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a b s t r a c t 

Background and objectives: Spectral Domain Optical Coherence Tomography (SD-OCT) is a volumetric 

imaging technique that allows measuring patterns between layers such as small amounts of fluid. Since 

2012, automatic medical image analysis performance has steadily increased through the use of deep 

learning models that automatically learn relevant features for specific tasks, instead of designing visual 

features manually. Nevertheless, providing insights and interpretation of the predictions made by the 

model is still a challenge. This paper describes a deep learning model able to detect medically inter- 

pretable information in relevant images from a volume to classify diabetes-related retinal diseases. 

Methods: This article presents a new deep learning model, OCT-NET, which is a customized convolutional 

neural network for processing scans extracted from optical coherence tomography volumes. OCT-NET 

is applied to the classification of three conditions seen in SD-OCT volumes. Additionally, the proposed 

model includes a feedback stage that highlights the areas of the scans to support the interpretation of 

the results. This information is potentially useful for a medical specialist while assessing the prediction 

produced by the model. 

Results: The proposed model was tested on the public SERI-CUHK and A2A SD-OCT data sets containing 

healthy, diabetic retinopathy, diabetic macular edema and age-related macular degeneration. The experi- 

mental evaluation shows that the proposed method outperforms conventional convolutional deep learn- 

ing models from the state of the art reported on the SERI+CUHK and A2A SD-OCT data sets with a preci- 

sion of 93% and an area under the ROC curve (AUC) of 0.99 respectively. 

Conclusions: The proposed method is able to classify the three studied retinal diseases with high accuracy. 

One advantage of the method is its ability to produce interpretable clinical information in the form of 

highlighting the regions of the image that most contribute to the classifier decision. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Ophthalmic diseases related to Diabetes Mellitus (DM) are char-

cterized by a vascular permeability of retinal vessels with fluid ac-

umulating in retinal layers [1] . Diabetic Retinopathy (DR) and Di-

betic Macular Edema (DME) are two non-exclusive complications

hat affect the visual field [2] . The diagnosis of these complications

s not an easy task, since edema can occur in subjects with and

ithout DM at any stage of DR, with similar symptoms but with
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ifferent treatment strategies and associated costs [3] . Age-related

acular Degeneration (AMD) is linked to macular changes derived

rom non-modifiable and modifiable risk factors. The diagnosis is

ased on typical changes related to aging and visual loss and prog-

osis is related to the severity of the either geographic atrophy or

horoidal neovascular membrane [4] . 

The Spectral Domain Optical Coherence Tomography (SD-OCT)

s a widely accepted noninvasive imaging approach that contains

mages of the depth of the retina through a set of B-scan (2D im-

ges) used to detect abnormalities among the ten retinal layers

ith an accurate diagnosis of retinal disorders [5] . A typical oph-

halmological examination of the retina may include an analysis

f eye fundus images and in some cases SD-OCT to locate retinal

https://doi.org/10.1016/j.cmpb.2019.06.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
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vascular damage and changes in choroidal thickness [6] . The

DR and DME diagnoses are performed by looking for the pres-

ence of microaneurysms, intraretinal hemorrhages, exudates and

edema [7–9] . The evaluation of the thickness of the neurosensory

retina, retinal pigment epithelium, and choroid are analyzed inde-

pendently for the AMD diagnosis [10,11] . 

Automatic image analysis methods based on machine learn-

ing have shown to be a valuable tool to support medical decision

making [12,13] . In particular, deep neural network methods have

been explored in several medical domains exhibiting promising re-

sults. The results of deep neural networks include: the detection

of red lesions in fundus images [14] , prediction of breast, lung and

stomach cancers using RNA-sequence data [15] , early diagnosis of

Alzheimer’s disease using CT brain images [16] and the recognition

of emotions using multimodal physiological signals [17] . 

Deep learning methods applied to SD-OCT presented outstand-

ing results in automatic segmentation and disease classification

tasks. For a segmentation task, the state of the art presents an

overall Dice coefficient (mean of all tissues) ranging between 0.90

and 0.95 using known architectures such as VGG [18] , U-Net [19–

22] or DenseNet [23,24] . The classification of SD-OCT volumes has

mainly focused on two approaches: (1) the manual or automatic

feature extraction combined with ensemble classifiers, and (2) the

use of end-to-end deep learning models. 

This paper presents a deep learning-based method with a feed-

back stage for automatic classification of B-scans inside a volume

for three retinal diseases. The method is able to automatically

identify visual patterns associated with several pathologies and use

them to make accurate predictions. The model has the ability to

highlight the patterns in the input image, allowing the expert to

better understand the model prediction. The remainder of this ar-

ticle is organized as follows: in Section 2 the main work for retinal

disease classification using SD-OCT volumes is summarized. Then,

the volume preprocessing and the convolutional neural network-

based model architecture are presented in Section 3 . The data sets

and baseline models used are described in Section 4 . The experi-

mental results are reported in Section 5 . Finally, Section 6 discusses

the outcomes and finishes with conclusions. 

2. Related work 

The end-to-end OCT-NET model was tested on a data set that

contains 32 SD-OCT volumes with healthy and DME patients com-

monly known as the SERI (Singapore Eye Research Institute) data

set as explained in details in Section 4.1 . In this previous work,

the OCT-NET model obtained an outstanding performance using a

leave-one-patient-out evaluation methodology with an accuracy of

93.75 ± 3.125% and a sensitivity and a specificity of 93.75% [25] .

This paper presents an extended version that addresses three

main challenges: (1) the qualitative evaluation of B-scans to high-

light medical findings using a visualization stage; (2) the quanti-

tative evaluation of SD-OCT volumes with three retinal diseases

from two OCT scanners, and (3) the medical feedback of quanti-

tative and qualitative evaluations to validate the usefulness of the

methodology. 

The main work reported on the SERI data set is characterized by

using deep learning architectures pre-trained on ImageNet 1 com-

bined with ensemble classifiers. First, Awais et al. [26] presented

a method that used block-matching and 3D filtering (BM3D) for

removing the speckle noise in SD-OCT. The new filtered volumes

fed a pre-trained VGG-16 with a k -Nearest Neighbors (kNN) al-

gorithm to classify features from the three dense layers with an

accuracy, sensitivity, and specificity of 93%, 87% and 100% respec-
1 http://www.image-net.org/ . 

s  

w  

L  
ively. In a similar way, Chan et al. [27] designed a method that ap-

lies a BM3D filter and saturation removal. The processed volumes

re then used as input of three pre-trained architectures known as

lexnet, VGG and GoogleNet. The last convolutional layers of each

odel are fused and a feature space reduction is performed us-

ng Principal Component Analysis. The volumes are classified using

 Support Vector Machine (SVM) with a precision, sensitivity and

pecificity of 93.75%. Finally, Kamble et al. [28] proposed the fusion

f residual connections with an inception architecture termed as

nception-ResNet-v2. This model used as an input filtered volumes

ith a BM3D filter stage and presented a performance of 100% in

ccuracy, specificity and sensitivity. 

The most representative work classifying SD-OCT volumes on

he A2A SD-OCT data set is mainly reported in three papers [29–

1] . Sun et al. [29] manually cropped patches based on the anno-

ation of interest points to calculate a Histograms of Oriented Gra-

ient (HOG) and merged them as the training set. Then, Principal

omponent Analysis (PCA) was performed for reducing the length

f the HOG features. Finally, a multiple instance SVM classifier was

rained with the PCA-transformed patch representation and tested

o classify volumes on the test data set obtaining an accuracy, sen-

itivity and specificity of 94.4%, 96.8% and 92.1% respectively. 

Venhuizen et al. [30] developed an unsupervised clustering

tage to extract interest points in 31 B-scans per volume centered

t the fovea of 284 SD-OCT volumes as the training data set. The

umber of 9 × 9 patches is reduced by the application of a uniform

ubsampling by a factor of 8. Then, the patches are normalized to

ero mean and unit variance before the extraction of 9 principal

omponents through PCA. A bag of words is created using k -means

lustering with an experimental value of k = 100 on the total set

f PCA-transformed patches. Finally, the unsupervised clustering is

ombined with a supervised training stage that uses a random for-

st classifier with a number of trees set to 100 trained to differen-

iate healthy subjects from AMD subjects. The performance on the

est data set after classifying 50 AMD and 50 healthy subjects was

n AUC of 0.984. 

Chakravarty et al. [31] designed a two-stage retinal atlas for

acular SD-OCT volumes that comprises a pre-processing and a

lassification stages. First, the pre-processing step resized the im-

ges to a pixel dimensions of 3.6 μm by 8.6 μm. A denoising and

ntensity standardization is applied to reduce the speckle noise in

he volumes. Moreover, a retinal curvature flattening of the SD-OCT

olumes is performed, where each B-scan is flattened and aligend

cross the volume. Finally, the Region of Interest (RoI) by SD-OCT

olume is defined to a set of 31 B-scans with the 108 axial scans

entered at the macula, where the histogram is calculated and

oncatenated across all the RoI’s. The binary classification stage is

one using a linear SVM presenting an accuracy and an AUC of 98%

nd 0.996 respectively for AMD classification. 

The state of the art for classifying real-world scans is

ainly focused in three deep learning approaches. De Fauw

t al. [32] trained with two private data sets a two-stage deep

earning-based pipeline: a deep segmentation network with a

hree-dimensional U-Net architecture and a deep classification net-

ork to predict the diagnosis probability and the referral sug-

estions using the segmentation. The deep segmentation network

as trained using 877 SD-OCT volumes acquired by Moorfields Eye

ospital with a Topcon 3D OCT device, where the three most rep-

esentative slices were manually segmented in a detailed tissue-

egmentation map with 15 classes including anatomy, pathology

nd image artifacts. The classification network was trained using

he 43 most representative slices of 14,884 SD-OCT volumes ob-

ained from 7621 patients referred by the experts as subjects with

ymptoms suggestive of macular pathology. The model was tested

ith 997 patients obtaining an area under the ROC curve of 99.21%.

ee et al. [33] used a VGG-16 convolutional neural network applied

http://www.image-net.org/
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Fig. 1. Overview of the six-stage proposed deep learning model for retinal disease classification. (1) The raw SD-OCT volume for a database; (2) The volume preprocessing 

stage to resize and crop to an input size; (3) the OCT-NET model to extract features from all the scans in a volume; and the interpretability three-stage (4,5,6) to classify 

and evaluate qualitative and quantitative the scans and the SD-OCT volumes. 
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n a private data set for the classification of normal and AMD.

he deep learning model receives as an input a scan with a size

f 192 × 124 and performed 13 convolutional layers with an in-

remental number of filters and 3 dense layer to classify the two

lasses. The image database was acquired using a Heidelberg Spec-

ralis OCT device with 80,839 images in the training set and the

est set contains 20,163 images. The results at image level pre-

ented an area under the ROC curve of 92.78% with an accuracy of

7.63%, a sensitivity of 84.63% and a specificity of 91.54%. Addition-

lly, an occlusion test identified the RoIs with the areas contribut-

ng most to the deep neural network’s probability. Finally, Kermany

t al. [34] used a pretrained Inception V3 from ImageNet to predict

our classes: Normal, Choroidal Neovascularization (CNV), DME and

rusen. The method was trained using a public data set acquired

y Heidelberg Spectralis OCT device with 108,312 images for train-

ng and tested in 10 0 0 with 250 per class. The best results on the

est set presented an accuracy of 96.6%, a sensitivity of 97.8%, and

 specificity of 97.4%. In addition, a sliding window of 20 × 20 was

ystematically moved across 491 images to record the probabilities

f the disease. 

Although previous work reported very good results in the clas-

ification task, the performance of these methods is crucially de-

endent of the manual extraction of RoIs and in some case lim-

ting the number of scans from the SD-OCT volumes. The pro-

osed model provides the highlighted areas in all scans into vol-

mes with a validation performed by two ophthalmology experts.

istinctively from previous work, our approach automatically clas-

ifies AMD but also produces useful medical information at quali-

ative and quantitative levels inside an SD-OCT volume to support

edical decision making in the diagnosis of AMD. 

. Methods 

This section presents the details of the SD-OCT classification

odel based on deep neural networks and more specifically OCT-

ET. The method comprises six stages as shown in Fig. 1 and it

s available in a repository of Github. 2 The first stage (1) receives

 raw SD-OCT volume with speckle noise that hinders layers and

bnormalities among the layers as an input. Then, the volume pre-

rocessing stage (2) makes the detection of the Internal Limiting

embrane (ILM) and the Retinal Pigment Epithelium (RPE) layers,

o resize the volumes in order to crop the relevant raw pixels into
2 https://github.com/Ojperdomoc/OCT-NET.git . 

r  

i  

f  
he volumes as presented in Section 3.1 . Furthermore, the OCT-NET

odel (3) performs the feature extraction to classify each B-scan

s healthy or non-healthy. Simultaneously, the disease classifica-

ion stage (4) calculates with a majority rule the prediction for the

olume as explained in detail in Section 3.2 . Then, the Class Ac-

ivation Map (CAM) visualization stage (5) allows to highlight the

elevant zones of the scans used by the OCT-NET model to classify

 specific retinal disease as reported in Section 3.3 . Finally, the ex-

ert feedback stage (6) evaluates the provided information in the

isease classification and the CAM visualization stages to qualita-

ively validate the obtained results. 

.1. SD-OCT volume preprocessing 

A spectral domain optical coherence tomography is a volumet-

ic array V ( n, a, b ) that can be defined as a set n of 2D-images

alled B-scans or cross-sectional scans I ∈ R 

a × b , with a corre-

ponding label l ⊂ { Healthy, DME, DR − DME and AMD } . The in-

ut for the customized OCT-NET was set for scans with size of

24 × 224 × 1 as described in Section 3.2 . Therefore, a set of trans-

ormations are needed for automatically extracting a RoI per scan

n the SD-OCT volume. 

A median filter was applied to SD-OCT scans with a thresh-

ld to differentiate speckle noise from retinal layers as reported

n [25,35] . First, the RoI was automatically detected using a median

lter with a kernel size of 3 × 3 and a threshold of 0.5 to highlight

he top layer (ILM) and bottom layer (RPE) in the volume as shown

n stage (2) of Fig. 1 . 

Each image cropped without scaling in such a way that the re-

ulting image fully contains the RoI. This is independently done for

ach B-scan hence that the process is not affected by a pronounced

ilt. Finally, these cropped images are resized keeping aspect ra-

io to ensure the relevant information in a volume dimension of

 input ∈ R 

n ×224 ×224 . 

.2. OCT-NET model 

OCT-NET is a customized Convolutional Neural Network (CNN)

nspired by the VGG model reported by Simonyan and Zisser-

an [36] . The proposed model is based on the combination of

onvolutional and max-pooling layers in four sub-blocks that are

esponsible for the feature extraction in the CNN and the remain-

ng layers conforming the classification sub-block to classify a scan

rom an OCT-volume. In summary, the OCT-NET model contains 10

https://github.com/Ojperdomoc/OCT-NET.git
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Table 1 

Structure of OCT-NET with the parameter layer, output shape and trainable parameters of 

each layer. 

N Layer Output shape Number of parameters 

0 Input 224 × 224 × 1 0 

1 Conv2D (kernel size = 3 × 3) 222 × 222 × 32 320 

2 Conv2D (kernel size = 3 × 3) 220 × 220 × 32 9248 

3 Conv2D (kernel size = 3 × 3) 218 × 218 × 32 9248 

4 MaxPooling2D (pool size = 2 × 2) 109 × 109 × 32 0 

5 Conv2D (kernel size = 3 × 3) 107 × 107 × 64 18496 

6 Conv2D (kernel size = 3 × 3) 105 × 105 × 64 36928 

7 MaxPooling2D (pool size = 2 × 2) 52 × 52 × 64 0 

8 Conv2D (kernel size = 3 × 3) 50 × 50 × 128 73856 

9 Conv2D (kernel size = 3 × 3) 48 × 48 × 128 147584 

10 MaxPooling2D (pool size = 2 × 2) 24 × 24 × 128 0 

11 Conv2D (kernel size = 3 × 3) 22 × 22 × 256 295168 

12 Conv2D (kernel size = 3 × 3) 20 × 20 × 256 590080 

13 Conv2D (kernel size = 3 × 3) 18 × 18 × 256 590080 

14 MaxPooling2D (pool size = 2 × 2) 9 × 9 × 256 0 

15 Dense 4096 84938752 

16 Dropout (rate = 0.5) 4096 0 

17 Dense number of classes 8194 
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3 https://www.zeiss.com/meditec/int/products/oct-optical-coherence-tomography. 
convolutional layers, 4 max-pooling layer, 2 fully connected layers,

and 1 dropout layer as shown in detail in Table 1 . 

The input layer receives an image with a size of 224 × 224 × 1

as reported in Section 3.1 . The number of filters of the con-

volutional layers in the four sub-blocks is inspired by the VGG

model [36] , with the difference that OCT-NET has a number of fil-

ters f n defined by an arithmetic series, as described in Eq. (1) as

follows: 

f n = f 0 + 32 ∗ (n − 1) (1)

where the parameter f 0 = 32 and n is the number of sub-blocks

with 1 ≤ n ≤ 4. The cascading of four blocks of convolutional and

max-pooling layers provides a translation invariance and a re-

duction of dimensionality: by applying a set of f n learned filters

with kernel size of 3 × 3 and stride of 1 × 1 and eliminating non-

maximal values with pool size of 2 × 2 and stride of 2 × 2. 

The classification sub-block is composed of three layers: one

fully-connected layer with 4096 neurons, one dropout layer with

a fraction of deactivation of units during training of 0.5, and a fi-

nal fully-connected layer with number of classes as the number of

neurons. The dropout layer allows to learn with different neurons

the same information improving the generalization of the model

and the number of neurons for the final fully-connected layer is

set to 2 or 3 for binary and three-class data sets respectively. Ad-

ditionally, the disease classification of one SD-OCT volume was de-

termined using a majority rule, as such the volume was affected

by the class that was the most preponderant among the B-scans. 

3.3. Class activation map 

The Class Activation Map (CAM) is defined as the sum of the

weighted activation maps generated for each image at different

spatial locations. The main use of a CAM focuses on the validation

of a CNN model that indicates the discriminative image regions for

a particular category. Thus, the CAM block adds a Global Average

Pooling (GAP) after the last convolutional layer in the CNN model

for obtaining an accurate discriminative localization as reported by

Bolei et al. [37] and Selvaraju et al. [38] . The CAM highlights the

magnitude of the activation at the spatial grid ( x, y ) to classify an

image to class c . The CAM for class c is defined by w 

c 
k 

as the weight

corresponding to class c for unit k applied to an input image f k ( x,

y ) described in Eq. (2) as follows [37] : 

M c (x, y ) = 

∑ 

w 

c 
k f k (x, y ) (2)
k 
h

. Experimental evaluation 

.1. SERI+CUHK dataset 

The Singapore Eye Research Institute (SERI) database contains

2 SD-OCT volumes with 16 control and 16 DME SD-OCT volumes.

imilarly, the Chinese University of Hong Kong (CUHK) database

ontains 43 SD-OCT volumes with 4 DME and 39 DR-DME SD-OCT

olumes. The two data sets were combined into one three-class

ata set termed in this paper as SERI+CUHK data set. The SERI-

UHK data set was acquired with a CIRRUS SD-OCT device 3 and

abeled by certified expert graders as control, DME and DR-DME

olumes, according to findings among the retinal layers as shown

n Fig 2 . 

The inclusion criterion was the presence of abnormal retinal

hickening, hard exudates, intraretinal cystoid space formation and

ubretinal fluid among the retinal layers of working-age adult sub-

ects. Finally, each SD-OCT volume contains 128 cross-sectional

cans with a resolution of 512 × 1024 pixels. The data set was

ropped and resized (keeping the aspect ratio) to a dimension of

28 × 224 × 224 as discussed in Section 3.1 . 

.2. A2A SD-OCT data set 

The A2A SD-OCT is a binary data set from the Age-Related Eye

isease Study 2 (AREDS2) also known as Duke data set [39] . The

mages from the A2A SD-OCT study obtained the informed consent

rom all subjects and it was approved by the institutional review

oards of the 4 A2A SD-OCT clinics: Devers Eye Institute, Duke Eye

enter, Emory Eye Center, and National Eye Institute. 

The Duke data set was acquired using imaging systems from

ioptigen, Inc (Research Triangle Park, NC) as shown in Fig. 2 . The

lassification of each volume was done by certified SD-OCT read-

rs. The inclusion criteria were defined as subjects between 50 and

5 years of age, exhibiting intermediate AMD with large drusen

 > 125 mm) in both eyes or large drusen in one eligible eye and

dvanced AMD in the fellow eye, with no history of vitreoretinal

urgery or opthalmic surgery. The Duke data set contains 384 SD-

CT volumes: 269 AMD and 115 control or normal eyes, with 100

-scans per volume and a resolution of 10 0 0 × 512. The data set
tml . 

https://www.zeiss.com/meditec/int/products/oct-optical-coherence-tomography.html
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Fig. 2. [Top-left] DME SD-OCT scan with hyper-reflective material in the middle layers of the retina, likely by exudates, and [Top-right] DR-DME SD-OCT scan with a retinal 

pigment epithelium detachment.[Bottom-left] Normal SD-OCT scan and [Bottom-right] AMD SD-OCT scan with a drusenoid detachment with migration of pigment to the 

inner layers of the retina. 

Table 2 

Retinal disease data sets used for training, validation and test- 

ing in the experimental evaluation. 

Data set Training Validation Test 

SERI + CUHK 45 SD-OCT 8 SD-OCT 22 SD-OCT 

Duke 246 SD-OCT 38 SD-OCT 100 SD-OCT 
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Table 3 

Performance measures of the baseline methods and the proposed method on 

the test data (Duke), bold values show the best score for each architecture. 

Model Sensitivity Specificity Accuracy AUC 

Venhuizen et al. [30] 0.96 0.92 0.94 0.984 

Chakravarty et al. [31] 0.97 0.98 0.98 0.99 

Kermany et al. [34] 0.98 0.89 0.94 0.94 

OCT-NET 0.99 0.99 0.99 0.99 

OCT-NET with DO = 0.25 0.89 0.89 0.89 0.89 

OCT-NET without DO 0.90 0.88 0.88 0.88 

OCT-NET with D2 = 2048 0.95 0.95 0.95 0.95 
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as resized to a volume dimension of 100 × 224 × 224 as reported

n Section 3.1 . 

.3. Experimental setup 

The OCT-NET model was trained with random initialization

eights using the Adam optimizer. The batch size, learning rate

nd number of epochs were experimentally set to 16, 1 e − 5 and

0 respectively for all experiments as reported in a previous ar-

icle [25] . Moreover, the classification of one SD-OCT volume was

etermined using a majority rule as explained in Section 3.2 . 

The SERI+CUHK data set was randomly split in a stratified way

nto three independent data sets with 60%, 10% and 30% for train-

ng, validation and testing respectively as presented in Table 2 . On

he other hand, the Duke data set was randomly split into 3 in-

ependent data sets with 67% and 10% for training and validation

espectively. The remaining 23% corresponds to the test data set,

ith 50 AMD and 50 Healthy volumes as reported in Table 2 . 

.4. Baseline models and performance metrics 

The work proposed by Venhuizen et al. [30] , Chakravarty

t al. [31] and Kermany et al. [34] were chosen as baseline mod-

ls applied on the Duke data set as explained in Section 2 . In ad-

ition, the methods reported by Awais et al. [26] and Kermany

t al. [34] were chosen as baseline models for the SERI-CUHK data

et. Additionally, we performed a qualitative evaluation for the in-

erpretability stage according to the ability of the proposed model

o highlight medical findings in the scans. In this test, 40 SD-OCT
olumes from the Duke test data set were randomly split with 20

ealthy and 20 AMD samples. Two retina specialists manually la-

eled each B-scan of this subset without taking into account the

iven volume label. Finally, the two experts assessed the generated

AM visualization plus the individual prediction from each scan in

 volume. 

The proposed model was implemented with Keras using a

heano backend on a GeForce GTX TITAN X from NVIDIA. The loss

nd accuracy metrics were monitored on the training and valida-

ion data, and the best performance in the validation set was as-

essed on the test data set presented in Tables 3 and 4 . OCT-NET

as evaluated on the test set of the Duke data using accuracy,

ensitivity, specificity as performance metrics defined as follows in

qs. (3) –(5) . In addition, the AUC was calculated according to the

robability that our classifier will rank a randomly selected posi-

ive case higher than a randomly chosen negative case. 

ccuracy = 

T P + T N 

T P + T N + F P + F N 

(3) 

ensit i v it y = 

T P 

T P + F N 

(4) 

peci f icity = 

T N 

T N + F P 
(5) 
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Table 4 

Performance metrics of OCT-NET on the test data (SERI+CUHK). 

Model Precision Recall f -score (macro) Kappa coefficient AUC 

D1 with DT (depth = 100) [26] 0.69 0.70 0.69 0.42 0.5 

D2 with KNN ( K = 1 ) [26] 0.62 0.65 0.63 0.27 0.5 

D3 with KNN ( K = 3 ) [26] 0.62 0.65 0.63 0.27 0.57 

Kermany et al. [34] 0.91 0.78 0.74 0.59 0.86 

OCT-NET 0.93 0.83 0.85 0.71 0.86 
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OCT-NET was evaluated on the SERI+CUHK test data set us-

ing precision, f-score (macro) and Kappa coefficient as multi-class

performance metrics (defined in Eqs. (6) –(8) ). Recall was another

performance metric evaluated on the SERI+CUHK test data set. It

is defined as the true positive rate or sensitivity as explained in

Eq. (4) . 

P recision = 

T P 

T P + F P 
(6)

f − score = 

2 ∗ P recision ∗ Recall 

P recision + Recall 
(7)

Kappa coe f f icient = 

p o − p e 

1 − p e 
(8)

where, 

• TP = True positive (both the ground-truth and predicted are

disease class) 
• TN = True Negative (both the ground-truth and predicted are

healthy class) 
• FP = False Positive (predicted as disease class but the ground-

truth is healthy class) 
• FN = False Negative (predicted as healthy class but the ground-

truth is disease class) 
• p o = Probability of correct classification 

•
 p e = Probability of chance agreement i

Fig. 3. The monitoring of the accuracy and loss during training for the two experimen

represent the training and validation sets respectively. (For interpretation of the referenc

article.) 
These performance measures were chosen so that the results

an be compared with those reported by the state of the art. 

. Results 

.1. Volume classification performance 

The performance classification was reported for the Duke and

he SERI+CUHK databases explained in detail in Section 4 . More-

ver, we tested the performance metrics of the OCT-NET model

sing the hyper-parameters and monitoring the loss and the ac-

uracy during training as shown in Fig. 3 . The training was set to

0 epochs as it obtained high accuracy while limiting the training

ime that is on average to 60 min per epoch. The computational

ime to evaluate a single B-scan of the test set from Duke was

.33 ms, and 0.28 ms in SERI+CUHK. For the Duke database, the

erformance of OCT-NET applied on the test data set is reported

n Table 3 . Additionally, the performance of the proposed method

as compared with the main related works using this database as

resented in Section 4.3 . The OCT-NET was modified into three ar-

hitectures with different values in Dropout (DO) layer and the last

ense (D2) layer. 

The OCT-NET presented a similar AUC metric that method pro-

osed by Chakravarty et al. [31] , but outperforms baseline methods

n sensitivity, specificity and accuracy as reported in Table 3 . 
ts: [Left] SERI+CUHK, and [Right] Duke data sets. The solid and the dashed lines 

es to colour in this figure legend, the reader is referred to the web version of this 
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Fig. 4. SD-OCT scans for subjects with AMD. [left] three large lesions on the outer layers and, [right] a drusenoid detachment with migration of pigment to the inner layers 

of the retina. 
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The precision, recall, f-score Kappa coefficient and AUC were

alculated to assess the performance of the proposed model ap-

lied to the SERI+CUHK data set, as reported in Table 4 . For the

ERI+CUHK data set, the best performance of the proposed model

n the test data is reported in Table 4 . Furthermore, we compared

he performance of the baseline model reported byand [26] using

he three output dense layers (D1, D2 and D3) with three different

nsemble classifiers: Decision Trees (DT), and KNNs with K = 1 and

 = 3 applied on the test set. 

The OCT-NET architecture presented the best performance and

t outperforms baseline methods in precision, recall, f-score and

appa coefficient as shown in Table 4 . 

.2. Qualitative analysis of CAM 

The CAM visualization stage for the proposed model was

alidated according to the ability of locating medical findings

hat allow to highlight different retinal disorders as reported in

ection 3.3 . The CAM output of the proposed model for the AMD

lass was highlighted in red with the corresponding medical find-

ngs of the ophthalmologist outlined in green as shown in Fig. 4 .

esides this, the ability of the proposed model to predict the con-

ition of individual scans belonging to an AMD SD-OCT volume,

ompared with the diagnosis performed by an ophthalmology ex-

ert is presented in Fig. 5 . 

.3. Individual B-scan classification 

The SD-OCT data sets are commonly labeled to a volume level

espite the retinal disease is present in a range of B-scans. This

hal elgenmotivated the evaluation of the proposed model to de-

ect healthy and non-healthy scans regardless of the global labels

f the volumes. Thus, the proposed method was validated with a

ubset of 40 0 0 labeled B-scans annotated by the experts as pre-

ented in Section 4.3 . Table 5 presents the confusion matrix for

he 40 SD-OCT volumes from the Duke test data set as explained

n Section 4 . The major diagonal is equivalent to the agreements
Table 5 

Confusion matrix describing the agreement in the pre- 

dictions for healthy and AMD classes with true nega- 

tives (TN) and true positives (TP) respectively. The dis- 

agreement between the two classes is measured with 

false positives (FP) and false negatives (FN). 

Prediction by model 

Healthy AMD 

GroundTruth Healthy T N = 2001 F P = 332 

AMD F N = 125 T P = 1542 

a  

m  

S  

m  

p

 

c  

q  

t  

c  

S  

s  
n the classification of the two classes. Otherwise, the subdiagonal

epresents the erroneous classification of the proposed model. The

verall accuracy in the prediction of the two classes was of 89%

ith a precision of 93% in the detection of AMD scans. 

. Discussion and conclusion 

OCT-NET outperforms the state of the art methods for AMD

iagnosis reported in [30,31] in sensitivity, specificity, accuracy

ut it presents a similar AUC compared to the model proposed

y Chakravarty et al. [31] as shown in Table 3 . The main two

dvantages of the proposed model compared to the two-stage

ethod [30] and the retinal atlas [31] are the automatic classifi-

ation of raw scans without manual annotation of interest points

r regions and the generation of qualitative and quantitative infor-

ation to support medical decision making in a diagnosis of AMD

s presented in Fig. 4 . 

The experimental results of OCT-NET on the SERI+CUHK data

et overcome the performance of the approach presented by Ker-

any et al. [34] in precision, recall, f-score and Kappa coefficient

s reported in Table 4 . The proposed method shows an outstand-

ng performance compared to the Inception-v3 pretrained with

eights from ImageNet [34] without requiring a large database for

raining or selecting a limited numbers of scans with the condi-

ion by a patient. Finally, the Kappa coefficient or inter-rater agree-

ent presented a substantial level of agreement of 0.71 between

he model and the expert for the classification of healthy, DME and

R-DME SD-OCT volumes as reported in Section 5 . 

The global label of an SD-OCT volume is used without ques-

ioning local labels for each scan or the specific range of scans

hat contain the retinal disorder. We evaluated the prediction of B-

cans belonging to an SD-OCT volume inspired in the manual clas-

ification performed by an ophthalmology expert as presented in

ection 5.3 . The experimental results shown an agreement of 92.5%

or AMD and 85.8% for healthy scans of a total of 40 0 0 scans com-

ared to the manually labeled scans, as reported in Table 5 . In ad-

ition, the range of scans with the retinal disorder in the volume,

nd the highlighted areas by CAM stage present a strong agree-

ent with the delineations of the ophthalmologists as shown in

ection 5.2 . This suggests that the information provided by the

odel can potenti llbaye useful to deal with the lack of inter-

retability in deep learning models applied to medical images. 

Despite the very good results for the SD-OCT volume AMD

lassification as reported in Section 5.1 , the evaluation of the

ualitative analysis of CAM and the individual B-scan classifica-

ion provided useful feedback about the medical findings in scans

lassified as false positives and false negatives as presented in

ections 5.2 and 5.3 respectively. The false positives were misclas-

ified mainly in non-centered scans or poor resolution among the
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Fig. 5. [Top] Classification of B-scans from an SD-OCT volume of an AMD subject by an ophthalmologist and predictions by the proposed model. [Left] False positive or a 

misclassified B-scan as AMD class due to an RPE layer presenting hyperreflectivity in these areas (green circles). This results in the proposed method incorrectly highlighting 

the areas like drusen or an RPE elevation. [Right] False negative or a misclassified B-scan as healthy class due to the RPE elevation not having enough hyperreflectivity (green 

circles); probably the proposed method is not able to detect these tiny drusen. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 
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scans, which means that the layers are not defined in some scans

inside the volume as shown in the scan [B] of Fig. 5 . On the other

hand, false negatives could be due to the presence of subtle find-

ings in some images. We hypothesized that the tiny drusen may

be misleading the proposed method to classify these images as

healthy as presented in scan [C] of Fig. 5 . 

The speckle noise in images from medical devices was differ-

ent among the SD-OCT volumes. The OCT-NET model was trained

with random weights presenting a better model generalization in

classification tasks without being affected by the speckle noise. Fi-

nally, we want to emphasize that our approach was assessed with

SD-OCT volumes acquired from different devices, with a different

populations and several retinal diseases. However, these datasets

are relatively small and our study lacks an evaluation over larger

datasets, this will be part of our future work. 
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