaesie.info.

77144. Jg. 2/2019 zfv© Wißner-Verlag

FachbeitragMolina et al., Parallel Programming to Analyze Crop-Health in Real-Time

http://doi.org/10.3390/rs10071091
http://www.mdpi.com/2072-4292/10/7/1091
http://www.mdpi.com/2072-4292/10/7/1091
https://books.google.de/books?id=Kd-FAAAACAAJ
https://books.google.de/books?id=Kd-FAAAACAAJ
http://ec.europa.eu/agriculture/research-innovation/index_es.htm
https://www.flickr.com/photos/120586634@N05/14672953894
https://www.flickr.com/photos/120586634@N05/14672953894
https://devblogs.nvidia.com/even-easier-introduction-cuda
https://devblogs.nvidia.com/even-easier-introduction-cuda
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems
https://opencv.org/about.html
http://www.parrot.com/business-solutions-us/parrot-professional/parrot-sequoia#parrot-sequoia-
http://www.parrot.com/business-solutions-us/parrot-professional/parrot-sequoia#parrot-sequoia-
http://www.parrot.com/business-solutions-us/parrot-professional/parrot-sequoia#parrot-sequoia-
https://pix4d.com/sequoia-faq
https://sentera.com/understanding-ndvi-plant-health
https://sentera.com/understanding-ndvi-plant-health
https://earthobservatory.nasa.gov/Features/MeasuringVegetation
mailto:angie.molina-m@mail.escuelaing.edu.co
mailto:javier.chaparro@escuelaing.edu.co
mailto:alexander.perez@escuelaing.edu.co
mailto:ansgar.brunn@fhws.de
www.geodaesie.info

