

MODELO DE PREDICCIÓN ESPACIAL REGIONALIZADO PARA TEMPERATURA Y PRECIPITACIÓN MEDIANTE REGRESIONES LINEALES MÚLTIPLES

JUAN DAVID BOHÓRQUEZ ROBAYO YULY PAOLA CORREA TORRES

PROYECTO DE INVESTIGACIÓN

DIRECTOR:

GERMAN EDUARDO ACERO RIVEROS

ESCUELA COLOMBIANA DE INGENIERÍA JULIO GARAVITO
ESPECIALIZACIÓN EN RECURSOS HIDRÁULICOS Y MEDIO AMBIENTE
BOGOTÁ, JUNIO DE 2021

MODELO DE PREDICCIÓN ESPACIAL REGIONALIZADO PARA TEMPERATURA Y PRECIPITACIÓN MEDIANTE REGRESIONES LINEALES MÚLTIPLES

JUAN DAVID BOHÓRQUEZ ROBAYO YULY PAOLA CORREA TORRES

ESCUELA COLOMBIANA DE INGENIERÍA JULIO GARAVITO
ESPECIALIZACIÓN EN RECURSOS HIDRÁULICOS Y MEDIO AMBIENTE
BOGOTÁ DC, JUNIO DE 2021

TABLA DE CONTENIDO

1. l	INTRODUCCIÓN	15
2. (OBJETIVOS	17
(OBJETIVO GENERAL	17
(OBJETIVOS ESPECÍFICOS	17
3. I	MARCO TEÓRICO	18
3	3.1 EL CLIMA	18
	3.1.1 Precipitación	18
	3.1.1.1 Factores que afectan la precipitación	19
	3.2.1 Temperatura	19
	3.2.1.1 Factores que afectan la Temperatura	19
3	3.2 RED METEOROLÓGICA	20
3	3.3 CRITERIOS DE SELECCIÓN DE ESTACIONES Y DEL RANGO TEMPORAL	21
3	3.4 COMPLETITUD DE LA SERIE TEMPORAL	21
3	3.4.1.Polinomios de razones normales	21
3	3.4.1.1 Índice de Aridez de Emmanuel de Martone	22
3	3.4.2 Polinomios de razones normales ponderada a la inversa de la distancia	23

3.4.3 Gradiente Térmico	24
3.5 ANÁLISIS DE HOMOGENEIDAD Y CONSISTENCIA DE	LAS SERIES
TEMPORALES	25
3.5.1 Prueba de homogeneidad normal estándar (SNHT)	25
3.5.2 Prueba T de Student	26
3.5.3 Prueba F de Fisher	26
3.6 MODELO DE PREDICCIÓN ESPACIAL (INTERPOLACIÓN ESPACIA	L) 27
3.6.1 Métodos Determinísticos	27
3.6.1.1 Método mínima curvatura (Spline)	28
3.6.1.2 Método peso inverso a la distancia (IDW)	28
3.6.2 Métodos Probabilísticos	29
3.6.2.1 Kriging simple	29
3.6.2.2 Supuestos del modelo	30
3.7 MODELO DE PREDICCIÓN ESPACIAL REGIONALIZADO	30
3.7.1 Modelo de regresión múltiple	32
3.7.1.1 Consideraciones de modelo de regresión múltiple	33
3.7.1.1.1 Distribución normal de los residuos	33
3.7.1.1.2 Homocedasticidad	33
3.7.1.1.3 No colinialidad o multicolinialidad	33

	3.7.1.1.4 No autocorrelación (Independencia)	34
	3.7.1.1.5 Valores atípicos, con alto leverage o influyentes	34
	3.7.1.1.6 Violación de la hipótesis	34
	3.8 VALIDACIÓN CRUZADA	35
	3.9 ERRORES DE PREDICCIÓN	35
4.	. METODOLOGÍA	37
	4.1 DESCRIPCIÓN DEL ÁREA DE ESTUDIO	37
	4.1.2 Caracterización Climática	38
	4.2. MATERIALES	39
	4.2.1 Datos Climatológicos	39
	4.2.2 Modelo Digital De Elevación (MDE)	39
	4.2.3 Software	40
	4.2.3.1 R	40
	4.2.3.1 ArcGis	40
5.	. PROCEDIMIENTO	41
	5.1. RECOPILACIÓN DE INFORMACIÓN DISPONIBLE DE LAS SERIES HISTÓRICA	AS
	DE PRECIPITACIÓN Y TEMPERATURA	41
	5.2. SELECCIÓN DE ESTACIONES Y DETERMINACIÓN DEL RANGO TEMPORAL I	
	ANÁLISIS	41

5.3 COMPLEMENTACIÓN Y EXTENSIÓN DE LA SERIES TEMPORALES 43
5.4 HOMOGENIZACIÓN DE LA SERIES DE PRECIPITACIONES44
5.4.1 Análisis exploratorio
5.4.2 Construcción de series de referencias
5.4.3 Selección de la serie homogénea
5.5 ANÁLISIS DE CONSISTENCIA EN LA SERIES DE PRECIPITACIONES 45
5.6 MODELO DE PREDICCIÓN ESPACIAL REGIONALIZADO PARA LOS DATOS
MENSUALES MULTIANUALES Y ANUAL MULTIANUAL DE PRECIPITACIÓN Y
TEMPERATURA MEDIA46
5.6.1 Análisis exploratorio
5.6.1.1 Análisis univariado
5.6.1.2 Análisis multivariado
5.6.2 Selección del modelo de regresión múltiple m(x)
5.6.3 Generación de residuales ε(x)
5.6.4 Modelo espacial de tendencia m(x)
5.5.5 Modelo espacial residual estocástico ε(x)
5.6.6 Modelo de predicción espacial regionalizado $\boldsymbol{Z}(\boldsymbol{x})$
5.7 MODELO DE PREDICCIÓN ESPACIAL DETERMINÍSTICO PARA LOS DATOS
MENSUALES MULTIANUALES Y ANUAL MULTIANUAL DE PRECIPITACIÓN Y
TEMPERATURA MEDIA49

	5.8 MODELO DE PREDICCIÓN ESPACIAL PROBABILÍSTICOS PARA LOS DATO	S
	MENSUALES MULTIANUALES Y ANUAL MULTIANUAL DE PRECIPITACIÓN	Y
	TEMPERATURA MEDIA	50
	5.9 EVALUACIÓN DE LA PREDICCIÓN DE LOS MODELOS	50
6.	RESULTADOS	51
	6.1. RECOPILACIÓN DE INFORMACIÓN DISPONIBLE DE LAS SERIES HISTÓRICA	\S
	DE PRECIPITACIÓN Y TEMPERATURA	51
	6.2 SELECCIÓN DE ESTACIONES Y DETERMINACIÓN DEL RANGO TEMPORAL D	Œ
	ANÁLISIS	55
	6.3 COMPLEMENTACIÓN Y EXTENSIÓN DE LA SERIES TEMPORALES	57
	6.3.1 Series temporales de precipitación	57
	6.3.1 Series temporales de temperatura	73
	6.4 HOMOGENIZACIÓN DE LA SERIES DE PRECIPITACIONES	74
	6.4.1 Análisis exploratorio	74
	6.4.2 Construcción de series de referencias	77
	6.4.3 Selección de la serie homogénea	78
	6.5. TEST DE CONSISTENCIA EN LA SERIES DE PRECIPITACIONES	79
	6.6 MODELO DE PREDICCIÓN ESPACIAL REGIONALIZADO PARA LOS DATO	S
	MENSUALES MULTIANUALES Y ANUAL MULTIANUAL DE PRECIPITACIÓN	Y
	TEMPERATURA MEDIA	81

	6.6.1 Análisis exploratorio	81
	6.6.1.1 Análisis univariado	81
	6.6.1.2 Análisis multivariado	84
	6.6.2 Selección del modelo de regresión múltiple m(x)	89
	6.6.3 Generación y análisis de los residuales $\varepsilon(x)$	96
	6.6.4 Modelo tendencia espacial m(x)	108
	6.6.5 Modelo espacial residual estocástico $\epsilon(x)$	116
	6.6.6 Modelo de predicción espacial regionalizado $\mathbf{Z}(\mathbf{x})$	137
	6.6 MODELO DE PREDICCIÓN ESPACIAL DETERMINÍSTICO PARA LOS DAT	ГOS
	MENSUALES MULTIANUALES Y ANUAL MULTIANUAL DE PRECIPITACI	ΙÓΝ
	ACUMULADA Y TEMPERATURA MEDIA	158
	6.7 MODELO DE PREDICCIÓN ESPACIAL PROBABILÍSTICOS PARA LOS DAT	ГOS
	MENSUALES MULTIANUALES Y ANUAL MULTIANUAL DE PRECIPITACIÓN	۱ Y
	TEMPERATURA MEDIA	172
	6.8 EVALUACIÓN DE LA PREDICCIÓN DE LOS MODELOS	180
7	. ANÁLISIS DE RESULTADOS	182
8	. CONCLUSIONES	186
9	. BIBLIOGRAFÍA	189

ÍNDICE DE FIGURAS

Figura 1. Esquema de representación de un modelo regionalizado	32
Figura 2. Mapa de localización de la zona de estudio.	37
Figura 4 Diagrama conceptual metodológico	42
Figura 4. Mapa de localización de las estaciones para el área de estudio.	51
Figura 5. Datos faltantes mensuales de las estaciones estudiadas.	56
Figura 6. Series históricas estimadas para la estación Argentina	69
Figura 7. Gráfico de líneas del valor del error medio cuadrático para cada conjunto de estacion	nes
vecinas teniendo presente y ausente la ponderación del inverso de sus distancias	73
Figura 8. Histograma de todos los valores de precipitación	75
Figura 9. Cajas de bigotes para los datos de precipitación mensual para toda las estaciones	76
Figura 10. Histograma de anomalías normalizadas	76
Figura 11. Series temporal homogeneizada para la estación de Supatá	77
Figura 12. Gráfico de barras y de distribución para los datos de Precipitación a nivel mense	ual
	82
Figura 13. Diagrama de caja y bigotes para los datos de Temperatura	82
Figura 14. Diagrama de caja y bigotes para los datos de Precipitación	83
Figura 15. Gráfico de barras y de distribución para los datos de Precipitación a nivel mensi	ual
	84
Figura 16. Matriz de correlación simple para lo variable de Precipitación	85
Figura 17. Matriz de correlación simple para lo variable de temperatura	87
Figura 18. Gráficos de correlación de las covariables con la variable de precipitación	91

Figura 19. Gráficos de correlación residual de temperatura
Figura 20. Gráficos de boxplot, q q-plot, de frecuencia y de distribución ellos residuos de
temperatura
Figura 21. Test de normalidad para los residuales de temperatura
Figura 22. Evaluación de homocedasticidad para los residuales de temperatura
Figura 23. Evaluación de autocorrelación para los residuales de temperatura
Figura 24. Evaluación de outliers para los residuales de temperatura
Figura 25. Gráficos de correlación residual de precipitación
Figura 26. Gráficos de boxplot, q q-plot, de frecuencia y de distribución ellos residuos de
precipitación
Figura 27. Test de normalidad para los residuales de precipitación
Figura 28. Evaluación de homocedasticidad para los residuales de precipitación
Figura 29. Evaluación de autocorrelación para los residuales de precipítación
Figura 30. Evaluación de outliers para los residuales de precipitación
Figura 31. Espacialización de la covariables
Figura 32. Modelo determinístico de tendencia espacial para los valores mensuales multianuales
y anual multianual de precipitación
Figura 33. Modelo determinístico de tendencia espacial para los valores mensuales multianuales
y anual multianual de temperatura
Figura 34. Modelo residual estocástico para los valores mensuales multianuales y anual
multianual de precipitación – Método IDW

Figura 35. Modelo residual estocástico para los valores mensuales multianuales y anual
multianual de temperatura – Método IDW
Figura 36. Modelo residual estocástico para los valores mensuales multianuales y anual
multianual de precipitación – Método Spline
Figura 37. Modelo residual estocástico para los valores mensuales multianuales y anual
multianual de temperatura – Método Spline
Figura 38. Modelo residual estocástico para los valores mensuales multianuales y anual
multianual de precipitación – Método Krining Simple
Figura 39. Modelo residual estocástico para los valores mensuales multianuales y anual
multianual de temperatura – Método Krining Simple
Figura 40. Modelo de predicción espacial regionalizado para los valores mensuales multianuales
y anual multianual de precipitación – Método IDW
Figura 41. Modelo de predicción espacial regionalizado para los valores mensuales multianuales
y anual multianual de precipitación – Método Spline
Figura 42. Modelo de predicción espacial regionalizado para los valores mensuales multianuales
y anual multianual de precipitación – Método Kriging Simple
Figura 43. Modelo de predicción espacial regionalizado para los valores mensuales multianuales
y anual multianual de temperatura – Método IDW
Figura 44. Modelo de predicción espacial regionalizado para los valores mensuales multianuales
y anual multianual de temperatura – Método Spline
Figura 45. Modelo de predicción espacial regionalizado para los valores mensuales multianuales
y anual multianual de temperatura – Método Kriging

Figura 46. Modelo de predicción espacial para los valores mensuales multianuales y anual
multianual de precipitación con IDW
Figura 47. Modelo de predicción espacial para los valores mensuales multianuales y anual
multianual de precipitación con Spline
Figura 48. Modelo de predicción espacial para los valores mensuales multianuales y anual
multianual de temperatura con IDW
Figura 49. Modelo de predicción espacial para los valores mensuales multianuales y anual
multianual de precipitación con Spline
Figura 50. Modelo de predicción espacial para los valores mensuales multianuales y anual
multianual de precipitación con Kriging Simple
Figura 51. Modelo de predicción espacial para los valores mensuales multianuales y anual
multianual de temperatura con Kriging

ÍNDICE DE TABLAS

Tabla 1. clasificación del índice de Aridez	. 23
Tabla 2. Estaciones hidrometeorológicas de influencia para la zona de estudio	. 54
Tabla 3. Coeficiente de variación para los valores mensuales de precipitacióon	. 57
Tabla 4. Matriz de coeficientes de correlación entre estaciones	. 58
Tabla 5. Clasificación de clima según el índice de aridez de Emmanuel De Martone.	. 59
Tabla 6. Resumen de los criterios de vecindad para las estaciones área de estudio	. 68
Tabla 7. Error medio cuadrático para cada estación	. 74
Tabla 8. Parámetros SNHT; RMSE y POD para las series homogéneas seleccionadas	. 78
Tabla 9. Prueba de F-Fisher.	. 79
Tabla 10. Prueba T -Students	. 80
Tabla 11. Resumen estadístico de los datos de Temperatura.	. 81
Tabla 12. Resumen estadístico de los datos de Precipitación	. 83
Tabla 13. Valores de correlación parcial para la variable de precipitación	. 85
Tabla 14. Test de correlación producto – momento de Pearson	. 85
Tabla 15. Resumen estadístico de las regresiones lineales por covariable para la precipitación	86
Tabla 16. Valores de correlación parcial para la variable de temperatura	. 88
Tabla 17. Resumen estadístico de las regresiones lineales por covariable para la altura	. 88
Tabla 18. Modelos planteados para los valores mensuales de Precipitación.	. 92
Tabla 19. Modelos seleccionados para los valores mensuales de Precipitación	. 93
Tabla 20. Modelos planteados para los valores mensuales de Temperatura	. 96
Tabla 21. Modelos de regresión lineal robusto para los datos mensual para de temperatura	101

Tabla 22. Modelos de regresión lineal para los datos mensuales de temperatura excluyendo valores
atípicos. 102
Tabla 23. Modelos seleccionados para los valores mensuales de temperatura 103
Tabla 24. Medición del error de predicción de los modelos planteados para los datos de
precipitación
Tabla 25. Medición del error de predicción de los modelos planteados para los datos de
precipitación

1. INTRODUCCIÓN

La necesidad de tener estaciones que tomen información climática de forma permanente, corresponde en esencia a registrar temporalmente una variable de forma discreta siendo esta continua es el espacio, por lo que requiere la aplicación de modelos de predicción espacial que permitan indagar sobre dichas variaciones espacio – temporales en áreas no muestreadas.

Metodologías como distancia inversa, Kriging, curvatura mínima, triangulación, funciones de base radial han sido utilizados para generar dichas superficies continuas en el espacio a partir de datos climáticos obtenidos de forma discreta. En la actualidad se ha venido desarrollando metodologías como regresiones lineal, algoritmo Ramdom Forest, análisis de componentes principales que buscan generar superficies climáticas continuas en un área de interés a partir de las mediciones en ciertos puntos mediante la integración de variables topográficas o geográficas (Mejía et al, 1999; Sluiter, 2009; Hengl, 2009; Guzmán D, 2014; IDEAM, 2014; Álzate, 2008; Xu, 2013)

Los modelos de variables regionalizadas mediante regresiones lineales múltiples consisten en un modelo determinístico, desarrollado a partir de estudios de influencia de la topografía en la hidrología e hidrometeorología (Rauthe et al., 2013), busca a través de datos puntuales como precipitación o temperatura de un conjunto de estaciones determinar dependencia respecto a la localización geográfica y condiciones fisiográficos aplicando una regresión múltiple con lo cual se tiene un valor de la variable climática en una región deseada (Soenario et al., 2010).

El propósito de este estudio ha sido aplicar un modelo generalizado teniendo presente variables fisiográficas y geográficas para el área de estudio, y los resultados son comparados con

otros métodos determinístico como pesos inverso a la distancia (IDW), mínima curvatura (Spline) y métodos probabilísticos como Kriging ordinario; Así mismo, identificar ventajas y desventajas de su aplicación en la utilización de la generación de superficies continuas climáticas.

La viabilidad de la implementación de esta metodología demanda un alto consumo de recursos computacionales como de conocimiento del componente estocástico, pero tiene una facilidad en la accesibilidad a la obtención de variables explicativas para el fenómeno, que puede ser utilizadas dentro de un modelo para mejorar las superficies de predicción espacial climatológica en áreas donde no se dispone de registros climáticos mediante la aplicación de análisis estadístico y propio del fenómeno. Así mismo existe paquetes que implementan dichas regionalizaciones como Regnie o ANUCLIM que facilitan al usuario los procesos, pero que así mismo limitan los resultados al perder análisis de los procesos intermedios y que posiblemente pueden ayudar a mejorar dichas superficies de predicción espacial.

2. OBJETIVOS

OBJETIVO GENERAL

 Evaluar la calidad de predicción para las superficies espaciales de las variables meteorológicas de precipitación y temperatura generadas mediante modelos de regresión lineal múltiple.

OBJETIVOS ESPECÍFICOS

- Realizar modelos de predicción de superficies espaciales climáticas regionalizadas mediante la aplicación regresiones lineales múltiples para las variables de temperatura y precipitación.
- Obtener modelos de predicción de superficies espaciales climáticas mediante métodos de interpolación estocásticos y probabilísticos para las variables de temperatura y precipitación.
- Evaluar el mejor modelo de predicción de superficies espaciales climáticas para las variables de temperatura y precipitación, obteniendo el mejor error de ajuste generado por el método de validación cruzada.

3. MARCO TEÓRICO

3.1 EL CLIMA

El clima de acuerdo a la definición de la Organización Meteorológica Mundial "OMM", es "el conjunto fluctuante de las condiciones atmosféricas, caracterizado por las evoluciones del estado del tiempo, durante un período de tiempo y un lugar o región dados, el cual está controlado por los denominados factores forzantes, factores determinantes y por la interacción entre los diferentes componentes del denominado sistema climático (atmósfera, hidrosfera, litosfera, criósfera, biosfera y antropósfera)". El aspecto climático permite conocer los estados de tiempo que se presentan sucesivamente a través de largos períodos, sus influencias físicas, cambios y desarrollo de fenómenos físicos de la atmósfera y sus efectos sobre la superficie terrestre. El régimen climático de una región o zona es de gran importancia para establecer la posibilidad de desarrollar cualquier tipo de actividad, de tal manera que sea la base para realizar cada labor de forma satisfactoria teniendo en cuenta el efecto que el clima tiene sobre ella.

3.1.1 Precipitación

Es el agua que cae a la superficie terrestre procedente de las nubes bien sea en forma líquida o sólida, pueden presentar por:

- OROGRÁFICAS: son lluvias originadas por una masa de aire cargada de vapor de agua
 que debe ascender para superarla la barrera, pero al hacerlo se enfría, se condensa el vapor
 de agua y precipita. Se producen en regiones montañosas.
- **CONVECCIÓN:** Tiene lugar cuando una masa de aire sobre la superficie terrestre se calienta mucho, con lo cual se hace más ligero y asciende rápidamente, al hacerlo se enfría

y se precipita. Este tipo de lluvias son frecuentes en el ecuador y en las zonas templadas en verano.

• FRONTALES: masas de aire cargadas de vapor de agua, pero a diferente temperatura, que cuando choca, provoca que la masa caliente hacienda sobre la masa de aire fría, esto reduce la temperatura de la masa caliente dando lugar a las precipitación. Estas lluvias se dan en las zonas templadas del planeta

3.1.1.1 Factores que afectan la precipitación

- Distancia al mar: Las regiones a medida que estén más alejados del mar suelen tener también un clima relativamente seco ya que las masas de aire de origen marítimo, al desplazarse sobre grandes extensiones de tierra van perdiendo su humedad en forma de precipitación, más rápidamente si entran en contacto con montañas. Conforme viajan hacia el interior les queda menos humedad por lo que la cantidad de lluvia disminuye.
- Latitud: La distribución espacial de la precipitación está fuertemente influenciada por la temperatura, especialmente por su tasa de lapso vertical, que dicta el nivel local (altura) y la tasa de condensación.
- Relieve: Genera las precipitaciones orogénicas.

3.2.1 Temperatura

Es la cantidad de energía calorífica que posee el aire en un momento determinado.

3.2.1.1 Factores que afectan la Temperatura

 Distancia al mar: también conocido como factor de continentalidad, y se debe a que el comportamiento de las temperaturas es diferente sobre el mar respecto a la superficie

terrestres, ya que el mar no se calienta tan deprisa como si lo hace la temperatura en el interior, lo cual afecta el clima en la zona costare (cerca al mar).

- Latitud: cuanto más cerca se encuentre un lugar del ecuador menos variación habrá en la duración de los días y la energía solar incidirá más vertical y con mayor intensidad, mientras más se aleje ese punto del ecuador la energía solar le alcanzará con un ángulo menor, por lo cual la temperatura disminuye a medida que aumenta la latitud.
- Altitud: Al aumentar la altitud la temperatura disminuye conocido como gradiente altitudinal.

3.2 RED METEOROLÓGICA

Una red meteorológica, "Es el conjunto de estaciones, convenientemente distribuidas, en las que se observan, miden y/o registran las diferentes variables, fenómenos y elementos atmosféricos que son necesarios en el conocimiento y determinación del estado del tiempo o el clima de una región, para su posterior aplicación en diversos usos y objetivos". En concordancia con lo anterior, el principal objetivo de una red meteorológica es establecer los registros y mediciones de las diferentes variables, adecuados para conocer el comportamiento de cada una de ellas, sus distribuciones y variaciones a lo largo de un período de tiempo, con el fin de ofrecer y garantizar el análisis de las caracterizaciones del clima en una región específica. Además, es de gran importancia la obtención de información debidamente ordenada, estandarizada y controlada, a fin de proporcionar resultados que permitan confiar plenamente en los diversos análisis y adelantar estudios e investigaciones con fines meteorológicos, climatológicos, ambientales y de prevención de desastres. La red meteorológica igualmente contribuye en el conocimiento de las

condiciones del estado del tiempo en todas sus fases: pasado, presente y futuro. La red climatológica se compone de estaciones que realizan observaciones de temperatura, viento, humedad relativa, precipitación, evaporación y radiación, durante períodos largos para conocer la distribución más común y las características más frecuentes de las normales climatológicas.

3.3 CRITERIOS DE SELECCIÓN DE ESTACIONES Y DEL RANGO TEMPORAL

Con respecto a los datos faltantes y la completitud de las series de tiempo, como lo menciona Díaz-Granados (2018), es conveniente que las series sean lo más completas posible para poder realizar una apropiada caracterización de las mismas. Con lo cual es conveniente realizar un análisis de rango temporal a estudiar teniendo presente el mayor número de estaciones posibles, con el mayor rango temporal y que no supere un faltante mayor al 20% del registro histórico, con un periodo superior a 25 años.

3.4 COMPLETITUD DE LA SERIE TEMPORAL

3.4.1.Polinomios de razones normales

La completitud de las series o generación de datos faltantes en las series temporales se puede realizar mediante el polinomio de razones normales, el cual consiste en examinar la razón de la historia entre las estaciones vecinas y la estación de muestreo donde existe el dato faltante (R.K. Linsley, Jr, et al, 1988). Aplicado la siguiente formula.

$$P_{x} = \frac{1}{n} \left(\frac{\overline{X}}{\overline{A}} P_{A} + \frac{\overline{X}}{\overline{B}} P_{B} + \frac{\overline{X}}{\overline{C}} P_{C} + \ldots + \frac{\overline{X}}{i} P_{i} \right)$$

Donde:

Px – dato faltante en la estación de muestreo X

PA – precipitación en A para la fecha faltante en la estación X

PB – precipitación en B para la fecha faltante en la estación X

PC – precipitación en C para la fecha faltante en la estación X

X – promedio histórico de precipitación en la estación X

Ā – promedio histórico de precipitación en la estación A

B – promedio histórico de precipitación en la estación B

¯C – promedio histórico de precipitación en la estación C

n – número de estaciones vecinas.

La selección de las estaciones vecinas se hace bajo unos criterios de vecindad y son las que aportaran los valores a la fórmula de los polinomios de razones normales. Siendo esto criterios: Igualdad en regímenes climáticos, semejanza en los Coeficientes de Variación y de correlación (Wilks. D. S, 2011), Igualdad en cinturones de condensación, similaridad en el Índice de aridez de Emmanuel De Martone.

3.4.1.1 Índice de Aridez de Emmanuel de Martone

El Índice de aridez de Emmanuel De Martone se obtiene del cociente entre la precipitación (P) y la temperatura del aire (T) más el número diez.

$$Ia = P/(T+10).$$

Dicho rango se clasifica según la siguiente tabla:

Tabla 1. clasificación del índice de Aridez

Ia	CLIMA
>60	Per-húmedo
60-30	Húmedo
30-20	Sub-húmedo
20-15	Semiárido (mediterráneo)
15-5	Árido (estepario)
5-0	Árido extremo (desierto)

Fuente: Almorox .(2009)

3.4.2 Polinomios de razones normales ponderada a la inversa de la distancia

Como variable a incluir dentro de la metodología de los polinomios razonables se extendió el criterio de tener en cuenta la distancia de las estaciones seleccionadas como vecinas, dándole mayor peso a las estaciones vecinas que más cercanas se encuentre a la estación del dato faltante, cuya ecuación se amplía con el criterio de ponderación de inverso a la distancia bajo la siguiente expresión:

$$P_{x} = \frac{\frac{1}{n} \sum_{i=1}^{n} \left(\frac{\overline{P}_{x}}{\overline{P}_{x_{i}}} P_{x_{i}}}{\overline{D}_{i}} \right)}{\sum_{i=1}^{n} \frac{1}{\overline{D}_{i}}}$$

Donde:

X: Mes del dato desconocido

i: Estaciones vecinas seleccionadas para completar el dato de precipitación total mensual faltante en una estación (i = 1, 2, ..., n)

P_x : Representa el dato de precipitación total mensual del mes desconocido (x) para la estación de

interés

 \bar{P}_i : Representa el dato de precipitación total mensual del mes desconocido (x) para la estación de

interés

 P_{xi} : Precipitación total mensual correspondiente para el mes de P_x de las estaciones vecinas

 \overline{P}_{xi} : Promedio de precipitación total mensual del mes del dato desconocido de las estaciones

vecinas.

Di : Distancia entre la estación de interés y la estación vecina i

n: número de estaciones vecinas.

3.4.3 Gradiente Térmico

La temperatura del aire disminuye con la altitud; esto ocurre debido al aporte del calor latente liberado en la condensación del vapor de agua de la atmosfera de una región donde permanente hay un alto contenido del mismo. La razón del cambio de la temperatura por unidad de distancia, tiene dos gradientes, el adiabático de 10.0 C/Km (en aire seco) y el pseudoadiabatico (aire húmedo) es 6.5 C/Km (Reyes, C., 2002). Para fines practico se cuenta con que la razón es de 6.5° C cada kilómetro con lo cual se puede completar una serie temporal de temperatura mediante la siguiente ecuación:

$$\frac{\Delta T}{\Delta Z} = -0.65$$

$$T_H = T_O - \gamma \frac{\Delta h}{100}$$

 T_H Temperatura en a altura deseada

 T_O Temperatura de un lugar conocido

γ Gradiente vertical de temperatura (0.65°)

h Diferencia de alturas en metros entre las dos estaciones (Z_H - Z_O)

3.5 ANÁLISIS DE HOMOGENEIDAD Y CONSISTENCIA DE LAS SERIES TEMPORALES

Es el proceso en el cual se identifica los errores (datos anómalos o faltantes) de las series temporales de una variable climática, se establece su casualidad y se remueven, para que la serie de datos sea más confiable, ya que existen cambios naturales y antrópicos que afectan el comportamiento del registro histórico produciendo inconsistencias, representadas como errores sistemáticos de saltos que en estadística introduce cambios en la tendencia de serie estacional y por lo cual la series es considerada no homogénea, al presentar cambios bruscos de los datos visto en función del tiempo.

3.5.1 Prueba de homogeneidad normal estándar (SNHT)

La SNHT asume que los datos se distribuyen normal. desarrollada por Alexandersson (Alexandersson, 1986) y que modificó con Moberg (Alexandersson & Moeberg, 1997); un valor T(d) compara el promedio de los primeros d años registrados con los últimos (n – d); este valor se obtiene con la expresión:

$$T_d=d\bar{Z}_1+\;(n\;-d)\bar{Z}_2\;para\;d=1,2,\ldots,n.$$

donde:

$$\bar{Z}_1 = \frac{1}{d} \frac{\sum_{i=1}^d (Y_i - \bar{Y})}{s} Y * \bar{Z}_2 = \frac{1}{n-d} \frac{\sum_{i=d+1}^n (Y_i - \bar{Y})}{s}$$

Un valor alto de T en un año d indica una variación "brusca". El estadístico de prueba T 0 se define como:

$$T_0 = \max_{1 \le d \le 0} T(d)$$

3.5.2 Prueba T de Student

Es una prueba que se utiliza para determinar si hay diferencias significativas entre las medias de dos grupos, asumiendo que las variables presentan una distribución normal y donde se específica el nivel de la probabilidad que se está dispuesto a aceptar la hipótesis planteada. La hipótesis planteada en esta prueba es:

$$H_o$$
: $\mu_A = \mu_B$

$$H_a$$
: $\mu_A - \mu_B \neq 0$

Siendo $\mu_{\rm A}$ y $\mu_{\rm B}$ las medias de dos muestras independientes.

3.5.3 Prueba F de Fisher

Es una prueba que se utiliza para determinar la hipótesis de que las medias de múltiples poblaciones normalmente distribuidas y con la misma desviación estándar son iguales. hipótesis planteada en esta prueba es:

$$H_0$$
: $\mu_A - \mu_B = 0$

$$H_a$$
: $\mu_A - \mu_B \neq 0$

Siendo μ_A y μ_B las medias de dos muestras independientes.

Este análisis de varianza contrasta la hipótesis de igualdad de las medias de varios grupos, y su fundamentación radia en la relación entre la varianza explicada por las diferencias entre grupos y la variación individual.

3.6 MODELO DE PREDICCIÓN ESPACIAL (INTERPOLACIÓN ESPACIAL)

La interpolación espacial busca predecir el valor de una variable para generar una superficie continua que permita identifica la variabilidad espacial de esta, a partir de una cantidad de datos limitados y tomados de forma discreta que se encuentran distribuidos espacialmente y correlacionados entre sí; es decir, existe una función F(x,y) que satisfaga la condición F(x,y) = fi + e, siendo fi una función interpolante que representa dicha correlación espacial y e el error del valor introducido derivado de una medición imperfecta u otra causa influyente.

Dentro de los modelos de predicción espacial es posible hablar de dos enfoques: determinístico y probabilístico.

3.6.1 Métodos Determinísticos

Un modelo de predicción espacial determinística son técnicas que crean superficies a partir de puntos medidos basándose en las características geométricas de las observaciones puntuales. Entre este grupo tenemos la ,distancia inversa ponderadas (IDW), método de mínima curvatura (spline), etc.

Los modelos determinísticos son relativamente sencillos de aplicar y en algunos casos bastantes eficientes (Hengl, 2009; Rauthe et al., 2013), sin embargo, suelen no proporcionar

medidas para el error inducido.

3.6.1.1 Método mínima curvatura (Spline)

Este método utiliza un ajuste suavizado a partir de la minimización de la curvatura a una gamma de funciones polinómicas dada una cantidad de puntos de entrada (muestras). El algoritmo que se utiliza para interpolación de superficie se define como:

$$S(x,y) = T(x,y) + \sum_{j=1}^{N} \lambda_j R(r_j)$$

Donde:

$$J=1,2,...,N$$

N cantidad de puntos

 λ_j son coeficientes determinados por la solución de un sistema de ecuaciones lineales

 r_j es la distancia del punto (x,y) al punto j.

T(x,y) y R(r) corresponde a funciones que se definen según el método a utilizar (regularizado o de Tensión)

3.6.1.2 Método peso inverso a la distancia (IDW)

Mediante este método se calcula el valor de cada celda como la media ponderada de los valores del entorno en función del inverso de la distancia, por lo que se asume que los puntos más cercanos tendrán más influencia. Cuanto más cerca está un punto del centro de la celda, más influencia o peso tiene en el valor que adquiere. La definición formal de la ponderación en función inversa de la distancia es la siguiente:

$$Z_p = \frac{\sum_{i=1}^{n} \left(\frac{Z_i}{d_i}\right)}{\sum_{i=1}^{n} \left(\frac{1}{d_i}\right)}$$

 \mathbb{Z}_p es el valor en el punto donde se desea conocer el valor

 Z_i valor de la variable en el punto conocido

 d_i Distancia entre el punto con el valor conocido y el punto a donde se desea realizar la estimación

3.6.2 Métodos Probabilísticos

Las técnicas de interpolación probabilísticos utilizan las propiedades estadísticas de los puntos medidos (muestra disponible), los métodos más comunes son los métodos geoestadísticas (Kriging) que cuantifican la autocorrelación espacial entre los puntos medidos y reflejan la configuración espacial de los puntos de muestra en torno a la ubicación de predicción.

3.6.2.1 Kriging simple

El método kriging pondera los valores medidos circundantes para calcular la predicción de zonas donde se desconoce el valor de la variable mediante una función de correlación espacial denominado semivariograma, para ello se debe ajustar el modelo de correlación espacial a modelos teóricos ya establecidos que definirán la función de dicho comportamiento espacial para realizar la predicción sobre ubicaciones sin mediciones. La función general del interpolador se conforma de la suma ponderada de los datos conocidos y su relación de dependencia espacial bajo la siguiente función:

$$\widehat{Z(So)} = \sum_{i=1}^{N} \lambda_i \, Z(S_i)$$

 λ_i Ponderación para el valor medido en la ubicación i

 $Z(S_i)$ el valor medido en la ubicación i

So es la ubicación de la predicción

N corresponde a la cantidad de valores medidos

3.6.2.2 Supuestos del modelo

Kriging es la técnica de interpolación óptima si sus datos cumplen ciertos criterios, de lo contrario se deben aplicar transformaciones de la variable, remover la tendencia espacial o eliminar puntos que generan alta variación del modelo. Los criterios a tener en cuenta para que funcione de marea óptima la interpolación son:

- Sus datos deben provenir de una distribución normal
- Los datos deben ser estacionarios
- Sus datos no pueden tener tendencias espacial

3.7 MODELO DE PREDICCIÓN ESPACIAL REGIONALIZADO

Corresponde a un modelo de predicción de una variable respuesta de tipo continuo a través de un conjunto de variables predictoras o explicativas, el objetivo de la modelización es establecer las relaciones que existen entre las variable explicativa y la de respuesta, y como las variables explicativas pueden predecir el comportamiento de la respuesta. La modelación se centra en tener

un conjunto de observaciones tomada como muestra aleatoria de una población y descomponerla en una función que comprende una función completamente determinística m(x) que representa la tendencia general manifestada entre la variable respuesta $\widehat{Z(x)}$ y sus predictores (X_i) , esto es, entre lo que se espera observar y el valor registrado.

Del residual se contempla una variable completamente aleatoria que describe la variabilidad estocástica local $\varepsilon(x)$ pero es independiente de m(x) y un residual o ruido espacialmente independiente ε (Figura 1).

$$\widehat{Z(x)} = m(x) + \varepsilon(x) + \varepsilon$$

$$m(x) = \sum_{i=1}^{N} \beta_i * X_i + \text{Residual}$$

$$\text{Residual} = \varepsilon(x) + \varepsilon$$

Este residual es proviene de las diferencias entre las los valores medidos de la muestra y el valor estimado, dicha variabilidad puede provenir de factores no considerados en el modelo, así como errores de medición, los cuales cumplen los siguientes criterios

- $\varepsilon(x) \sim N$
- $E(\varepsilon) = 0$
- $Var(\varepsilon) = Var(Y)$ con Y variable explicativa

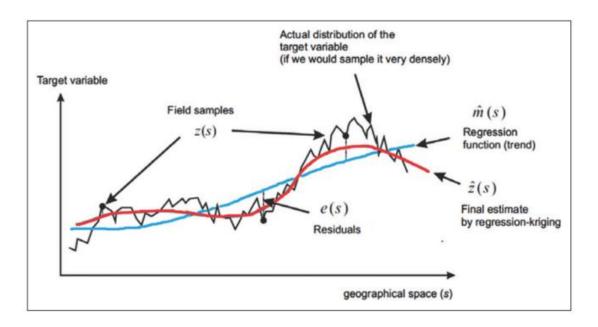


Figura 1. Esquema de representación de un modelo regionalizado

Fuente: Jalal, Aras. (2019).

3.7.1 Modelo de regresión múltiple

La regresión múltiple son representaciones matemáticas de modelos lineales o linealizables entre una variable dependiente y más de una variable independiente para proporcionar predicciones fiables de forma tal que estudiada una población respecto a ciertas características de interés se permita realizar inferencia sobre esta. Para la modelación y análisis estadístico de un conjunto de datos se debe tener presente: la contextualización del problema (objetivo), análisis de tendencias, consideración e hipótesis (propuesta del modelo), comparación y selección del mejor modelo, valoración de predicción (validación), interpretación y conclusión. Además, se debe tener presente que sobre este tipo de modelos es importante testar la heterocedasticidad, la multicolinealidad y la especificación propia del modelo (Montero, 2016).

3.7.1.1 Consideraciones de modelo de regresión múltiple

3.7.1.1.1 Distribución normal de los residuos

Los residuos se deben distribuir de forma normal con media cero. Para comprobarlo se recurre a histogramas, a los cuantiles normales o a test de hipótesis de normalidad como:

- Shapiro -Wilk
- Anderson-Darling
- Kolmorogy Smirnov

3.7.1.1.2 Homocedasticidad

La varianza de los residuos debe de ser constante en todo el rango de observaciones. Para comprobarlo se representan los residuos. Si la varianza es constante, se distribuyen de forma aleatoria manteniendo una misma dispersión y sin ningún patrón específico. También se puede recurrir a contrastes de homocedasticidad como el test de Breusch-Pagan.

3.7.1.1.3 No colinialidad o multicolinialidad

En los modelos lineales múltiples los predictores deben ser independientes, no debe de haber colinialidad entre ellos. La colinialidad ocurre cuando un predictor está linealmente relacionado con uno o varios de los otros predictores del modelo o cuando es la combinación lineal de otros predictores. Como consecuencia de la colinialidad no se puede identificar de forma precisa el efecto individual que tiene cada una de las variables colineales sobre la variable respuesta, lo que se traduce en un incremento de la varianza de los coeficientes de regresión estimados hasta el

punto que resulta prácticamente imposible establecer su significancia estadística. para determinar la posible colinealidad se recomienda:

- Revisar el R2, cuando es muy alto pero los predictores no resultan significativos
- Calcular una matriz de correlación en la que se estudia la relación lineal entre cada par de predictores.
- Generar un modelo de regresión lineal simple entre cada uno de los predictores frente al resto
- Factor de Inflación de la Varianza (VIF).

3.7.1.1.4 No autocorrelación (Independencia)

Los valores de cada observación son independientes de los otros, esto es especialmente importante de comprobar cuando se trabaja con mediciones temporales. Se recomienda representar los residuos ordenados acorde al tiempo de registro de las observaciones, si existe un cierto patrón hay indicios de autocorrelación. También se puede emplear el test de hipótesis de Durbin-Watson.

3.7.1.1.5 Valores atípicos, con alto leverage o influyentes

Es importante identificar observaciones que sean atípicas o que puedan estar influenciando al modelo.

3.7.1.1.6 Violación de la hipótesis

Cuando los modelos determinados en el problema violan las hipótesis del modelo lineal general, se plantea soluciones como:

- propuesta de otros modelos adecuados a la distribución de la respuesta y su relación con los predictores. Como una prolongación del modelo lineal general,
- 2. Transformar la variable respuesta
- 3. Transformar la covariables continuas,

3.8 VALIDACIÓN CRUZADA

La validación en predicción de los modelos se ha realizado mediante validación cruzada uno a uno, utilizando para estimar el error y la bondad de ajuste en calibración y validación el error medio cuadrático (MSE), la raíz cuadrada del error cuadrático (RMSE), y el error absoluto (MAE).

Para estimar la capacidad predictiva de los modelos mediante validación cruzada, se divide en dos subconjuntos las observaciones de forma aleatoria, un paquete será de entrenamientos y el otro para validación. El primer subconjunto replica el proceso de predicción espacial y se compara con los datos de validación para cuantificar el error del modelo mediante los estadísticos anteriormente descritos.

3.9 ERRORES DE PREDICCIÓN

Error de predicción es la diferencia entre un valor de Y su estimación Y'. Entre los estadísticos definidos se encuentran error medio cuadrático (MSE), raíz del error medio cuadrático (RMSE) y error absoluto medio (MAE):

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (Y_i - \widehat{Y}_i)^2$$

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (Y_i - \widehat{Y}_i)^2}$$

$$MAE = \left| \frac{1}{N} \sum_{i=1}^{N} (Y_i - \widehat{Y}_i)^2 \right|$$

Donde:

 Y_i = Resultado real esperado

 \widehat{Y}_l = Valor predicho según el modelo

N = Número de putos donde se tiene el valor real y el estimado.

4. METODOLOGÍA

4.1 DESCRIPCIÓN DEL ÁREA DE ESTUDIO

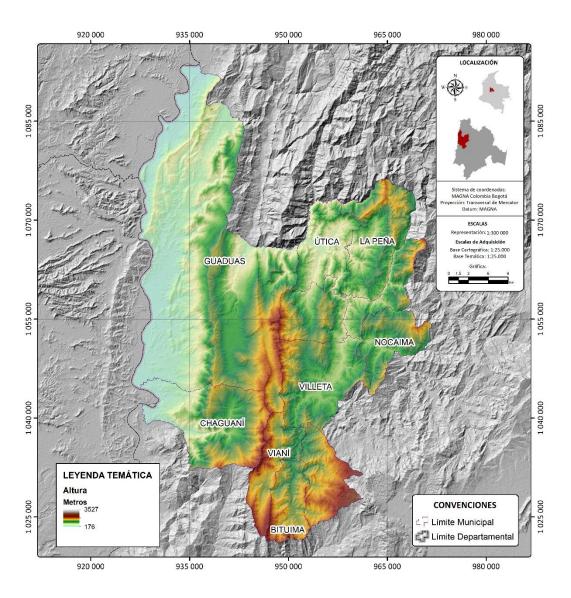


Figura 2. Mapa de localización de la zona de estudio.

Fuente: Propia. (2021)

El área de estudio se localiza hacia el noroccidente del departamento de Cundinamarca, bajo la influencia de las cuencas de Río Negro y Río Seco. Abarca una extensión de 162.532 ha, limita al occidente con el río Magdalena (municipios de Guaduas y Chaguaní), al Norte con el Río

Negro, y es atravesado en la parte oriental por los ríos Bituima, Villeta, Tobia, Río Negro y Pata, conformando los municipios: Bituima, Chaguaní, Guaduas, Guayabal de Síquima, La Peña, Nimaima, Nocaima, Quebradanegra, Vianí, Villeta y Útica (**Figura 2**).

4.1.2 Caracterización Climática

Los municipios que integran geográficamente el área de estudio, al estar situados en el flanco occidental de la Cordillera Oriental, están influenciados por la circulación de los valles interandinos: durante las horas del día se tienen vientos anabáticos (circulación valle-Montaña) y durante las horas de la noche se presentan vientos catabáticos (circulación montaña-valle).

El área de estudio presenta un régimen de precipitación bimodal, gobernada por el doble paso de la Zona de Confluencia Intertropical ZCIT, sobre el territorio colombiano, donde se producen zonas de alta pluviosidad (zonas húmedas) y zonas de baja pluviosidad (zonas secas) en los alrededores del río Magdalena.

De acuerdo con la información registrada en el portal web de la CAR y según los datos recolectados por las estaciones a cargo de esta entidad, durante el año 2019, entre junio y agosto ocurren dos eventos opuestos en el departamento de Cundinamarca, se desarrolla la temporada húmeda en la zona oriental mientras que en las zonas central y occidental se registra el período seco.

En septiembre, bajo condiciones normales, finaliza la fase del período seco en la zona occidental y central y empieza la transición al período seco en el límite oriental. Es decir, en las zonas occidental y central, se espera que los primeros 15 días sean secos y los últimos 15 lluviosos;

por el contrario, en el límite oriental se espera que los primeros 15 días sean lluviosos y los últimos 15 secos.

El mes de octubre marca el inicio y consolidación de la segunda temporada lluviosa del año, en especial en la zona occidental y central. Regularmente las precipitaciones suelen ser más intensas (con tormentas eléctricas) hacia finales del mes.

En condiciones normales, noviembre continúa siendo lluvioso, sin embargo, en los últimos días del mes se marca el final de la segunda temporada de precipitaciones del año en la mayoría del territorio cundinamarques, en especial, en la zona central y occidental. No obstante, en el límite oriental y nororiental es el inicio y consolidación de la temporada seca que se extiende normalmente hasta marzo.

Diciembre se caracteriza por ser el mes en el que inicia la temporada seca en el departamento, la cual es intensa en el límite oriental y nororiental, moderada en la zona central, e imperceptible en la occidental (área de estudio).

4.2. MATERIALES

4.2.1 Datos Climatológicos

Información brindada por la entidades IDEAM y CAR, la cual ofrece información de la localización y de las series históricas de las estaciones que registran las variables de temperatura y precipitación.

4.2.2 Modelo Digital De Elevación (MDE)

El Modelo Digital de Elevación se obtiene de un mosaico generado de imágenes de radar colectada por el sensor PALSAR (Phased Array type L-band Synthetic Aperture Radar), las cuales

poseen una resolución espacial del 12,5m. Los valores de elevación oscilan entre 176 m y 3527 m, con una mediana de 1067.38 m. El tamaño de la extensión del DEM corresponde al área abarcada por las estaciones que permitieron realizar la estimación-interpolación de lluvia y temperatura. Todos los predictores o variables independientes derivados de este insumo poseen la misma resolución espacial.

4.2.3 Software

4.2.3.1 R

R es un lenguaje y entorno de programación para análisis estadístico y gráfico. Se trata de un proyecto de software libre que se utiliza mediante un lenguaje de programación que interactúa directamente con el código (Elousa, P, 2011).

4.2.3.1 ArcGis

ArcGIS es un completo sistema que permite recopilar, organizar, administrar, analizar, compartir y distribuir información geográfica. Corresponde a una plataforma para crear y utilizar sistemas de información geográfica (SIG) y análisis espacial.

5. PROCEDIMIENTO

Para evaluar la calidad de predicción para las superficies espaciales de las variables meteorológicas de precipitación y temperatura mediante la implementación de funciones de regresión múltiple, se ejecutaron una serie de rutinas programadas en el software R y Arcgis. Se describe a continuación una las actividades que se desarrollaron para el cumplimiento de los objetivos.

5.1. RECOPILACIÓN DE INFORMACIÓN DISPONIBLE DE LAS SERIES HISTÓRICAS DE PRECIPITACIÓN Y TEMPERATURA

Se realizó un recopilación de la estaciones climatológicas provenientes de entidades de la CAR y el IDEAM dentro del área de estudio que tuviera un conjunto de mediciones de precipitación que permita representar el promedio mensual y anual multianual de esta variable climatológica.

5.2. SELECCIÓN DE ESTACIONES Y DETERMINACIÓN DEL RANGO TEMPORAL DE ANÁLISIS

El periodo de tiempo considerado, es desde que inició operaciones cada una de las estaciones hasta su última fecha de registro. Para que la estación fuera considerada en el análisis, se seleccionaron aquellas que cumplieran los siguientes requisitos mínimos:

1) Contar con al menos 25 años de información (periodo de análisis similar al exigido por la organización meteorológica mundial para la evaluación y estudios climatológicos regionales)

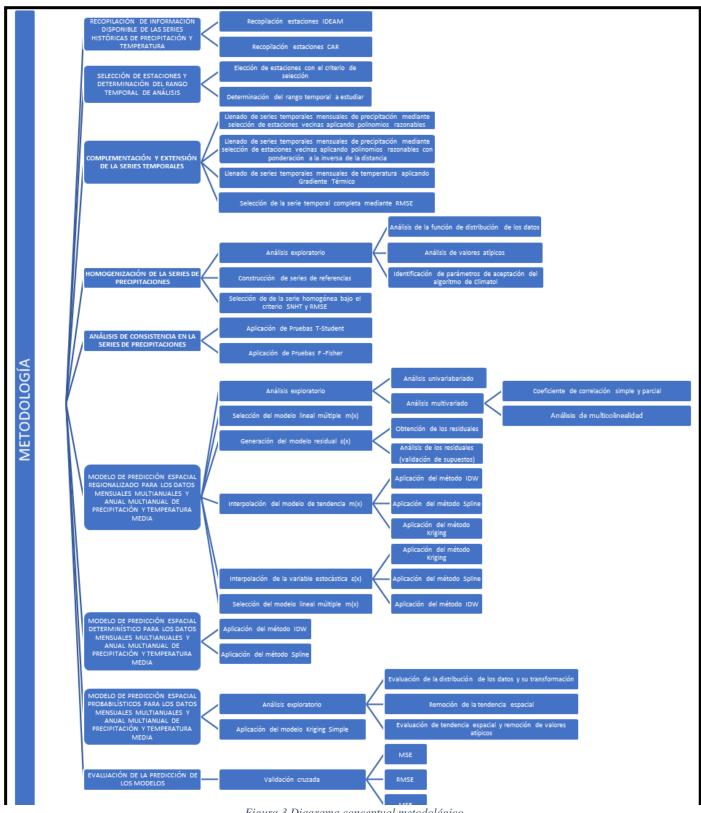


Figura 3 Diagrama conceptual metodológico Fuente: Autores

- 2) tener al menos 80% de registros históricos
- 3) Que se encuentre dentro del área de estudio en cercanías a esta.

La selección se realizó tratando de conservar el mayor número de estaciones posibles.

5.3 COMPLEMENTACIÓN Y EXTENSIÓN DE LA SERIES TEMPORALES

Como toda información meteorológica suministrada se realizó un análisis de la información faltante para rango temporal seleccionado, para lo cual se recurrió al método de polinomios razonables y polinomios razonables con ponderación a la inversa de la distancia para completar las series temporales de precipitación acumulada a nivel mensual. La selección de las estaciones vecinas se hace contemplando los criterios de vecindad, se validan la calidad de predicción de las diferentes ecuaciones planteadas por dichos criterios de vecindad y la inclusión de la ponderación en función de la distancia de la estaciones vecinas, aplicando la estimación del error dada por la función de RMSE, seleccionando aquella que menor error de predicción reportará ya que era un indicador de la calidad de la estimación.

Para completar las series de temperatura media mensual se utilizó la ecuación del gradiente altitudinal con las estaciones que presentará información registrada sobre las estaciones que presentará dato ausente, seleccionando la estación que mejor evaluación de predicción se obtuviera para la serie evaluada con el menor RMSE reportado.

5.4 HOMOGENIZACIÓN DE LA SERIES DE PRECIPITACIONES

Para realizar el proceso de homogeneización de la series se optó por utiliza una rutina en R denominada Climatol, este paquete se especializa en manejar datos de precipitación como de temperatura (Guijarro et al., 2016). El funcionamiento de Climatol se desarrolla en varios pasos los cuales se describen a continuación:

5.4.1 Análisis exploratorio

En este paso se identificó si la serie de referencia presenta oscilaciones bruscas en su tendencia temporal. Para ello se revisó la distribución que posee la serie temporal, se identificó umbrales de rechazo dados por valores considerados anómalos y de manera preliminar los segmentos considerados inhomogéneo.

5.4.2 Construcción de series de referencias

Una vez identificado de manera preliminar el comportamiento de los datos, se le indica a Climatol el tipo de normalización de los datos para que las series sean comparables. Luego, construye la serie de referencia, a través de un promedio ponderado de los datos normalizados de las estaciones con mejor correlación a cada serie y en función inversa a la distancia. Posteriormente, corrige los datos identificados con valores anómalos reemplazándolos por los datos estimados, esto ser realiza de forma iterativa para que no cambie la media del proceso. Por último, se comprueba la homogeneidad de las series climáticas, realizando la prueba de homogeneidad normal estándar (SNHT), en la cual se calcula la diferencia entre la serie original y la serie estimada (normalizadas), generando una serie de anomalías, la misma que

comparada con una serie umbral permite identificar los saltos en la media y fragmentar las series en subseries potencialmente homogéneas (Guijarro, 2004; CRAN.R-project, 2018). Dado que la prueba SNHT fue pensada para hallar un único punto de cambio, Climatol aplica la prueba por segmentos, luego sobre la serie completa y finalmente rellena las subseries con la metodología de relleno explicada anteriormente (Guijarro, 2018).

5.4.3 Selección de la serie homogénea

Como Climatol construye varias series que permite realizar esa corrección para que los datos sean más homogéneos, es importante identificar cual de esas series construidas presenta un mayor grado de homogeneización y al mismo tiempo corresponde a la serie que menor altera los datos originales, para ello se selecciona la serie que menor SNHT y RMSE posee.

5.5 ANÁLISIS DE CONSISTENCIA EN LA SERIES DE PRECIPITACIONES

Para el validar la consistencia de las series temporales de lluvias se realizó las pruebas de T-Students y F-Fisher al 1% y 5% de nivel de confianza para las series que no aceptaran la hipótesis nula, se reemplazó con otra de las series de referencia homogeneizada que si cumplieran con la prueba aplicada.

5.6 MODELO DE PREDICCIÓN ESPACIAL REGIONALIZADO PARA LOS DATOS MENSUALES MULTIANUALES Y ANUAL MULTIANUAL DE PRECIPITACIÓN Y TEMPERATURA MEDIA

Para realizar el modelo de predicción espacial regionalizado se realiza un análisis exploratorio de las variable de estudio, que en este caso corresponde a las precipitación acumulada y temperatura media mensual multianual y anual multianual, y a las variables que puede explicar el valor de las variables de estudio, esto con el fin de determinar un modelo estadístico adecuado al fenómeno que se desea explicar para poder posteriormente especializarlo. Las diferencias entre los valores estimados y los valores reales conformaron el modelo espacial estocástico el cual se interpoló con el modelo de kriging, IDW y Spline para ser sumado con los valores espacializados del modelo determinístico.

Para validar la calidad de predicción del modelo respecto a los métodos de interpolación conocidos, se realizó la predicción espacial de forma convencional, y se ejecutó una validación cruzada para cada uno de los modelos generados, los cuales se cuantifico el error de predicción .

5.6.1 Análisis exploratorio

5.6.1.1 Análisis univariado

Se evaluó la distribución de los datos mediante aplicación de test que evalúan si los datos de precipitación y temperatura proviene de una distribución normal, se realizó los momentos estadísticos clásicos para cada variable y gráficos de box -plot y nomal Q-Q para identificar que tanta variabilidad presenta los datos y si se evidencia valores extremos que puedan alterar la media del proceso.

5.6.1.2 Análisis multivariado

Se determinó el grado de correlación lineal simple y parcial de las variables explicativas para cada fenómeno climático estudiado, con el fin de determinar el grado de relación que tiene en la explicación del valor de las variables dependientes y si existía multicolinealidad entre las variables geográficas y topográficas.

5.6.2 Selección del modelo de regresión múltiple m(x)

Se plantó un modelo de regresión múltiple para extraer la correlación espacial debida a características geográficas (latitud, longitud y altura) y fisiográficas (pendientes, dirección de laderas) según el fenómeno evaluado y los resultados del análisis exploratorio.

Como se menciona en capítulos anteriores la precipitación depende de factores tanto geográficos (latitud, longitud y altura) y en sectores montañosos de factores topográficos, con lo cual se buscó evaluar un modelo de predicción a través de la siguiente expresión:

$$\hat{P} = \beta_0 + \beta_1 * f(Altura) + \beta_1 * f(Latitud) + \beta_2 * f(Longitud)$$
$$+\beta_3 * f(orientación de la ladera) + \beta_4 * f(Pendiente) + Residuo$$

Para la temperatura media la influencia en la distribución espacial de la variable se debe a factores topográfico y especialmente al gradiente altitudinal. Con lo cual se planteó inicialmente un modelo con la siguiente expresión:

$$\hat{T} = \beta_0 * f(Altura) + \beta_1 * f(Coordenada X) + \beta_2 * f(Coordena Y) + Residuo$$

Siendo

 \hat{P} Estimación de la precipitación aplicando la regresión lineal múltiple

 \hat{T} Estimación de la temperatura aplicando la regresión lineal múltiple

 β_0 , β_1 , β_2 , β_3 , β_4 , Los coeficientes obtenidos de las variables dependientes de la regresión

F la función que describe la relación entre la variable dependiente con las independientes

Los modelos finales se determinaron a través del análisis exploratorio y la elección del mejor modelo de ajuste fue determinado por los valores de R^2 ajustado, Criterio Akaike (AIC) y el error de los residuales.

5.6.3 Generación de residuales $\varepsilon(x)$

Una vez realizada la regresión múltiple, el valor de los residuo de las predicciones se obtuvo aplicando la siguiente formula:

$$\hat{R} = P - \hat{P}$$

$$\hat{R} = T - \hat{T}$$

Siendo

 \hat{R} Estimación del residual de la regresión lineal múltiple

 \hat{P}/\hat{T} Estimación de la precipitación o temperatura aplicando la regresión lineal múltiple

P/T Valor de precipitación o temperatura de la serie histórica

5.6.4 Modelo espacial de tendencia m(x)

Con los modelos de regresión múltiple seleccionado se realizó una espacialización aplicando en la calculadora ráster en el software Arcgis las ecuaciones determinísticas generadas.

5.5.5 Modelo espacial residual estocástico $\varepsilon(x)$

La modelación de la variabilidad espacial de la temperatura (residuo de la regresión) se realizó una interpolación espacial aplicando los métodos de Kriging, Spline e IDW.

5.6.6 Modelo de predicción espacial regionalizado $\widehat{Z(x)}$

Las superficies climáticas regionalizada fueron el resultado de la suma de la tendencia temporal determinística m(x) y el componen residual estocásticos $\varepsilon(x)$, como el componente residual se interpolo por tres métodos se obtienen para cada variable climática mensual multianual y anual multianual tres superficies de predicción.

5.7 MODELO DE PREDICCIÓN ESPACIAL DETERMINÍSTICO PARA LOS DATOS MENSUALES MULTIANUALES Y ANUAL MULTIANUAL DE PRECIPITACIÓN Y TEMPERATURA MEDIA

De igual forma se interpoló espacialmente los valores de las series temporales de cada variable climática por los métodos IDW y Spline.

5.8 MODELO DE PREDICCIÓN ESPACIAL PROBABILÍSTICOS PARA LOS DATOS MENSUALES MULTIANUALES Y ANUAL MULTIANUAL DE PRECIPITACIÓN Y TEMPERATURA MEDIA

Para realizar la interpolación de los valores de las series temporales de cada variable climática por Kriging simple se realizó un análisis exploratorio de los datos evaluando los supuesto que aplica la metodología gaussiana, con lo cual se identificó la distribución de los datos o la transformación que requería, de igual forma la tendencia espacial y la forma de removerla, y la exclusión de valores atípicos. Seguido se realizó un análisis estructural para definir modelo de correlación espacial teórico a partir del variograma o correlograma experimental, una vez identificado el modelo y las especificaciones de los supuesto se aplicó el modelo para generar la superficie de interpolación probabilística.

5.9 EVALUACIÓN DE LA PREDICCIÓN DE LOS MODELOS

Para cada modelo se selecciona un conjunto de valores para entrenamiento del modelo y el restante para validación, con el conjunto de datos de entrenamiento se replica los procesos de modelamiento espacial y con el segundo se contrastó la calidad de la nueva predicción mediante la evaluación de los estadísticos MSE, RMSE y MAE, este paso se realiza de forma iterativa para que cada valor de predicción (cada pixel). Obteniendo como mejor modelo aquellos que menor error presenten en el modelo y que espacialmente sea coherente.

6. RESULTADOS

6.1. RECOPILACIÓN DE INFORMACIÓN DISPONIBLE DE LAS SERIES HISTÓRICAS DE PRECIPITACIÓN Y TEMPERATURA

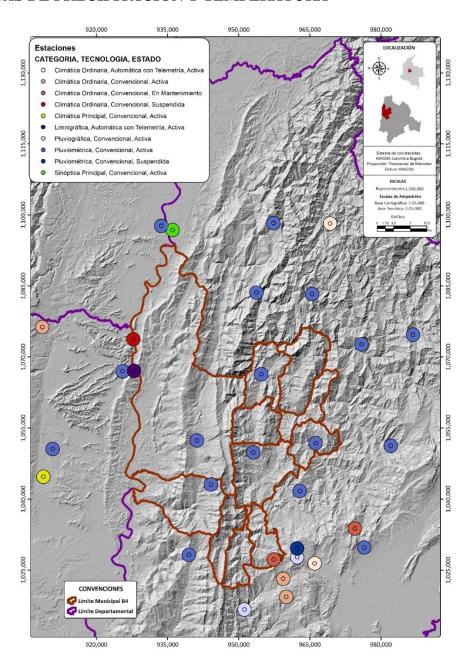


Figura 4. Mapa de localización de las estaciones para el área de estudio.

Fuente: Autores

NOMBRE	CATEGORÍA	TECNOLOGÍA	ESTADO	FECHA_INST	FECHA_SUS	ALT	LAT	LONG	DEPTO	MUNICIPIO	ENTIDAD
ARGENTINA [21201790]	Pluviográfica	Convencional	Activa	15/04/1989	NA	1150	4.74677	-74.51724	Cundinamarca	Quipile	CAR - CI REGIO
SAN ISIDRO [23060340]	Pluviométrica	Convencional	Activa	15/07/1999	NA	1150	5.04677	-74.50057	Cundinamarca	Villeta	AR - CORPORAC REGIONAL DE C
TRIBUNA LA [21201850]	Pluviográfica	Convencional	Activa	15/06/1992	NA	2723	4.84677	-74.41724	Cundinamarca	Facatativá	CAR - CORPORACIÓN AUTÓNOMA REGIONAL DE CUNDINAMARCA
VENECIA [21200570]	Pluviométrica	Convencional	Suspendi da	15/12/1956	15/12/1986	2673	4.86344	-74.41724	Cundinamarca	Facatativá	ÓNOMA MARCA
FLORIDA [21205670]	Climática Ordinaria	Convencional	Activa	15/11/1970	NA	1915	4.77089	-74.43764	Cundinamarca	Anolaima	INSTI
PRIMAVERA D MATINA [21206180]	Climática Ordinaria	Convencional	Activa	15/04/1986	NA	1850	4.8055	-74.44347	Cundinamarca	Anolaima	ITUTO DE
VILLA INÉS - AUT [21205940]	Climática Ordinaria	Automática con Telemetría	Activa	14/02/1977	NA	2590	4.83497	-74.38397	Cundinamarca	Facatativá	HIDROLO. AN
SANTA TERESA [23065060]	Climática Ordinaria	Convencional	En Manteni miento	14/12/1988	NA	2200	4.84217	-74.46169	Cundinamarca	Guayabal De Síquima	LOGÍA METEO AMBIENTALES
SAN JUAN D RIOSECO [21230070]	Pluviométrica	Convencional	Activa	15/12/1974	NA	1364	4.85128	-74.62283	Cundinamarca	San Juan De Rioseco	OROLOGÍA S
CORAZÓN EL [21201070]	Pluviométrica	Convencional	Activa	15/07/1974	NA	2845	4.86536	-74.28942	Cundinamarca	Facatativá	INSTITUTO DE HIDROLOGÍA METEOROLOGÍA Y ESTUDIOS AMBIENTALES

NOMBRE	CATEGORÍA	TECNOLOGÍA	ESTADO	FECHA_INST	FECHA_SUS	ALT	LAT	LONG	DEPTO	MUNICIPIO	ENTIDAD
SABANETA [23065100]	Climática Ordinaria	Convencional	En Manteni miento	14/08/1986	NA	2475	4.90175	-74.30739	Cundinamarca	La Vega	
SILENCIO EL [23060290]	Pluviométrica	Convencional	Activa	15/03/1986	NA	1425	4.97317	-74.41206	Cundinamarca	Sasaima	
BELLEZA LA [21230120]	Pluviométrica	Convencional	Activa	15/12/1986	NA	1200	4.98539	-74.58111	Cundinamarca	Chaguaní	
ARMERO GRANJA [21255090]	Climática Principal	Convencional	Activa	14/10/1986	NA	321	5	-74.89999	Tolima	Armero (Guayabal)	
POTOSÍ HACIENDA [21250450]	Pluviométrica	Convencional	Activa	15/02/1971	NA	389	5.05303	-74.88247	Tolima	Armero (Guayabal)	
SUPATÁ [23065210]	Pluviométrica	Convencional	Activa	6/05/2006	NA	1798	5.05969	-74.23917	Cundinamarca	Supatá	
CHILAGUA [23060260]	Pluviométrica	Convencional	Activa	15/12/1987	NA	1500	5.06464	-74.38203	Cundinamarca	Nocaima	
TUSCOLO EL [23060140]	Pluviométrica	Convencional	Activa	14/02/1971	NA	985	5.06944	-74.60806	Cundinamarca	Guaduas	
UTICA [23060190]	Pluviométrica	Convencional	Activa	15/09/1974	NA	497	5.19608	-74.4855	Cundinamarca	Útica	
IDEMA-HONDA [23010080]	Pluviométrica	Convencional	Activa	15/08/1964	NA	258	5.20142	-74.74958	Tolima	Honda	
ARRANCAPLUM AS - AUT [21237020]	Limnigráfica	Automática con Telemetría	Activa	14/01/1934	NA	222	5.20242	-74.72761	Cundinamarca	Guaduas	

NOMBRE	CATEGORÍA	TECNOLOGÍA	ESTADO	FECHA_INST	FECHA_SUS	ALT	LAT	LONG	DEPTO	MUNICIPIO	ENTIDAD
PEÑÓN EL [23060180]	Pluviométrica	Convencional	Activa	15/09/1974	NA	1400	5.25344	-74.2945	Cundinamarca	El Peñón (Cundinamar ca)	
ESPERANZA LA [23025020]	Climática Ordinaria	Convencional	Suspendi da	15/10/1970	6/01/2016	208	5.26264	-74.72914	Tolima	Honda	
VILLAGÓMEZ [23125150]	Pluviométrica	Convencional	Activa	14/08/1997	NA	1575	5.27175	-74.19678	Cundinamarca	Villagómez	
ALBANIA [23025040]	Climática Ordinaria	Convencional	Activa	15/04/1987	NA	788	5.2857	-74.90264	Tolima	Mariquita	
PALMA [23060170]	Pluviométrica	Convencional	Activa	15/09/1974	NA	1462	5.34936	-74.38911	Cundinamarca	La Palma	
CAPARRAPÍ [23060110]	Pluviométrica	Convencional	Activa	15/04/1959	NA	1270	5.35219	-74.49478	Cundinamarca	Caparrapí	
AEROPUERTO PALANQUERO [23035020]	Sinóptica Principal	Convencional	Activa	15/01/1957	NA	172	5.47139	-74.65472	Cundinamarca	Puerto Salgar	
IDEMA- DORADA [23040030]	Pluviométrica	Convencional	Activa	15/07/1964	NA	192	5.47919	-74.67617	Caldas	La Dorada	
YACOPÍ - AUT [23065110]	Climática Ordinaria	Automática con Telemetría	Activa	14/09/1974	NA	1347	5.48417	-74.35458	Cundinamarca	Yacopí	
SAN PABLO [23060160]	Pluviométrica	Convencional	Activa	15/09/1974	NA	1200	5.48508	-74.46242	Cundinamarca	Caparrapí	

Tabla 2. Estaciones hidrometeorológicas de influencia para la zona de estudio

Fuente: IDEAM. (2020)

De acuerdo con el Catálogo Nacional de Estaciones del IDEAM (CNE), el área de estudio cuenta con 31 estaciones hidrometeorológicas que presenta suficiente información de su rango temporal sobre las variables de temperatura o precipitación, en preferencia que fuesen activas a la fecha y que encontraran dentro o cerca del área de estudio. En la **Tabla 2** se muestran las características generales de cada una de ellas y en la **Figura 4** su respectiva localización espacial.

6.2 SELECCIÓN DE ESTACIONES Y DETERMINACIÓN DEL RANGO TEMPORAL DE ANÁLISIS

Se eligió como periodo de análisis común para todas las estaciones desde el año 1987 hasta el año 2014, es decir, 27 años, ya que corresponde al periodo que presentar mayor registro histórico de las estaciones recopiladas, y así excluir el ruido que pueda introducir la variabilidad climática que presenta los registro históricos de las estaciones con mayor longitud de datos sobre las de menor longitud dentro del análisis regional.

Las estaciones de La Vega, Tribuna, Venecia, Villa Inés, Villa Gómez y Villeta fueron desestimadas del estudio climatológico debido a que no cumplen con los criterios determinados para ser seleccionadas, ya que cuenta con registro históricos con lapsos muy corto que supera el 20% de los datos faltantes.

Se hizo una excepción con la estación de San Isidro, al presentar un 24% de la información faltante, pero presenta una localización espacial privilegiada y su registro temporal parece ser confiable.

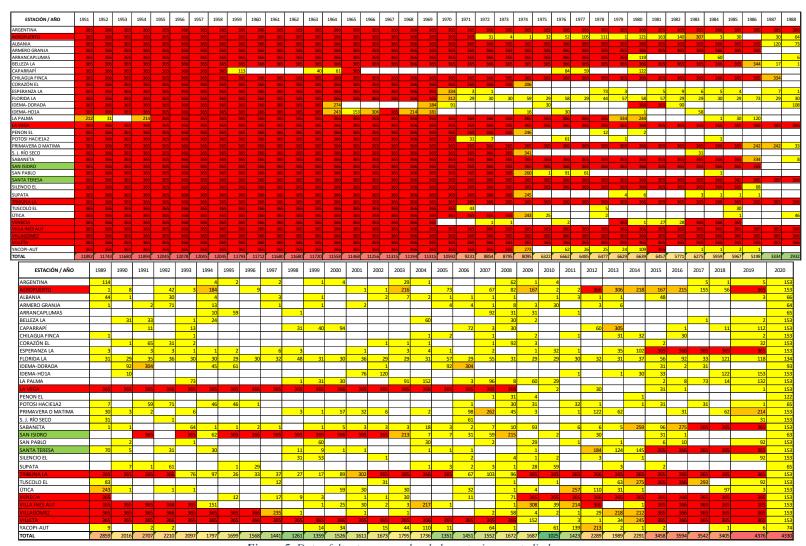


Figura 5. Datos faltantes mensuales de las estaciones estudiadas.

Fuente: Propia

6.3 COMPLEMENTACIÓN Y EXTENSIÓN DE LA SERIES TEMPORALES

6.3.1 Series temporales de precipitación

Las estaciones pluviométricas seleccionadas cuentan con una buen rango temporal, los porcentajes de datos faltantes o vacíos de información generados para cada estación se encuentran dentro de márgenes o rangos de aceptación viables (procedentes). Para complementar las series de datos se completa se establece los criterios de vecindad para las estaciones de estudio, para ello se realiza los estadísticos coeficiente de variación como se muestra en la Tabla 3, cuyo valor se encuentra en orden, con lo cual la vecindad entre estaciones está dada por las estaciones que comparte filas adyacentes.

ESTACIÓN	C. VARIACIÓN
YACOPI-AUT	52.45382192
SAN PABLO	57.62257741
PENON EL	57.9376609
ARMERO GRANJA	61.28440538
SANTA TERESA	61.39173637
ALBANIA	61.64479342
LA PALMA	62.12064198
CHILAGUA FINCA	65.72840448
CORAZÓN EL	66.24441107
SILENCIO EL	66.64456668
SABANETA	66.64540478
ARGENTINA	67.78777571
FLORIDA LA	69.49083427
SUPATA	69.51672026
IDEMA-DORADA	70.45991272
TUSCOLO EL	70.6587833
POTOSI HACIENDA	70.94652528
PRIMAVERA D MATIMA	71.64453882
ÚTICA	71.71616848
ARRANCAPLUMAS	74.61584749
S. J. RÍO SECO	76.04378521
ESPERANZA LA	78.7714817
BELLEZA LA	80.45427673
IDEMA-HONDA	81.06676113
CAPARRAPÍ	81.65011062
SAN ISIDRO	82.08800841

Tabla 3. Coeficiente de variación para los valores mensuales de precipitacióon

Además, se calculó el coeficiente de correlación entre estaciones, los colores rojos indican una alta correlación y los colores verdes una baja correlación.

	ARGENTINA	ALBANIA ?	MERO GRANI	RANCAPLUM	BELLEZA LA	CAPARRAPÍ :	IILAGUA FINC	CORAZÓN EL:	SPERANZA L	FLORIDA LA	EMA-DORADI	IDEMA-HOA	LA PALMA
ARGENTINA	1	0.44641087	0.4323174	0.37562972	0.55236674	0.44455838	0.52160815	0.49077973	0.48980698	0.62307494	0.47049368	0.49520429	0.43040856
ALBANIA	0.44641087	1	0.57469179	0.56932325	0.65504147	0.54673171	0.58143791	0.47039338	0.6286503	0.53748701	0.62247721	0.5918697	0.55531378
ARMERO GRA	0.4323174	0.57469179	1	0.56442377	0.4700943	0.52829406	0.46015641	0.35614096	0.48966593	0.4615916	0.55654758	0.62595189	0.55134927
ARRANCAPLI	0.37562972	0.56932325	0.56442377	1	0.49507742	0.56463927	0.50041676	0.45411661	0.63952494	0.50068075	0.60464537	0.72155178	0.51288133
BELLEZA LA	0.55236674	0.65504147	0.4700943	0.49507742	1	0.66854104	0.73505477	0.62780228	0.62793788	0.65741476	0.54632736	0.56226623	0.59240512
CAPARRAPÍ	0.44455838	0.54673171	0.52829406	0.56463927	0.66854104	1	0.5930271	0.53737061	0.64748199	0.58388415	0.59032704	0.65695486	0.63788613
CHILAGUA FI	0.52160815	0.58143791	0.46015641	0.50041676	0.73505477	0.5930271	0.5550271	0.55848199	0.57323291	0.6506367	0.51692011	0.54358323	0.60162732
CORAZÓN EL		0.47039338	0.40013041	0.45411661	0.62780228	0.53737061	_	0.33646133	0.60434996	0.56984187	0.51530459	0.50382811	0.47710384
ESPERANZA I	0.48980698	0.6286503	0.48966593	0.63952494	0.62793788	0.64748199	0.57323291	0.60434996	0.00434990	0.56392283	0.60724764	0.71020098	0.51002895
FLORIDA LA	0.62307494	0.53748701	0.46966593	0.50068075	0.65741476	0.58388415	0.6506367	0.56984187	0.56392283	0.50592265	0.58947656	0.71020098	0.51002895
IDEMA-DORA	0.47049368	0.62247721	0.55654758	0.60464537	0.54632736	0.59032704	0.51692011	0.51530459	0.60724764	0.58947656	1	0.62705317	0.6117424
IDEMA-HOA	0.49520429	0.5918697	0.62595189	0.72155178	0.56226623	0.65695486	0.54358323	0.50382811	0.71020098	0.55535863	0.62705317	1	0.51926381
LA PALMA	0.43040856	0.55531378	0.55134927	0.51288133	0.59240512	0.63788613	0.60162732	0.47710384	0.51002895	0.51961925	0.6117424	0.51926381	1
PENON EL	0.51666019	0.61592976	0.47155438	0.5431185	0.71850738	0.6248914	0.74311373	0.53625549	0.60144767	0.58543371	0.55677207	0.55838885	0.65566517
POTOSI HACI	0.50073313	0.47432407	0.38444737	0.41286831	0.64314889	0.51449953	0.64395183	0.60591022	0.44237751	0.75022905	0.45971806	0.42008319	0.41072098
PRIMAVERA	0.40582061	0.59569888	0.71677842	0.6528251	0.53511206	0.54004887	0.50269752	0.45051227	0.57972428	0.49100734	0.58257965	0.6541183	0.49067668
S. J. RÍO SECC	0.59534259	0.57908947	0.54723483	0.49650836	0.70029889	0.5609242	0.67393953	0.52812615	0.53890199	0.66721558	0.54160227	0.60276328	0.55279843
SABANETA	0.42286653	0.58869922	0.27893787	0.39829936	0.65416082	0.48087719	0.6512839	0.67081582	0.47029725	0.626354	0.44256929	0.40730216	0.43856085
SAN ISIDRO	0.50410167	0.58957818	0.40441261	0.3560771	0.71955761	0.51763665	0.71478373	0.48837214	0.38367727	0.63906152	0.5292308	0.48269198	0.52626614
SAN PABLO	0.47080493	0.54143976	0.578329	0.55131612	0.62961392	0.73084942	0.59280385	0.53906125	0.55507792	0.55779436	0.64422367	0.58454425	0.65759955
SANTA TERES	0.58448331	0.59593954	0.44620859	0.46913906	0.72666125	0.59167611	0.67676099	0.65018202	0.59067429	0.76554359	0.54808678	0.52100044	0.53643209
SILENCIO EL	0.52850501	0.58561976	0.42344924	0.45343636	0.7461035	0.58588493	0.77530731	0.54959934	0.50360938	0.64012217	0.49141711	0.52082214	0.57892002
SUPATA	0.52375149	0.56782898	0.40813974	0.45186319	0.74990547	0.59750453	0.75388329	0.58185087	0.47570126	0.68617358	0.48439146	0.48423553	0.5685787
TUSCOLO EL	0.53243119	0.58981378	0.56391784	0.55860259	0.73640222	0.66222877	0.66737936	0.51824099	0.61375759	0.67146547	0.61528824	0.65229233	0.63668092
ÚTICA	0.4845584	0.56955013	0.52464994	0.52785973	0.62756557	0.66278707	0.64605692	0.45662101	0.6008938	0.53002268	0.60356458	0.61199644	0.65349847
YACOPI-AUT	0.42633092	0.45519513	0.57867398	0.50785708	0.45423622	0.59653298	0.46243814	0.41434266	0.46830702	0.44723898	0.56919372	0.53880574	0.6152718
17100117101			AVERA D MA				SAN PABLO			SUPATA	TUSCOLO EL		YACOPI-AUT
ARGENTINA	0.51666019	0.50073313	0.40582061	0.59534259	0.42286653	0.50410167	0.47080493	0.58448331	0.52850501	0.52375149	0.53243119	0.4845584	0.42633092
ALBANIA	0.61592976												
ARMERO GRA		0.47432407	0 59569888	0 57908947	0 58869922	0 58957818	0 54143976	0 59593954	0 58561976	0 56782898	0 58981378	0.56955013	0.45519513
		0.47432407	0.59569888	0.57908947	0.58869922	0.58957818	0.54143976	0.59593954	0.58561976	0.56782898	0.58981378	0.56955013	0.45519513
	0.47155438	0.38444737	0.71677842	0.54723483	0.27893787	0.40441261	0.578329	0.44620859	0.42344924	0.40813974	0.56391784	0.52464994	0.57867398
ARRANCAPLI	0.47155438 0.5431185	0.38444737 0.41286831	0.71677842 0.6528251	0.54723483 0.49650836	0.27893787 0.39829936	0.40441261 0.3560771	0.578329 0.55131612	0.44620859 0.46913906	0.42344924 0.45343636	0.40813974 0.45186319	0.56391784 0.55860259	0.52464994 0.52785973	0.57867398 0.50785708
ARRANCAPLI BELLEZA LA	0.47155438 0.5431185 0.71850738	0.38444737 0.41286831 0.64314889	0.71677842 0.6528251 0.53511206	0.54723483 0.49650836 0.70029889	0.27893787 0.39829936 0.65416082	0.40441261 0.3560771 0.71955761	0.578329 0.55131612 0.62961392	0.44620859 0.46913906 0.72666125	0.42344924 0.45343636 0.7461035	0.40813974 0.45186319 0.74990547	0.56391784 0.55860259 0.73640222	0.52464994 0.52785973 0.62756557	0.57867398 0.50785708 0.45423622
ARRANCAPLI BELLEZA LA CAPARRAPÍ	0.47155438 0.5431185 0.71850738 0.6248914	0.38444737 0.41286831 0.64314889 0.51449953	0.71677842 0.6528251 0.53511206 0.54004887	0.54723483 0.49650836 0.70029889 0.5609242	0.27893787 0.39829936 0.65416082 0.48087719	0.40441261 0.3560771 0.71955761 0.51763665	0.578329 0.55131612 0.62961392 0.73084942	0.44620859 0.46913906 0.72666125 0.59167611	0.42344924 0.45343636 0.7461035 0.58588493	0.40813974 0.45186319 0.74990547 0.59750453	0.56391784 0.55860259 0.73640222 0.66222877	0.52464994 0.52785973 0.62756557 0.66278707	0.57867398 0.50785708 0.45423622 0.59653298
ARRANCAPLI BELLEZA LA CAPARRAPÍ CHILAGUA FI	0.47155438 0.5431185 0.71850738 0.6248914 0.74311373	0.38444737 0.41286831 0.64314889 0.51449953 0.64395183	0.71677842 0.6528251 0.53511206 0.54004887 0.50269752	0.54723483 0.49650836 0.70029889 0.5609242 0.67393953	0.27893787 0.39829936 0.65416082 0.48087719 0.6512839	0.40441261 0.3560771 0.71955761 0.51763665 0.71478373	0.578329 0.55131612 0.62961392 0.73084942 0.59280385	0.44620859 0.46913906 0.72666125 0.59167611 0.67676099	0.42344924 0.45343636 0.7461035 0.58588493 0.77530731	0.40813974 0.45186319 0.74990547 0.59750453 0.75388329	0.56391784 0.55860259 0.73640222 0.66222877 0.66737936	0.52464994 0.52785973 0.62756557 0.66278707 0.64605692	0.57867398 0.50785708 0.45423622 0.59653298 0.46243814
ARRANCAPLI BELLEZA LA CAPARRAPÍ CHILAGUA FI CORAZÓN EL	0.47155438 0.5431185 0.71850738 0.6248914 0.74311373 0.53625549	0.38444737 0.41286831 0.64314889 0.51449953 0.64395183 0.60591022	0.71677842 0.6528251 0.53511206 0.54004887 0.50269752 0.45051227	0.54723483 0.49650836 0.70029889 0.5609242 0.67393953 0.52812615	0.27893787 0.39829936 0.65416082 0.48087719 0.6512839 0.67081582	0.40441261 0.3560771 0.71955761 0.51763665 0.71478373 0.48837214	0.578329 0.55131612 0.62961392 0.73084942 0.59280385 0.53906125	0.44620859 0.46913906 0.72666125 0.59167611 0.67676099 0.65018202	0.42344924 0.45343636 0.7461035 0.58588493 0.77530731 0.54959934	0.40813974 0.45186319 0.74990547 0.59750453 0.75388329 0.58185087	0.56391784 0.55860259 0.73640222 0.66222877 0.66737936 0.51824099	0.52464994 0.52785973 0.62756557 0.66278707 0.64605692 0.45662101	0.57867398 0.50785708 0.45423622 0.59653298 0.46243814 0.41434266
ARRANCAPLI BELLEZA LA CAPARRAPÍ CHILAGUA FI CORAZÓN EL ESPERANZA I	0.47155438 0.5431185 0.71850738 0.6248914 0.74311373 0.53625549 0.60144767	0.38444737 0.41286831 0.64314889 0.51449953 0.64395183 0.60591022 0.44237751	0.71677842 0.6528251 0.53511206 0.54004887 0.50269752 0.45051227 0.57972428	0.54723483 0.49650836 0.70029889 0.5609242 0.67393953 0.52812615 0.53890199	0.27893787 0.39829936 0.65416082 0.48087719 0.6512839 0.67081582 0.47029725	0.40441261 0.3560771 0.71955761 0.51763665 0.71478373 0.48837214 0.38367727	0.578329 0.55131612 0.62961392 0.73084942 0.59280385 0.53906125 0.55507792	0.44620859 0.46913906 0.72666125 0.59167611 0.67676099 0.65018202 0.59067429	0.42344924 0.45343636 0.7461035 0.58588493 0.77530731 0.54959934 0.50360938	0.40813974 0.45186319 0.74990547 0.59750453 0.75388329 0.58185087 0.47570126	0.56391784 0.55860259 0.73640222 0.66222877 0.66737936 0.51824099 0.61375759	0.52464994 0.52785973 0.62756557 0.66278707 0.64605692 0.45662101 0.6008938	0.57867398 0.50785708 0.45423622 0.59653298 0.46243814 0.41434266 0.46830702
ARRANCAPLI BELLEZA LA CAPARRAPÍ CHILAGUA FI CORAZÓN EL ESPERANZA I FLORIDA LA	0.47155438 0.5431185 0.71850738 0.6248914 0.74311373 0.53625549 0.60144767 0.58543371	0.38444737 0.41286831 0.64314889 0.51449953 0.64395183 0.60591022 0.44237751 0.75022905	0.71677842 0.6528251 0.53511206 0.54004887 0.50269752 0.45051227 0.57972428 0.49100734	0.54723483 0.49650836 0.70029889 0.5609242 0.67393953 0.52812615 0.53890199 0.66721558	0.27893787 0.39829936 0.65416082 0.48087719 0.6512839 0.67081582 0.47029725 0.626354	0.40441261 0.3560771 0.71955761 0.51763665 0.71478373 0.48837214 0.38367727 0.63906152	0.578329 0.55131612 0.62961392 0.73084942 0.59280385 0.53906125 0.55507792 0.55779436	0.44620859 0.46913906 0.72666125 0.59167611 0.67676099 0.65018202 0.59067429 0.76554359	0.42344924 0.45343636 0.7461035 0.58588493 0.77530731 0.54959934 0.50360938 0.64012217	0.40813974 0.45186319 0.74990547 0.59750453 0.75388329 0.58185087 0.47570126 0.68617358	0.56391784 0.55860259 0.73640222 0.66222877 0.66737936 0.51824099 0.61375759 0.67146547	0.52464994 0.52785973 0.62756557 0.66278707 0.64605692 0.45662101 0.6008938 0.53002268	0.57867398 0.50785708 0.45423622 0.59653298 0.46243814 0.41434266 0.46830702 0.44723898
ARRANCAPLI BELLEZA LA CAPARRAPÍ CHILAGUA FI CORAZÓN EL ESPERANZA I FLORIDA LA IDEMA-DORA	0.47155438 0.5431185 0.71850738 0.6248914 0.74311373 0.53625549 0.60144767 0.58543371 0.55677207	0.38444737 0.41286831 0.64314889 0.51449953 0.64395183 0.60591022 0.44237751 0.75022905 0.45971806	0.71677842 0.6528251 0.53511206 0.54004887 0.50269752 0.45051227 0.57972428 0.49100734 0.58257965	0.54723483 0.49650836 0.70029889 0.5609242 0.67393953 0.52812615 0.53890199 0.66721558 0.54160227	0.27893787 0.39829936 0.65416082 0.48087719 0.6512839 0.67081582 0.47029725 0.626354 0.44256929	0.40441261 0.3560771 0.71955761 0.51763665 0.71478373 0.48837214 0.38367727 0.63906152 0.5292308	0.578329 0.55131612 0.62961392 0.73084942 0.59280385 0.53906125 0.55507792 0.55779436 0.64422367	0.44620859 0.46913906 0.72666125 0.59167611 0.67676099 0.65018202 0.59067429 0.76554359 0.54808678	0.42344924 0.45343636 0.7461035 0.58588493 0.77530731 0.54959934 0.50360938 0.64012217 0.49141711	0.40813974 0.45186319 0.74990547 0.59750453 0.75388329 0.58185087 0.47570126 0.68617358 0.48439146	0.56391784 0.55860259 0.73640222 0.66222877 0.66737936 0.51824099 0.61375759 0.67146547 0.61528824	0.52464994 0.52785973 0.62756557 0.66278707 0.64605692 0.45662101 0.6008938 0.53002268 0.60356458	0.57867398 0.50785708 0.45423622 0.59653298 0.46243814 0.41434266 0.46830702 0.44723898 0.56919372
ARRANCAPLI BELLEZA LA CAPARRAPÍ CHILAGUA FI CORAZÓN EL ESPERANZA I FLORIDA LA IDEMA-DORA IDEMA-HOA	0.47155438 0.5431185 0.71850738 0.6248914 0.74311373 0.53625549 0.60144767 0.58543371 0.55677207 0.55838885	0.38444737 0.41286831 0.64314889 0.51449953 0.60391022 0.44237751 0.75022905 0.45971806 0.42008319	0.71677842 0.6528251 0.53511206 0.54004887 0.50269752 0.45051227 0.57972428 0.49100734 0.58257965 0.6541183	0.54723483 0.49650836 0.70029889 0.5609242 0.67393953 0.52812615 0.53890199 0.66721558 0.54160227 0.60276328	0.27893787 0.39829936 0.65416082 0.48087719 0.6512839 0.67081582 0.47029725 0.626354 0.44256929 0.40730216	0.40441261 0.3560771 0.71955761 0.51763665 0.71478373 0.48837214 0.38367727 0.63906152 0.5292308 0.48269198	0.578329 0.55131612 0.62961392 0.73084942 0.59280385 0.53906125 0.55507792 0.55779436 0.64422367 0.58454425	0.44620859 0.46913906 0.72666125 0.59167611 0.67676099 0.65018202 0.59067429 0.76554359 0.54808678 0.52100044	0.42344924 0.45343636 0.7461035 0.58588493 0.77530731 0.54959934 0.50360938 0.64012217 0.49141711 0.52082214	0.40813974 0.45186319 0.74990547 0.59750453 0.75388329 0.58185087 0.47570126 0.68617358 0.48439146 0.48423553	0.56391784 0.55860259 0.73640222 0.66222877 0.66737936 0.51824099 0.61375759 0.67146547 0.61528824 0.65229233	0.52464994 0.52785973 0.62756557 0.66278707 0.64605692 0.45662101 0.6008938 0.53002268 0.60356458 0.61199644	0.57867398 0.50785708 0.45423622 0.59653298 0.46243814 0.41434266 0.46830702 0.44723898 0.56919372 0.53880574
ARRANCAPLI BELLEZA LA CAPARRAPÍ CHILAGUA FI CORAZÓN EL ESPERANZA I FLORIDA LA IDEMA-DORA IDEMA-HOA LA PALMA	0.47155438 0.5431185 0.71850738 0.6248914 0.74311373 0.53625549 0.60144767 0.58543371 0.55677207	0.38444737 0.41286831 0.64314889 0.51449953 0.60591022 0.44237751 0.75022905 0.45971806 0.42008319 0.41072098	0.71677842 0.6528251 0.53511206 0.54004887 0.50269752 0.45051227 0.57972428 0.49100734 0.58257965 0.6541183 0.49067668	0.54723483 0.49650836 0.70029889 0.5609242 0.67393953 0.52812615 0.53890199 0.66721558 0.54160227 0.60276328 0.55279843	0.27893787 0.39829936 0.65416082 0.48087719 0.6512839 0.67081582 0.47029725 0.626354 0.44256929 0.40730216 0.43856085	0.40441261 0.3560771 0.71955761 0.51763665 0.71478373 0.48837214 0.38367727 0.63906152 0.5292308 0.48269198 0.52626614	0.578329 0.55131612 0.62961392 0.73084942 0.59280385 0.53906125 0.55507792 0.55779436 0.64422367 0.58454425 0.65759955	0.44620859 0.46913906 0.72666125 0.59167611 0.67676099 0.65018202 0.76554359 0.54808678 0.52100044 0.53643209	0.42344924 0.45343636 0.7461035 0.58588493 0.77530731 0.54959934 0.50360938 0.64012217 0.49141711 0.52082214 0.57892002	0.40813974 0.45186319 0.74990547 0.59750453 0.75388329 0.58185087 0.47570126 0.68617358 0.48439146 0.48423553 0.5685787	0.56391784 0.55860259 0.73640222 0.66222877 0.66737936 0.51824099 0.61375759 0.67146547 0.61528824 0.65229233 0.63668092	0.52464994 0.52785973 0.62756557 0.66278707 0.64605692 0.45662101 0.6008938 0.53002268 0.60356458 0.61199644 0.65349847	0.57867398 0.50785708 0.45423622 0.59653298 0.46243814 0.41434266 0.46830702 0.44723898 0.56919372 0.53880574 0.6152718
ARRANCAPLI BELLEZA LA CAPARRAPÍ CHILAGUA FI CORAZÓN EL ESPERANZA I FLORIDA LA IDEMA-HOA LA PALMA PENON EL	0.47155438 0.5431185 0.71850738 0.6248914 0.74311373 0.53625549 0.60144767 0.58543371 0.55677207 0.55838885 0.65566517	0.38444737 0.41286831 0.64314889 0.51449953 0.60391022 0.44237751 0.75022905 0.45971806 0.42008319	0.71677842 0.6528251 0.53511206 0.54004887 0.50269752 0.45051227 0.57972428 0.49100734 0.58257965 0.6541183	0.54723483 0.49650836 0.70029889 0.5609242 0.67393953 0.52812615 0.53890199 0.66721558 0.54160227 0.60276328	0.27893787 0.39829936 0.65416082 0.48087719 0.6512839 0.67081582 0.47029725 0.626354 0.44256929 0.40730216	0.40441261 0.3560771 0.71955761 0.51763665 0.71478373 0.48837214 0.38367727 0.63906152 0.5292308 0.48269198	0.578329 0.55131612 0.62961392 0.73084942 0.59280385 0.53906125 0.55507792 0.55779436 0.64422367 0.58454425	0.44620859 0.46913906 0.72666125 0.59167611 0.67676099 0.65018202 0.59067429 0.76554359 0.54808678 0.52100044	0.42344924 0.45343636 0.7461035 0.58588493 0.77530731 0.54959934 0.64012217 0.49141711 0.52082214 0.57892002 0.71727536	0.40813974 0.45186319 0.74990547 0.59750453 0.75388329 0.58185087 0.47570126 0.68617358 0.48439146 0.48423553	0.56391784 0.55860259 0.73640222 0.66222877 0.66737936 0.51824099 0.61375759 0.67146547 0.61528824 0.65229233	0.52464994 0.52785973 0.62756557 0.66278707 0.64605692 0.45662101 0.6008938 0.53002268 0.60356458 0.61199644	0.57867398 0.50785708 0.45423622 0.59653298 0.46243814 0.41434266 0.46830702 0.44723898 0.56919372 0.53880574
ARRANCAPLI BELLEZA LA CAPARRAPÍ CHILAGUA FI CORAZÓN EL ESPERANZA I FLORIDA LA IDEMA-DORA IDEMA-HOA LA PALMA	0.47155438 0.5431185 0.71850738 0.6248914 0.74311373 0.53625549 0.60144767 0.58543371 0.55677207 0.55838885 0.65566517	0.38444737 0.41286831 0.64314889 0.51449953 0.60591022 0.44237751 0.75022905 0.45971806 0.42008319 0.41072098	0.71677842 0.6528251 0.53511206 0.54004887 0.50269752 0.45051227 0.57972428 0.49100734 0.58257965 0.6541183 0.49067668	0.54723483 0.49650836 0.70029889 0.5609242 0.67393953 0.52812615 0.53890199 0.66721558 0.54160227 0.60276328 0.55279843	0.27893787 0.39829936 0.65416082 0.48087719 0.6512839 0.67081582 0.47029725 0.626354 0.44256929 0.40730216 0.43856085	0.40441261 0.3560771 0.71955761 0.51763665 0.71478373 0.48837214 0.38367727 0.63906152 0.5292308 0.48269198 0.52626614	0.578329 0.55131612 0.62961392 0.73084942 0.59280385 0.53906125 0.55507792 0.55779436 0.64422367 0.58454425 0.65759955	0.44620859 0.46913906 0.72666125 0.59167611 0.67676099 0.65018202 0.76554359 0.54808678 0.52100044 0.53643209	0.42344924 0.45343636 0.7461035 0.58588493 0.77530731 0.54959934 0.50360938 0.64012217 0.49141711 0.52082214 0.57892002	0.40813974 0.45186319 0.74990547 0.59750453 0.75388329 0.58185087 0.47570126 0.68617358 0.48439146 0.48423553 0.5685787	0.56391784 0.55860259 0.73640222 0.66222877 0.66737936 0.51824099 0.61375759 0.67146547 0.61528824 0.65229233 0.63668092	0.52464994 0.52785973 0.62756557 0.66278707 0.64605692 0.45662101 0.6008938 0.53002268 0.60356458 0.61199644 0.65349847	0.57867398 0.50785708 0.45423622 0.59653298 0.46243814 0.41434266 0.46830702 0.44723898 0.56919372 0.53880574 0.6152718
ARRANCAPLI BELLEZA LA CAPARRAPÍ CHILAGUA FI CORAZÓN EL ESPERANZA I FLORIDA LA IDEMA-HOA LA PALMA PENON EL	0.47155438 0.5431185 0.71850738 0.6248914 0.74311373 0.53625549 0.60144767 0.58543371 0.55677207 0.55838885 0.65566517	0.38444737 0.41286831 0.64314889 0.511449953 0.664395183 0.60591022 0.44237751 0.75022905 0.45971806 0.42008319 0.41072098 0.55147148	0.71677842 0.6528251 0.53511206 0.54004887 0.50269752 0.45051227 0.57972428 0.49100734 0.58257965 0.6541183 0.49067668 0.52809871	0.54723483 0.49650836 0.70029889 0.5609242 0.67393953 0.52812615 0.53890199 0.66721558 0.54160227 0.60276328 0.55279843 0.61681974	0.27893787 0.39829936 0.65416082 0.48087719 0.6512839 0.67081582 0.47029725 0.626354 0.44256929 0.40730216 0.43856085 0.55216334	0.40441261 0.3560771 0.71955761 0.51763665 0.71478373 0.48837214 0.38367727 0.63906152 0.5292308 0.48269198 0.52626614 0.62425772	0.578329 0.55131612 0.62961392 0.73084942 0.59280385 0.53906125 0.55570792 0.55779436 0.64422367 0.58454425 0.65759955 0.5970142	0.44620859 0.46913906 0.72666125 0.59167611 0.67676099 0.65018202 0.76554359 0.76554359 0.54808678 0.52100044 0.53643209 0.61410577	0.42344924 0.45343636 0.7461035 0.58588493 0.77530731 0.54959934 0.64012217 0.49141711 0.52082214 0.57892002 0.71727536	0.40813974 0.45186319 0.74990547 0.59750453 0.75388329 0.58185087 0.47570126 0.68617358 0.48439146 0.48423553 0.5685787 0.71632064	0.56391784 0.55860259 0.73640222 0.66222877 0.66737936 0.51824099 0.61375759 0.67146547 0.61528824 0.65229233 0.63668092 0.68210711	0.52464994 0.52785973 0.62756557 0.66278707 0.64605692 0.45662101 0.6008938 0.53002268 0.60356458 0.61199644 0.65349847	0.57867398 0.50785708 0.45423622 0.59653298 0.46243814 0.41434266 0.46830702 0.44723898 0.56919372 0.53880574 0.6152718
ARRANCAPLI BELLEZA LA CAPARRAPÍ CHILAGUA FI CORAZÓN EL ESPERANZA I FLORIDA LA IDEMA-DORF IDEMA-HOA LA PALMA PENON EL POTOSI HACI	0.47155438 0.5431185 0.71850738 0.6248914 0.74311373 0.53625549 0.60144767 0.58543371 0.55677207 0.55838885 0.65566517 1 0.55147148 0.52809871	0.38444737 0.41286831 0.64314889 0.51449953 0.64395183 0.60591022 0.44237751 0.75022905 0.45971806 0.42008319 0.41072098 0.55147148	0.71677842 0.6528251 0.53511206 0.504004887 0.50269752 0.45051227 0.57972428 0.49100734 0.58257965 0.6541183 0.49067668 0.52809871	0.54723483 0.49650836 0.70029889 0.5609242 0.67393953 0.52812615 0.53890199 0.66721558 0.54160227 0.60276328 0.55279843 0.61681974 0.58982036	0.27893787 0.39829936 0.65416082 0.48087719 0.6512839 0.67081582 0.47029725 0.626354 0.44256929 0.40730216 0.43856085 0.55216334 0.65257262	0.40441261 0.3560771 0.71955761 0.51763665 0.71478373 0.48837214 0.38367727 0.63906152 0.5292308 0.48269198 0.52626614 0.62425772 0.57790689	0.578329 0.55131612 0.62961392 0.73084942 0.59280385 0.53906125 0.55507792 0.55779436 0.64422367 0.58454425 0.65759955 0.5970142 0.5144095	0.44620859 0.46913906 0.72666125 0.59167611 0.67676099 0.65018202 0.76554359 0.54808678 0.52100044 0.53643209 0.61410577 0.74101589	0.42344924 0.45343636 0.7461035 0.58588493 0.77530731 0.54959934 0.50360938 0.64012217 0.49141711 0.52082214 0.57892002 0.71727536 0.62517108	0.40813974 0.45186319 0.74990547 0.59750453 0.75388329 0.58185087 0.47570126 0.68617358 0.48439146 0.48423553 0.5685787 0.71632064 0.64665054	0.56391784 0.55860259 0.73640222 0.66222877 0.66737936 0.51824099 0.61375759 0.67146547 0.61528824 0.65229233 0.63668092 0.68210711 0.58768135	0.52464994 0.52785973 0.62756557 0.66278707 0.64605692 0.45662101 0.6008938 0.53002268 0.60356458 0.61199644 0.65349847 0.65946116 0.38608761	0.57867398 0.50785708 0.45423622 0.59653298 0.46243814 0.41434266 0.46830702 0.44723898 0.56919372 0.53880574 0.6152718 0.51609389 0.42267885
ARRANCAPLI BELLEZA LA CAPARRAPÍ CHILAGUA FI CORAZÓN EL ESPERANZA I FLORIDA LA IDEMA-DORA IDEMA-HOA LA PALMA PENON EL POTOSI HACI PRIMAVERA	0.47155438 0.5431185 0.71850738 0.6248914 0.74311373 0.53625549 0.60144767 0.58543371 0.55677207 0.55838885 0.65566517 1 0.55147148 0.52809871	0.38444737 0.41286831 0.64314889 0.51449953 0.60591022 0.44237751 0.75022905 0.45971806 0.42008319 0.41072098 0.55147148	0.71677842 0.6528251 0.53511206 0.54004887 0.50269752 0.45051227 0.57972428 0.49100734 0.58257965 0.6541183 0.49067668 0.52809871 0.45528426	0.54723483 0.49650836 0.70029889 0.5609242 0.53890199 0.66721558 0.54160227 0.60276328 0.55279843 0.61681974 0.58982036 0.49401713	0.27893787 0.39829936 0.65416082 0.48087719 0.6512839 0.67081582 0.47029725 0.626354 0.44256929 0.40730216 0.43856085 0.55216334 0.65257262	0.40441261 0.3560771 0.71955761 0.51763665 0.71478373 0.48837214 0.38367727 0.63906152 0.5292308 0.48269198 0.52626614 0.62425772 0.57790689 0.43410489	0.578329 0.55131612 0.62961392 0.73084942 0.59280385 0.53906125 0.55507792 0.55779436 0.64422367 0.58454425 0.65759955 0.5970142 0.5144095 0.58341548	0.44620859 0.46913906 0.72666125 0.59167611 0.67676099 0.65018202 0.76554359 0.54808678 0.52100044 0.53643209 0.61410577 0.74101589 0.48730772	0.42344924 0.45343636 0.7461035 0.58588493 0.54959934 0.50360938 0.64012217 0.49141711 0.52082214 0.57892002 0.71727536 0.62517108 0.42601881	0.40813974 0.45186319 0.74990547 0.59750453 0.75388329 0.58185087 0.47570126 0.68617358 0.48439146 0.48423553 0.5685787 0.71632064 0.64665054 0.43374612	0.56391784 0.55860259 0.73640222 0.66222877 0.66737936 0.51824099 0.61375759 0.67146547 0.61528824 0.65229233 0.63668092 0.68210711 0.58768135 0.52368549	0.52464994 0.52785973 0.62756557 0.66278707 0.64605692 0.45662101 0.6008938 0.53002268 0.60356458 0.61199644 0.65349847 0.65946116 0.38608761 0.45986989	0.57867398 0.50785708 0.45423622 0.59653298 0.46243814 0.41434266 0.46830702 0.44723898 0.56919372 0.53880574 0.6152718 0.51609389 0.42267885 0.5258025
ARRANCAPLI BELLEZA LA CAPARRAPÍ CHILAGUA FI ESPERANZA I FLORIDA LA IDEMA-DORA IDEMA-HOA LA PALMA PENON EL POTOSI HACI PRIMAVERA S. J. RÍO SECC	0.47155438 0.5431185 0.71850738 0.6248914 0.74311373 0.53625549 0.60144767 0.58543371 0.55677207 0.55838885 0.65566517 1 0.55147148 0.52809871 0.61681974	0.38444737 0.41286831 0.64314889 0.514499513 0.60591022 0.44237751 0.75022905 0.45971806 0.42008319 0.41072098 0.55147148 1 0.45528426 0.58982036	0.71677842 0.6528251 0.53511206 0.54004887 0.50269752 0.45051227 0.57972428 0.49100734 0.58257965 0.6541183 0.49067668 0.52809871 0.45528426 1 0.49401713	0.54723483 0.49650836 0.70029889 0.5609242 0.67393953 0.52812615 0.53890199 0.66721558 0.54160227 0.60276328 0.55279843 0.61681974 0.58982036 0.49401713	0.27893787 0.39829936 0.65416082 0.48087719 0.6512839 0.67081582 0.47029725 0.626354 0.44256929 0.40730216 0.43856085 0.55216334 0.65257262	0.40441261 0.3560771 0.71955761 0.51763665 0.71478373 0.48837214 0.38367727 0.63906152 0.5292308 0.48269198 0.52626614 0.62425772 0.57790689 0.43410489	0.578329 0.55131612 0.62961392 0.73084942 0.59280385 0.53906125 0.55507792 0.55779436 0.64422367 0.58454425 0.65759955 0.5970142 0.5144095 0.58341548 0.5935366	0.44620859 0.46913906 0.72666125 0.59167611 0.67676099 0.65018202 0.76554359 0.54808678 0.52100044 0.53643209 0.61410577 0.74101589 0.48730772 0.71231253	0.42344924 0.45343636 0.7461035 0.58588493 0.5959934 0.50360938 0.64012217 0.49141711 0.52082214 0.57892002 0.71727536 0.62517108 0.42601881 0.67164476	0.40813974 0.45186319 0.74990547 0.59750453 0.75388329 0.58185087 0.47570126 0.68617358 0.48439146 0.48423553 0.71632064 0.64665054 0.43374612 0.68315525	0.56391784 0.55860259 0.73640222 0.66222877 0.66737936 0.51824099 0.61375759 0.67146547 0.61528824 0.65229233 0.63668092 0.68210711 0.58768135 0.52368549 0.69733231	0.52464994 0.52785973 0.62756557 0.66278707 0.45662101 0.6008938 0.53002268 0.60356458 0.61199644 0.65349847 0.65946116 0.38608761 0.45986989 0.56792249	0.57867398 0.50785708 0.45423622 0.59653298 0.46243814 0.41434266 0.46830702 0.44723898 0.56919372 0.53880574 0.51609389 0.42267885 0.5258025 0.46738591
ARRANCAPLI BELLEZA LA CAPARRAPÍ CHILAGUA FI CORAZÓN EL ESPERANZA I FLORIDA LA IDEMA-DORA IDEMA-HOA LA PALMA PENON EL POTOSI HACI PRIMAVERA S. J. RÍO SECC SABANETA	0.47155438 0.5431185 0.71850738 0.6248914 0.74311373 0.53625549 0.60144767 0.58543371 0.55677207 0.55838885 0.65566517 1 0.55147148 0.52809871 0.61681974 0.55516334	0.38444737 0.41286831 0.64314889 0.51449953 0.64395183 0.60591022 0.44237751 0.75022905 0.45971806 0.42008319 0.41072098 0.55147148 1 0.45528426 0.55982036 0.65257262	0.71677842 0.6528251 0.53511206 0.54004887 0.50269752 0.45051227 0.57972428 0.49100734 0.58257965 0.6541183 0.49067668 0.52809871 0.49401713 0.49401713	0.54723483 0.49650836 0.70029889 0.5609242 0.67393953 0.52812615 0.53890199 0.66721558 0.54160227 0.60276328 0.55279843 0.61681974 0.58982036 0.49401713 1 0.60307763	0.27893787 0.39829936 0.65416082 0.48087719 0.6512839 0.67081582 0.47029725 0.626354 0.44256929 0.40730216 0.43856085 0.55216334 0.65257262 0.34342361 0.60307763	0.40441261 0.3560771 0.71955761 0.51763665 0.71478373 0.48837214 0.38367727 0.63906152 0.5292308 0.48269198 0.52626614 0.62425772 0.57790689 0.43410489 0.60841401 0.61726755	0.578329 0.55131612 0.62961392 0.73084942 0.59280385 0.53906125 0.55507792 0.55779436 0.64422367 0.58454425 0.65759955 0.5970142 0.5144095 0.58341548 0.5935366 0.47202667	0.44620859 0.46913906 0.72666125 0.59167611 0.67676099 0.65018202 0.759067429 0.75554359 0.54808678 0.52100044 0.53643209 0.61410577 0.74101589 0.48730772 0.71231253 0.74422098	0.42344924 0.45343636 0.7461035 0.58588493 0.77530731 0.54959934 0.50360938 0.64012217 0.49141711 0.52082214 0.57892002 0.71727536 0.62517108 0.42601881 0.67164476 0.67246967	0.40813974 0.45186319 0.74990547 0.59750453 0.75388329 0.58185087 0.47570126 0.68617358 0.48439146 0.48423553 0.5685787 0.71632064 0.64665054 0.43374612 0.63315525 0.7377992	0.56391784 0.55860259 0.73640222 0.66222877 0.66737936 0.51824099 0.61375759 0.67146547 0.65229233 0.63668092 0.68210711 0.58768135 0.52368549 0.69733231 0.52882787	0.52464994 0.52785973 0.62776557 0.66278707 0.64605692 0.45662101 0.6008938 0.53002268 0.60356458 0.61199644 0.65349847 0.65946116 0.38608761 0.45986989 0.56792249 0.43930343	0.57867398 0.50785708 0.45423622 0.59653298 0.46243814 0.41434266 0.46830702 0.44723898 0.56919372 0.53880574 0.6152718 0.51609389 0.42267885 0.5258025 0.46738591 0.28447442
ARRANCAPLI BELLEZA LA CAPARRAPÍ CHILAGUA FI CORAZÓN EL ESPERANZA I FLORIDA LA IDEMA-DORA IDEMA-HOA LA PALMA PENON EL POTOSI HACI POTOSI HACI PRIMAVERA S. J. RÍO SECC SABANETA SAN ISIDRO	0.47155438 0.5431185 0.71850738 0.6248914 0.60144767 0.58543371 0.55677207 0.55838885 0.65566517 1 0.55147148 0.52809871 0.61681974 0.55216334 0.62425772 0.5970142	0.38444737 0.41286831 0.64314889 0.51449953 0.60591022 0.44237751 0.75022905 0.45971806 0.42008319 0.41072098 0.55147148 1 0.45528426 0.58982036 0.65257262 0.57790689 0.5144095	0.71677842 0.6528251 0.53511206 0.54004887 0.50269752 0.45051227 0.57972428 0.49100734 0.58257965 0.6541183 0.49067668 0.52809871 0.45528426 1 0.49401713 0.34342361 0.43410489 0.58341548	0.54723483 0.49650836 0.70029889 0.5609242 0.67393953 0.52812615 0.53890199 0.66721558 0.54160227 0.60276328 0.55279843 0.61681974 0.58982036 0.49401713 1 0.60307763 0.60841401	0.27893787 0.39829936 0.65416082 0.48087719 0.6512839 0.67081582 0.47029725 0.626354 0.44256929 0.40730216 0.43856085 0.55216334 0.65257262 0.34342361 0.60307763 1 0.61726755 0.47202667	0.40441261 0.3560771 0.71955761 0.51763665 0.71478373 0.48837214 0.38367727 0.63906152 0.5292308 0.48269198 0.52626614 0.62425772 0.57790689 0.43410489 0.60841401 0.61726755 1 0.53402142	0.578329 0.55131612 0.62961392 0.73084942 0.59280385 0.53906125 0.55507792 0.555779436 0.64422367 0.58454425 0.65759955 0.5970142 0.5144095 0.5841548 0.9353366 0.47202667 0.53402142	0.44620859 0.46913906 0.72666125 0.59167611 0.67676099 0.65018202 0.76554359 0.54808678 0.52100044 0.53643209 0.61410577 0.74101589 0.48730772 0.71231253 0.74422098 0.63536316	0.42344924 0.45343636 0.7461035 0.58588493 0.75530731 0.54959934 0.50360938 0.64012217 0.49141711 0.52082214 0.57892002 0.71727536 0.62517108 0.42601881 0.67164476 0.67246967 0.74998867	0.40813974 0.45186319 0.74990547 0.59750453 0.75388329 0.58185087 0.47570126 0.68617358 0.48439146 0.48423553 0.5685787 0.71632064 0.64665054 0.43374612 0.68315525 0.7377992 0.69358476 0.57399913	0.56391784 0.55860259 0.73640222 0.66222877 0.66737936 0.51824099 0.61375759 0.67146547 0.65229233 0.63668092 0.68210711 0.58768135 0.52368549 0.69733231 0.52882787 0.52822787	0.52464994 0.52785973 0.62756557 0.66278707 0.6405692 0.45662101 0.6008938 0.53002268 0.60356458 0.61199644 0.65349847 0.65946116 0.45986989 0.56792249 0.43930343 0.56506439 0.60548571	0.57867398 0.50785708 0.45423622 0.59653298 0.46243814 0.41434266 0.46830702 0.44723898 0.53880574 0.6152718 0.51609389 0.42267885 0.4267885 0.46738591 0.28447442 0.41743561 0.70615033
ARRANCAPLI BELLEZA LA CAPARRAPÍ CHILAGUA FI CORAZÓN EL ESPERANZA I FLORIDA LA IDEMA-DORA IDEMA-HOA LA PALIMA PENON EL POTOSI HACI PRIMAVERA S. J. RÍO SECC SABANETA SAN ISIDRO SAN PABLO	0.47155438 0.5431185 0.71850738 0.6248914 0.60144767 0.58543371 0.55677207 0.55838885 1 0.55147148 0.52809871 0.61681974 0.55216334 0.62425772 0.5970142 0.61410577	0.38444737 0.41286831 0.64314889 0.51449953 0.60591022 0.44237751 0.75022905 0.45971806 0.42008319 0.41072098 0.55147148 1 0.45528426 0.58982036 0.65257262 0.57790689 0.5144095 0.74101589	0.71677842 0.6528251 0.53511206 0.54004887 0.50269752 0.45051227 0.57972428 0.49100734 0.58257965 0.6541183 0.49067668 0.52809871 0.49528426 1 0.49401713 0.34342361 0.43410489 0.58341548 0.48730772	0.54723483 0.49650836 0.70029889 0.5609242 0.67393953 0.52812615 0.53890199 0.66721558 0.54160227 0.60276328 0.55279843 0.61681974 0.58982036 0.49401713 1 0.60307763 0.60341401 0.5935366 0.71231253	0.27893787 0.39829936 0.65416082 0.48087719 0.6512839 0.67081582 0.47029725 0.626354 0.44256929 0.40730216 0.43856085 0.55216334 0.65257262 0.34342361 0.60307763 1 0.61726755 0.47202667 0.74422098	0.40441261 0.3560771 0.71955761 0.51763665 0.71478373 0.48837214 0.38367727 0.63906152 0.5292308 0.48269198 0.52626614 0.62425772 0.57790689 0.43410489 0.60841401 0.61726755 1 0.53402142 0.63536316	0.578329 0.55131612 0.62961392 0.73084942 0.59280385 0.53906125 0.55507792 0.555779436 0.64422367 0.58454425 0.5970142 0.5144095 0.5935366 0.47202667 0.54302142 1 0.50405877	0.44620859 0.46913906 0.72666125 0.59167611 0.67676099 0.65018202 0.76554359 0.54808678 0.53643209 0.61410577 0.74101589 0.48730772 0.71231253 0.74422098 0.6336316 0.50405877	0.42344924 0.45343636 0.7461035 0.58588493 0.54959934 0.50360938 0.64012217 0.49141711 0.52082214 0.57892002 0.71727536 0.62517108 0.42601881 0.67164476 0.67246967 0.74998867 0.56333491	0.40813974 0.45186319 0.74990547 0.59750453 0.75388329 0.58185087 0.47570126 0.68617358 0.48439146 0.48423553 0.5685787 0.71632064 0.64665054 0.43374612 0.68315525 0.7377992 0.69358476 0.57399913 0.72671368	0.56391784 0.55860259 0.73640222 0.66222877 0.66737936 0.51824099 0.61375759 0.67146547 0.61528824 0.65229233 0.63668092 0.68210711 0.58768135 0.52368549 0.69733231 0.52882787 0.59211529 0.62454612 0.65411171	0.52464994 0.52785973 0.62756557 0.66278707 0.6008938 0.53002268 0.60356458 0.61199644 0.6594847 0.65946116 0.38608761 0.45986989 0.56792249 0.43930343 0.56506439 0.60548571 0.55667757	0.57867398 0.50785708 0.45423622 0.59653298 0.46243814 0.41434266 0.46830702 0.44723898 0.56919372 0.53880574 0.6152718 0.51609389 0.42267885 0.5258025 0.46738591 0.28447442
ARRANCAPLI BELLEZA LA CAPARRAPÍ CHILAGUA FI ESPERANZA I FLORIDA LA IDEMA-HOA LA PALMA PENON EL POTOSI HACI PRIMAVERA S. J. RÍO SECC SABANETA SAN ISIDRO SAN PABLO SANTA TERES SILENCIO EL	0.47155438 0.5431185 0.71850738 0.6248914 0.73311373 0.53625549 0.60144767 0.58543371 0.55677207 0.55838885 0.65566517 1 0.55147148 0.52809871 0.61681974 0.55216334 0.62425772 0.5970142 0.61410577 0.71727536	0.38444737 0.41286831 0.64314889 0.51449953 0.60591022 0.44237751 0.75022905 0.45971806 0.42008319 0.41072098 0.55147148 1 0.45528426 0.58982036 0.65257262 0.57790689 0.5144095 0.74101589 0.62517108	0.71677842 0.6528251 0.53511206 0.50404887 0.50269752 0.45051227 0.57972428 0.49100734 0.58257965 0.49067668 0.52809871 0.49528426 1 0.49401713 0.34342361 0.343410489 0.58341548 0.48730772 0.42601881	0.54723483 0.49650836 0.70029889 0.5609242 0.67393953 0.52812615 0.53890199 0.66721558 0.54160227 0.60276328 0.55279843 0.61681974 0.58982036 0.49401713 1 0.60307763 0.60841401 0.9935366 0.71231253 0.67164476	0.27893787 0.39829936 0.65416082 0.48087719 0.6512839 0.67081582 0.47029725 0.626354 0.44256929 0.40730216 0.43856085 0.55216334 0.65257262 0.34342361 0.60307763 1 0.61726755 0.47202667 0.74422098 0.67246967	0.40441261 0.3560771 0.71955761 0.51763665 0.71478373 0.48837214 0.38367727 0.63906152 0.5292308 0.48269198 0.52626614 0.62425772 0.57790689 0.43410489 0.60841401 0.6126755 1 0.53402142 0.63536316 0.74998867	0.578329 0.55131612 0.62961392 0.73084942 0.59280385 0.53906125 0.55507792 0.55779436 0.64422367 0.58454425 0.5970142 0.5144095 0.58341548 0.9935366 0.47202667 0.53402142 1 0.50405877 0.56333491	0.44620859 0.46913906 0.72666125 0.59167611 0.67676099 0.65018202 0.59067429 0.54808678 0.52100044 0.53643209 0.61410577 0.74101589 0.48730772 0.71231253 0.74422098 0.63536316 0.50405877 1 0.69754175	0.42344924 0.45343636 0.7461035 0.58588493 0.50360938 0.64012217 0.49141711 0.52082214 0.57892002 0.71727536 0.62517108 0.42601881 0.67164476 0.67246967 0.74998867 0.5933491 0.69754175	0.40813974 0.45186319 0.74990547 0.59750453 0.75388329 0.58185087 0.47570126 0.68617358 0.48439146 0.48423553 0.5685787 0.71632064 0.64665054 0.43374612 0.68315525 0.7377992 0.69358476 0.57399913	0.56391784 0.55860259 0.73640222 0.66222877 0.66737936 0.51824099 0.61375759 0.67146547 0.61528824 0.65229233 0.63668092 0.68210711 0.58768135 0.52368549 0.69733231 0.52882787 0.59211529 0.62454612 0.65411171 0.6194988	0.52464994 0.52785973 0.62756557 0.66278707 0.66278707 0.6008938 0.53002268 0.60356458 0.61199644 0.65349847 0.65946116 0.38608761 0.45986989 0.56792249 0.43930343 0.56506439 0.60548571 0.55667757	0.57867398 0.50785708 0.45423622 0.59653298 0.46243814 0.41434266 0.46830702 0.44723898 0.56919372 0.53880574 0.6152718 0.51609389 0.42267885 0.5258025 0.46738591 0.28447442 0.41743561 0.70615033 0.39574294 0.40882418
ARRANCAPLI BELLEZA LA CAPARRAPÍ CHILAGUA FI ESPERANZA I FLORIDA LA IDEMA-DORA IDEMA-HOA LA PALMA PENON EL POTOSI HACI PRIMAVERA S. J. RÍO SECC SABANETA SAN ISIDRO SAN PABLO SANTA TEREÉ SILENCIO EL SUPATA	0.47155438 0.5431185 0.71850738 0.6248914 0.74311373 0.53625549 0.60144767 0.58543371 10.55677207 0.55838885 0.65566517 10.55147148 0.52809871 0.61681974 0.55216334 0.62425772 0.5970142 0.61410577 0.71727536 0.71632064	0.38444737 0.41286831 0.64314889 0.64395183 0.60591022 0.44237751 0.75022905 0.45971806 0.42008319 0.41072098 0.55147148 1 0.45528426 0.58982036 0.65257262 0.57790689 0.5144095 0.74101589 0.62517108 0.64665054	0.71677842 0.6528251 0.53511206 0.54004887 0.50269752 0.45051227 0.57972428 0.49100734 0.58257965 0.6541183 0.49067668 0.52809871 0.49528426 1 0.49401713 0.34342361 0.433410489 0.58341548 0.48730772 0.42601881 0.43374612	0.54723483 0.49650836 0.70029889 0.5609242 0.67393953 0.52812615 0.53890199 0.66721558 0.54160227 0.60276328 0.55279843 0.61681974 0.58982036 0.49401713 1 0.60307763 0.60841401 0.5935366 0.71231253 0.67164476 0.68315525	0.27893787 0.39829936 0.65416082 0.48087719 0.6512839 0.67081582 0.47029725 0.626354 0.44256929 0.40730216 0.43856085 0.55216334 0.65257262 0.60307763 1 0.61726755 0.47202667 0.74422098 0.67246967 0.7377992	0.40441261 0.3560771 0.71955761 0.51763665 0.71478373 0.48837214 0.38367727 0.63906152 0.5292308 0.48269198 0.52626614 0.62425772 0.57790689 0.43410489 0.60841401 0.61726755 1 0.53402142 0.63536316 0.74998867 0.69358476	0.578329 0.55131612 0.62961392 0.73084942 0.59280385 0.53906125 0.55507792 0.55779436 0.64422367 0.58454425 0.65759955 0.5970142 0.5144095 0.5935366 0.47202667 0.53402142 1 0.50405877 0.56333491 0.57399913	0.44620859 0.46913906 0.72666125 0.59167611 0.67676099 0.65018202 0.59067429 0.76554359 0.54808678 0.52100044 0.53643209 0.61410577 0.74101589 0.48730772 0.71231253 0.74422098 0.63536316 0.509754175 0.69754175 0.72671368	0.42344924 0.45343636 0.7461035 0.58588493 0.77530731 0.54959934 0.50360938 0.64012217 0.52082214 0.57892002 0.71727536 0.62517108 0.42601881 0.67164476 0.67246967 0.74998867 0.56333491 0.69754175 1 0.777240031	0.40813974 0.45186319 0.74990547 0.59750453 0.75388329 0.58185087 0.47570126 0.68617358 0.48439146 0.48423553 0.5685787 0.71632064 0.643665054 0.633754612 0.69358476 0.57399913 0.72671368 0.77240031	0.56391784 0.55860259 0.73640222 0.66222877 0.66737936 0.51824099 0.61375759 0.67146547 0.65229233 0.63668092 0.68210711 0.58768135 0.52368549 0.69733231 0.52882787 0.59211529 0.62454612 0.65444611 0.6194988 0.65887516	0.52464994 0.52785973 0.62776557 0.66278707 0.64605692 0.45662101 0.6008938 0.53002268 0.61199644 0.65349847 0.65946116 0.38608761 0.45986989 0.56792249 0.43930343 0.60548571 0.55667757 0.62429429 0.58399716	0.57867398 0.50785708 0.45423622 0.59653298 0.46243814 0.41434266 0.46830702 0.44723898 0.56919372 0.53880574 0.6152718 0.51609389 0.42267885 0.5258025 0.46738591 0.28447442 0.41743561 0.70615033 0.39574294 0.40882418 0.41169232
ARRANCAPLI BELLEZA LA CAPARRAPÍ CHILAGUA FI CORAZÓN EL ESPERANZA I FLORIDA LA IDEMA-DORA IDEMA-HOA LA PALMA PENON EL POTOSI HACI PRIMAVERA S. J. RÍO SECC SABANETA SAN ISIDRO SAN PABLO SANTA TERES SILENCIO EL SUPATA TUSCOLO EL	0.47155438 0.5431185 0.71850738 0.6248914 0.60144767 0.58543371 0.55677207 1 0.55147148 0.52809871 0.61681974 0.55216334 0.62425772 0.5970142 0.61410577 0.71727536 0.71632064 0.68210711	0.38444737 0.44286831 0.64314889 0.51449953 0.60591022 0.44237751 0.75022905 0.45971806 0.42008319 0.41072098 0.55147148 1 0.45528426 0.58982036 0.65257262 0.57790689 0.5144095 0.74101589 0.62517108 0.6265054 0.6265054	0.71677842 0.6528251 0.53511206 0.54004887 0.50269752 0.45051227 0.57972428 0.49100734 0.58257965 0.6541183 0.49067668 0.52809871 0.49528426 1 0.49401713 0.34342361 0.43410489 0.58341548 0.48730772 0.42601881 0.42374612 0.52368549	0.54723483 0.49650836 0.70029889 0.5609242 0.67393953 0.52812615 0.53890199 0.66721558 0.54160227 0.60276328 0.55279843 0.61681974 0.58982036 0.49401713 1 0.60307763 0.60841401 0.9935366 0.71231253 0.67164476 0.63315525 0.69733231	0.27893787 0.39829936 0.65416082 0.48087719 0.6512839 0.67081582 0.47029725 0.626354 0.44256929 0.40730216 0.43856085 0.55216334 0.65257262 0.34342361 0.60307763 1 0.61726755 0.47202667 0.74422098 0.67246967 0.7377992 0.52882787	0.40441261 0.3560771 0.71955761 0.51763665 0.71478373 0.48837214 0.38367727 0.63906152 0.5292308 0.48269198 0.52626614 0.62425772 0.57790689 0.43410489 0.43410489 0.60841401 0.61726755 1 0.53402142 0.63536316 0.74998867 0.69358476	0.578329 0.55131612 0.62961392 0.73084942 0.59280385 0.53906125 0.55507792 0.555779436 0.64422367 0.58454425 0.65759955 0.5970142 0.5144095 0.58341548 0.9363366 0.47202667 0.53402142 1 0.50405877 0.56333491 0.57399913 0.62454612	0.44620859 0.45913906 0.72666125 0.59167611 0.67676099 0.65018202 0.759067429 0.76554359 0.52100044 0.53643209 0.61410577 0.74101589 0.48730772 0.74231253 0.74422098 0.63536316 0.50405877 1 0.69754175 0.72671368 0.65411171	0.42344924 0.45343636 0.7461035 0.58588493 0.75530731 0.54959934 0.50360938 0.64012217 0.49141711 0.52082214 0.57892002 0.71727536 0.62517108 0.42601881 0.67164476 0.67246967 0.56333491 0.69754175 1 0.777240031 0.6194988	0.40813974 0.45186319 0.74990547 0.59750453 0.75388329 0.58185087 0.47570126 0.68617358 0.48423553 0.5685787 0.71632064 0.6465054 0.43374612 0.69315525 0.7377992 0.69358476 0.57399913 0.72671368 0.77240031 1 0.65887516	0.56391784 0.55860259 0.73640222 0.66222877 0.65737936 0.51824099 0.61375759 0.67146547 0.61528824 0.65229233 0.63668092 0.68210711 0.58768135 0.52368549 0.69733231 0.52882787 0.59211529 0.62454612 0.65411171 0.6194988 0.65987516	0.52464994 0.52785973 0.62756557 0.66278707 0.64605692 0.45662101 0.6008938 0.53002268 0.61199644 0.65349847 0.65946116 0.38608761 0.45986989 0.43930343 0.56506439 0.60548571 0.55667757 0.52429429 0.58399716 0.70589904	0.57867398 0.50785708 0.45423622 0.59653298 0.46243814 0.41434266 0.46830702 0.44723898 0.56919372 0.53880574 0.6152718 0.51609389 0.42267885 0.46738591 0.28447442 0.41743561 0.70615033 0.39574294 0.40882418 0.40882418
ARRANCAPLI BELLEZA LA CAPARRAPÍ CHILAGUA FI CORAZÓN EL ESPERANZA I FLORIDA LA IDEMA-HOA LA PALMA PENON EL POTOSI HACI PRIMAVERA S. J. RÍO SECC SABANETA SAN ISIDRO SAN PABLO SANTA TEREÉ SILENCIO EL SUPATA	0.47155438 0.5431185 0.74850738 0.6248914 0.60144767 0.58543371 0.55677207 1 0.55147148 0.52809871 0.61681974 0.62425772 0.5970142 0.61410577 0.71727536 0.71632064 0.68210711 0.665946116	0.38444737 0.41286831 0.64314889 0.64395183 0.60591022 0.44237751 0.75022905 0.45971806 0.42008319 0.41072098 0.55147148 1 0.45528426 0.58982036 0.65257262 0.57790689 0.5144095 0.74101589 0.62517108 0.64665054	0.71677842 0.6528251 0.53511206 0.54004887 0.50269752 0.45051227 0.57972428 0.49100734 0.58257965 0.6541183 0.49067668 0.52809871 0.49528426 1 0.49401713 0.34342361 0.433410489 0.58341548 0.48730772 0.42601881 0.43374612	0.54723483 0.49650836 0.70029889 0.5609242 0.67393953 0.52812615 0.53890199 0.66721558 0.54160227 0.60276328 0.55279843 0.61681974 0.58982036 0.49401713 1 0.60307763 0.60841401 0.5935366 0.71231253 0.67164476 0.68315525	0.27893787 0.39829936 0.65416082 0.48087719 0.6512839 0.67081582 0.47029725 0.626354 0.44256929 0.40730216 0.43856085 0.55216334 0.65257262 0.60307763 1 0.61726755 0.47202667 0.74422098 0.67246967 0.7377992	0.40441261 0.3560771 0.71955761 0.51763665 0.71478373 0.48837214 0.38367727 0.63906152 0.5292308 0.48269198 0.52626614 0.62425772 0.57790689 0.43410489 0.60841401 0.61726755 1 0.53402142 0.63536316 0.74998867 0.69358476	0.578329 0.55131612 0.62961392 0.73084942 0.59280385 0.593906125 0.55507792 0.555779436 0.64422367 0.594422367 0.5970142 0.5144095 0.5935366 0.47202667 0.53402142 1 0.50405877 0.56333491 0.57399913 0.62454612 0.60548571	0.44620859 0.46913906 0.72666125 0.59167611 0.67676099 0.65018202 0.59067429 0.76554359 0.54808678 0.52100044 0.53643209 0.61410577 0.74101589 0.48730772 0.71231253 0.74422098 0.63536316 0.509754175 0.69754175 0.72671368	0.42344924 0.45343636 0.7461035 0.58588493 0.77530731 0.54959934 0.50360938 0.64012217 0.52082214 0.57892002 0.71727536 0.62517108 0.42601881 0.67164476 0.67246967 0.74998867 0.56333491 0.69754175 1 0.777240031	0.40813974 0.45186319 0.74990547 0.59750453 0.75388329 0.58185087 0.47570126 0.68617358 0.48439146 0.48423553 0.5685787 0.71632064 0.643665054 0.633754612 0.69358476 0.57399913 0.72671368 0.77240031	0.56391784 0.55860259 0.73640222 0.66222877 0.66737936 0.51824099 0.61375759 0.67146547 0.65229233 0.63668092 0.68210711 0.58768135 0.52368549 0.69733231 0.52882787 0.59211529 0.62454612 0.65444611 0.6194988 0.65887516	0.52464994 0.52785973 0.62756557 0.66278707 0.6008938 0.53002268 0.60356458 0.60356458 0.65946116 0.38608761 0.45986989 0.56792249 0.43930343 0.56506439 0.60548571 0.55667757 0.62429429 0.58399716 0.70589904	0.57867398 0.50785708 0.45423622 0.59653298 0.46243814 0.41434266 0.46830702 0.44723898 0.56919372 0.53880574 0.6152718 0.51609389 0.42267885 0.5258025 0.46738591 0.28447442 0.41743561 0.70615033 0.39574294 0.40882418 0.41169232

Tabla 4. Matriz de coeficientes de correlación entre estaciones

Posteriormente, se calculó el Índice de aridez de Emmanuel De Martone, y con la clasificación de Almorox (2009), con la cual se obtuvo la **Tabla 5**:

ESTACIÓN	Altura (m)	P anual histórica	Media anual histórica de T	P mes seco	T mes seco	lm	Clase de clima
IDEMA-HONDA	258	1142.364	28.483	44.794	27.762	21.960	Sub -Humedo
ARGENTINA	1150	1004.581	22.685	45.484	21.964	23.905	Sub -Humedo
PRIMAVERA D MATIMA	1850	910.148	18.135	36.926	17.414	24.256	Sub -Humedo
UTICA	497	1234.644	26.930	46.516	26.209	24.424	Sub -Humedo
SAN JUAN D RIOSECO	1364	1198.909	21.294	39.185	20.573	26.845	Sub -Humedo
ESPERANZA LA	208	1458.836	28.808	54.482	28.087	27.378	Sub -Humedo
FLORIDA	1915	1099.821	17.713	37.839	16.992	28.255	Sub -Humedo
ARRANCAPLUMAS	235	1584.368	28.633	59.012	27.912	29.845	Sub -Humedo
TUSCOLO EL	985	1467.187	23.758	50.171	23.037	30.843	Húmedo
BELLEZA LA	1200	1480.685	22.360	42.403	21.639	30.919	Húmedo
POTOSI HACIENDA	389	1571.979	27.632	67.888	26.911	31.922	Húmedo
CORAZÓN EL	2845	856.867	11.668	44.639	10.947	32.559	Húmedo
CAPARRAPI	1270	1587.670	21.905	49.784	21.184	34.460	Húmedo
IDEMA-DORADA	192	1718.850	28.912	78.820	28.191	34.469	Húmedo
SAN ISIDRO	1150	1676.085	22.685	47.767	21.964	34.606	Húmedo
ARMERO GRANJA	321	1708.779	28.074	78.906	27.353	35.115	Húmedo
SANTA TERESA	2200	1259.142	15.860	53.625	15.139	37.144	Húmedo
CHILAGUA	1500	1699.003	20.410	45.691	19.689	37.169	Húmedo
SABANETA	2475	1394.160	14.073	51.936	13.352	42.302	Húmedo
SUPATA	1798	1897.141	18.473	48.161	17.752	43.727	Húmedo
SILENCIO EL	1425	2361.070	20.898	61.939	20.177	50.523	Húmedo
PEÑON	1400	2365.288	21.060	77.730	20.339	53.448	Húmedo
SAN PABLO	1200	2330.530	22.360	98.827	21.639	54.751	Húmedo
PALMA	1462	2194.985	20.657	103.494	19.936	56.542	Húmedo
YACOPI-AUT	1347	2617.024	21.405	123.031	20.684	65.724	Per - húmedo
ALBANIA	788	3401.926	25.038	115.252	24.317	68.696	Per - húmedo

 Tabla 5. Clasificación de clima según el índice de aridez de Emmanuel De Martone.

El análisis de los factores calculados y el conocimiento sobre la región permite realizar la tabla que resumen las estaciones vecinas para bajo los criterios establecidos.

ESTACIÓN	CV	R2	la	ESTACIONI	ES VECIANAS
ALBANIA	PEÑON, ARMERO GRANJA, SANTA TERESA, LA PALMA, SAN PABLO, CHILAGUA, CORAZÓN, SILENCIO EL,SABANETA	FLORIDA, S. J. RÍO SECO, SANTA TERESA, BELLEZA LA, TUSCOLO, SILENCIO, SUPATA, CHILAGUA, PEÑON, SAN ISIDRO	YACOPI, ALBANIA,PALMA, SAN PABLO, PEÑON, SILENCIO EL	PEÑON, SILENCIO EL	LA PALMA, SAN PABLO
ARGENTINA	CORAZÓN, SILENCIO, SABANETA, FLORIDA,SUPATA, CHILAGUA ,IDEMA- DORADA,TUSCOLO EL,POTOSI HACIENDA,PRIMA VERA D MATIMA	SABANETA, SAN ISIDRO, TUSCOLO, IDEMA-HOA, PRIMAVERA D MATIMA, SANTA TERESA, PEÑON, IDEMA-DORADA, ESPERANZA LA, BELLEZA LA	IDEMA-HONDA, ARGENTINA, PRIMAVERA D MATIMA, UTICA, SAN JUAN D RIOSECO, ESPERANZA LA, FLORIDA, ARRANCAPLUMA S	PRIMAVERA D MATIMA,	IDEMA-HONDA, ESPERANZA LA, FLORIDA,
ARMERO GRANJA	SANTA TERESA, ALBANIA, LA PALMA, SAN PABLO ,PEÑON, CHILAGUA ,CORAZÓN EL	S. J. RÍO SECO, LA PALMA, IDEMA- DORADA, TUSCOLO, ARRANCAPLUMAS, ALBANIA, SAN PABLO, YACOPI-AUT, IDEMA- HOA, PRIMAVERA D MATIMA	TUSCOLO, BELLEZA LA, POSOTO HACIENDA, CORAZÓN, IDEAM - DORADA, CAPARRAPI, SAN ISIDRO, ARMERO, SANTA TERESA, CHILAGUA, SUPATA, SILENCIO, PEÑON, SAN PABLO, PALMA, SABANETA	LA PALMA, SAN PABLO	SANTA TERESA, PEÑON, CHILAGUA, CORAZÓN, PALMA, IDEAM - DORADA, TUSCOLO,

ESTACIÓN	CV	R2	la	ESTACIONI	S VECIANAS
ARRANCAPL UMAS	S. J. RÍO SECO, TUSCOLO, POTOSI HACIENDA, PRIMAVERA D MATIMA,ÚTICA,ES PERANZA LA,IDEMA- DORADA	PEÑON, SAN PABLO , TUSCOLO, ARMERO GRANJA, CAPARRAPÍ, ALBANIA, IDEMA- DORADA, ESPERANZA LA, PRIMAVERA D MATIMA, IDEMA-HOA	IDEMA-HONDA, ARGENTINA, PRIMAVERA D MATIMA, UTICA, SAN JUAN D RIOSECO, ESPERANZA LA, FLORIDA, ARRANCAPLUMA S	PRIMAVERA D MATIMA, ESPERANZA LA,	IDEMA-HONDA, SAN JUAN D RIOSECO, UTICA,
BELLEZA LA	IDEMA-HONDA, CAPARRAPÍ, SAN ISIDRO, ESPERANZA LA,S. J. RÍO SECO	FLORIDA, CAPARRAPÍ, S. J. RÍO SECO, PEÑON, SAN ISIDRO, SANTA TERESA, CHILAGUA, TUSCOLO, SILENCIO, SUPATA	TUSCOLO, BELLEZA LA, POSOTO HACIENDA, CORAZÓN, IDEAM - DORADA, CAPARRAPI, SAN ISIDRO, ARMERO, SANTA TERESA, CHILAGUA, SUPATA, SILENCIO, PEÑON, SAN PABLO, PALMA, SABANETA	CAPARRAPI, SAN ISIDRO,	SAN ISIDRO, TUSCOLO, SANTA TERESA, SILENCIO, EL, PEÑON,
CAPARRAPÍ	SAN ISIDRO, ESPERANZA LA, BELLEZA LA, IDEMA-HONDA	SUPATA, PEÑON, LA PALMA, ESPERANZA LA, IDEMA-HOA, TUSCOLO, ÚTICA, BELLEZA LA, SAN PABLO	TUSCOLO, BELLEZA LA, POSOTO HACIENDA, CORAZÓN, IDEAM - DORADA, CAPARRAPI, SAN ISIDRO, ARMERO, SANTA TERESA, CHILAGUA, SUPATA, SILENCIO, PEÑON, SAN PABLO, PALMA, SABANETA	BELLEZA LA,	TUSCOLO, SUPATA, PEÑON, SAN PABLO,

ESTACIÓN	CV	R2	la	ESTACIONI	ES VECIANAS
CHILAGUA	CORAZÓN, SILENCIO, SABANETA, ARGENTINA, FLORIDA,SUPATA, ALBANIA, SANTA TERESA, ARMERO GRANJA, IDEMA- DORADA	FLORIDA, SABANETA, TUSCOLO, S. J. RÍO SECO, SANTA TERESA, SAN ISIDRO, BELLEZA LA, PEÑON, SUPATA, SILENCIO EL	TUSCOLO, BELLEZA LA, POSOTO HACIENDA, CORAZÓN, IDEAM - DORADA, CAPARRAPI, SAN ISIDRO, ARMERO, SANTA TERESA, CHILAGUA, SUPATA, SILENCIO, PEÑON, SAN PABLO, PALMA	SANTA TERESA, SUPATA, SILENCIO EL	TUSCOLO, BELLEZA LA,CORAZÓN, IDEAM – DORADA, SAN ISIDRO, ARMERO GRANJA,
CORAZÓN EL	SILENCIO, SABANETA, CHILAGUA, ARGENTINA,FLORI DA,SUPATA,LA PALMA,IDEMA- DORADA,TUSCOLO EL,ALBANIA	SAN PABLO , SILENCIO, CHILAGUA, FLORIDA, SUPATA, ESPERANZA LA, POTOSI HACIEA, BELLEZA LA, SANTA TERESA, SABANETA	TUSCOLO, BELLEZA LA, POSOTO HACIENDA, CORAZÓN, IDEAM - DORADA, CAPARRAPI, SAN ISIDRO, ARMERO, SANTA TERESA, CHILAGUA, SUPATA, SILENCIO, PEÑON, SAN PABLO, PALMA, SABANETA	CHILAGUA, SUPATA, SILENCIO EL	TUSCOLO, BELLEZA LA, POSOTO HACIENDA, IDEAM - DORADA, SANTA TERESA, SAN PABLO, PALMA, SABANETA
ESPERANZA LA	BELLEZA LA, IDEMA-HONDA, S. J. RÍO SECO, CAPARRAPÍ, SAN ISIDRO, ARRANCAPLUMAS	ÚTICA, PEÑON, CORAZÓN, IDEMA- DORADA, TUSCOLO, BELLEZA LA, ALBANIA, ARRANCAPLUMAS, CAPARRAPÍ, IDEMA- HOA	IDEMA-HONDA, ARGENTINA, PRIMAVERA D MATIMA, UTICA, SAN JUAN D RIOSECO, ESPERANZA LA, FLORIDA, ARRANCAPLUMA S	IDEMA- HONDA, ARRANCAPLU MAS	SAN JUAN D RIOSECO, UTICA, S. J. RÍO SECO,

ESTACIÓN	CV	R2	la	ESTACIONI	ES VECIANAS
FLORIDA	SUPATA, IDEMA- DORADA, TUSCOLO, POTOSI HACIENDA, ARGENTINA, PRIMAVERA D MATIMA, ÚTICA, CORAZÓN, SILENCIO, SABANETA	SABANETA, SAN ISIDRO, SILENCIO, CHILAGUA, BELLEZA LA, S. J. RÍO SECO, TUSCOLO, SUPATA, POTOSI HACIEA, SANTA TERESA	IDEMA-HONDA, ARGENTINA, PRIMAVERA D MATIMA, UTICA, SAN JUAN D RIOSECO, ESPERANZA LA, FLORIDA, ARRANCAPLUMA S		PRIMAVERA D MATIMA, UTICA, ARGENTINA,
IDEMA- DORADA	TUSCOLO, POTOSI HACIENDA, SUPATA, IDEMA- DORADA, PRIMAVERA, MATIMA, ÚTICA, ARRANCAPLUMAS, CHILAGUA ,CORAZÓN	FLORIDA, CAPARRAPÍ, ÚTICA, ARRANCAPLUMAS, ESPERANZA LA, LA PALMA, TUSCOLO, ALBANIA, IDEMA-HOA, SAN PABLO	TUSCOLO, BELLEZA LA, POSOTO HACIENDA, CORAZÓN, IDEAM - DORADA, CAPARRAPI, SAN ISIDRO, ARMERO, SANTA TERESA, CHILAGUA, SUPATA, SILENCIO, PEÑON, SAN PABLO, PALMA, SABANETA	TUSCOLO,	CORAZÓN, IDEAM - DORADA, CHILAGUA, SUPATA, SAN PABLO, PALMA
IDEMA- HONDA	CAPARRAPÍ, BELLEZA LA, SAN ISIDRO, ESPERANZA LA	ALBANIA, S. J. RÍO SECO, ÚTICA, ARMERO GRANJA, IDEMA- DORADA, TUSCOLO, PRIMAVERA D MATIMA, CAPARRAPÍ, ESPERANZA LA, ARRANCAPLUMAS	IDEMA-HONDA, ARGENTINA, PRIMAVERA D MATIMA, UTICA, SAN JUAN D RIOSECO, ESPERANZA LA, FLORIDA, ARRANCAPLUMA S	ESPERANZA LA,	PRIMAVERA D MATIMA, SAN JUAN D RIOSECO, ARRANCAPLUMA S

ESTACIÓN	CV	R2	la	ESTACION	ES VECIANAS
LA PALMA	ALBANIA, SANTA TERESA, ARMERO GRANJA, CHILAGUA ,CORAZÓN, PEÑON, SAN PABLO ,SILENCIO EL,SABANETA	SILENCIO, BELLEZA LA, CHILAGUA, IDEMA- DORADA, YACOPI-AUT, TUSCOLO, CAPARRAPÍ, ÚTICA, PEÑON, SAN PABLO	TUSCOLO, BELLEZA LA, POSOTO HACIENDA, CORAZÓN, IDEAM - DORADA, CAPARRAPI, SAN ISIDRO, ARMERO, SANTA TERESA, CHILAGUA, SUPATA, SILENCIO, PEÑON, SAN PABLO, PALMA, SABANETA	CHILAGUA, PEÑON, SABANETA,	TUSCOLO, BELLEZA LA, IDEMA-DORADA, CAPARRAPI, SILENCIO, SAN PABLO,
PEÑON	SAN PABLO , ARMERO GRANJA, SANTA TERESA, ALBANIA, LA PALMA	S. J. RÍO SECO, SAN ISIDRO, CAPARRAPÍ, LA PALMA, ÚTICA, TUSCOLO, SUPATA, SILENCIO, BELLEZA LA, CHILAGUA	TUSCOLO, BELLEZA LA, POSOTO HACIENDA, CORAZÓN, IDEAM - DORADA, CAPARRAPI, SAN ISIDRO, ARMERO, SANTA TERESA, CHILAGUA, SUPATA, SILENCIO, PEÑON, SAN PABLO, PALMA, SABANETA	LA PALMA	TUSCOLO, BELLEZA LA, CAPARRAPÍ SAN ISIDRO, ARMERO GRANJA, SANTA TERESA, CHILAGUA ,SUPATA, SILENCIO, SAN PABLO
POTOSI HACIENDA	TUSCOLO, IDEMA- DORADA, PRIMAVERA D MATIMA, ÚTICA,SUPATA,FLO RIDA,ARGENTINA, ARRANCAPLUMAS, SABANETA, SILENCIO	TUSCOLO, S. J. RÍO SECO, CORAZÓN, SILENCIO, BELLEZA LA, CHILAGUA, SUPATA, SABANETA, SANTA TERESA, FLORIDA	TUSCOLO, BELLEZA LA, POSOTO HACIENDA, CORAZÓN, IDEAM - DORADA, CAPARRAPI, SAN ISIDRO, ARMERO, SANTA TERESA, CHILAGUA, SUPATA, SILENCIO,	TUSCOLO, SUPATA, SABANETA	BELLEZA LA, CORAZÓN, IDEMA- DORADA,CHILAG UA, SANTA TERESA, CHILAGUA, SILENCIO EL,

ESTACIÓN	CV	R2	la	ESTACIONI	ES VECIANAS
			PEÑON, SAN PABLO, PALMA, SABANETA		
PRIMAVERA D MATIMA	ÚTICA, POTOSI HACIENDA, TUSCOLO, IDEMA- DORADA,SUPATA, FLORIDA,ARRANCA PLUMAS,ARGENTI NA,S. J. RÍO SECO,SABANETA	PEÑON, BELLEZA LA, CAPARRAPÍ, ESPERANZA LA, IDEMA-DORADA, SAN PABLO , ALBANIA, ARRANCAPLUMAS, IDEMA-HOA, ARMERO GRANJA	IDEMA-HONDA, ARGENTINA, PRIMAVERA D MATIMA, UTICA, SAN JUAN D RIOSECO, ESPERANZA LA, FLORIDA, ARRANCAPLUMA S	ARRANCAPLU MAS	IDEMA-DORADA, ARGENTINA, ÚTICA, ESPERANZA LA, FLORIDA,
S. J. RÍO SECO	ARRANCAPLUMAS, ESPERANZA LA, PRIMAVERA D MATIMA, ÚTICA,BELLEZA LA	SABANETA, SAN ISIDRO, PEÑON, FLORIDA, SILENCIO, CHILAGUA, SUPATA, TUSCOLO, BELLEZA LA, SANTA TERESA	IDEMA-HONDA, ARGENTINA, PRIMAVERA D MATIMA, UTICA, SAN JUAN D RIOSECO, ESPERANZA LA, FLORIDA, ARRANCAPLUMA S		ARRANCAPLUMA S, PRIMAVERA D MATIMA, ÚTICA, ESPERANZA LA, FLORIDA, ARRANCAPLUMA S,
SABANETA	SILENCIO, CORAZÓN, CHILAGUA, ARGENTINA,FLORI DA,SUPATA,IDEMA - DORADA,TUSCOLO EL,POTOSI HACIENDA,LA PALMA	S. J. RÍO SECO, SAN ISIDRO, FLORIDA, CHILAGUA, POTOSI HACIEA, BELLEZA LA, CORAZÓN, SILENCIO, SUPATA, SANTA TERESA	TUSCOLO, BELLEZA LA, POSOTO HACIENDA, CORAZÓN, IDEAM - DORADA, CAPARRAPI, SAN ISIDRO, ARMERO, SANTA TERESA, CHILAGUA, SUPATA, SILENCIO, PEÑON, SAN PABLO, PALMA, SABANETA	CORAZÓN, CHILAGUA, SUPATA	TUSCOLO, IDEMA-DORADA, SAN ISIDRO, SANTA TERESA, SILENCIO, LA PALMA

ESTACIÓN	CV	R2	la	ESTACIONES VECIANAS	
SAN ISIDRO	CAPARRAPÍ, IDEMA-HONDA, BELLEZA LA, ESPERANZA LA	TUSCOLO, S. J. RÍO SECO, SABANETA, PEÑON, SANTA TERESA, FLORIDA, SUPATA, CHILAGUA, BELLEZA LA, SILENCIO EL	TUSCOLO, BELLEZA LA, POSOTO HACIENDA, CORAZÓN, IDEAM - DORADA, CAPARRAPI, SAN ISIDRO, ARMERO, SANTA TERESA, CHILAGUA, SUPATA, SILENCIO, PEÑON, SAN PABLO, PALMA, SABANETA	BELLEZA LA	TUSCOLO, BELLEZA LA, CAPARRAPÍ, SANTA TERESA, CHILAGUA, SUPATA, SILENCIO, PEÑON, SABANETA
SAN PABLO	PEÑON, ARMERO GRANJA, SANTA TERESA, ALBANIA,LA PALMA	CHILAGUA, S. J. RÍO SECO, PEÑON, ÚTICA, TUSCOLO, BELLEZA LA, IDEMA-DORADA, LA PALMA, YACOPI-AUT, CAPARRAPÍ	TUSCOLO, BELLEZA LA, POSOTO HACIENDA, CORAZÓN, IDEAM - DORADA, CAPARRAPI, SAN ISIDRO, ARMERO, SANTA TERESA, CHILAGUA, SUPATA, SILENCIO, PEÑON, SAN PABLO, PALMA, SABANETA	PEÑON, LA PALMA	TUSCOLO, BELLEZA LA, IDEMA-DORADA, CAPARRAPÍ, ARMERO GRANJA,CHILAG UA,
SANTA TERESA	ARMERO GRANJA, ALBANIA, LA PALMA, PEÑON,SAN PABLO ,CHILAGUA ,CORAZÓN EL	CORAZÓN, TUSCOLO, CHILAGUA, SILENCIO, S. J. RÍO SECO, BELLEZA LA, SUPATA, POTOSI HACIEA, SABANETA, FLORIDA	TUSCOLO, BELLEZA LA, POSOTO HACIENDA, CORAZÓN, IDEAM - DORADA, CAPARRAPI, SAN ISIDRO, ARMERO, SANTA TERESA, CHILAGUA, SUPATA, SILENCIO,	CORAZÓN, CHILAGUA, PEÑON,	TUSCOLO, BELLEZA LA, POSOTO HACIENDA, SUPATA, SILENCIO, SABANETA

ESTACIÓN	CV	R2	la	ESTACIONES VECIANAS	
SILENCIO EL	SABANETA, CORAZÓN, CHILAGUA, ARGENTINA,FLORI DA,SUPATA,IDEMA - DORADA,TUSCOLO EL,POTOSI HACIENDA,TUSCOL O EL	POTOSI HACIEA, FLORIDA, S. J. RÍO SECO, SABANETA, SANTA TERESA, PEÑON, BELLEZA LA, SAN ISIDRO, SUPATA, CHILAGUA	PEÑON, SAN PABLO, PALMA, SABANETA TUSCOLO, BELLEZA LA, POSOTO HACIENDA, CORAZÓN, IDEAM - DORADA, CAPARRAPI, SAN ISIDRO, ARMERO, SANTA TERESA, CHILAGUA, SUPATA, SILENCIO, PEÑON, SAN PABLO, PALMA, SABANETA	CHILAGUA, SUPATA, SABANETA	TUSCOLO, POSOTO HACIENDA, CORAZÓN, SAN ISIDRO, PEÑON
SUPATA	FLORIDA, IDEMA- DORADA, TUSCOLO, POTOSI HACIENDA,ARGEN TINA,PRIMAVERA D MATIMA,ÚTICA,SIL ENCIO EL,SABANETA,COR AZÓN EL	TUSCOLO, S. J. RÍO SECO, FLORIDA, SAN ISIDRO, PEÑON, SANTA TERESA, SABANETA, BELLEZA LA, CHILAGUA, SILENCIO EL	TUSCOLO, BELLEZA LA, POSOTO HACIENDA, CORAZÓN, IDEAM - DORADA, CAPARRAPI, SAN ISIDRO, ARMERO, SANTA TERESA, CHILAGUA, SUPATA, SILENCIO, PEÑON, SAN PABLO, PALMA, SABANETA	TUSCOLO, SABANETA	BELLEZA LA, POSOTO HACIENDA, CORAZÓN, SAN ISIDRO, SANTA TERESA, CHILAGUA, SILENCIO, PEÑON,

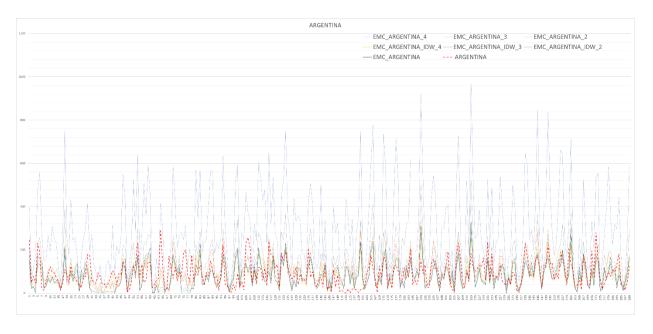
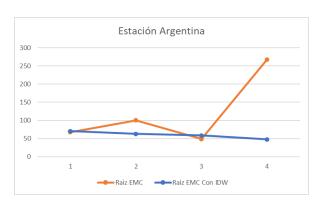
ESTACIÓN	CV	R2	la	ESTACIONES VECIANAS	
TUSCOLO EL	IDEMA-DORADA, POTOSI HACIENDA, PRIMAVERA D MATIMA, ÚTICA,SUPATA,FLO RIDA,ARGENTINA, ARRANCAPLUMAS, SILENCIO EL,SABANETA	IDEMA-HOA, SANTA TERESA, SUPATA, CAPARRAPÍ, CHILAGUA, FLORIDA, PEÑON, S. J. RÍO SECO, ÚTICA, BELLEZA LA	TUSCOLO, BELLEZA LA, POSOTO HACIENDA, CORAZÓN, IDEAM - DORADA, CAPARRAPI, SAN ISIDRO, ARMERO, SANTA TERESA, CHILAGUA, SUPATA, SILENCIO, PEÑON, SAN PABLO, PALMA, SABANETA	SUPATA	IDEAM - DORADA, CAPARRAPI, CHILAGUA, SILENCIO, SABANETA
ÚTICA	PRIMAVERA D MATIMA, POTOSI HACIENDA, TUSCOLO, IDEMA- DORADA, SUPATA, ARRANCAPLUMAS, ARGENTINA, S. J. RÍO SECO	IDEMA-DORADA, SAN PABLO , IDEMA-HOA, SILENCIO, BELLEZA LA, CHILAGUA, LA PALMA, PEÑON, CAPARRAPÍ, TUSCOLO EL	IDEMA-HONDA, ARGENTINA, PRIMAVERA D MATIMA, UTICA, SAN JUAN D RIOSECO, ESPERANZA LA, FLORIDA, ARRANCAPLUMA S		IDEMA-HONDA, ARGENTINA, SAN JUAN D RIOSECO, ARRANCAPLUMA S
YACOPI-AUT	SAN PABLO , PEÑON, ARMERO GRANJA, SANTA TERESA,ALBANIA,T USCOLO EL	PEÑON, PRIMAVERA D MATIMA, IDEMA-HOA, TUSCOLO, IDEMA- DORADA, ARMERO GRANJA, ÚTICA, CAPARRAPÍ, LA PALMA, SAN PABLO	YACOPI, ALBANIA,PALMA, SAN PABLO, PEÑON, SILENCIO	SAN PABLO	ALBANIA, PALMA, PEÑON

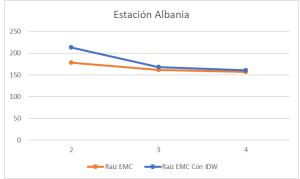
 Tabla 6. Resumen de los criterios de vecindad para las estaciones área de estudio

Fuente: Autores

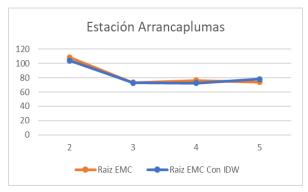
Identificadas las estaciones vecinas con los criterios de vecindad establecidos, se procedió a generar las ecuaciones polinomios razonables variando el número de estaciones vecinas establecidas e incluyendo y descartando la ponderación del inverso de la distancia, para identificar

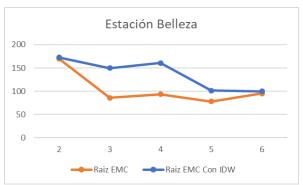
la mejor ecuación de predicción para la serie temporal faltante se evaluó y se selección la que menor error de predicción obtuviera. Una vez definida la ecuación de mejor predicción, se utilizó para obtener la estimación de los valores para los meses no registrados de precipitación. En la **Figura 4** se muestra unas series históricas con la serie completa de la estación Argentina, la cual los datos faltantes fueron estimados con 2, 3 y 4 estaciones vecinas, y teniendo en cuenta el factor de distancia entre estaciones (IDW) y descartándolo, generando así 8 posibles ecuaciones que permiten completar la serie histórica, para evaluar cuál de las opciones es la más acertada se evalúa el error medio cuadrático (EMC), y se selecciona la ecuación que mejor predicción de en su evaluación.

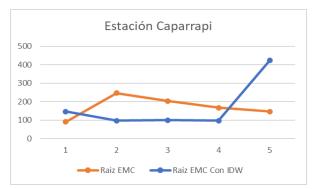



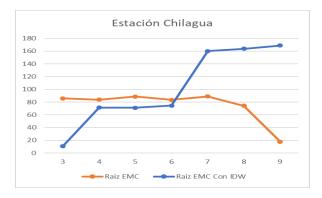

Figura 6. Series históricas estimadas para la estación Argentina

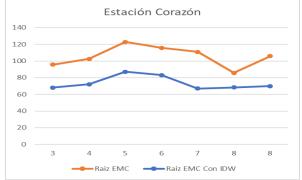
Fuente: Autores

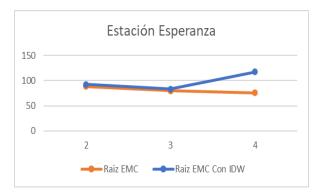


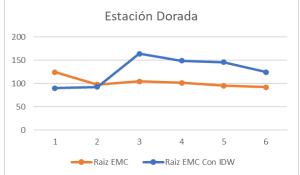

Aplicando la misma metodología se complementó la serie histórica de las demás estaciones, la identificación de la mejor ecuación para completar la serie histórica de cada estación se seleccionó del gráfico de líneas (Figura 7) aquel que menor EMC presentará.

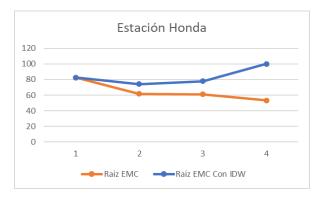


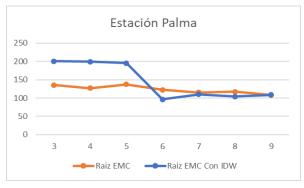


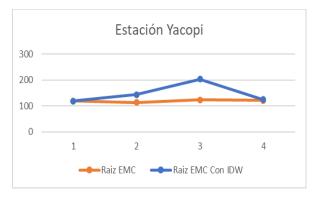


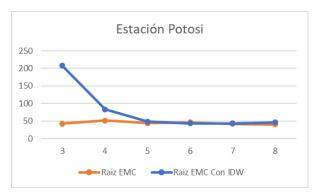


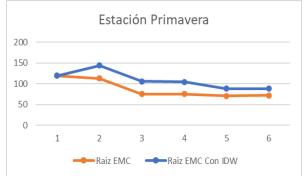


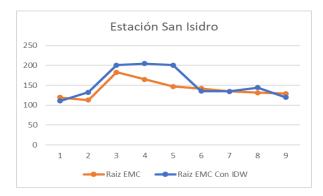




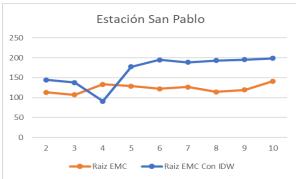


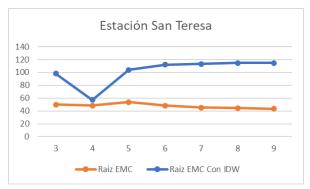


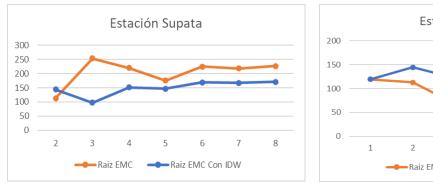












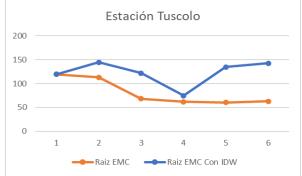


Figura 7. Gráfico de líneas del valor del error medio cuadrático para cada conjunto de estaciones vecinas teniendo presente y ausente la ponderación del inverso de sus distancias.

6.3.1 Series temporales de temperatura

La complementación de las series temporales de Temperatura se realizó aplicando la ecuación del gradiente térmico, para ello se identificó las estaciones que brindará información en los tramos donde no se contaba con registro para la estación evaluada y se eligió para complementar la serie aquella estación que menor error de predicción registrará. La selección de la estación y el valor del error medio cuadrático de predicción se resumen en la Tabla 7.

ESTACIÓN	VENECIA	PRIMAVERA	GUADUAS	VILLA INES	ALBANIA	ARMERO	PALANQUERO	YACOPIA
YACOPIA	1.321	31.500	10.960	2.968	1.036	1.019	3.714	0.000
MARIQUITA	0.501	12.546	12.140	0.915	0.600	0.758	1.712	0.396
QUEBRADA NEGRA	2.209	26.487	9.074	1.128	0.198	0.365	5.081	0.535
SABANETA	1.314	28.798	10.867	2.429	0.561	0.812	3.860	0.536
ARMERO	2.205	29.694	8.343	3.393	0.659	0.000	4.824	1.019
ALBANIA	2.088	26.718	10.282	1.794	0.000	0.659	4.297	1.036
SANTA TERESA	1.406	29.455	11.242	3.434	0.821	0.969	4.185	1.046
VENECIA	0.000	26.891	14.030	0.000	2.088	2.205	3.570	1.321
ESPERANZA LA	2.287	26.538	12.040	3.882	0.834	0.758	3.016	1.499
VILLA INES	2.968	16.466	15.988	0.000	1.794	3.393	3.126	2.325
PALANQUERO	3.570	12.992	20.582	3.126	4.297	4.824	0.000	3.714
GUADUAS	14.030	67.291	0.000	15.988	10.282	8.343	20.582	10.960
VILLETA	17.897	27.251	36.678	20.960	18.967	19.729	18.626	18.002
PRIMAVERA LA	26.812	0.000	67.291	16.466	26.718	29.694	12.992	30.668
TRAPICHE	30.359	2.931	85.711	31.853	36.893	41.316	19.409	33.053
	00.000	RANZA QUEBRADA SARANETA SANTA TRAPICHE VIII A INI		12.020	251 105	00.000		
ESTACIÓN	ESPERANZA LA					VILLA INES	VILLETA	MARIQUITA
	ESPERANZA	QUEBRADA		SANTA				
ESTACIÓN	ESPERANZA LA	QUEBRADA NEGRA	SABANETA	SANTA TERESA	TRAPICHE	VILLA INES	VILLETA	MARIQUITA
ESTACIÓN YACOPIA	ESPERANZA LA	QUEBRADA NEGRA	SABANETA	SANTA TERESA 1.046	TRAPICHE	VILLA INES 1.715	VILLETA 18.002	MARIQUITA 1.884
ESTACIÓN YACOPIA MARIQUITA	LA 1.499	QUEBRADA NEGRA 104.156	SABANETA 0.536	SANTA TERESA 1.046 245.090	TRAPICHE 33.053	1.715 157.411	VILLETA 18.002 15.539	MARIQUITA 1.884 0.000
ESTACIÓN YACOPIA MARIQUITA QUEBRADA NEGRA	ESPERANZA LA 1.499 1.118	QUEBRADA NEGRA 104.156	0.536 0.509	SANTA TERESA 1.046 245.090 0.617	33.053 38.777	1.715 157.411 3.447	VILLETA 18.002 15.539 22.612	1.884 0.000 0.633
ESTACIÓN YACOPIA MARIQUITA QUEBRADA NEGRA SABANETA	ESPERANZA LA 1.499 1.118 0.843	QUEBRADA NEGRA 104.156 0.000 98.813	0.536 0.509 0.000	SANTA TERESA 1.046 245.090 0.617 0.271	33.053 38.777 29.576	1.715 157.411 3.447 1.492	VILLETA 18.002 15.539 22.612 5.082	1.884 0.000 0.633 1.067
ESTACIÓN YACOPIA MARIQUITA QUEBRADA NEGRA SABANETA ARMERO	ESPERANZA LA 1.499 1.118 0.843 0.758	QUEBRADA NEGRA 104.156 0.000 98.813 107.220	0.536 0.509 0.000 0.812	SANTA TERESA 1.046 245.090 0.617 0.271 0.969	33.053 38.777 29.576 41.316	1.715 157.411 3.447 1.492 3.019	VILLETA 18.002 15.539 22.612 5.082 19.729	1.884 0.000 0.633 1.067 22.959
ESTACIÓN YACOPIA MARIQUITA QUEBRADA NEGRA SABANETA ARMERO ALBANIA	ESPERANZA LA 1.499 1.118 0.843 0.758 0.834	QUEBRADA NEGRA 104.156 0.000 98.813 107.220 105.570	0.536 0.509 0.000 0.812 0.561	SANTA TERESA 1.046 245.090 0.617 0.271 0.969 0.821	33.053 38.777 29.576 41.316 36.893	1.715 157.411 3.447 1.492 3.019 2.593	VILLETA 18.002 15.539 22.612 5.082 19.729 18.967	1.884 0.000 0.633 1.067 22.959 2.819
ESTACIÓN YACOPIA MARIQUITA QUEBRADA NEGRA SABANETA ARMERO ALBANIA SANTA TERESA	1.499 1.118 0.843 0.758 0.834 1.008	QUEBRADA NEGRA 104.156 0.000 98.813 107.220 105.570 97.561	0.536 0.509 0.000 0.812 0.561 0.271	SANTA TERESA 1.046 245.090 0.617 0.271 0.969 0.821 0.000	33.053 38.777 29.576 41.316 36.893 33.620	1.715 157.411 3.447 1.492 3.019 2.593 1.576	VILLETA 18.002 15.539 22.612 5.082 19.729 18.967 24.033	1.884 0.000 0.633 1.067 22.959 2.819
ESTACIÓN YACOPIA MARIQUITA QUEBRADA NEGRA SABANETA ARMERO ALBANIA SANTA TERESA VENECIA	1.499 1.118 0.843 0.758 0.834 1.008 2.287	QUEBRADA NEGRA 104.156 0.000 98.813 107.220 105.570 97.561 103.612	0.536 0.509 0.000 0.812 0.561 0.271 1.314	SANTA TERESA 1.046 245.090 0.617 0.271 0.969 0.821 0.000 1.406	33.053 38.777 29.576 41.316 36.893 33.620 30.359	1.715 157.411 3.447 1.492 3.019 2.593 1.576 0.291	VILLETA 18.002 15.539 22.612 5.082 19.729 18.967 24.033 17.897	1.884 0.000 0.633 1.067 22.959 2.819 0.932
ESTACIÓN YACOPIA MARIQUITA QUEBRADA NEGRA SABANETA ARMERO ALBANIA SANTA TERESA VENECIA ESPERANZA LA	1.499 1.118 0.843 0.758 0.834 1.008 2.287 0.000	QUEBRADA NEGRA 104.156 0.000 98.813 107.220 105.570 97.561 103.612 96.296	0.536 0.509 0.000 0.812 0.561 0.271 1.314 0.843	SANTA TERESA 1.046 245.090 0.617 0.271 0.969 0.821 0.000 1.406 3.022	33.053 38.777 29.576 41.316 36.893 33.620 30.359 26.526	1.715 157.411 3.447 1.492 3.019 2.593 1.576 0.291 2.059	VILLETA 18.002 15.539 22.612 5.082 19.729 18.967 24.033 17.897 7.712	1.884 0.000 0.633 1.067 22.959 2.819 0.932
ESTACIÓN YACOPIA MARIQUITA QUEBRADA NEGRA SABANETA ARMERO ALBANIA SANTA TERESA VENECIA ESPERANZA LA VILLA INES	1.499 1.118 0.843 0.758 0.834 1.008 2.287 0.000 3.882	QUEBRADA NEGRA 104.156 0.000 98.813 107.220 105.570 97.561 103.612 96.296	0.536 0.509 0.000 0.812 0.561 0.271 1.314 0.843 2.429	SANTA TERESA 1.046 245.090 0.617 0.271 0.969 0.821 0.000 1.406 3.022 3.434	33.053 38.777 29.576 41.316 36.893 33.620 30.359 26.526 31.853	1.715 157.411 3.447 1.492 3.019 2.593 1.576 0.291 2.059 0.000	VILLETA 18.002 15.539 22.612 5.082 19.729 18.967 24.033 17.897 7.712 20.960	1.884 0.000 0.633 1.067 22.959 2.819 0.932 4.509 0.204
ESTACIÓN YACOPIA MARIQUITA QUEBRADA NEGRA SABANETA ARMERO ALBANIA SANTA TERESA VENECIA ESPERANZA LA VILLA INES PALANQUERO	1.499 1.118 0.843 0.758 0.834 1.008 2.287 0.000 3.882 3.016	QUEBRADA NEGRA 104.156 0.000 98.813 107.220 105.570 97.561 103.612 96.296	0.536 0.509 0.000 0.812 0.561 0.271 1.314 0.843 2.429 3.860	SANTA TERESA 1.046 245.090 0.617 0.271 0.969 0.821 0.000 1.406 3.022 3.434 4.185	33.053 38.777 29.576 41.316 36.893 33.620 30.359 26.526 31.853 19.409	1.715 157.411 3.447 1.492 3.019 2.593 1.576 0.291 2.059 0.000 2.766	VILLETA 18.002 15.539 22.612 5.082 19.729 18.967 24.033 17.897 7.712 20.960 18.626	1.884 0.000 0.633 1.067 22.959 2.819 0.932 4.509 0.204 1.124
ESTACIÓN YACOPIA MARIQUITA QUEBRADA NEGRA SABANETA ARMERO ALBANIA SANTA TERESA VENECIA ESPERANZA LA VILLA INES PALANQUERO GUADUAS	1.499 1.118 0.843 0.758 0.834 1.008 2.287 0.000 3.882 3.016 12.040	QUEBRADA NEGRA 104.156 0.000 98.813 107.220 105.570 97.561 103.612 96.296	0.536 0.509 0.000 0.812 0.561 0.271 1.314 0.843 2.429 3.860 10.867	SANTA TERESA 1.046 245.090 0.617 0.271 0.969 0.821 0.000 1.406 3.022 3.434 4.185 11.242	33.053 38.777 29.576 41.316 36.893 33.620 30.359 26.526 31.853 19.409 85.711	1.715 157.411 3.447 1.492 3.019 2.593 1.576 0.291 2.059 0.000 2.766 17.708	VILLETA 18.002 15.539 22.612 5.082 19.729 18.967 24.033 17.897 7.712 20.960 18.626 36.678	1.884 0.000 0.633 1.067 22.959 2.819 0.932 4.509 0.204 1.124 3.434

Tabla 7. Error medio cuadrático para cada estación

6.4 HOMOGENIZACIÓN DE LA SERIES DE PRECIPITACIONES

6.4.1 Análisis exploratorio

Los datos no parecen provenir de una distribución normal (**Figura 8**), lo que indica que debe transformarse los datos mediante una normalización, existe a nivel mensual multianual valores atípicos (**Figura 9**) que pueden modificar los valores de la media, pero el histograma de anomalías indica que al parecer los datos transformados parecen tener un comportamiento homogéneo.

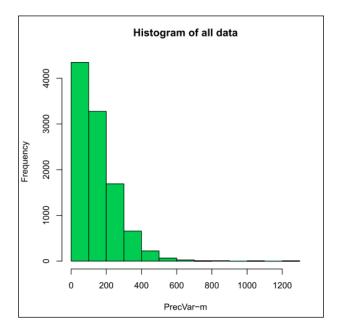
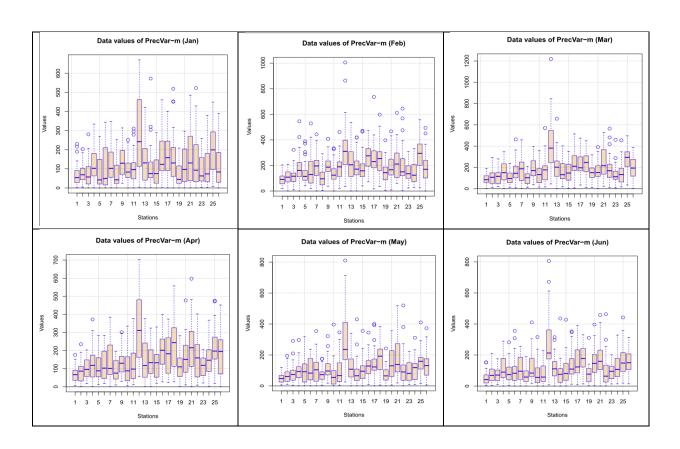



Figura 8. Histograma de todos los valores de precipitación

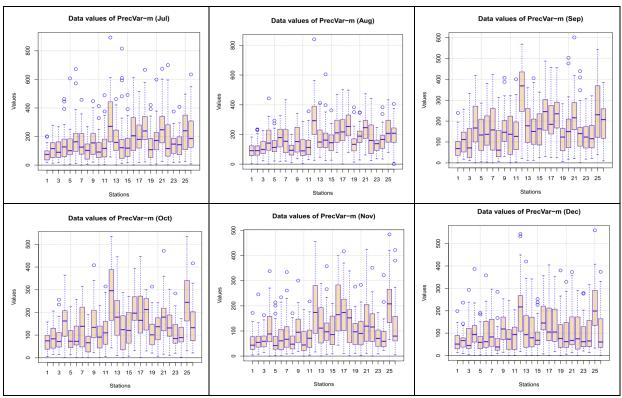


Figura 9. Cajas de bigotes para los datos de precipitación mensual para toda las estaciones

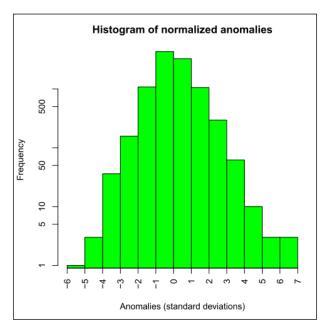


Figura 10. Histograma de anomalías normalizadas

6.4.2 Construcción de series de referencias

Con los parámetros establecidos en el análisis exploratorio, Climatol genera un conjunto de posibles series homogéneas para cada estación (Figura 11)

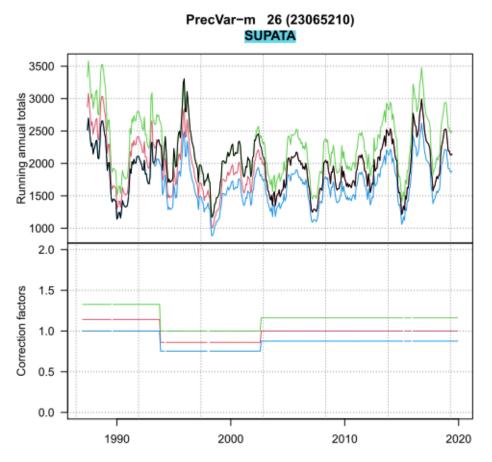


Figura 11. Series temporal homogeneizada para la estación de Supatá

6.4.3 Selección de la serie homogénea

Para la elección de la series homogéneas se hizo seleccionando la serie de la estación que menor RMSE y SHTN presentará, ya que indica que la serie es más homogénea y no varía mucho respecto a la serie original registrando un bajo valor del POD (**Tabla 8**).

Name	SNHT	RMSE	POD
ARGENTINA-2	1.6	19.3	5
CORAZON-4	5.2	25.1	28
SANTATERESA	5.3	30.4	14
ESPERANZA-2	1.9	30.5	17
HONDA	4.5	30.6	7
RIOSECO	0.7	35.2	4
FLORIDA-2	4.5	41.7	29
POTOSI-2	3.8	44.2	29
ARRANCAPLUMAS-5	2.8	45.8	22
CAPARRAPI-3	3.5	46	13
SABANETA-2	7.5	46.4	29
TUSCOLO-3	10	49.2	17
CHILAGUA-3	2.8	50.3	7
BELLEZA-5	7.3	50.5	16
SANPABLO-3	3.4	52.4	7
SANISIDRO-5	2.1	55.4	28
DORADA-4	3.6	58	22
PRIMAVERA-4	2.3	58.9	4
SILENCIO-3	1.4	60.3	6
UTICA-3	6.1	60.4	56
PENON-3	3.1	61.6	26
ARMERO-2	3.2	68.1	28
YACOPI-3	5.1	69.5	7
PALMA-4	1.8	76.6	28
SUPATA	4.6	80.4	52
ALBANIA-2	10.4	122.4	54

Tabla 8. Parámetros SNHT; RMSE y POD para las series homogéneas seleccionadas

6.5. TEST DE CONSISTENCIA EN LA SERIES DE PRECIPITACIONES

Una vez homogeneizada la serie de precipitación para cada estación, se evaluó la consistencia de los datos aplicando la pruebas de F-Fisher (Tabla 9) y T-Students (Tabla 10)

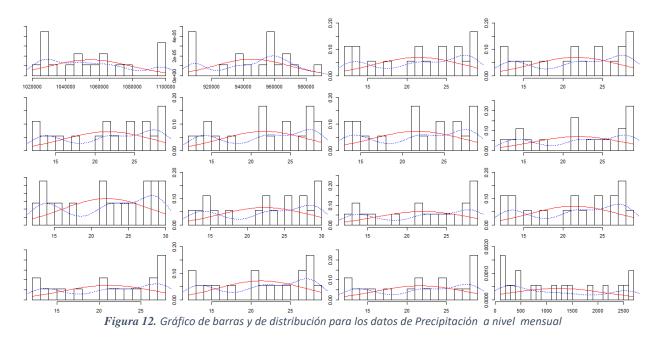
	21201790-2-2-A	21201790-2-2-B	21201070-4-5-A	21201070-4-5-B	23065060-5-A	23065060-5-B	23025020-2-2-A	23025020-2-2-B	23010080-5-A	23010080-5-B
Media	23.84081313	23.3269596	80.44938384	77.80742929	106.3953535	104.8039141	59.08583838	65.1194596	58.28967172	69.66268687
Varianza	60.40760303	188.4029428	2940.01562	2287.991543	4074.90336	4685.696198	2125.901287	1978.969816	2540.546984	2671.37329
Observaciones	198	198	198	198	198	198	198	198	198	198
	0.01		0.01		0.1		0.01		0.1	
Grados de libertad	197	197	197	197	197	197	197	197	197	197
F	0.320629827		1.284976612		0.869647367		1.074246444		0.751026573	
P(F<=f) una cola	3.77476E-15		0.039618287		0.163907797		0.307861075		0.362447974	
Valor crítico para F (una cola)	0.71700454		1.394691309		0.872790937		1.394691309		0.832790937	
	21230070-5-A	21230070-5-B	21205670-2-5-A	21205670-2-5-B	21250450-2-5-A	21250450-2-5-B	21237020-5-5-A	21237020-5-5-B	23060110-3-5-A	23060110-3-5-B
Media	68.13715657	73.19389394	80.21564646	73.11884343	61.51541414	68.70567677	115.5244141	138.5704646	92.42556566	101.2695505
Varianza	2341.604105	2608.412436	2687.059577	2894.774169	1546.655833	2627.647137	7734.052993	8792.087401	5092.251058	5633.999781
Observaciones	198	198	198	198	198	198	198	198	198	198
	0.1		0.1		0.01		0.1		0.1	
Grados de libertad	197	197	197	197	197	197	197	197	197	197
F	0.697712368		0.928244975		0.58860865		0.879660613		0.903842963	
P(F<=f) una cola	0.224788657		0.300897049		0.000110674		0.184493575		0.239332875	
Valor crítico para F (una cola)	0.71700454		1.71700454		0.71700454		1.71700454		1.71700454	
	23065100-2-5-A	23065100-2-5-B	23060140-3-5-A	23060140-3-5-B	23060260-3-5-A	23060260-3-5-B	21230120-5-5-A	21230120-5-5-B	23060160-3-5-A	23060160-3-5-B
Media	125.418697	120.1186919	134.411298	144.5027828	116.8531263	129.1960808	111.9393788	119.2816768	147.6036111	159.6114192
Varianza	7299.015154	6468.327494	8493.624636	11205.91921	6107.51761	7136.406105	7601.153227	7755.607394	8003.893026	7682.362751
Observaciones	198	198	198	198	198	198	198	198	198	198
	0.01		0.1		0.1		0.1		0.01	
Grados de libertad	197	197	197	197	197	197	197	197	197	197
F	1.128423872		0.75795876		0.8558254		0.980084839		1.041853045	
P(F<=f) una cola	0.198615906		0.026234261		0.137710458		0.443938322		0.386917358	
Valor crítico para F (una cola)	1.394691309		1.71700454		1.71700454		1.71700454		1.394691309	
	23060340-5-5-A	23060340-5-5-B		23040030-4-5-B				23060290-3-5-В		
Media	104.2170808	109.7488838	135.2099141	156.8558182	230.8566364	218.8187929	235.651101	259.8939444	106.3998434	112.5642828
Varianza	5668.807058	7867.589956	11479.73299	10454.04425	33449.70192	18065.02228	24203.64283	28247.4826	5860.363677	6260.05958
Observaciones	198	198	198	198	198	198	198	198	198	198
	0.1		0.01		0.1		0.1		0.1	
Grados de libertad	197	197	197	197	197	197	197	197	197	197
F	0.7205265		1.098114061		1.151628047		0.856842472		0.936151422	
P(F<=f) una cola	0.010946033		0.255951886		9.15458E-06		0.139548172		0.321899447	
Valor crítico para F (una cola)	0.75700454		1.394691309		1.394691309		0.970045399		0.970045399	
No. dia		23060180-3-5-B		21255090-2-5-B				23060170-4-5-B		23065210-5-B
Media	168.9412121	186.1997576	141.0732626	161.1800859	178.5995202	200.6548081	166.6289343	186.8664394	163.9819242	159.0959596
Varianza	10225.82661	10411.59518	8001.331615	8294.419255	8588.716544	12948.03647	11020.89055	12267.00023	14356.94942	11405.25866
Observaciones	198 0.1	198	198 0.1	198	198 0.01	198	198 0.1	198	198 0.01	198
Condenda Phone	197	197	197	197	197	197	197	197	197	197
Grados de libertad F		197		197		197		197		197
•	0.982157531		0.964664477		0.66332193		0.898417734		1.25880086	
P(F<=f) una cola	0.44979276 1.11700454		0.400466763		0.002071009		0.226441037 0.970045399		0.053546228 1.394691309	
Valor crítico para F (una cola)	23025040-2-5-A	22025040 2 5 0	1.11700454		0.91700454		0.970045399		1.394091309	
Media	27/ 6027121									
Media	274.6927121	287.1357677								
Varianza	27289.55654	30468.74509								
	27289.55654 198									
Varianza Observaciones	27289.55654 198 0.1	30468.74509 198								
Varianza Observaciones Grados de libertad	27289.55654 198 0.1 197	30468.74509								
Varianza Observaciones Grados de libertad F	27289.55654 198 0.1 197 0.895657385	30468.74509 198								
Varianza Observaciones Grados de libertad	27289.55654 198 0.1 197	30468.74509 198								

Tabla 9. Prueba de F-Fisher.

	21201790-2-2-A	21201700.2.2.0	21201070-4-5-4	21201070-4-5-B	23065060-5-A	23065060-5-B 2	22025020-2-2-4	23025020-2-2-B	22010000-5-4	22010000 5 P	21220070-5-4	21220070.5.8	21205670-2-5-4	21205670-2-5-B
Media	23.84081313	23.3269596	80.44938384	77.80742929	106.3953535	104.8039141	59.08583838	65.1194596	58.28967172	69.66268687	68.13715657	73.19389394	80.21564646	73.11884343
Varianza	60.40760303	188.4029428	2940.01562	2287.991543	4074.90336	4685.696198	2125.901287	1978.969816	2540.546984	2671.37329	2341.604105	2608.412436	2687.059577	2894.774169
Observaciones	198	198	198	198	198	198	198	198	198	198	198	198	198	
Varianza agrupada	124.4052729	130	2614.003582	130	4380.299779	150	2052.435552	130	2605.960137	150	2475.00827	150	2790.916873	150
varianza agrapada	0.01		0.01		0.01		0.01		0.01		0.01		0.01	
Diferencia hipotética de las medias	0.01		0.01		0.01		0.01		0.01		0.01		0.01	
Grados de libertad	394		394		394		394		394		394		394	
Estadístico t	0.458392551		0.514150011		0.239252114		-1.325137288		-2.216712299		-1.011345785		1.336616747	
P(T<=t) una cola	0.323461587		0.303717681		0.40551725		0.092946781		0.013606571		0.156235815		0.091059541	
Valor crítico de t (una cola)	2.335849485		2.335849485		2.335849485		2.335849485		2.335849485		2.335849485		2.335849485	
P(T<=t) dos colas	0.646923173		0.607435362		0.8110345		0.185893563		0.027213141		0.312471629		0.182119082	
, ,	2.588364962		2.588364962		2.588364962		2.588364962		2.588364962		2.588364962		2.588364962	
Valor crítico de t (dos colas)		21237020-5-5-B		23060110-3-5-B 2		22065100 2 5 8 3		23060140-3-5-B 2		22060260 2 5 82		1220120 F F B 1		23060160-3-5-B
Media	115.5244141	138.5704646	92.42556566	101.2695505	125.418697	120.1186919	134.411298	144.5027828	116.8531263	129.1960808	111.9393788	119.2816768	147.6036111	159.6114192
Varianza	7734.052993	8792.087401	5092.251058	5633.999781	7299.015154	6468.327494	8493.624636	11205.91921	6107.51761	7136.406105	7601.153227	7755.607394	8003.893026	
Observaciones	198	198	198	198	198	198	198	198	198	198	198	198	198	
Varianza agrupada	8263.070197	198	5363.125419	198	6883.671324	198	9849.771925	198	6621.961858	198	7678.38031	198	7843.127888	
varianza agrupada	0.01		0.01		0.01		0.01		0.01		0.01		0.01	
Diferencia hipotética de las medias	0.01		0.01		0.01		0.01		0.01		0.01		0.01	
Grados de libertad	394		394		394		394		394		394		394	
Estadístico t	-2.522570923		-1.201590844		0.635599897		-1.011718246		-1.50918816		-0.833709584		-1.349076841	
P(T<=t) una cola	0.006021494		0.115121924		0.262703112		0.156146842		0.06602609		0.202474899		0.089043535	
, ,														
Valor crítico de t (una cola)	2.335849485 0.012042988		2.335849485 0.230243848		2.335849485 0.525406224		2.335849485 0.312293684		2.335849485 0.13205218		2.335849485 0.404949799		2.335849485 0.17808707	
P(T<=t) dos colas														
Valor crítico de t (dos colas)	2.588364962	22040020 4 5 8	2.588364962	21206180-4-5-B 2	2.588364962	22050200 2 5 0 5	2.588364962	23060190-3-5-B 2	2.588364962	2000400 2 5 82	2.588364962	4255000 2 5 0 1	2.588364962	22065440 2 5 0
Media	23040030-4-5-A 135.2099141	23040030-4-5-B 156.8558182	230.8566364	21206180-4-5-B 2 218.8187929	235.651101	259.8939444	106.3998434	23060190-3-5-B 2 112.5642828	168.9412121	186.1997576	1255090-2-5-A2 141.0732626	1255090-2-5-B 2 161.1800859	178.5995202	23065110-3-5-B 200.6548081
Varianza	11479.73299	10454.04425	33449.70192	18065.02228	24203.64283	28247.4826	5860.363677	6260.05958	10225.82661	10411.59518	8001.331615	8294.419255	8588.716544	12948.03647
Observaciones	11479.73299	198	198	198	198	198	198	198	10225.82881	198	198	198	198	
Varianza agrupada	10966.88862	130	25757.3621	130	26225.56271	136	6060.211628	136	10318.7109	196	8147.875435	130	10768.37651	136
varianza agrupada	0.01		0.01		0.01		0.01		0.01		0.01		0.01	
Diferencia bioastaina da las acadias	0.01		0.01		0.01		0.01		0.01		0.01		0.01	
Diferencia hipotética de las medias Grados de libertad	394		394		394		394		394		394		394	
Estadístico t	-2.056608421		0.746303702		-1.489493959		-0.787893086		-1.690476219		-2.216352667		-2.114731392	
	0.020190956				0.068578682		0.215616496		0.045863895		0.013618974		0.017540125	
P(T<=t) una cola			0.227964516											
Valor crítico de t (una cola)	2.335849485		2.335849485		2.335849485		2.335849485		2.335849485		2.335849485		2.335849485	
P(T<=t) dos colas	0.040381911		0.455929032		0.137157364		0.431232991		0.091727789		0.027237949		0.035080251	
Valor crítico de t (dos colas)	2.588364962 23065210-5-A	23065210-5-B	2.588364962 23025040-2-5-A	23025040-2-5-B 2	2.588364962	11250450 2 5 0 1	2.588364962	23060340-5-5-B 2	2.588364962	2000170 4 5 8	2.588364962		2.588364962	
Media	163.9819242	159.0959596	274.6927121	287.1357677	61.51541414	68.70567677	104.2170808	109.7488838	166.6289343	186.8664394				
		139.0939390	2/4.092/121					7867.589956	11020.89055	12267.00023				
	14356.04043	11405 25000	27200 55654	20400 74500	1546 655000									
Varianza	14356.94942	11405.25866	27289.55654	30468.74509	1546.655833	2627.647137	5668.807058							
Varianza Observaciones	198	11405.25866 198	198	30468.74509 198	198	2627.647137 198	198	198	198	198				
Varianza	198 12881.10404		198 28879.15081		198 2087.151485		198 6768.198507		198 11643.94539					
Varianza Observaciones Varianza agrupada	198 12881.10404 0.01		198 28879.15081 0.01		198 2087.151485 0.01		198 6768.198507 0.01		198 11643.94539 0.01					
Varianza Observaciones Varianza agrupada Diferencia hipotética de las medias	198 12881.10404 0.01 0		198 28879.15081 0.01 0		198 2087.151485 0.01 0		198 6768.198507 0.01 0		198 11643.94539 0.01 0					
Varianza Observaciones Varianza agrupada Diferencia hipotética de las medias Grados de libertad	198 12881.10404 0.01 0		198 28879.15081 0.01 0 394		198 2087.151485 0.01 0 394		198 6768.198507 0.01 0 394		198 11643.94539 0.01 0 394					
Varianza Observaciones Varianza agrupada Diferencia hipotética de las medias Grados de libertad Estadístico t	198 12881.10404 0.01 0 394 0.428342704		198 28879.15081 0.01 0 394 -0.728538367		198 2087.151485 0.01 0 394 -1.565976949		198 6768.198507 0.01 0 394 -0.669033341		198 11643.94539 0.01 0 394 -1.866055204					
Varianza Observaciones Varianza agrupada Diferencia hipotética de las medias Grados de libertad Estadístico t P(T<=t) una cola	198 12881.10404 0.01 0 394 0.428342704 0.334317848		198 28879.15081 0.01 0 394 -0.728538367 0.23335844		198 2087.151485 0.01 0 394 -1.565976949 0.059078394		198 6768.198507 0.01 0 394 -0.669033341 0.251933013		198 11643.94539 0.01 0 394 -1.866055204 0.03138822					
Varianza Observaciones Varianza agrupada Diferencia hipotética de las medias Grados de libertad Estadístico t P(T<=t) una cola Valor crítico de t (una cola)	198 12881.10404 0.01 0 394 0.428342704 0.334317848 2.335849485		198 28879.15081 0.01 0 394 -0.728538367 0.23335844 2.335849485		198 2087.151485 0.01 0 394 -1.565976949 0.059078394 2.335849485		198 6768.198507 0.01 0 394 -0.669033341 0.251933013 2.335849485		198 11643.94539 0.01 0 394 -1.866055204 0.03138822 2.335849485					
Varianza Observaciones Varianza agrupada Diferencia hipotética de las medias Grados de libertad Estadístico t P(T<=t) una cola	198 12881.10404 0.01 0 394 0.428342704 0.334317848		198 28879.15081 0.01 0 394 -0.728538367 0.23335844		198 2087.151485 0.01 0 394 -1.565976949 0.059078394		198 6768.198507 0.01 0 394 -0.669033341 0.251933013		198 11643.94539 0.01 0 394 -1.866055204 0.03138822					

Tabla 10. Prueba T -Students

6.6 MODELO DE PREDICCIÓN ESPACIAL REGIONALIZADO PARA LOS DATOS MENSUALES MULTIANUALES Y ANUAL MULTIANUAL DE PRECIPITACIÓN Y TEMPERATURA MEDIA


6.6.1 Análisis exploratorio

6.6.1.1 Análisis univariado

La tendencia de los datos de Temperatura, indican que el promedio y la media parecen ser iguales lo que es un buen indicador del centro de los datos, semejante comportamiento se tiene con los estadísticos de dispersión (**Tabla 11**). No se perciben datos atípicos (**Figura 13**), la mayoría indica que la distribución es relativamente simétrica, indicando un grado de homogeneidad en los datos, la Kurtosis indica posible distribución de campana platicurtica (presentan altas frecuencias en los extremos), los coeficientes de variación están entre 15% y 30% indicando la existencia de heterogeneidad en los datos. Se evidencia bastante similitud en la distribución de frecuencia mensual(*Figura 12*).

Tabla 11. Resumen estadístico de los datos de Temperatura T Nortes Estes T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 12.45 1023155.57 908531.70 12.45 12.71 12.84 12.96 13.01 12.92 12.45 12.48 12.61 12.50 12.42 12.50 12.66 Minimo 28.26 1098200.95 985091.06 28.26 28.42 28.48 28.72 28.56 28.80 29.13 29.39 28.89 28.12 27.90 28.11 28.53 2811.00 Máximo 21.45 1054864.56 945533.99 21.45 21.62 21.62 21.73 21.77 21.92 22.06 22.30 22.00 21.39 21.23 21.32 21.70 1235.44 Mediana 21.95 1049367.42 953974.02 21.95 22.24 22.10 22.35 22.30 22.46 22.96 23.29 22.91 21.97 21.79 21.98 22.36 1062.50 Desviación estándar 25348.39 24267.20 5.88 5.87 5.88 5.78 5.68 5.66 5.83 5.98 5.71 5.64 6.12 6.18 Desviación mediana 20120.12 15445.92 5.36 5.19 5.28 5.02 5.10 5.27 5.60 Asimetría -0.300.42 -0.31 -0.30 -0.30 -0.30 -0.30 -0.30 -0.29 -0.29 -0.31 -0.33 -0.34 -0.32 -0.30 -0.30 -0.310.45 1.46 1.46 1.46 1.47 1.45 1.44 1.45 1.46 1.47 1.48 1.46 Kurtosis Coef. Var. Promedio(%) 27.41 2.57 27.41 27.14 26.71 26.13 26.00 26.58 27.76 27.71 27.17 26.70 26.56 26.92 26.89 Coef. Var. Mediana(%) 24.42 1.92 1.62 24.42 23.36 23.88 22.49 22.86 23.46 24.39 23.92 22.31 22.74 23.19 22.76 23.10

Fuente: Autores

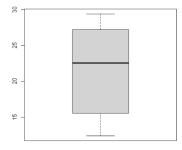


Figura 13. Diagrama de caja y bigotes para los datos de Temperatura

Los datos de precipitación mensual exhibe un promedio y media variables hay meses (P6) desiguales como meses donde la discrepancia es alta (P4), de igual forma pasa con la variabilidad de los datos registrado en la desviación estándar y mediana (Tabla 12), indicando presencia de valores atípicos y variabilidad de los datos(Figura 14), la mayoría corresponde que la distribución asimétricas, indicando heterogeneidad de los datos, la Kurtosis indica posible distribución de

campana (Figura 15), los coeficientes de variación están por encima del 30% ratificando lo anteriormente dicho.

	Norte	s Estes	P1	P2	Р3	P4	P5
Minimo	1017022.8	7 908531.70	21.40	26.57	27.71	21.58	20.64
Máximo	1098308.9	2 982073.86	260.95	321.52	370.60	321.71	283.84
Promedio	1055724.1	9 949534.55	111.00	164.21	159.91	136.32	106.81
Mediana	1051532.6	3 954259.02	102.58	149.32	148.45	129.01	101.87
Desviación estándar	24453.5	4 20976.01	53.41	70.04	76.35	66.44	57.95
Desviación mediana	21457.9	3 13919.96	32.44	51.12	48.03	42.68	31.53
Asimetría	0.2	0 -0.52	0.86	0.29	0.80	0.90	1.30
Kurtosis	1.9	7 2.29	3.52	2.44	3.54	3.77	4.72
Coef. Var. Promedio(%)	2.3	2 2.21	48.12	42.65	47.75	48.74	54.26
Coef. Var. Mediana(%)	2.0	4 1.46	31.62	34.24	32.36	33.08	30.95
	P6	P7 P8	P9	P10	P11	P12	P13
Minimo	20.38 2	9.06 24.95	26.56	25.16	19.42	19.59	23.58
Máximo	254.94 33	8.07 301.92	323.93	270.24	180.80	197.22	280.91
Promedio	105.83 15	5.39 154.72	150.30	128.03	97.44	98.27	130.69
Mediana	105.63 15	1.55 156.92	142.64	108.30	85.17	93.64	122.90
Desviación estándar	55.99 7	1.24 69.46	69.55	64.82	47.66	43.87	60.79
Desviación mediana	42.35 4	7.14 36.69	49.28	46.78	34.30	26.68	41.21
Asimetría	0.84	0.64 0.37	0.63	0.57	0.38	0.53	0.61
Kurtosis	3.21	3.09 2.54	2.94	2.35	1.92	2.61	2.88
Coef. Var. Promedio(%)	52.90 4	5.85 44.90	46.28	50.63	48.91	44.64	46.52
Coef. Var. Mediana(%)	40.09 3	1.10 23.38	34.55	43.19	40.27	28.50	33.53

Tabla 12. Resumen estadístico de los datos de Precipitación

Fuente: Autores

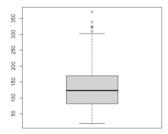


Figura 14. Diagrama de caja y bigotes para los datos de Precipitación

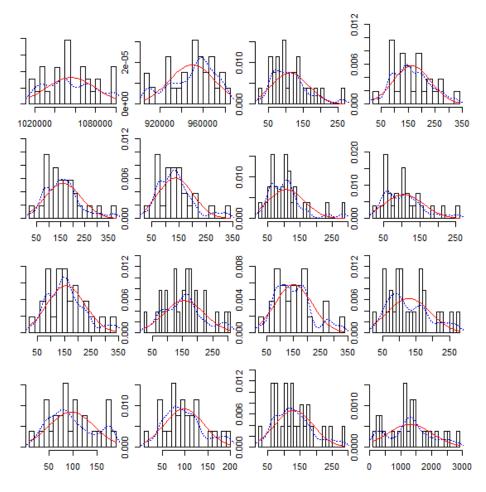


Figura 15. Gráfico de barras y de distribución para los datos de Precipitación a nivel mensual

6.6.1.2 Análisis multivariado

Los valores de precipitación tienen dependencia espacial positiva débil que puede expresarse en función de la posición (coordenadas), y al parecer no parecer presenta dependencia asociada a las variables del relieve (pendiente, dirección de la ladera) (**Figura 16**). La latitud tiene una alta correlación simple para P indicando que puede brindar un 31.8% de información adicional a lo que brindan las otras variables explicativas (**Tabla 13**), indicativo que muestra un grado de correlación espacial de la variables dependiente.

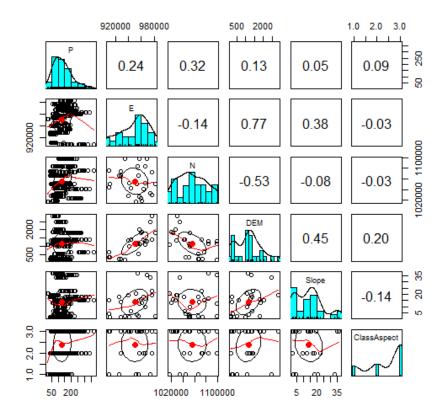


Figura 16. Matriz de correlación simple para lo variable de Precipitación

P	E	N	DEM	Slope	ClassAspect
1.00000000	-0.09034512	0.3188476	0.1750334	-0.04631126	0.0586012

Tabla 13. Valores de correlación parcial para la variable de precipitación

Fuente: Autores

	Variable	P- value
P	E	0.1387
	N	1.98E-07
	DEM	0.4038
	Slope	0.1193
	Aspect	0.004162

Tabla 14. Test de correlación producto – momento de Pearson

	C	Comparación	de modelos		
			Р		
	-1	-2	-3	-4	-5
E	0.0003				
	-0.0002				
N		0.001***			
		-0.0001			
DEM			0.004		
			-0.005		
Slope				0.553	
				-0.354	
ClassAspect					13.073***
					-4.531
Constant	-	·	125.661***	122.975***	99.434***
	110.852 - 162.802	663.821*** -149.625	-7.006	-6.104	-11.401
Observations	338	338	338	338	338
R^2	0.007	0.077	0.002	0.007	0.024
Adjusted R ²	0.004	0.075	-0.001	0.004	0.021
Residual Std. Error (df = 336)	66.006	63.605	66.153	65.983	65.416
F Statistic (df = 1; 336)	2.202	28.211***	0.699	2.439	8.325***
Note:			*p**p***p<0.01		

Tabla 15. Resumen estadístico de las regresiones lineales por covariable para la precipitación

La prueba de correlación entre variables independientes y la variable a explicar indica que si puede existir correlación de algunas variables explicativas con la variable explicada correspondiente a la coordenada N y orientación de ladera (**Tabla 14**). Las variables

independientes parecen presentar multicolinealidad con la Altura (**Tabla 15**). En general los R² de los modelos lineales evaluado por variable son bajos, pero confirma a una leve correlación de las precipitaciones con la coordenada N, mientras que el coeficiente de regresión para la pendiente y ladera es significativo en comparación con los valores registrados para la demás variables explicativas, aunque la prueba estadística de F indica que todos los modelos tienen relevancia exceptuando la variable N y Aspecto. Por lo anterior, se evidencia problemas de violación de hipótesis en el modelo lineal general, con lo cual se buscará plantear ecuación con funciones polinómicas para crear la función de regresión para la variable de precipitación.

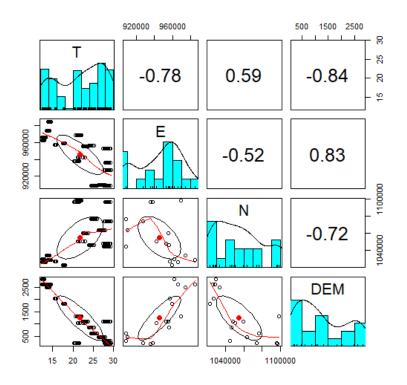


Figura 17. Matriz de correlación simple para lo variable de temperatura

	T	E	N	ALT
T	1.0000000	-0.1902832	-0.2254486	-0.8515651

Tabla 16. Valores de correlación parcial para la variable de temperatura

	Comparación	n de modelos	
	Dependente v	ariable:	
		DEM	
	1	2	3
Е	0.031***	0.023***	
	-0.002	-0.001	
N		-0.018***	-0.027***
		-0.001	-0.002
	- 27,733.570***	-1,408.10	29,856.540***
	-1,422.64	-1,897.09	-1,704.18
Observations	234	234	234
R ²	0.641	0.832	0.549
Adjusted R ²	0.64	0.83	0.547
Residual Std. Error		372.281 (df = 231)	
F Statistic		571.674*** (df = 2; 231)	
Note:	*p**p***p<0.01		

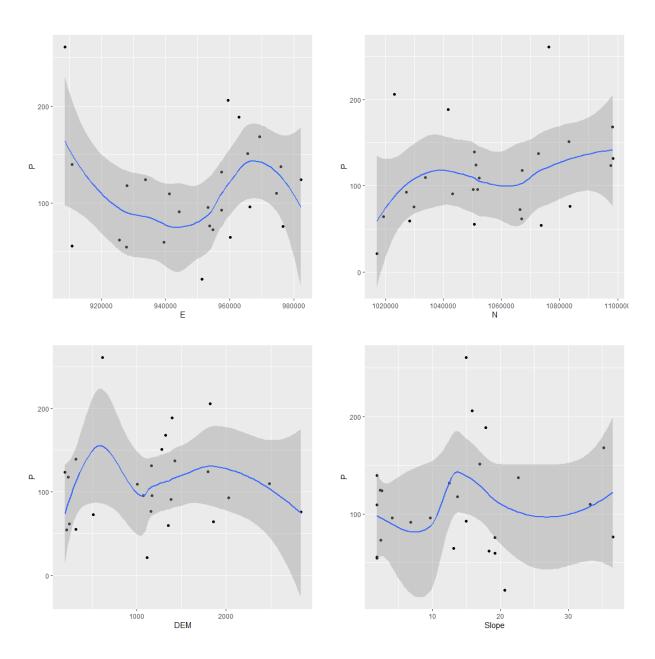
 Tabla 17. Resumen estadístico de las regresiones lineales por covariable para la altura

Fuente: Autores

Los valores de temperatura tienen dependencia espacial que puede expresarse en función de la posición (coordenadas), los valores disminuyen a medida que aumenta la altura aumenta y se

avanza hacia el occidente (E) y aumenta a medida que se avanza al Norte de forma no lineal. Se presenta una alta correlación entre la Altura con Longitud y Latitud, lo que significa posible multicolinealidad (Tabla 16). Aunque la longitud tiene una alta correlación simple con la temperatura la correlación parcial indica que brinda un 19.02% de información adicional a lo que brindan las otras variables explicativas (Tabla 16). Al parece se presentar multicolinealidad de las coordenadas con la Altura (Tabla 17), la cual se confirma R2 significativo a las combinaciones lineales de las coordenadas N y E con la Z.

6.6.2 Selección del modelo de regresión múltiple m(x)


Dado el análisis exploratorio se consideró evaluar funciones polinómicas de las variables explicativas para lograr una mejor correlación con la precipitación:

$$\hat{T} = \beta_0 + \beta_1 * f(Altura) + \beta_1 * f(altitud) + \beta_2 * f(Longitud)$$
$$+\beta_3 * f(orientación de la ladera) + \beta_4 * f(Pendiente) + Residuo$$

$$con f(x) \sim Función polinómica de grado n$$

La correlación se puede expresar mediante polinomios de grado 2 para orientación de la ladera, de grado 3 para las coordenadas Este y Norte y grado 4 para altura y pendiente (**Figura 18**).

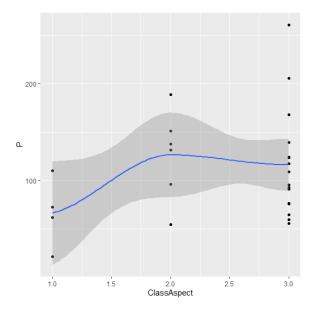


Figura 18. Gráficos de correlación de las covariables con la variable de precipitación

La selección de variables se hizo con el modelo Backward y fordward dado el criterio de AIC y con el método de subconjuntos que determina si solo cierta cantidad de covariables son las representativas del modelo polinomial buscando el modelo más simple; menos parametrizado, pero que tenga mayor explicación de la variable independiente. El conjunto de covariables cambia para cada mes, puede ser indicativo de la variabilidad temporal que presenta a lluvias en la región ya que es bimodal (**Tabla 18** y **Tabla 19**).

Como se busca el menor conjunto de covariables que explique lo mejor posible el valor de precipitación, se utilizaron los parámetros de R2 ajustado, el criterios Akaike (AIC), Schwarz's Bayesian criterion (BIC), Cp de Mallows (Cp) y el error medio cuadrático (RMSE) para seleccionar el mejor modelo ajustado, obteniendo **Tabla 19**.

											Co	omparación de m	odelos	,										
Independent												Depend	dent variable:											
variable:													P											
	M11,	M11E,	M11N,	M11D,	M115,	M11C,	M21,	M31,	M41,	M511,	M512,	M513,	M514,	M515,	M516,	M517,	M518,	M519,	M5110,	M5111,	M5112,	M5113,	M5114,	M5115,
	-5.06	-5.703*						-5.475 *				-5.703*	-6.112**	-0.086*	-4.481	-4.98	-4.452	-5.780 *	-6.439**	-6.416**	-7.285 *	-5.132	-5.325	-5.074
	-6.129	-3.04						-2.84				-3.04	-2.903	-0.042	-2.901	-2.882	-2.928	-2.826	-2.916	-2.982	-3.553	-4.164	-4.729	-5.777
(E2)	0.00001	0.00001*						0.00001*				0.00001*	0.00001**	0.00000*	0	0.00001	0	0.00001*	0.00001**	0.00001*	0.00001*	0.00001	0.00001	0.00001
	-0.00001	0						0				0	0	0	0	0	0	0	0	0	0	0	-0.00001	-0.00001
(B)	0	-0.000* 0						-0.000* 0				-0.000*	-0.000* 0		0	0	0	-0.000* 0	-0.000** 0	-0.000* 0	-0.000* 0	0	0	0
		0										U	0		-	-	-			-	-			
V	2.602		1.951 -2.889				-0.0004	0.001 ** -0.001	-0.0004	-0.0004	-0.0004			0.001 ** -0.001	-0.001	0.001 ** -0.001	0.001** -0.001	0.001 ** -0.001	0.041 -0.041	1.684	1.919	2.602 -3.074	2.551	2.566 -3.41
	4.02		-2.009				-0.0004	-0.001	-0.0004	-0.0004	-0.0004			-0.001	-0.001	-0.001	-0.001	-0.001	-0.041	-2.790	-2.51/	-3.074	-5.246	341
(N2)	0		0																0	0	0	0	0	0
	0		0																0	0	0	0	0	0
(N3)	0		0										0.000*							0	0	0	0	0
			•										•							•				
DEM	0.487 -0.898			0.32 -0.452										0.094 ** -0.038								0.441 -0.594	0.439 -0.621	0.485 -0.847
														-0.058										
(DEM2)	-0.001 -0.001			-0.0004 -0.001											0.00005 * -0.00002	0.0001 ** -0.00002	-0.00002				-0.0001 -0.0001	-0.001 -0.001	-0.001 -0.001	-0.001 -0.001
(DEM3)	0			0				0							-0.00002	-0.00002	-0.00002	0	0	0	0	0	0	0
(DEWIS)	0			0				0										0	ō	0	0	0	0	0
(DEM4)	0			0				0						-0.000**	-0.000*	-0.000**	-0.000*	0	0	0	0	0	0	0
(BEITH)	0			0				0						0	0	0	0	0	0	0	0	0	0	0
Slope	-1.772				8.386												2.059						-1.157	-1.163
	-32.522				-27.419												-1.921						-11.127	-11.667
(Slope2)	0.415				-0.384			0.142														0.271*	0.335	0.338
	-3.897				-3.195			-0.099														-0.147	-0.635	-0.666
(Slope3)	-0.003				-0.001												-0.002	0.011	0.014	0.015	0.018			
	-0.171				-0.136												-0.001	-0.008	-0.008	-0.009	-0.01			
(Slope4)	-0.0002				0.0002			-0.0001								-0.00003		-0.0003	-0.0004*	-0.0004 *	-0.001 °	-0.0002*	-0.0002	-0.0002
	-0.002				-0.002			-0.0001								-0.00002		-0.0002	-0.0002	-0.0002	-0.0003	-0.0001	-0.0003	-0.0003
ClassAspect	16.146					165.645	18.479		18.479		18.479 -13.428													16.564
(0)	-207.349 4.075					-108.073 -35.183	-13.428	4.305	-13.428		-15.428							4.707	5.324	5.053	6.377	7.578	7.753	-195.731
(ClassAspect2)	-47.126					-25.579		-3.445										-3.554	-3.622	-3.732	-4.713	-5.22	-5.705	4.012 -44.61
Constant	674499.6	1,808,099.000*	-688339.5	38.744	77.928	-63.993	-624.048	1,733,609.000*	-624.048	-570.082	-624.048	1,808,099.000*	1,936,086.000**	40,030.890*	1422596	1,578,683.000*	1413392	1,828,905.000*	2,012,033.000**	1425802	1614495	697429.2	775904.6	691716.2
	-2,540,877.00	-957,227.00	-1,018,882.00	-89.699	-55.566	-100.946	-436.16	-893,586.80	-436.16	-442.404	-436.16	-957,227.00	-913,944.10	-20,062.57	-913,041.80	-906,977.50	-921,281.00	-889,176.00	-912,028.20	-1,365,625.00	-1,457,607.00	-1,719,372.00 -	1,947,193.00	-2,270,994.00
Observations	26					26	26	26	26	26	26	26	26			26		26	26		26	26	26	26
R ²	0.622					0.138	0.159	0.561	0.159	0.09	0.159	0.241	0.343			0.503		0.562	0.588		0.605	0.622	0.622	0.622
Adjusted R ² Residual Std.	-0.049	0.13	-0.013	-0.117 56.445 (df =			0.086 51.059 (df=	0.314	0.086 51.059 (df = 1	0.052 32.001 (df =	0.086 51.059 (df=	0.137	0.218					0.316		0.281 45.279 (df =	0.24 46 571 (df =	0.212 17416/df = 4	0.141 9.500 (df =	0.056 51.897 (df =
rror	54.703 (df = 9)	49.607 (df = 22)	53.759 (df = 22)	21)	21)	23)	23)	4.237 (df = 16)	23)	14)	23)	49.607 (df = 22)	47.222 (df = 21)	20)	19)	44.369 (df = 18)	17)	44.158 (df = 16)	44.280 (df = 15)	14)	13)	12) 1	1)	10)
Statistic	0.927 (df = 16;9)	2.326 (df = 3; 22)	0.891 (df = 3;	0.345 (df = 4; 21)	0.300 (df = 4; 21)	1.840 (df = 2; 23)	2.177 (df = 2; 2 23) 1	.271* (df = 9; .6)	2.177 (df = 2; 2 23)	1.371 (df=1; 14)	2.177 (df = 2; 23)	2.326 (df = 3; 22)	2.744* (df = 4; 21)	2.774 ** (df = 5; 20)	2.681** (df = 6; 19)	2.603 ** (df = 7; 18)	2.376* (df = : 8;17)	2.286 * (df = 9; 16)	2.137* (df = 10; 15)	1.889 (df = 11; 14)	1.657 (df=12; : 13)	1.517 (df = 13; 1 12) 1	.293 (df = 14; 1)	1.098 (df = 15; 10)
Vote:	1													5,201	0, 10,	20/	0,27	201				,	-1	p p p<0.01
Res.Df	9							16	23	24	23	22	21		19	18	17	16	15	14	13	12	11	
RSS Df	26932					61475	59960	31310	59960	64897	59960	54139	46829			35434		31199	29411	28703	28195	26979	26952	26933
Df Sum of Sq		-1: -27207.			-550.4	-2 5981.5	0 1514.6	7 28650	-7 -28650	-1 -4937	1 4937	1 5820.9	7310.5					2464	1787.8		1 508.6	1 1215.7	1 26.5	1 19.3
ourror sq		0.6994		-5526.5	-550.4	29013	1514.6	1.3677	1.3677	1.6498	1.6498	1.9452	7310.5 2.443					0.8234	0.5974		0.17	0.4063	0.0089	0.0064
Pr(>F)		0.729						0.3235	0.3235	0.2311	0.2311	0.1966	0.1525					0.3878	0.4594		0.6898	0.5398	0.9271	0.9378
df	18				6	4		11	4	3	4	5	6					11	12		14	15	16	17
A IC	290.302							280.2186	283.1117	283.1689	283.1117	282.4566	280.685			279.4357	280.1024	280.126	280.5917		283.4933	284.3474	286.3218	288.3032
BIC Op	312.9478 17.44203					288.7927 1.552454	288.1441 1.021438	294.0577 4.977056	288.1441 1.021438	286.9432 0.7523056	288.1441 1.021438	288.7471 0.9806809	288.2335 0.4176898				292.6834 3.801909	293.9651 4.938042	295.6889 6.31125		301.1067 9.884708	303.2188 11.4585	306.4514 13.44922	309.6909 15.44246
.p RMSE	17.44203 32.18452							4.977056 34.70222	48.02259	49.96053	48.02259	0.9806809 45.63208	0.4176898 42.43951			2.422917 36.91698		4.938042 34.6405	6.31125	8.06303 33.22605	9.884708	11.4585 32.21258	13.44922 32.19677	15.44246 32.18525
	32.18432	43.03200	49,43000	30.72/84	20.53007	40.02.334	40.022.39	34.70222	40.02239	45.50055	40.02239	45.05208	42.43931	40.24343	30.33/23	30.51098	33.30243	34.0403	33.00004	33.22003	32.53034	32.21238	32.150//	32,10323

Tabla 18. Modelos planteados para los valores mensuales de Precipitación.

variable:	P															
	M5110	M527	M53	8 N	134	M557	M567	M571	0 M58	B M5	97 M	5107	M5119	M5128	M5137	
	-6.439**	-6.533*	-8.00)1* -:	7.424°	-0.114**	-0.121**		-6.182	-6.638	-4.656	-5.999	-5.838 ^{**}	-4.420*		-5.00
		-2.916	-3.649	-4.271	-3.558		-0.045	-0.043	-3.739	-3.847	-3.857	-3.54	-2.3	18	-2.245	-3.26
2)	0.00001**	0.00001*	0.00	001* 0	.00001*	0.00000**	0.00000**		0.00001	0.00001	0	0.00001	0.00001**	0.00000*		0.0000
		0	0	0	0		0	0	0	0	0	0		0	0	
3)	-0.000**	-0.000*	-0.00	00* -(0.000*				0	0	0	0	-0.000**	-0.000*		
		0	0	0	0				0	0	0	0		0	0	
		0.041 0.002***		0.054	0.078	0.001*	0.001*		5.227	0.064 0.0	102**		0.001**	0.001***	0.002**	
		-0.041	-0.001	-0.058	-0.05		-0.001	-0.001	-3.565	-0.052	-0.001		-0.00	05	-0.0004	-0.00
12)		0		0	0				0	0						
		0		0	0				0	0						
3)									0		0.0	000**				
									0			0				
DEM3)		0		0	.00000*			0.000	00*	-0.0	00000**			0 0.00000*	-0.0000	00**
		0			0				0		0			0	0	
EM2)		0.0001*	0.00	01*					0.000	0.0	0.001**	0001*			0.0001	
			-0.00003	-0.00004						-0.00003	-0.00005	-0.00003				-0.0000
М						0.086*	0.076*									
							-0.044	-0.042								
DEM4)		0 -0.000*	-0.00	00* -0	0.000**	-0.000**	-0.000**	-0.000	0.00		-0	.000*		0 -0.000*		
		0	0	0	0		0	0	0	0		0		0	0	
lope3)		0.014						-0.010	·*				0.0	05		
		-0.008							-0.005				-0.0	06		
ope							5.02	4.816							2.013	
							-3.303	-3.11							-2.315	
Slope2)					0.152		-0.152 -0.148*		0.334						-0.064	
					-0.116		-0.089	-0.084	-0.202						-0.063	
Slope4)	-0.0004*		-0.00004	-0.00004	-0.0001					-0.00004	-0.00004	-0.00004	-0.00	02		-0.0000
		0.0002	-0.00003	-0.00003	-0.0001					-0.00003	-0.00003	-0.00003	-0.00	02		-0.0000
ClassAspect2)		5.324											2.	69		
		-3.622											-2.			
						F2 007 050	** 56,272.22	•	400.000.70	2.055.422.00	4 470 057 00	4 000 744 00		4 200 500		F00 400 0
instant	2,012,033.00					53,007.860			100,062.70	2,065,128.00	1,478,867.00		1,844,955.000**	1,399,508		,589,492.0
servations	-912,	26 -1,1	47,763.00 26	-1,336,714.00 26	-1,112,669.00 26	-21	,480.11 -2 26	20,227.78	1,783,646.00	-1,203,880.00 26	-1,213,058.00 26	-1,113,746.00 26	-729,230.	60 -70 26)5,988.80 -1 26	,028,376.0 2
		0.588	0.516	0.496	0.559		0.462	0.488	0.605	0.506	0.467	0.467	0.6		0.563	0.49
justed R ²		0.313	0.327	0.259	0.311		0.252	0.289	0.342	0.274	0.26	0.26	0.4		0.358	0.30
sidual Std. Error	44.280 (df =				5.138 (df = 16)	50.116 (df =			9 (df = 15) 59.18						f = 17) 50.713	
tatistic		LO; 15) 2.739** (d														

Tabla 19. Modelos seleccionados para los valores mensuales de Precipitación.

El R² de los modelos predictivos para precipitación varían entre 46% a 62%

Dado el análisis exploratorio se consideró evaluar las siguientes ecuaciones para temperatura:

A pesar de la posible colinealidad, todas las variables brindan información relevante a los valores de temperatura sin aumentar de manera significativa la varianza de las predicciones de la temperatura por lo que se plantea:

$$\hat{T} = \beta_0 + Altura * \beta_1 + Coordenada X * \beta_2 + f(Coordena Y) * \beta_3 + Residuo$$
 con

$$(Coordena\ Y) \sim N^2\ o\ Log\ N$$

Dada la posible colinealidad entre la altura y las coordenadas N y E, la variable altura es la que mayor brinda información a la temperatura y las otras variables, dada la influencia en la distribución espacial de la variable por gradiente altitudinal. Con lo cual se planteó inicialmente un modelo con la siguiente expresión:

$$\hat{T} = \beta_0 + Altura * \beta_1 + Residuo$$

Dada la posible colinealidad entre la altura y las coordenadas N y E, las variables N y E son las que mayor brinda información a la T y la variable brindan poca información adicional a la variable explicativa y genera un aumento de la varianza de los coeficientes de regresión estimados

$$\hat{T} = \beta_0 + Coordenada X * \beta_2 + f(Coordena Y) * \beta_3 + Residuo$$

Y se plantea ecuaciones opcionales, pero al parecer sin mayor relevancia estadística:

$$\hat{T} = \beta_0 + Coordena Y * \beta_1 + Residuo$$

$$\hat{T} = \beta_0 + Coordenada X * \beta_1 + Residuo$$

Dado los parámetros de R^2 ajustado, el criterios Akaike (AIC), y el error de los residuales reportados indican que de los modelos planteados, los de mejor ajuste y que más explican la variabilidad de la variable dependiente son el modelo 4,5,6 y 7. Dado que se sabe de forma a priori que la posición geográfica es determinante en el comportamiento de la temperatura, y a pesar que en la zona existe un posible colinealidad de la altura con la longitud y latitud, pero que estos presentan bajos valores de significancia de la variables justificativas a la variable explicativa (los bajo valores de β_i dejan poca explicación de la variabilidad de Y con respecto a las variables explicativas a nivel estadístico) y que la presencia de dichas variables independientes reduce el RSS, indicando que dicha regresión explica un poco más la variable dependiente llegando a explicar un 86.4% de la variabilidad de la temperatura se opta por elegir el modelo 7.

El modelo comprueba que la altura es la que genera mayor explicación a la temperatura, aunque en menor proporción y casi de forma muy poco significativa las variables de latitud y longitud, son variables que podrían omitirse.

				Comp	aración de mo	delos							
Variable Independiente	Dependent variable:												
	T° med - Enero												
	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10			
E	-0.0002*** -0.00004				0.00001 -0.00004	0.00001 -0.00004	0.00001 -0.00004	-0.0001*** -0.00004	-0.0001*** -0.00004	-0.0001*** -0.00004			
log(N)		148.948 ^{***} -48.924				-47.499 -39.675			83.291 [*] -40.954				
I(N2)			0.000*** 0				0 0						
N					-0.00005 -0.00004			0.0001 [*] -0.00004					
DEM				-0.006 ^{***} -0.001	-0.007 ^{***} -0.002	-0.007 ^{***} -0.002	-0.007*** -0.002						
I(N)										0.0001 [*] -0.00004			
Constant	194.723***	-2,044.261***	-50.870 [*]	28.660***	69.793	681.261	45.618	79.542	-994.526	79.542			
	-37.492	-678.505	-24.518	-0.944	-44.025	-536.68	-36.94	-66.794	-585.751	-66.794			
Observations	18	18	18	18	18	18	18	18	18	18			
R^2	0.572	0.367	0.353	0.848	0.864	0.863	0.864	0.663	0.664	0.663			
Adjusted R ²	0.545	0.327	0.312	0.839	0.834	0.834	0.835	0.618	0.62	0.618			
Residual Std.	3.966	4.823	4.877	2.362	2.393	2.397	2.389	3.635	3.627	3.635			
Error	(df = 16)	(df = 16)	(df = 16)	(df = 16)	(df = 14)	(df = 14)	(df = 14)	(df = 15)	(df = 15)	(df = 15)			
F Statistic	21.372*** (df = 1; 16)	9.269*** (df = 1; 16)	8.721*** (df = 1; 16)	89.382*** (df = 1; 16)	29.546*** (df = 3; 14)	29.435*** (df = 3; 14)	29.656*** (df = 3; 14)	14.741*** (df = 2; 15)	14.849*** (df = 2; 15)	14.741*** (df = 2; 15)			
Res.Df	16	16	16	16	14	14	14	15	15	15			
RSS	251.68	372.23	380.49	89.26	80.19	80.45	79.93	198.24	197.28	198.24			
Df		0	0	0	2	0	0	-1	0	0			
Sum of Sq		-120.547	-8.256	291.232	9.068	-0.261	0.519	-118.309	0.955	-0.955			
F					0.7916			20.6556					
Pr(>F)					0.4723807			0.0004582**					
df	3	3	3	3	5	5	5	4	4	4			
AIC	104.56229	111.60642	112.00128	85.90223	87.97374	88.03223	87.91573	102.26558	102.17865	102.26558			
Note:									0 '***' 0.001 '**' 0	*p**p***p<0.01			

Tabla 20. Modelos planteados para los valores mensuales de Temperatura

6.6.3 Generación y análisis de los residuales $\epsilon(x)$

Una vez realizada la regresión múltiple, se evaluó los supuestos sobre los residuales que se obtuvieron.

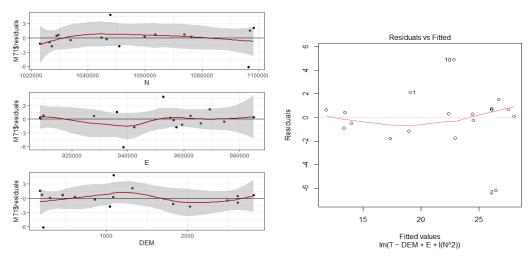


Figura 19. Gráficos de correlación residual de temperatura

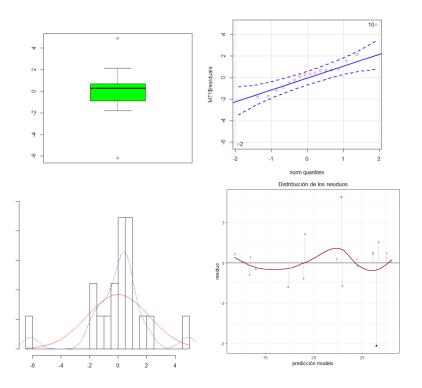
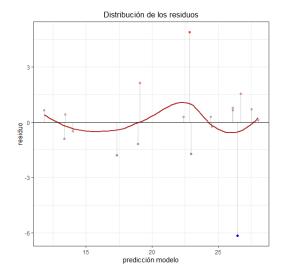


Figura 20. Gráficos de boxplot, q q-plot, de frecuencia y de distribución ellos residuos de temperatura


```
Shapiro-Wilk normality test
```

```
data: M71$residuals
W = 0.88134, p-value = 0.0275
```

Anderson-Darling normality test

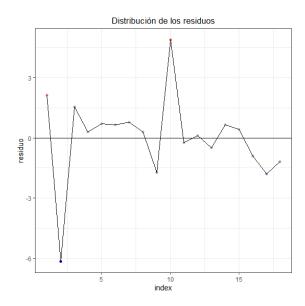

data: M71\$residuals
A = 0.88707, p-value = 0.0183

Lilliefors (Kolmogorov-Smirnov) normality test

data: M71\$residuals
D = 0.19311, p-value = 0.07456

Figura 21. Test de normalidad para los residuales de temperatura

Fuente: Autores


studentized Breusch-Pagan test

data: M71 BP = 3.6009, df = 3, p-value = 0.3079

Non-constant Variance Score Test Variance formula: ~ fitted.values Chisquare = 2.16009, Df = 1, p = 0.14164

Figura 22. Evaluación de homocedasticidad para los residuales de temperatura

Durbin-Watson test

data: M71 DW = 2.6201, p-value = 0.8351

lag Autocorrelation D-W Statistic p-value 1 -0.3469051 2.620145 0.352 Alternative hypothesis: rho != 0

Figura 23. Evaluación de autocorrelación para los residuales de temperatura

Fuente: Autores

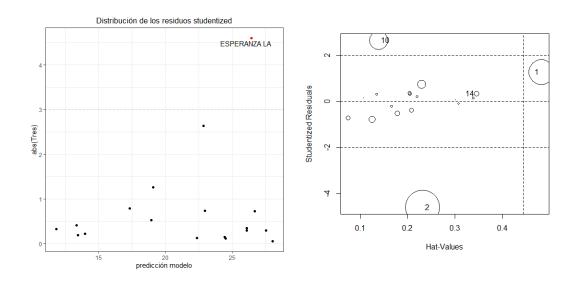


Figura 24. Evaluación de outliers para los residuales de temperatura

Parece que los residuales de temperatura presenta una tendencia lineal de las variables independientes en relación con los residuos y un R² ajustado de 84% (**Figura 19**). Se evidencia la presencia de outliers, los residuales parecen estar distribuidos de forma aleatoria alrededor de la recta y = 0 lo que es un buen indicador de que tiene una media igual a cero (**Figura 19**), los estadísticos de prueba de normalidad indican que la variable no presenta distribución normal (**Figura 21**), pero el grafico de q-normal indica que parece tener una distribución normal pero la presencia de outliers son los que hace el rechazo de las hipótesis nula (**Figura 20**). Ni la representación gráfica ni el contraste de hipótesis muestran evidencias que haga sospechar falta de homocedasticidad (**Figura 22**), la representación y el test de los residuos no muestra ninguna autocorrelación /tendencia (**Figura 23**).

Una alternativa para controlar casos atípicos es ajustar los resultados a una modelo lineal robusto. Los modelos lineales robustos utilizan criterios diferentes al de los mínimos cuadrados y ponderan la influencia de los casos atípicos, por lo que producen coeficientes y sobre todo errores estándar más confiables. Sin embargo, el modelo robusto no aumentó los coeficientes, pero si redujo los errores estándar, aunque no en gran cuantía. En este caso se puede interpretar que al parecer los outliers no son un problema grave (**Tabla 21**). Sin embargo, se considera como modelo de mejor ajuste el modelo original, ya que permite la incorporación de los outliers con el AIC más alto, como no cumple con el supuesto de que los errores provengan de una distribución normal, por lo tanto, solo puede ser usado para interpolar espacialmente los valores con métodos determinísticos.

	Comparación	de modelos	-						
	Dependent variable:								
Variable	T° med - Enero								
Independiente	OLS	OLS							
	-	1 -2	3						
DEM	-0.007***	-0.007***	-0.007***						
	-0.00		-0.001						
E	0.0000	1 0.00001	0.00001						
	-0.0000	4 -0.00002	-0.00002						
I(N2)	1.736E-1								
		0 0	0						
Constant	45.618	29.736***	21.51						
	-36.94	14.851							
Observations	18	18							
R ²	0.864		0.987						
Adjusted R ²	0.835		0.984						
Residual Std.	2.389	0.731	0.728						
Error	(df = 14) 29.656***	(df = 13)	(df = 11) 288.847***						
F Statistic	(df = 3; 14)		(df = 3; 11)						
Res.Df	14		11						
RSS	79.93	88.86	5.84						
Df	0		0						
Sum of Sq									
F									
Pr(>F)									
df	5								
AIC	87.9157	3 89.82303	38.41097						
Note:			*p**p****p<0.01						

Tabla 21. Modelos de regresión lineal robusto para los datos mensual para de temperatura

Para evaluar hasta qué punto condiciona el modelo los valores atípicos, se recalcula la recta de mínimos cuadrados excluyendo esta observación: La esperanza, Venecia, Trapiche (Tabla 22), se percibe que los coeficientes de la regresión no se alteran mucho respecto a los modelos anteriormente planteados, lo que si genera es un cambio en la pendiente (constante).

La exclusión de datos atípicos, mejora la predicción de un 86% - 87% a un 97% -99%, valor que se ve registrado en la disminución del valor AIC y en la reducción del RMSE. Este modelo cumple con el supuesto de normalidad.

	Comparación de	modelos							
	Dependent variable:								
Variable	T° med - Enero								
Independiente	OLS	robust	OLS						
	-1	-2	-3						
DEM	-0.007***	-0.007***	-0.007***						
	-0.002	-0.001	-0.001						
E	0.00001	0.00001	0.00001						
	-0.00004	-0.00002	-0.00002						
I(N2)		-4.83E-12	_						
	0	0	0						
Constant	45.618	29.736***	21.51						
	-36.94	14.851	12.446						
Observations	18	18	15						
R^2	0.864		0.987						
Adjusted R ²	0.835		0.984						
Residual Std.	2.389	0.731	0.728						
Error	(df = 14)	(df = 13)	(df = 11)						
F Statistic	29.656***	288.847***							
	(df = 3; 14)		(df = 3; 11)						
Res.Df	14		11						
RSS	79.93	88.86	5.84						
Df	0		0						
Sum of Sq									
F									
Pr(>F)									
df	5								
AIC	87.91573	89.82303	38.41097						
Note:			*p**p***p<0.01						

Tabla 22. Modelos de regresión lineal para los datos mensuales de temperatura excluyendo valores atípicos.

Variable Independiente													Depende
тиерепиенте	M71out3	M72out3	M73out4	M74out4			M77out6	M78out6	M79out7	M710out7	M711out8	M712out8	M713out9
DEM	-0.007*** -0.001	-0.007*** -0.001	-0.006*** -0.001	-0.006*** -0.001	-0.006*** -0.001	-0.006*** -0.001	-0.007*** -0.001	-0.007*** -0.001	-0.007*** -0.0005	-0.007*** -0.001	-0.007*** -0.001	-0.007*** -0.001	-0.006*** -0.001
E	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001
	-0.00002	-0.00001	-0.00001	-0.00001	-0.00002	-0.00002	-0.00001	-0.00001	-0.00001	-0.00001	-0.00001	-0.00001	-0.00002
I(N2)	0	0	0	0	0	0	0	0	0	0	0	0	0
Constant	21.51	22.231*	20.176	20.176	19.64	21.52	23.234*	22.131*	22.029*	19.973	21.912*	20.575	21.52
Constant	-12.446	-11.93	-11.858	-11.858	-12.435	-13.003	-11.533	-12.259	-10.267	-11.159	-11.889	-11.793	-13.003
Observations	15	15	15	15	15	15	15	15	15	15	15	15	15
R ²	0.987	0.988	0.988	0.988	0.986	0.986	0.99	0.989	0.992	0.989	0.987	0.988	0.986
Adjusted R ²	0.984	0.985	0.984	0.984	0.983	0.982	0.987	0.986	0.989	0.986	0.984	0.985	0.982
Residual Std. Error (df = 11)	0.728	0.698	0.694	0.694	0.728	0.761	0.675	0.718	0.601	0.653	0.696	0.69	0.761
F Statistic (df = 3; 11)	288.847***	314.336***	296.738***	296.738***	264.896***	255.555***	357.793***	324.338***	438.627***	338.620***	288.647***	306.839***	255.555***
df	5	5	5	5	5	5	5	5	5	5	5	5	5
AIC	38.41097	37.14111	36.95828	36.95828	38.38446	39.72453	36.12619	37.95648	32.63583	35.1353	37.03726	36.79501	39.72453
RMSE	0.3891416	0.3575537	0.3532221	0.3532221	0.3884544	0.4247555	0.3341614	0.3775276	0.2647891	0.3128003	0.3550868	0.3493981	0.3532221
M71 M	172 N	M73	M74	M75	M76	M77	M78	M79	M71	.0 M	711 N	Л712	M713
-0.007***	-0.007***	-0.007***	-0.007***	-0.007***	-0.007***	-0.007	-0.00	07*** -0.	.007*** -0	.007***	-0.007***	-0.007***	-0.007***
-0.002	-0.001	-0.001	-0.001	-0.001	-0.002	-0.002				0.001	-0.001	-0.001	-0.001
0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.0000	0.00	0001 0.0	00001 0	.00001	0.00001	0.00001	0.00001
-0.00004	-0.00004	-0.00004	-0.00004	-0.00004	-0.00004	-0.0000	0.00	0004 -0.	00004 -0	.00004	-0.00004	-0.00004	-0.00004
0	0	0	0	0	0	0	()	0	0	0	0	0
0													
l "	0	0	0	0	0	0	()	0	0	0	0	0
45.618	0 45.66	0 42.692	0 40.868	0 39.163	0 40.611	0 43.042				0	0 42.156	0 43.671	0 42.56
1			•				2 43.0	511 4	3.512				
45.618	45.66	42.692	40.868	39.163	40.611	43.042	2 43.0	511 4 541 -3	3.512	0.111	42.156	43.671	42.56
45.618 -36.94	45.66 -36.1	42.692 -35.315	40.868 -34.268	39.163 -35.27	40.611 -36.884	43.042 -38.15	2 43.i 8 -37.	541 4: 541 -3	3.512 4 4.882 -:	0.111 33.597	42.156 -34.216	43.671 -35.474	42.56 -35.65
45.618 -36.94 18	45.66 -36.1 18	42.692 -35.315	40.868 -34.268 18	39.163 -35.27 18	40.611 -36.884 18	43.042 -38.15	2 43.0 8 -37. 1 0.8	511 4: 541 -3 8	3.512 4 4.882 -: 18 0.883	0.111 33.597	42.156 -34.216 18	43.671 -35.474 18	42.56 -35.65
45.618 -36.94 18 0.864	45.66 -36.1 18 0.87	42.692 -35.315 18 0.871	40.868 -34.268 18 0.874	39.163 -35.27 18 0.866	40.611 -36.884 18 0.862	43.042 -38.15 18 0.866	2 43.0 8 -37. 1 0.8 0.8	541 -3 8 873 0	3.512 4 4.882 -: 18 0.883	10.111 33.597 18 0.881	42.156 -34.216 18 0.873	43.671 -35.474 18 0.868	42.56 -35.65 18 0.871
45.618 -36.94 18 0.864 0.835 2.389	45.66 -36.1 18 0.87 0.842	42.692 -35.315 18 0.871 0.844	40.868 -34.268 18 0.874 0.848	39.163 -35.27 18 0.866 0.837	40.611 -36.884 18 0.862 0.832	43.042 -38.15 18 0.866 0.838	2 43.1 8 -37. 1 0.8 0.8 2.4	511 4: 541 -3 8 173 0 146 0 128 2	3.512 4 4.882 -: 18 0.883 0.858	10.111 133.597 18 18 18 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19	42.156 -34.216 18 0.873 0.846	43.671 -35.474 18 0.868 0.84	42.56 -35.65 18 0.871 0.844 2.306
45.618 -36.94 18 0.864 0.835 2.389	45.66 -36.1 18 0.87 0.842 2.335	42.692 -35.315 18 0.871 0.844 2.284	40.868 -34.268 18 0.874 0.848 2.217	39.163 -35.27 18 0.866 0.837 2.281	40.611 -36.884 18 0.862 0.832 2.386	43.042 -38.15 18 0.866 0.838 2.468	2 43.0 8 -37. 1 0.8 6 0.8 7 2.4	511 4: 541 -3 8 173 0 146 0 128 2	3.512 4 4.882 -: 18 0.883 0.858	10.111 33.597 18 0.881 0.855 2.173	42.156 -34.216 18 0.873 0.846 2.213	43.671 -35.474 18 0.868 0.84 2.295	42.56 -35.65 18 0.871 0.844 2.306
45.618 -36.94 18 0.864 0.835 2.389 29.656*** 5 87.91573	45.66 -36.1 18 0.87 0.842 2.335 31.098***	42.692 -35.315 18 0.871 0.844 2.284	40.868 -34.268 18 0.874 0.848 2.217 32.506	39.163 -35.27 18 0.866 0.837 2.281 30.197***	40.611 -36.884 18 0.862 0.832 2.386	43.04: -38.15 18 0.866 0.838 2.468 30.225 5	2 43.0 8 -37. 1 0.8 0.8 2.4 32.0	5511 4: 5541 -3 8 773 0 1446 0 128 2 28*** 35 5 9628 85	3.512 4 4.882 = 18 18 8.883 0.858 2.256 - 1.103*** 34 5	0.111 33.597 18 0.881 0.855 2.173 4.470*** 5	42.156 -34.216 18 0.873 0.846 2.213 32.141	43.671 -35.474 18 0.868 0.84 2.295	42.56 -35.65 18 0.871 0.844 2.306

Tabla 23. Modelos seleccionados para los valores mensuales de temperatura

Para los datos de temperatura se manejaron dos modelos uno que permitiera la inclusión de los valores atípicos los cuales se utilizaron para los modelos determinísticos y otro con la exclusión de dichos valores pero que permitieran garantizar los supuestos de los modelos de regresión que fueron utilizados para los modelos de predicción espacial probabilísticos (**Tabla 23**).

En cuanto a los residuales de precipitación:

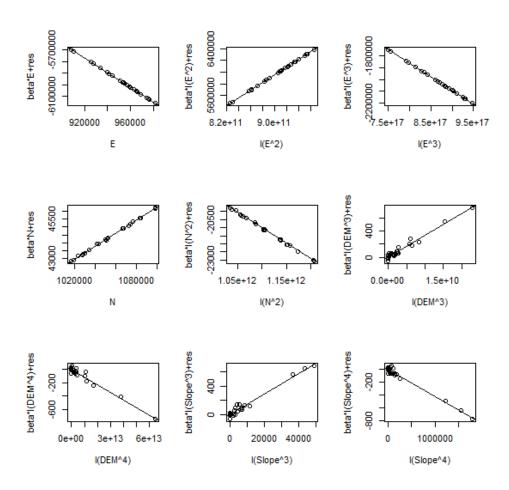


Figura 25. Gráficos de correlación residual de precipitación

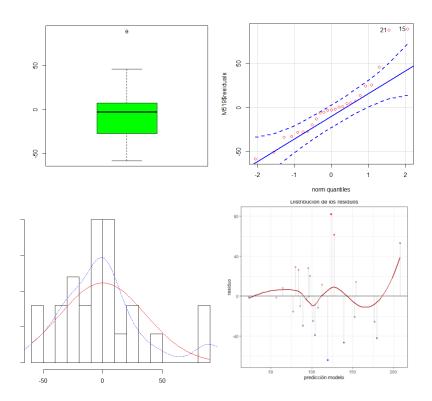


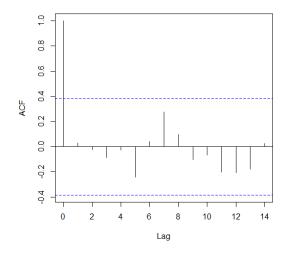
Figura 26. Gráficos de boxplot, q q-plot, de frecuencia y de distribución ellos residuos de precipitación

```
Lilliefors (Kolmogorov-Smirnov) normality test

data: M5110$residuals
D = 0.10559, p-value = 0.6702

Shapiro-Wilk normality test

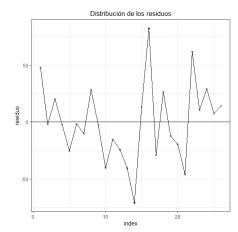
data: M5110$residuals
W = 0.97979, p-value = 0.8809


Anderson-Darling normality test

data: M5110$residuals
A = 0.20087, p-value = 0.8669
```

Figura 27. Test de normalidad para los residuales de precipitación

Series M5110\$residuals


```
Non-constant Variance Score Test
Variance formula: ~ fitted.values
Chisquare = 1.445183, Df = 1, p = 0.2293
```

studentized Breusch-Pagan test

```
data: M519 BP = 8.974, df = 9, p-value = 0.4397
```

Figura 28. Evaluación de homocedasticidad para los residuales de precipitación

Fuente: Autores


```
lag Autocorrelation D-W Statistic p-value
1 0.02791408 1.859917 0.644
Alternative hypothesis: rho != 0
```

Durbin-Watson test

data: M5110 DW = 1.8599, p-value = 0.3253

Figura 29. Evaluación de autocorrelación para los residuales de precipitación

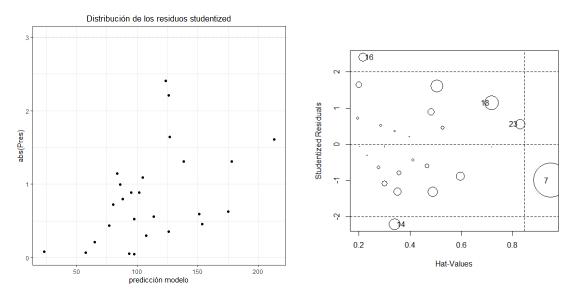


Figura 30. Evaluación de outliers para los residuales de precipitación

La tendencia que se aprecia en la mayoría de gráficos de residuos parciales es de tipo lineal, al parecer no se evidencia indicios de problemas con la hipótesis de linealidad, además parecen distribuirse aleatoriamente con R2 ajustado de 50% (Figura 25), al parecer los datos tiene presencia de outliers (se espera que no sean leverage o altamente influyentes). Los residuales parecen estar distribuidos de forma aleatoria alrededor de la recta y = 0 por lo que es un buen indicador que la media de los residuales es cero (**Figura 26**), los estadísticos de prueba de normalidad indican que los residuos pueden suponer normalidad, pero los gráficos de normalidad indica la presencia de outliers que deben ser evaluados (**Figura 27**). Los contraste de hipótesis muestran evidencias de posible heterocedasticidad (varianza constante) (**Figura 28**) y la representación y el test de los residuos no muestra ninguna autocorrelación /tendencia (**Figura 29Figura 28**), y se constata outliers correspondiente a la estación 7, 18 y 23, pero al no ser influyentes se considera oportuno no excluirlos (**Figura 30**).

6.6.4 Modelo tendencia espacial m(x)

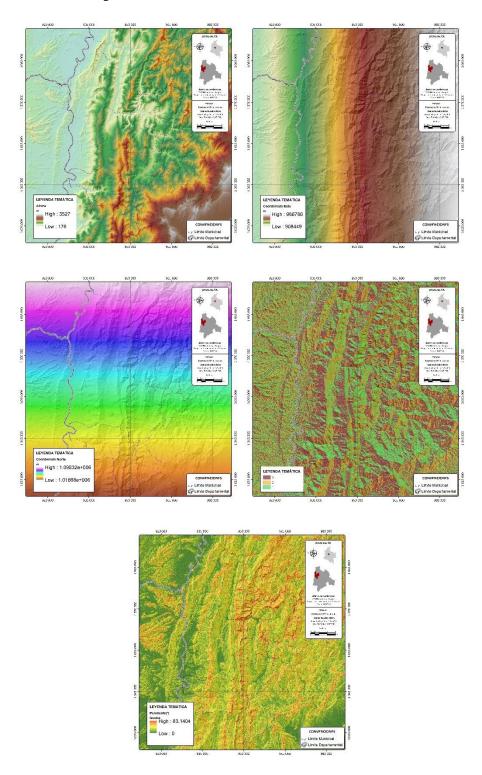
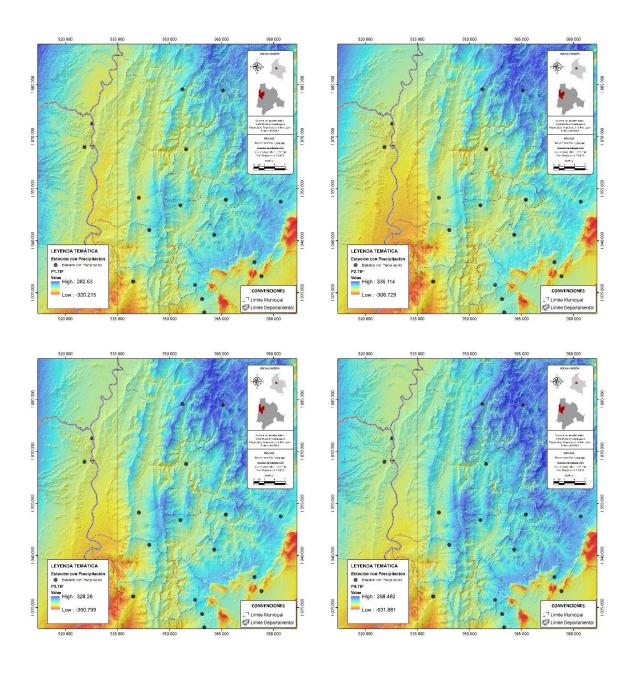
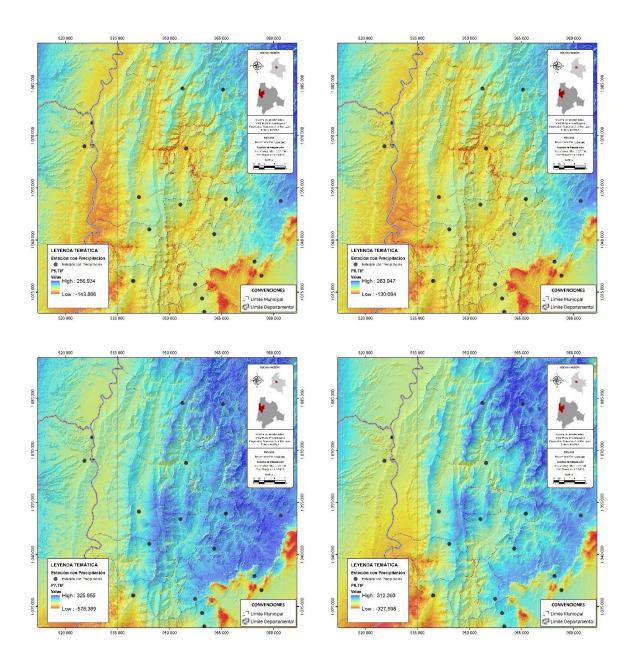
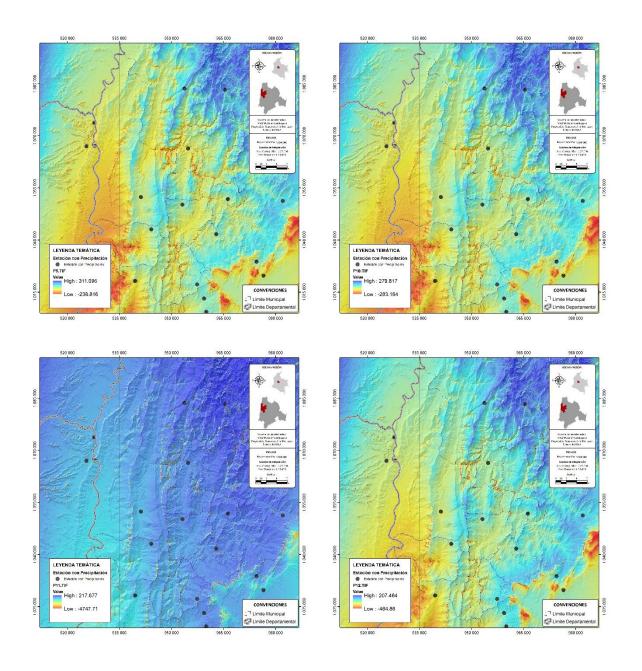
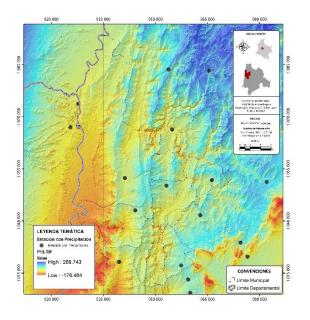
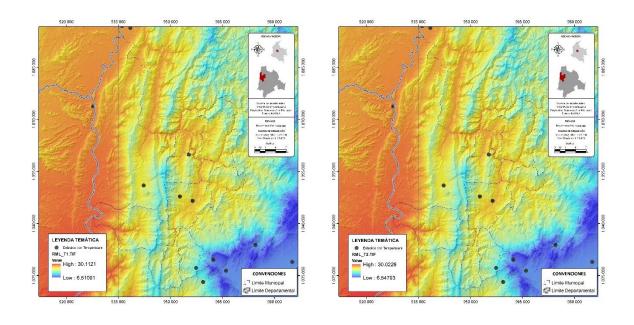
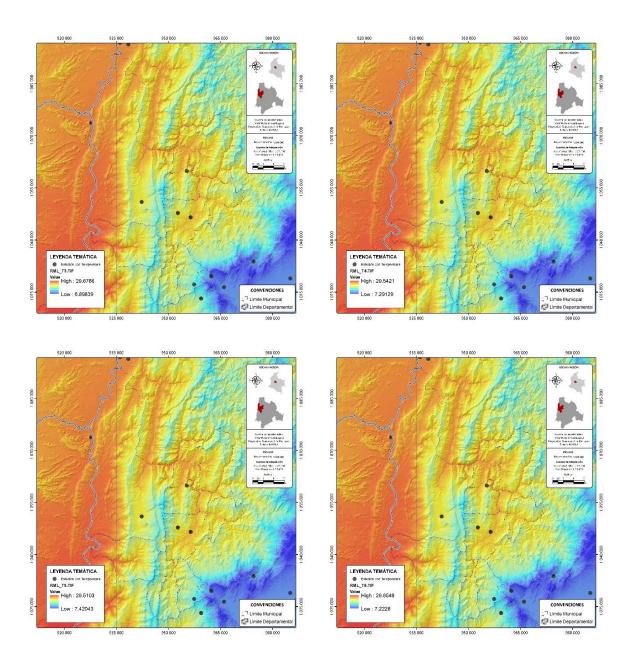



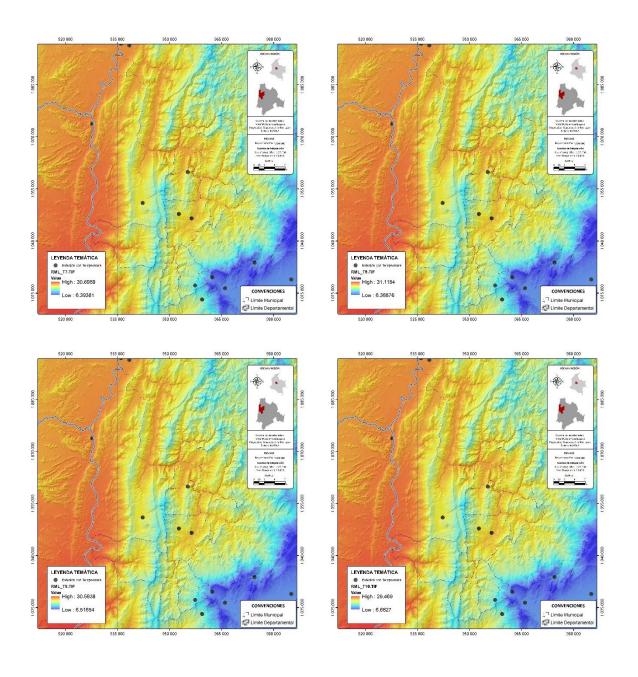
Figura 31. Espacialización de la covariables



Fuente: Autores


Con las covariables espacializadas (Figura 31) se aplicaron los modelos de regresión m(x) para los valores mensuales multianuales y anuales multianuales de precipitación y temperatura obteniendo las Figura 32 y Figura 33.


Figura 32. Modelo determinístico de tendencia espacial para los valores mensuales multianuales y anual multianual de precipitación

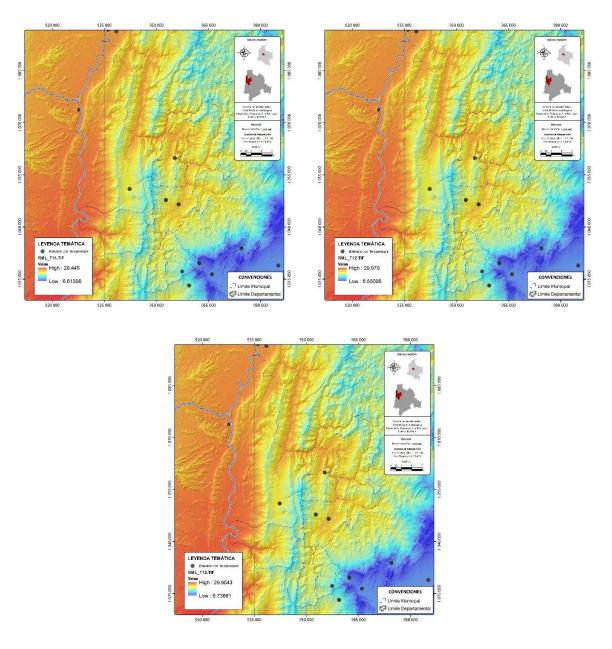
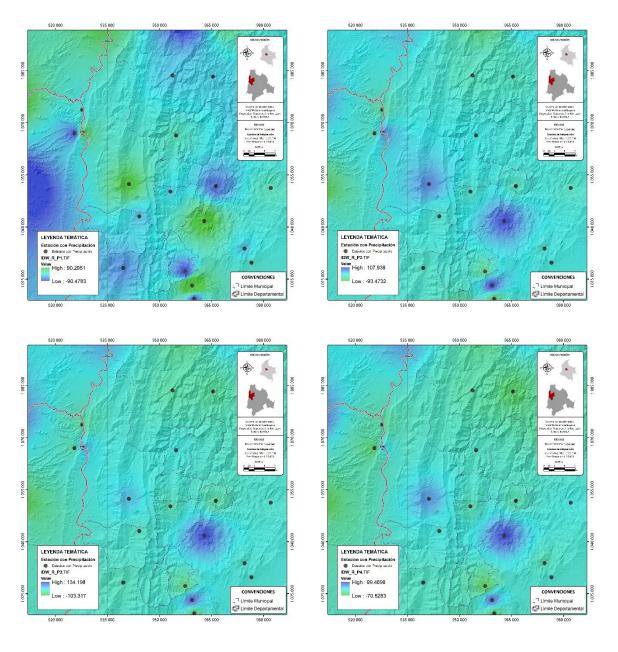
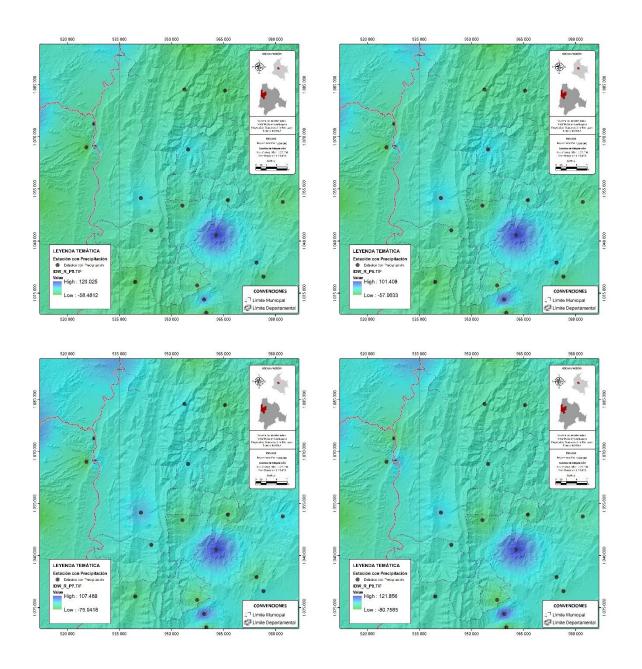
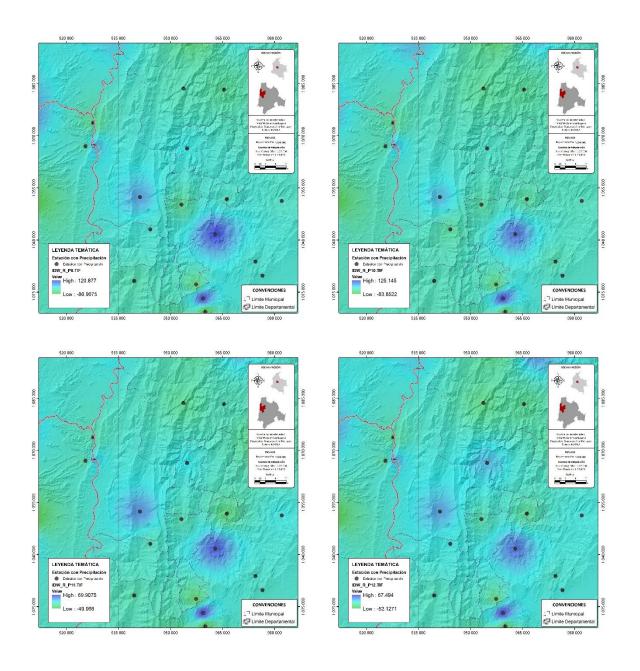
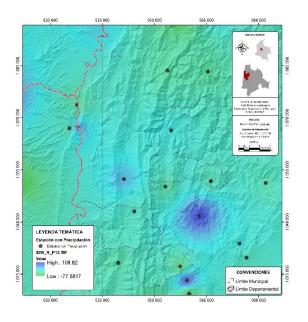
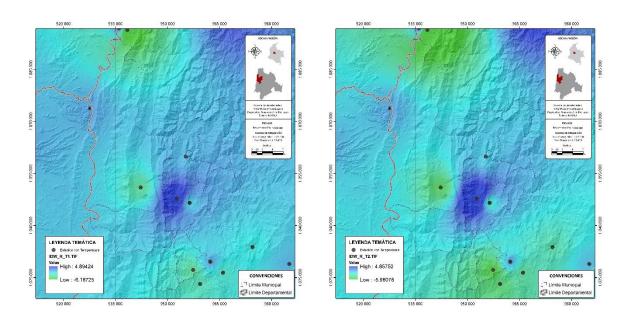
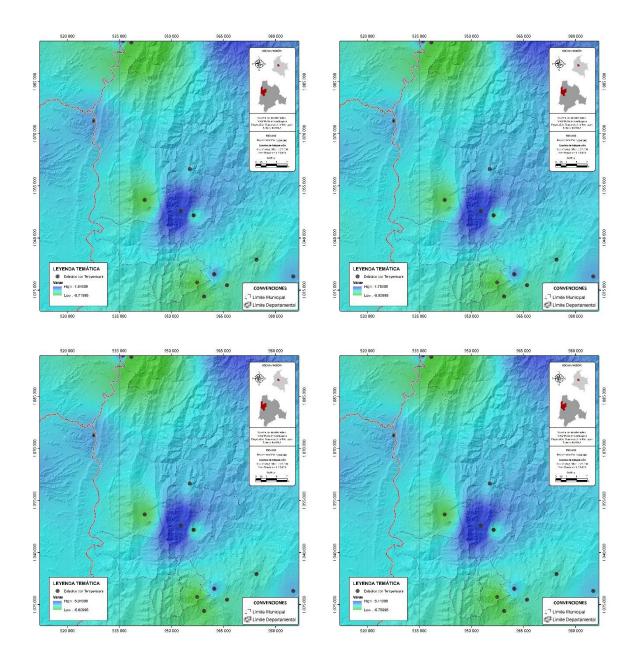



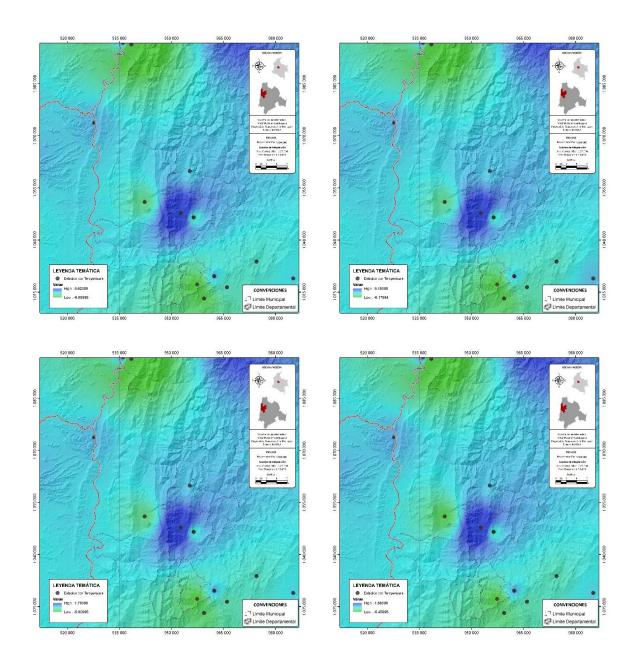
Figura 33. Modelo determinístico de tendencia espacial para los valores mensuales multianuales y anual multianual de temperatura



6.6.5 Modelo espacial residual estocástico $\varepsilon(x)$


Los residuales se especializaron aplicando método IDW (Figura 34 y Figura 35), Spline (Figura 36 y Figura 37) y Kriging (Figura 38 y Figura 39) para la precipitación acumulada y temperatura media mensual multianual y anual multianual.


Figura 34. Modelo residual estocástico para los valores mensuales multianuales y anual multianual de precipitación – Método IDW

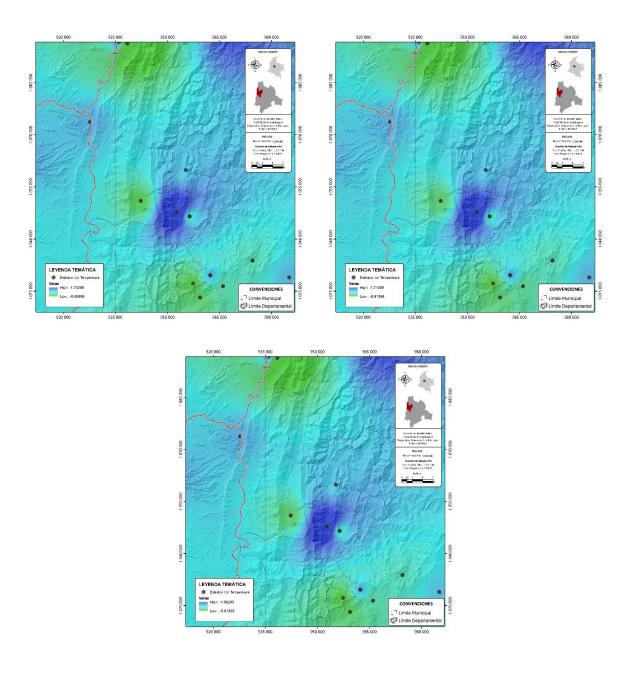
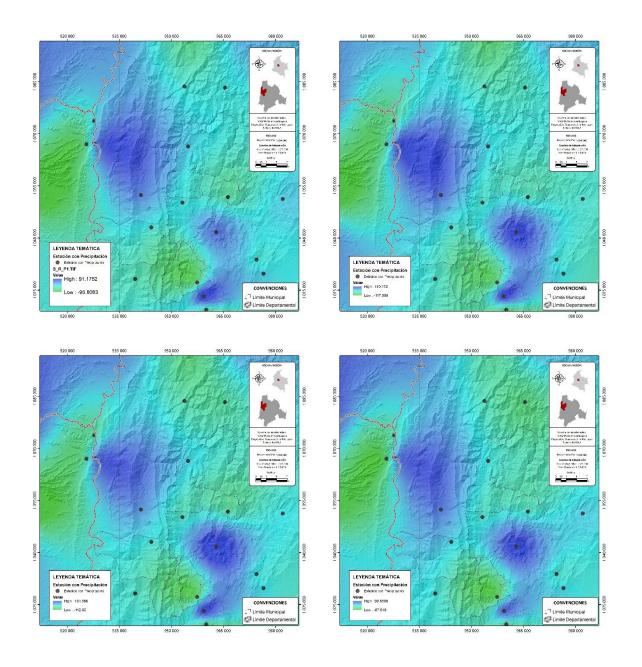
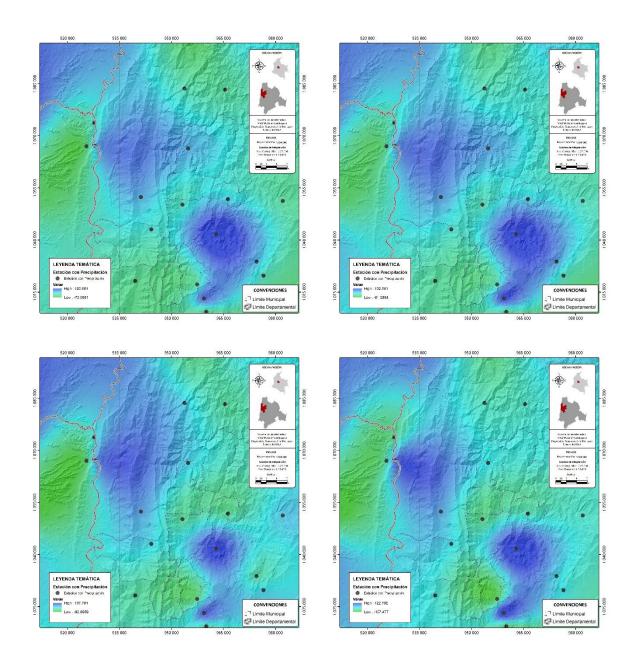
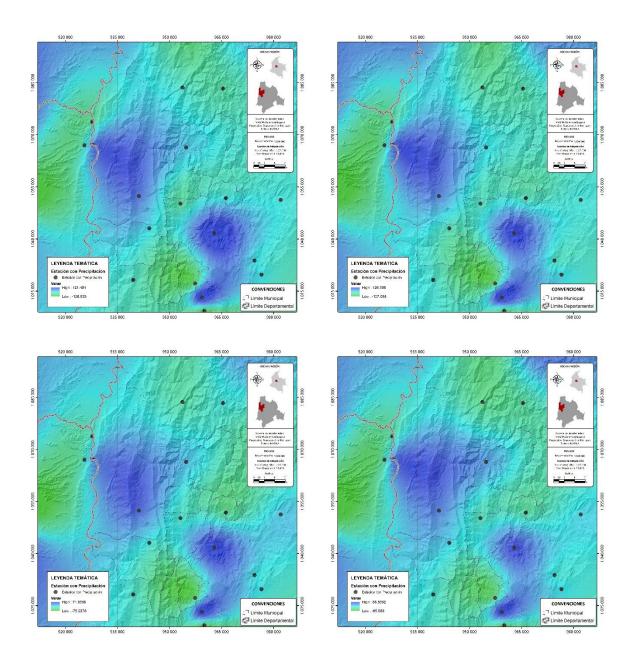
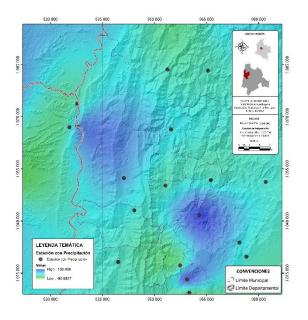
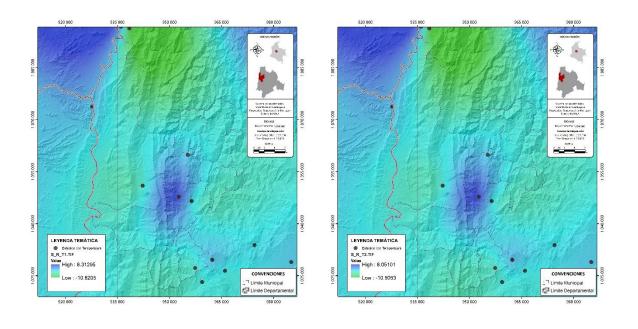
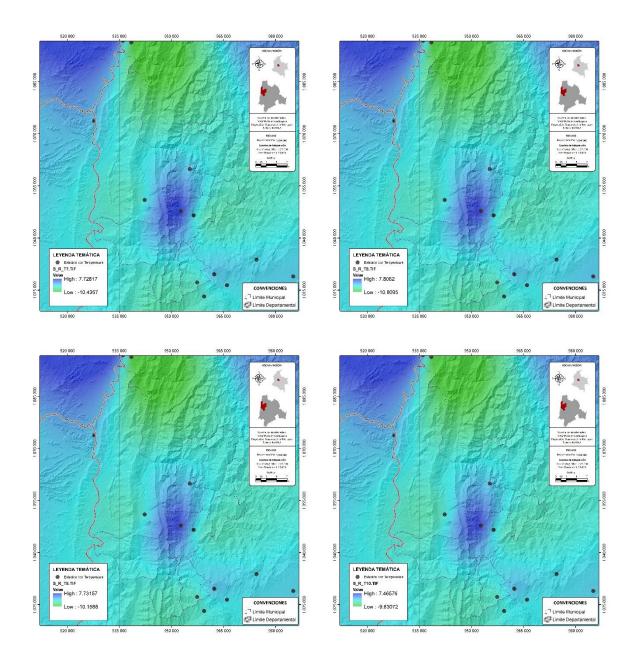




Figura 35. Modelo residual estocástico para los valores mensuales multianuales y anual multianual de temperatura – Método IDW








Figura 36. Modelo residual estocástico para los valores mensuales multianuales y anual multianual de precipitación – Método Spline

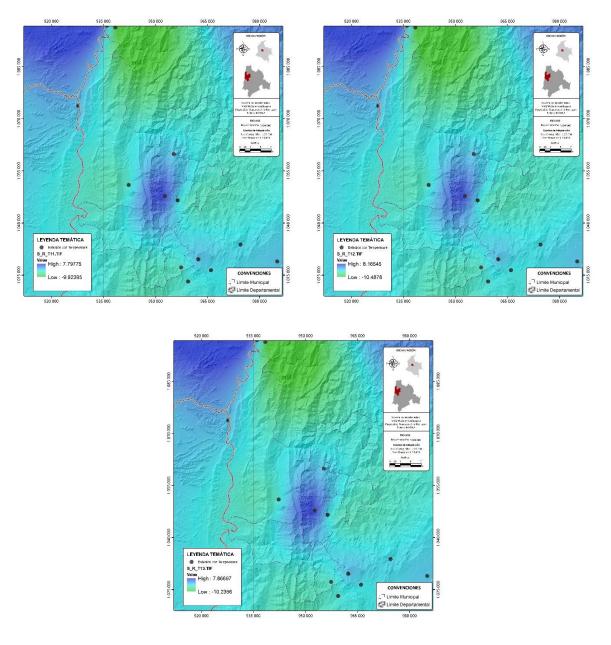
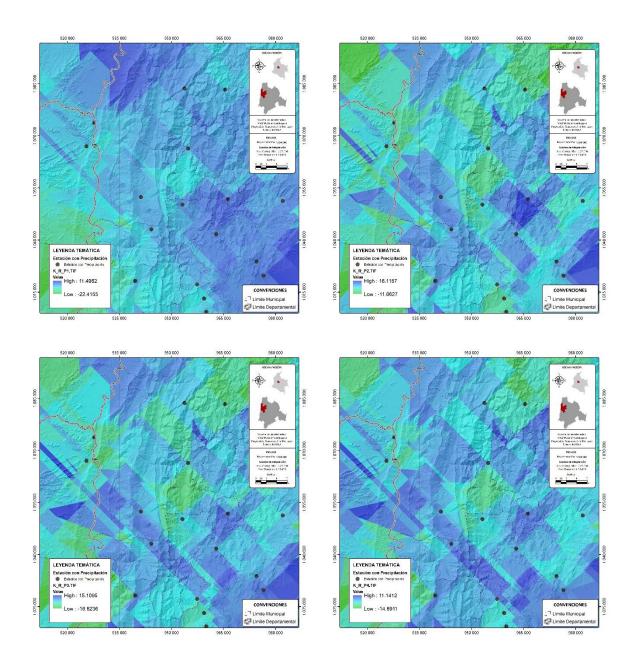
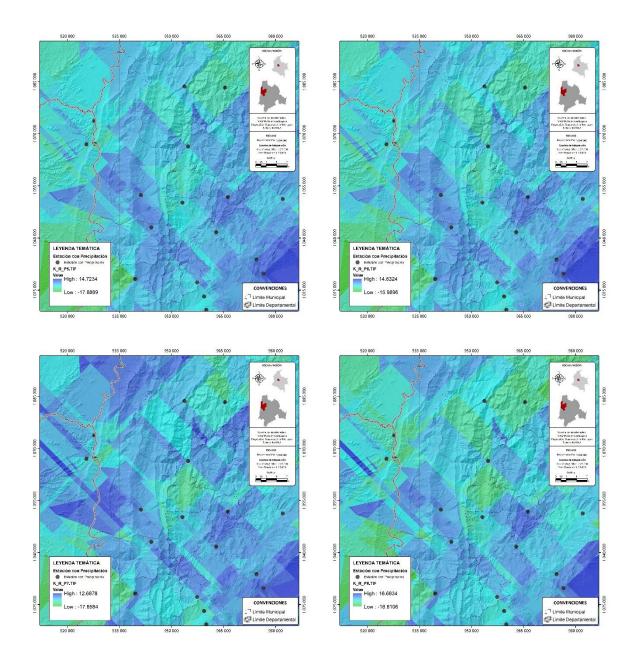
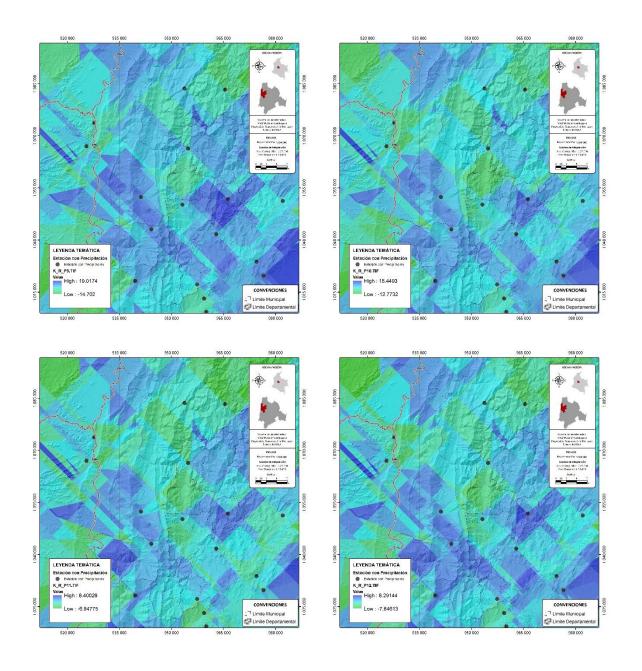
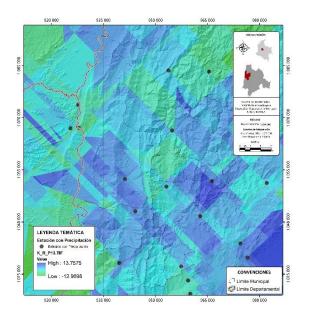
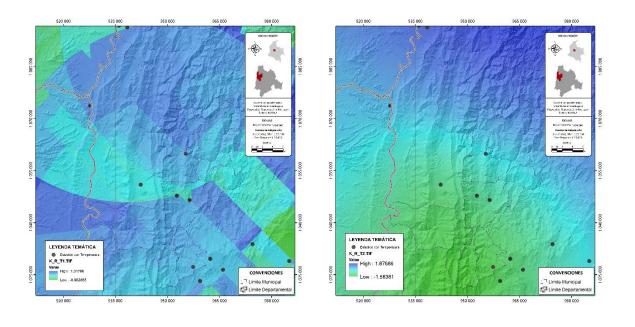
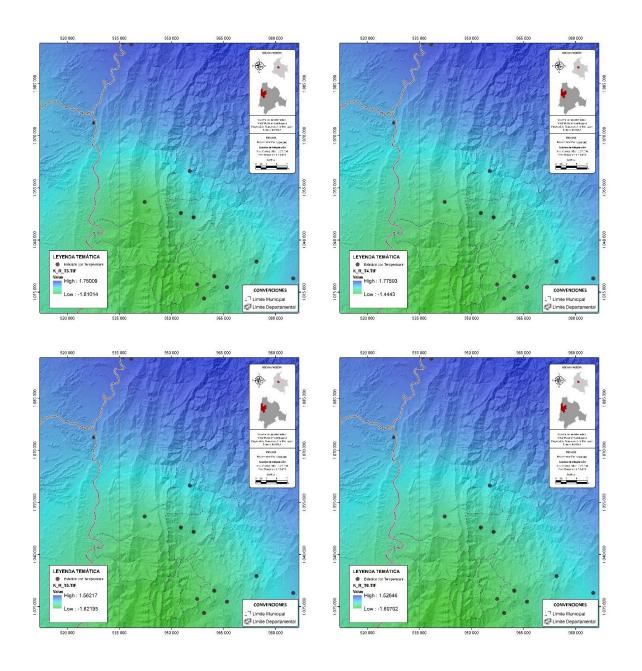




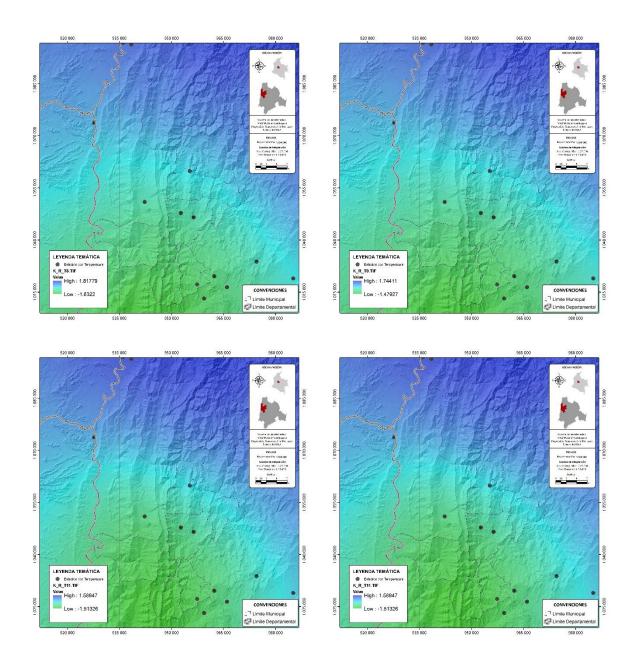
Figura 37. Modelo residual estocástico para los valores mensuales multianuales y anual multianual de temperatura – Método Spline










Figura 38. Modelo residual estocástico para los valores mensuales multianuales y anual multianual de precipitación – Método Kriging Simple

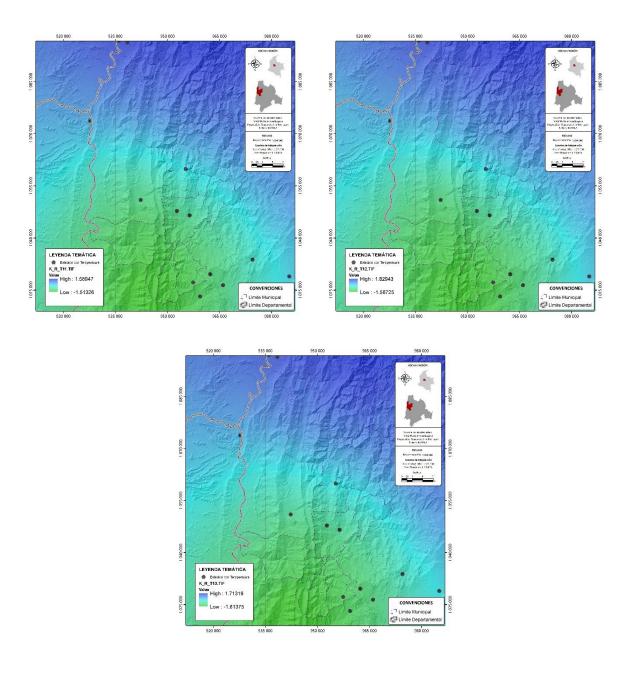
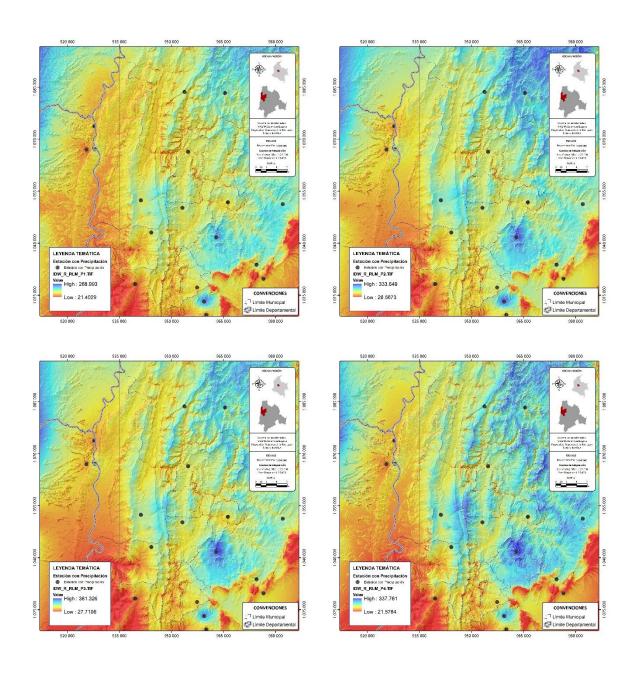
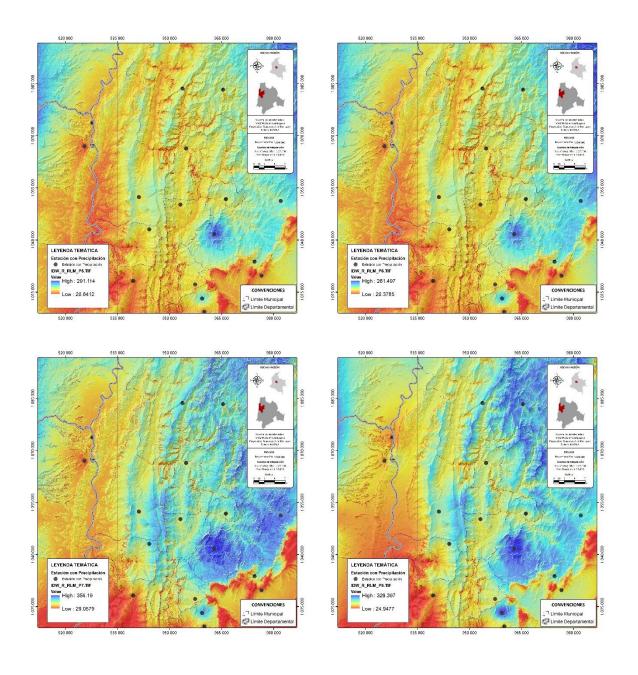
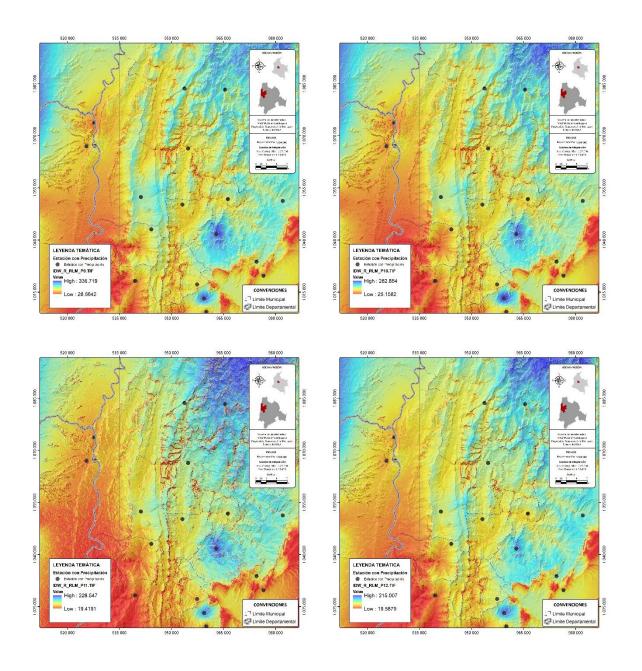
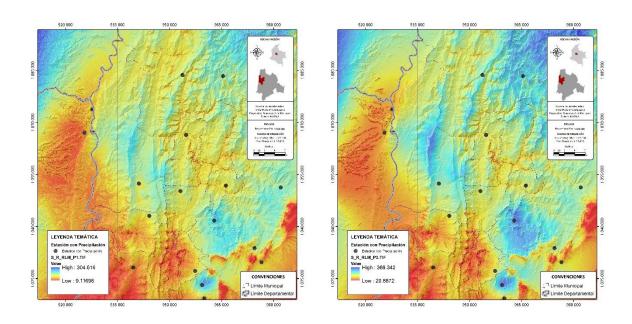



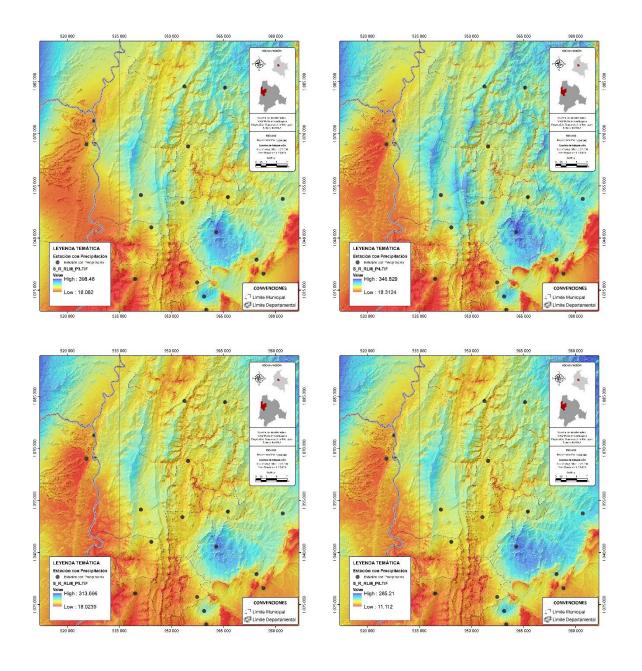
Figura 39. Modelo residual estocástico para los valores mensuales multianuales y anual multianual de temperatura – Método Kriging Simple

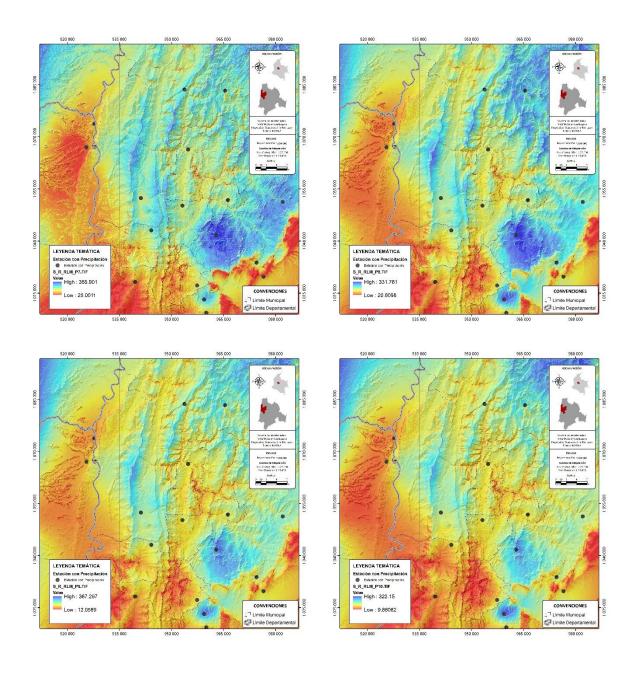


6.6.6 Modelo de predicción espacial regionalizado $\widehat{Z(x)}$


Unificando los modelos espaciales determinísticos m(x) con los diferentes modelo estocástico $\epsilon(x)$ generados por los métodos de predicción espacial mediante una suma algebraica se obtuvo las Figura 40, Figura 41, Figura 42, Figura 43, Figura 44 y Figura 45.






 ${\it Figura~40.}~{\it Modelo~de~predicci\'on~espacial~regionalizado~para~los~valores~mensuales~multianuales~y~anual~multianual~de~precipitaci\'on~-{\it M\'etodo~IDW}$

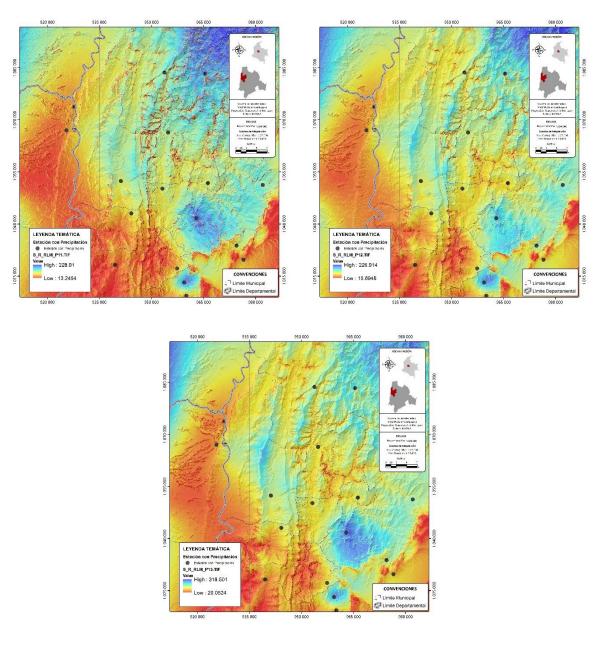
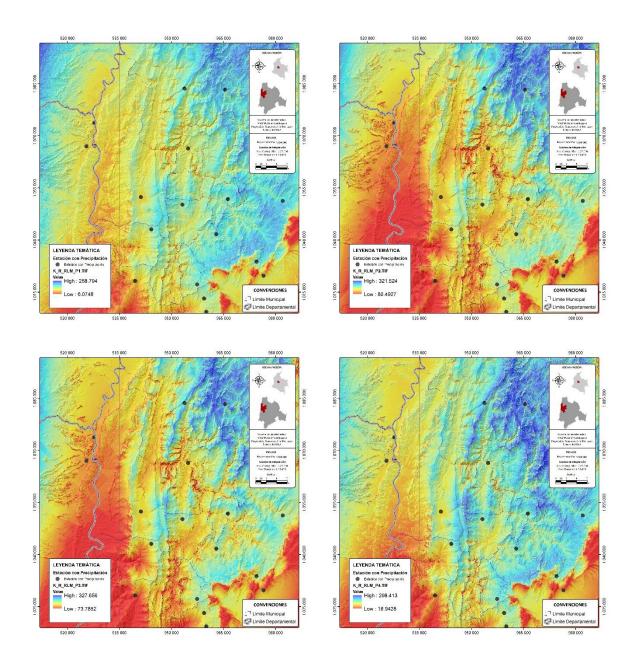
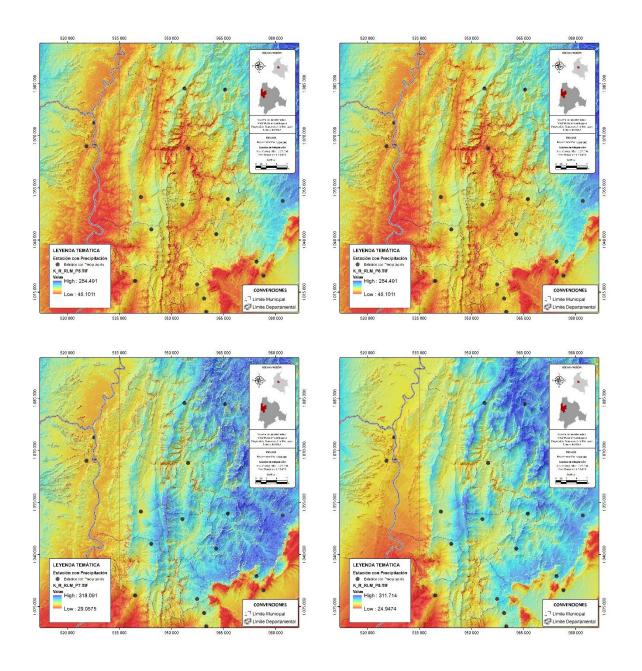
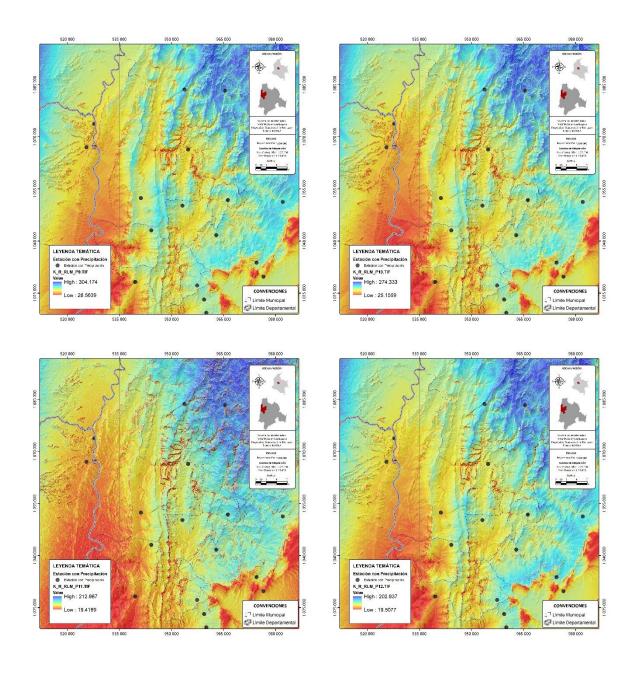
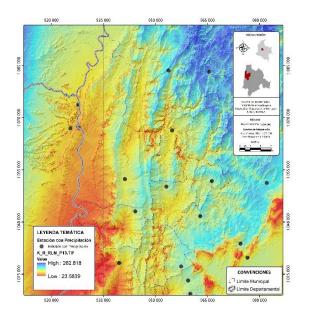
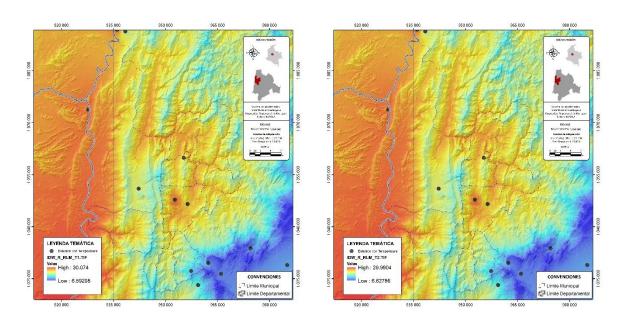
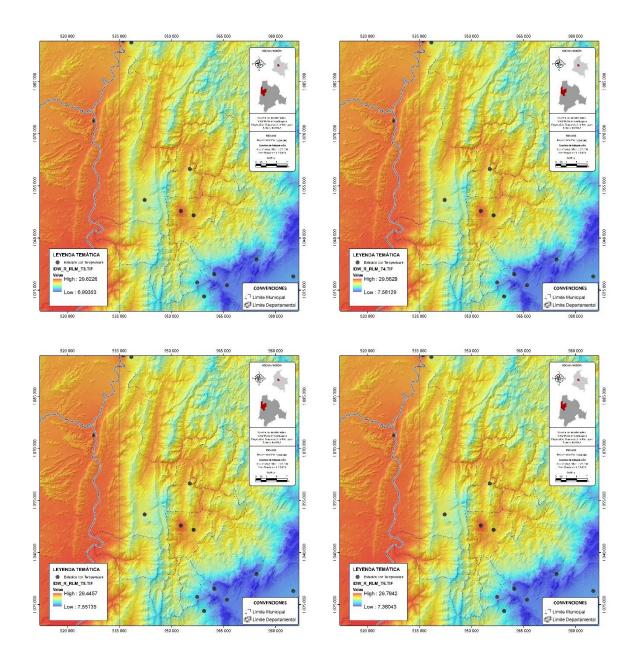
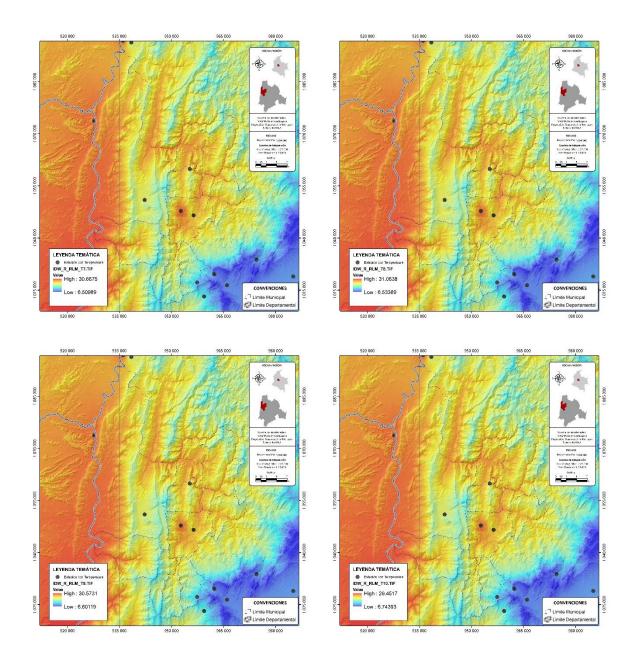
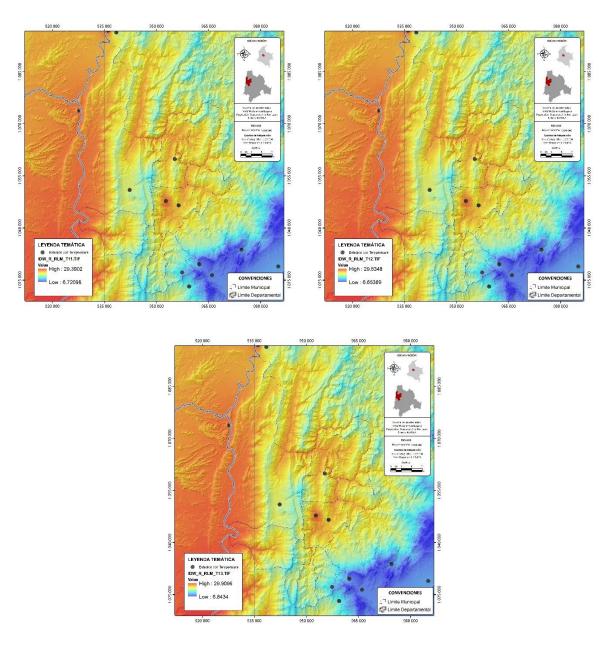




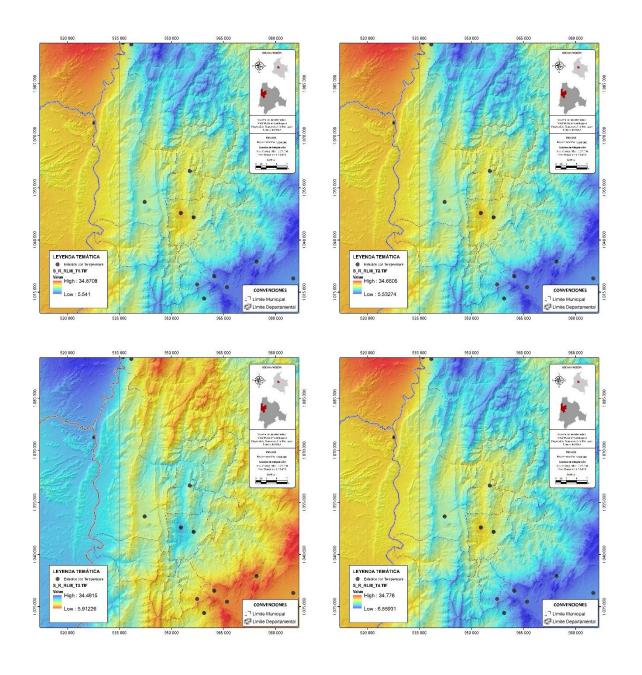
Figura 41. Modelo de predicción espacial regionalizado para los valores mensuales multianuales y anual multianual de precipitación – Método Spline

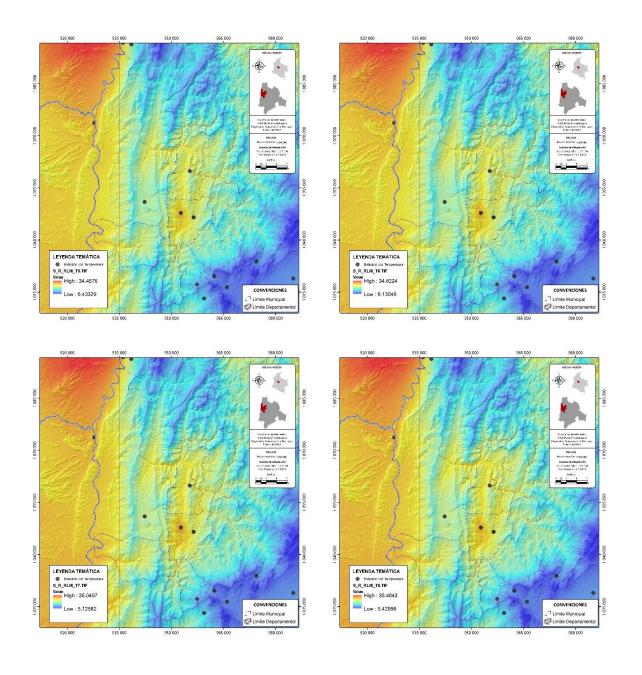


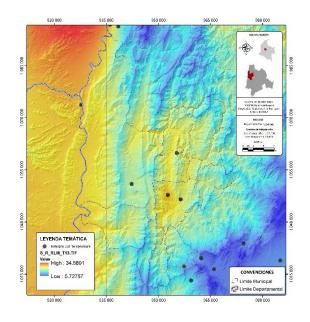
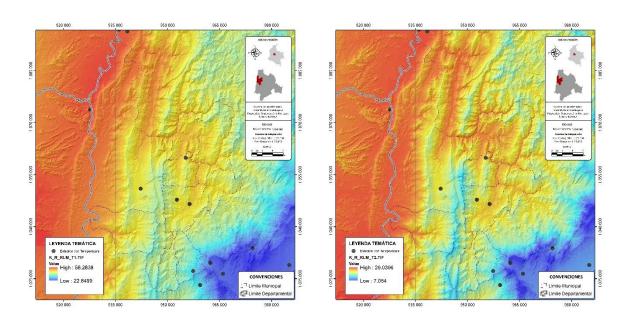
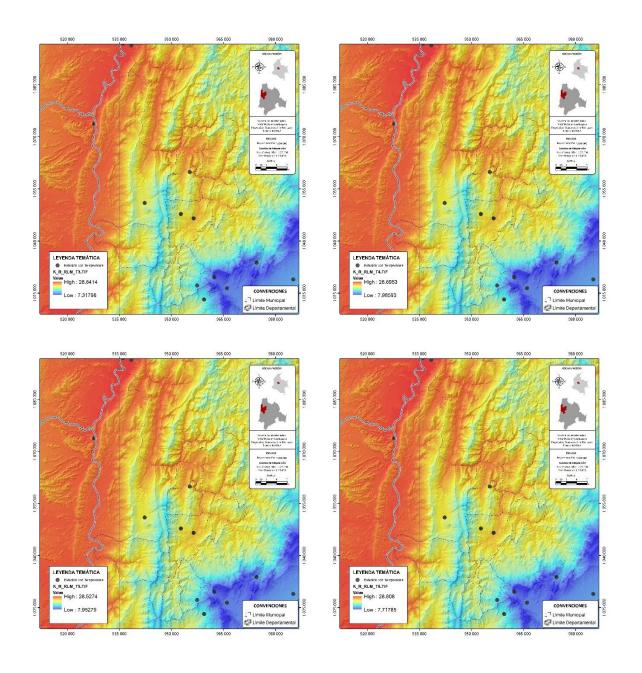

Figura 42. Modelo de predicción espacial regionalizado para los valores mensuales multianuales y anual multianual de precipitación – Método Kriging Simple

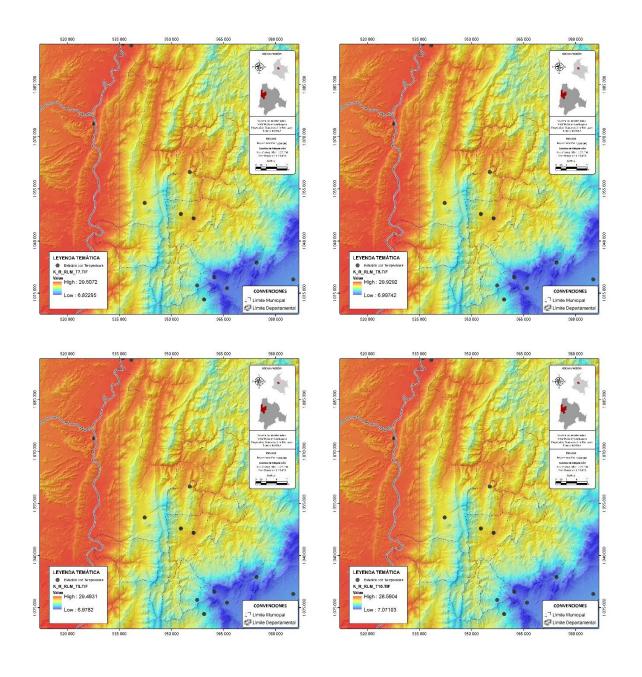






 ${\it Figura~43.}~{\it Modelo~de~predicci\'on~espacial~regionalizado~para~los~valores~mensuales~multianuales~y~anual~multianual~de~temperatura-M\'etodo~IDW$


Figura 44. Modelo de predicción espacial regionalizado para los valores mensuales multianuales y anual multianual de temperatura – Método Spline

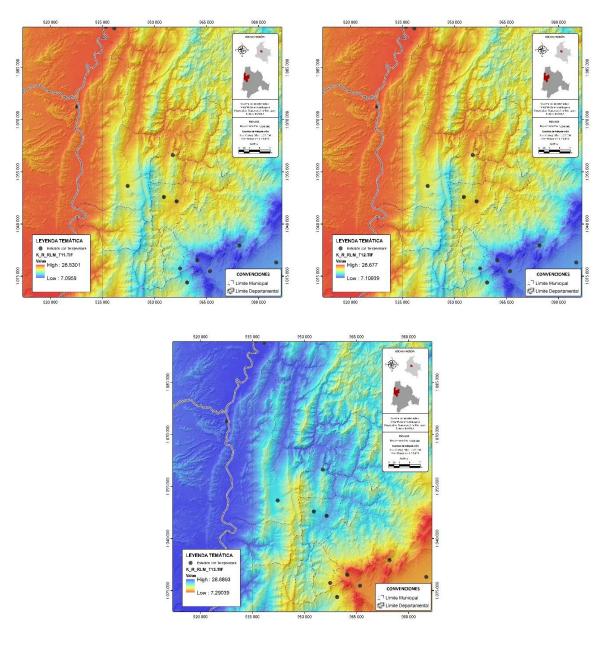
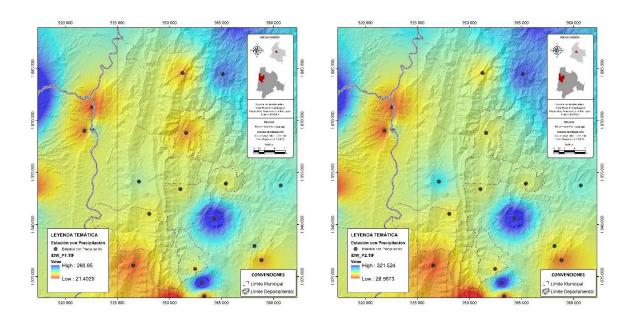
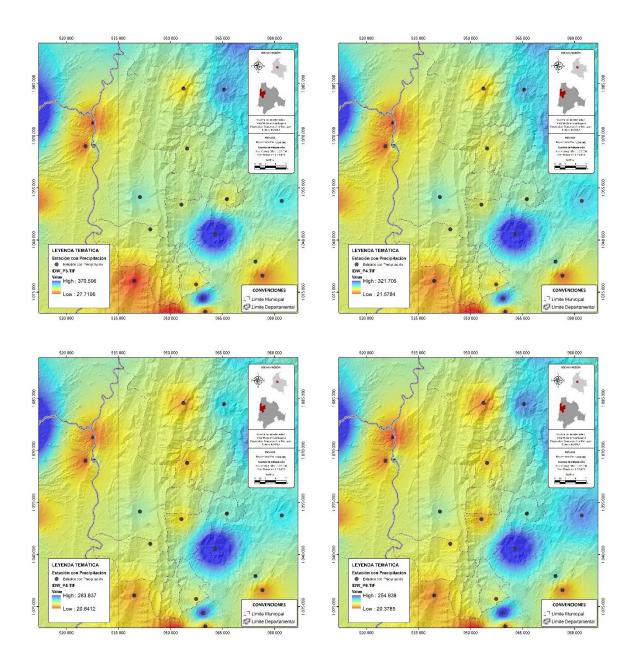
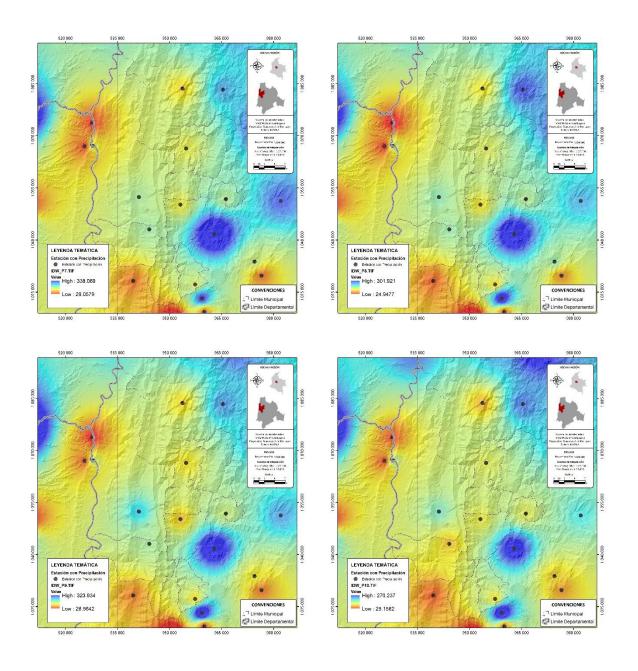
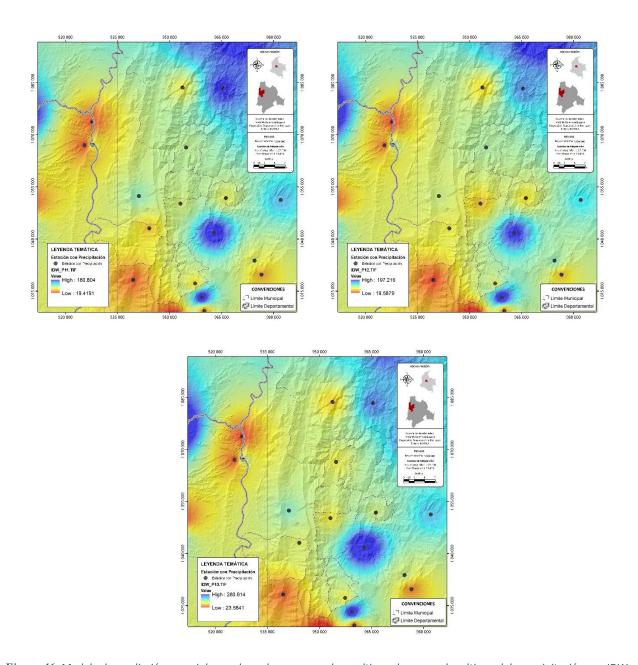



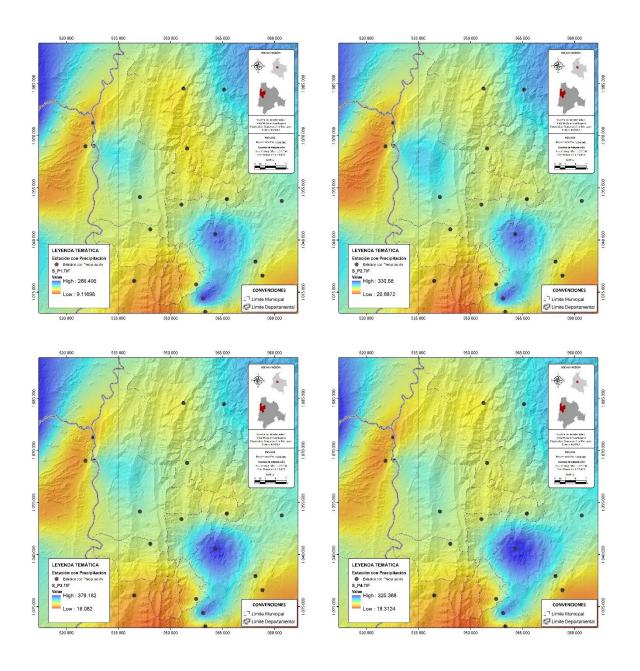
Figura 45. Modelo de predicción espacial regionalizado para los valores mensuales multianuales y anual multianual de temperatura – Método Kriging

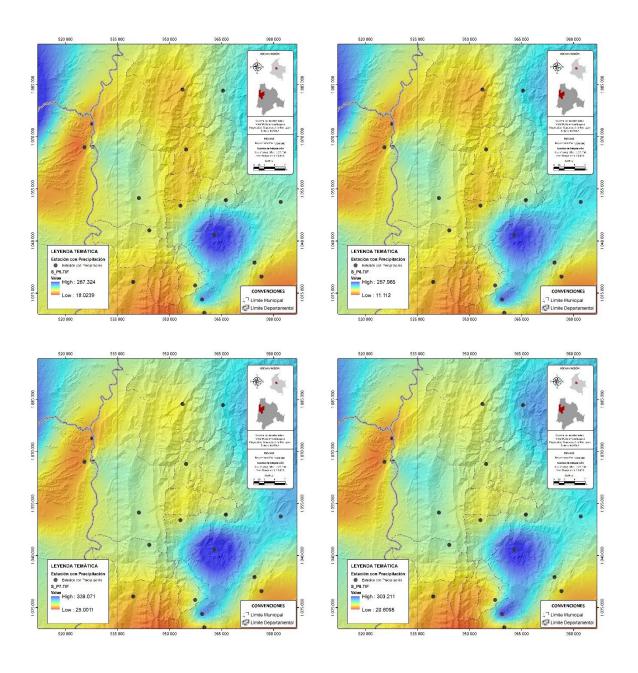


6.6 MODELO DE PREDICCIÓN ESPACIAL DETERMINÍSTICO PARA LOS DATOS MENSUALES MULTIANUALES Y ANUAL MULTIANUAL DE PRECIPITACIÓN ACUMULADA Y TEMPERATURA MEDIA

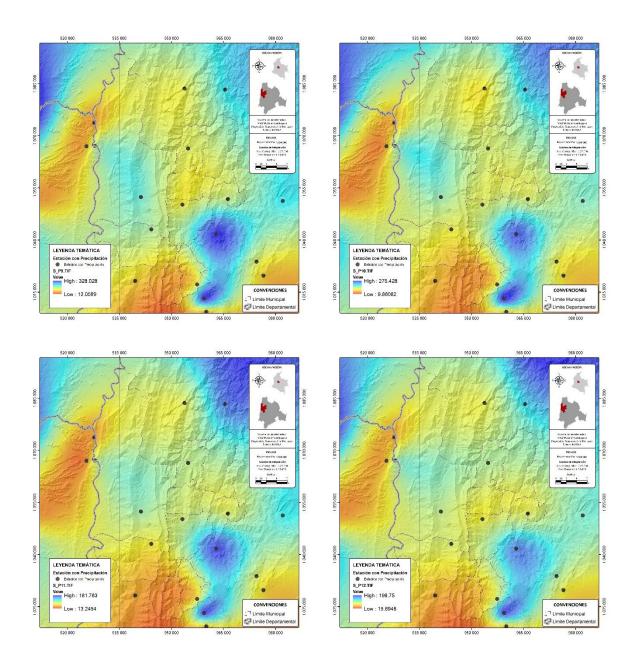

Posteriormente, se realizó las interpolaciones espaciales de forma convencional con los datos de temperatura y precipitación por los métodos IDW y Spline, los cuales se muestran en las Figura 46, Figura 47, Figura 48 y Figura 49

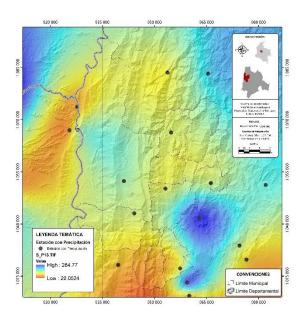


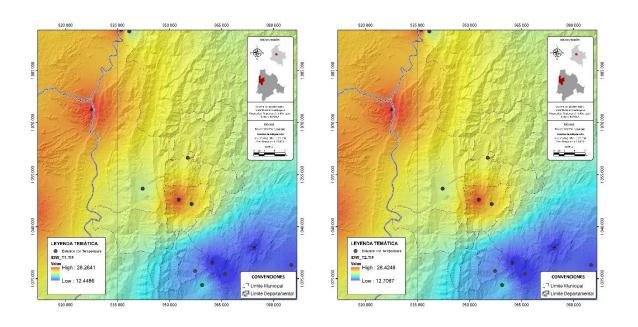


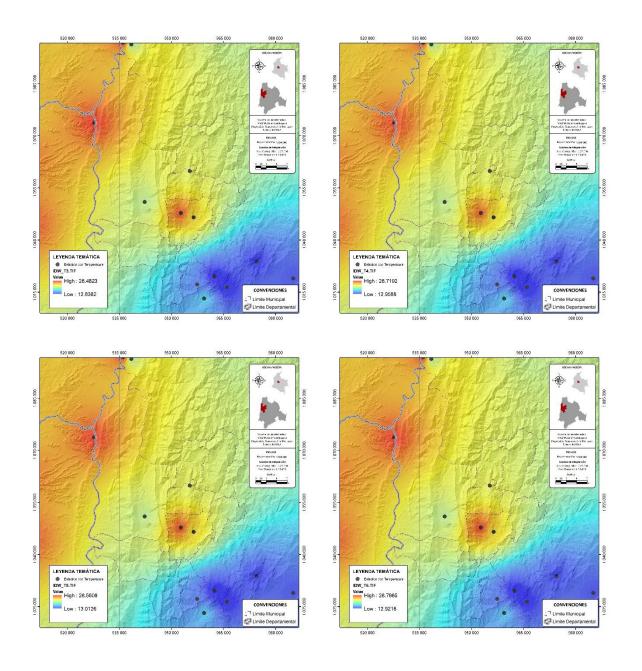


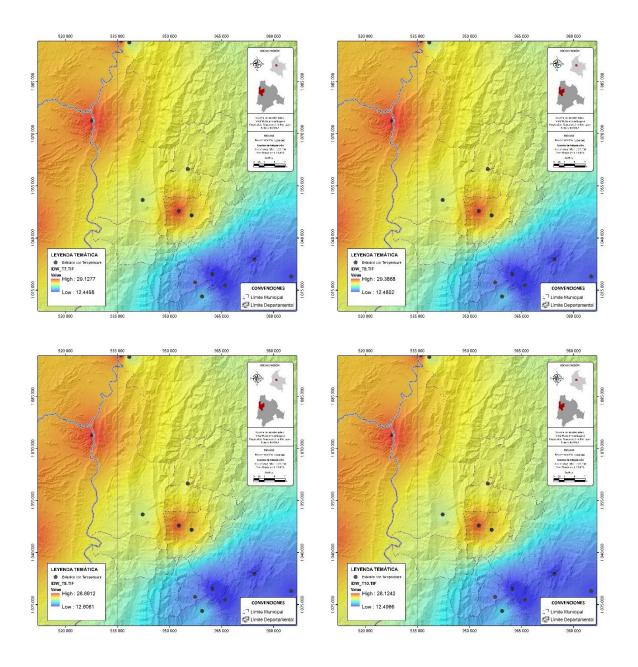
 $\textbf{\textit{Figura 46.}} \ \textit{Modelo de predicci\'on espacial para los valores mensuales multianuales y anual multianual de precipitaci\'on con IDW}$

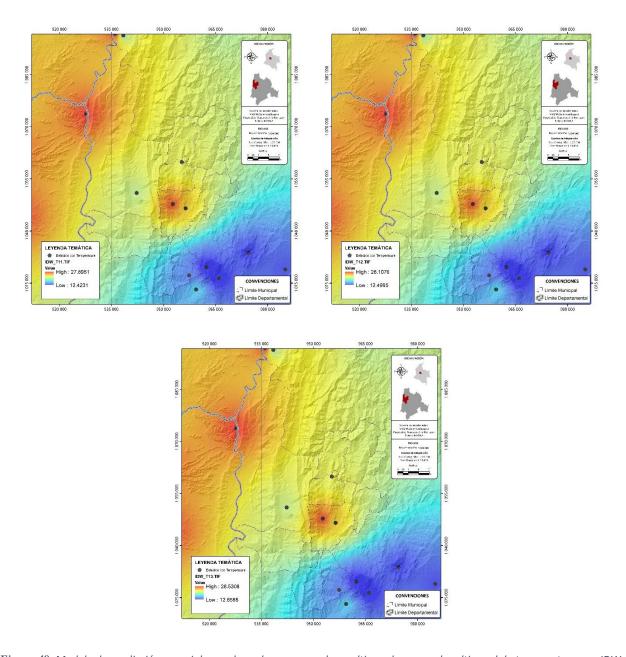


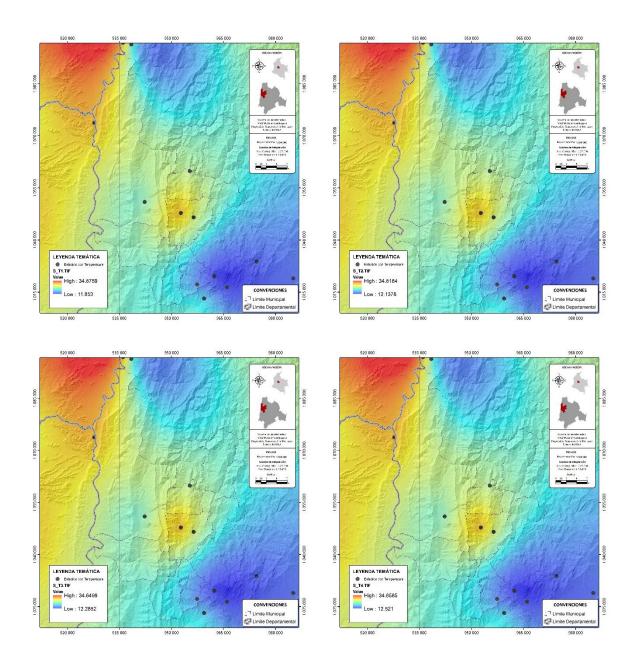


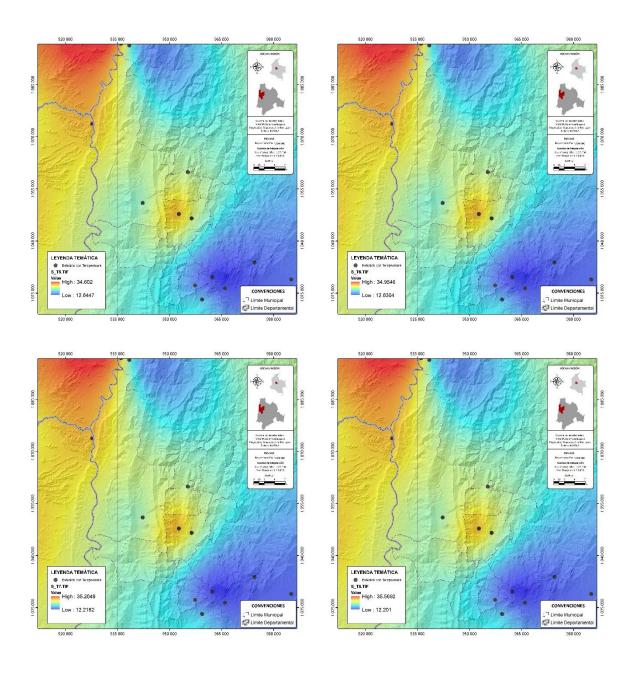




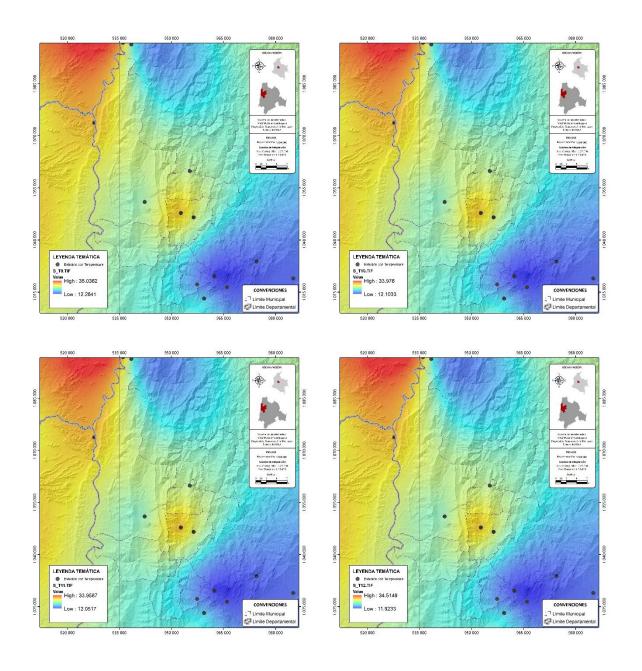

Figura 47. Modelo de predicción espacial para los valores mensuales multianuales y anual multianual de precipitación con Spline

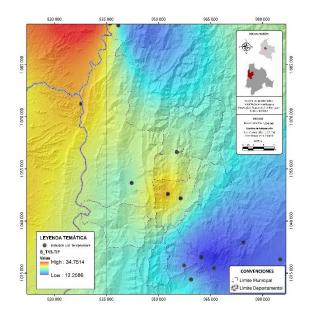






 $\textbf{\it Figura~48.}~\textit{Modelo de predicci\'on espacial~para~los~valores~mensuales~multianuales~y~anual~multianual~de~temperatura~con~IDW~$





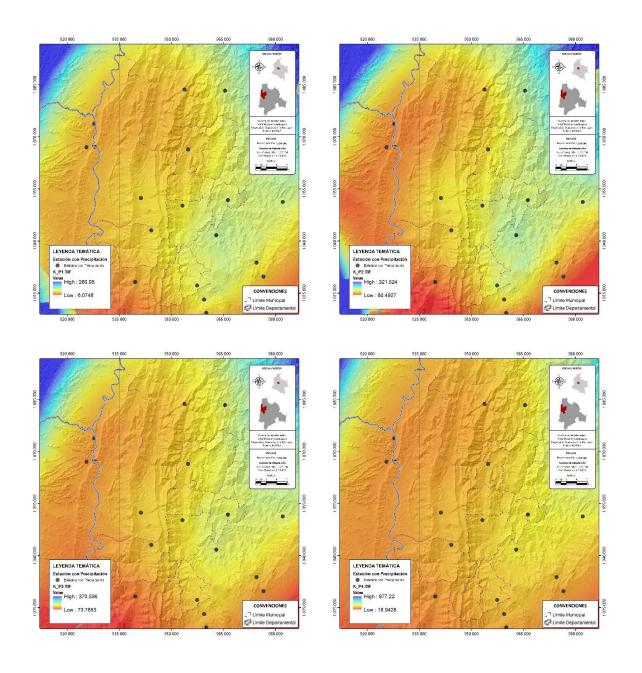
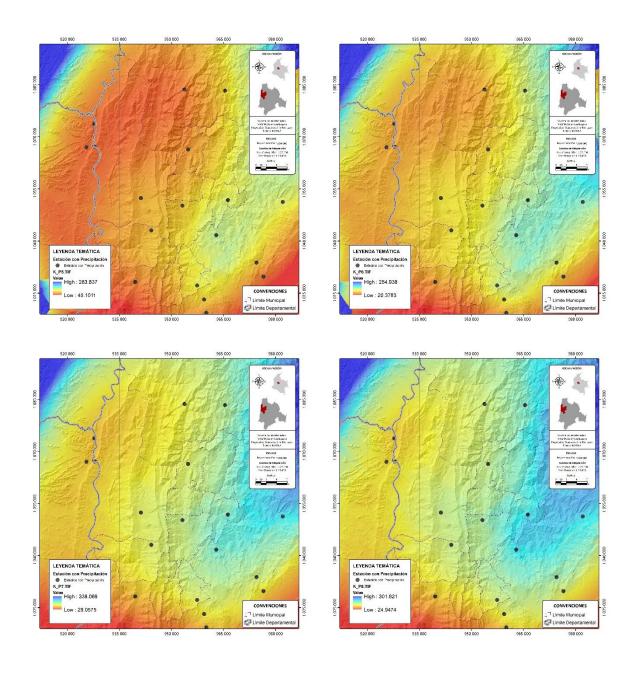
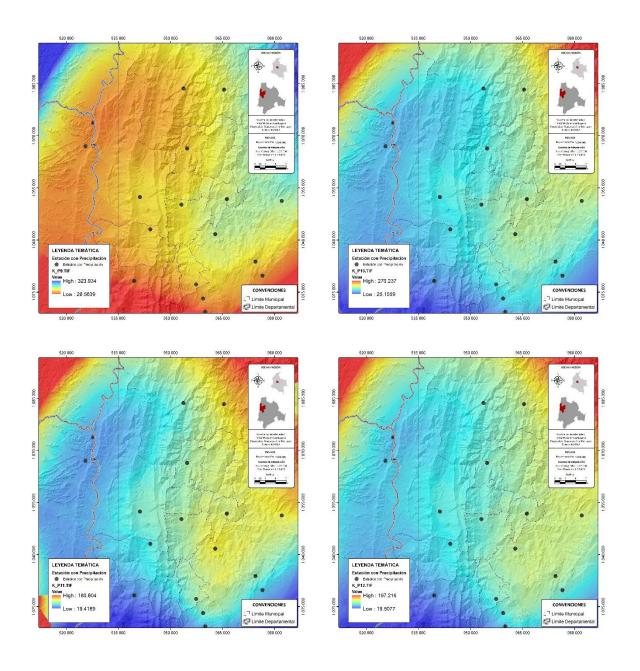
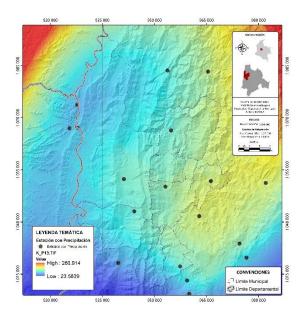


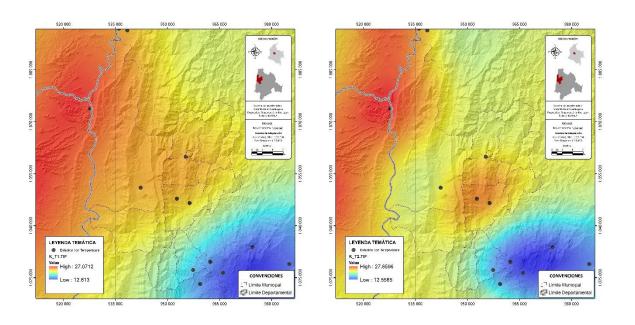
Figura 49. Modelo de predicción espacial para los valores mensuales multianuales y anual multianual de precipitación con Spline

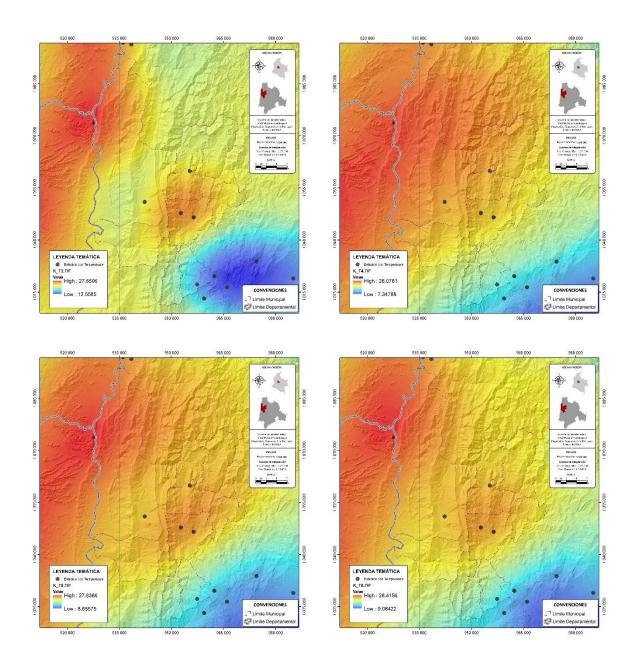

6.7 MODELO DE PREDICCIÓN ESPACIAL PROBABILÍSTICOS PARA LOS DATOS MENSUALES MULTIANUALES Y ANUAL MULTIANUAL DE PRECIPITACIÓN Y TEMPERATURA MEDIA

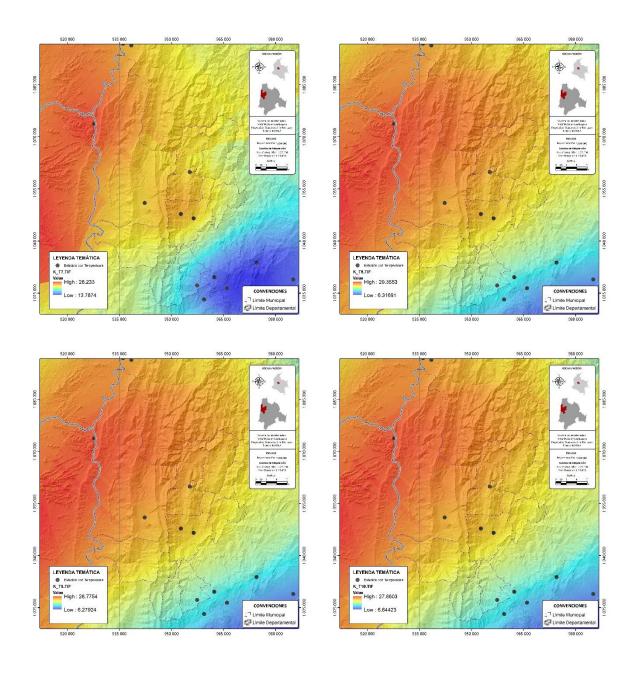
De igual forma se realizó también las interpolaciones espaciales de forma convencional con los datos de temperatura y precipitación por el método probabilístico Kriging Simple, los cuales se muestran en las **Figura 50** y **Figura 51**.










Figura 50. Modelo de predicción espacial para los valores mensuales multianuales y anual multianual de precipitación con Kriging Simple

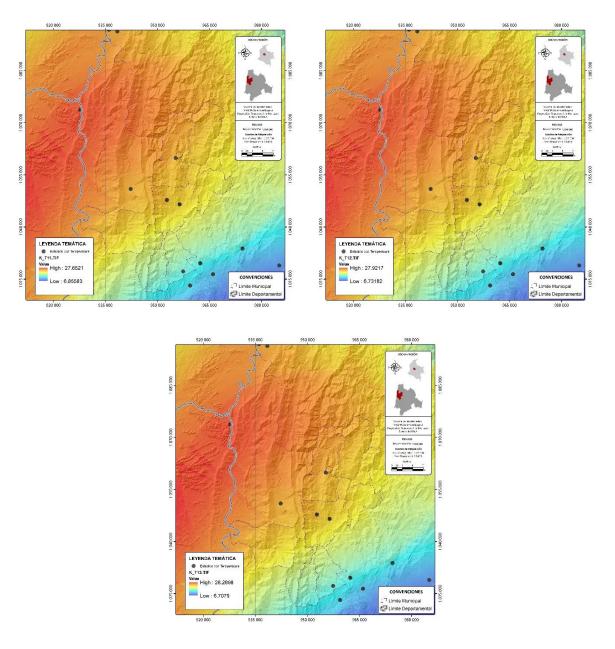


Figura 51. Modelo de predicción espacial para los valores mensuales multianuales y anual multianual de temperatura con Kriging

6.8 EVALUACIÓN DE LA PREDICCIÓN DE LOS MODELOS

La evaluación de la calidad de la interpolación se realizó mediante validación cruzada y evaluando los estadísticos de MSE, RMSE y MAE, el resumen de los resultados obtenidos se presentan a continuación:

Errores	ES_P1	ES_P2	ES_P3	ES_P4	ES_P5	ES_P6	ES_P7	ES_P8	ES_P9	ES_P10	ES_P11	ES_P12	ES_P13
MSE	57.84	95.14	75.18	127.21	38.72	40.44	68.16	83.61	81.28	57.11	25.46	35.12	57.07
RMSE	7.61	9.75	8.67	11.28	6.22	6.36	8.26	9.14	9.02	7.56	5.05	5.93	7.55
MAE	57.84	95.14	75.18	127.21	38.72	40.44	68.16	83.61	81.28	57.11	25.46	35.12	57.07
Errores	ESRML_P1	ESRML_P2	ESRML_P3	ESRML_P4	ESRML_P5	ESRML_P6	ESRML_P7	ESRML_P8	ESRML_P9	ESRML_P10	ESRML_P11	ESRML_P12	ESRML_P13
MSE	38.90	41.03	46.40	74.88	25.81	26.08	99.24	29.26	33.06	29.46	120.78	172.67	24.49
RMSE	6.24	6.41	6.81	8.65	5.08	5.11	9.96	5.41	5.75	5.43	10.99	13.14	4.95
MAE	38.90	41.03	46.40	74.88	25.81	26.08	99.24	29.26	33.06	29.46	120.78	172.67	24.49
Errores	EI_P1	EI_P2	EI_P3	EI_P4	EI_P5	EI_P6	EI_P7	EI_P8	EI_P9	EI_P10	EI_P11	EI_P12	EI_P13
MSE	271.59	509.95	489.64	359.36	239.44	252.64	426.08	491.50	469.44	394.43	182.16	187.04	340.61
RMSE	16.48	22.58	22.13	18.96	15.47	15.89	20.64	22.17	21.67	19.86	13.50	13.68	18.46
MAE	271.59	509.95	489.64	359.36	239.44	252.64	426.08	491.50	469.44	394.43	182.16	187.04	340.61
Errores	EIRML_P1	EIRML_P2	EIRML_P3	EIRML_P4	EIRML_P5	EIRML_P6	EIRML_P7	EIRML_P8	EIRML_P9	EIRML_P10	EIRML_P11	EIRML_P12	EIRML_P13
MSE	118.09	194.55	174.28	129.92	106.39	119.91	183.60	163.25	174.56	170.82	84.54	78.60	130.49
	110.03										9.19		
RMSE	10.87	13.95	13.20	11.40	10.31	10.95	13.55	12.78	13.21	13.07	5.15	8.87	11.42
-			13.20 174.28	11.40 129.92	10.31 106.39	10.95 119.91	13.55 183.60		13.21 174.56	13.07 170.82	84.54	8.87 78.60	11.42 130.49
RMSE	10.87	13.95						12.78					
RMSE MAE	10.87 118.09	13.95 194.55	174.28	129.92	106.39	119.91	183.60	12.78 163.25	174.56	170.82	84.54	78.60	130.49
RMSE MAE Errores	10.87 118.09 EK_P1	13.95 194.55 EK_P2	174.28 EK_P3	129.92 EK_P4	106.39 EK_P5	119.91 EK_P6	183.60 EK_P7	12.78 163.25 EK_P8	174.56 EK_P9	170.82 EK_P10	84.54 EK_P11	78.60 EK_P12	130.49 EK_P13
RMSE MAE Errores MSE	10.87 118.09 EK_P1 440.53	13.95 194.55 EK_P2 1174.84	174.28 EK_P3 1473.71	129.92 EK_P4 961.39	106.39 EK_P5 834.76	119.91 EK_P6 1706.59	183.60 EK_P7 946.80	12.78 163.25 EK_P8 1012.27	174.56 EK_P9 1011.18	170.82 EK_P10 914.91	84.54 EK_P11 320.97	78.60 EK_P12 304.00	130.49 EK_P13 892.37
RMSE MAE Errores MSE RMSE MAE	10.87 118.09 EK_P1 440.53 20.99 440.53	13.95 194.55 EK_P2 1174.84 34.28 1174.84	174.28 EK_P3 1473.71 38.39 1473.71	129.92 EK_P4 961.39 31.01 961.39	106.39 EK_P5 834.76 28.89 834.76	119.91 EK_P6 1706.59 41.31 1706.59	183.60 EK_P7 946.80 30.77 946.80	12.78 163.25 EK_P8 1012.27 31.82 1012.27	174.56 EK_P9 1011.18 31.80 1011.18	170.82 EK_P10 914.91 30.25 914.91	84.54 EK_P11 320.97 17.92 320.97	78.60 EK_P12 304.00 17.44 304.00	130.49 EK_P13 892.37 29.87
RMSE MAE Errores MSE RMSE MAE	10.87 118.09 EK_P1 440.53 20.99 440.53	13.95 194.55 EK_P2 1174.84 34.28 1174.84	174.28 EK_P3 1473.71 38.39 1473.71	129.92 EK_P4 961.39 31.01 961.39	106.39 EK_P5 834.76 28.89 834.76	119.91 EK_P6 1706.59 41.31 1706.59	183.60 EK_P7 946.80 30.77 946.80	12.78 163.25 EK_P8 1012.27 31.82 1012.27	174.56 EK_P9 1011.18 31.80 1011.18	170.82 EK_P10 914.91 30.25 914.91	84.54 EK_P11 320.97 17.92 320.97	78.60 EK_P12 304.00 17.44 304.00	130.49 EK_P13 892.37 29.87 892.37
RMSE MAE Errores MSE RMSE MAE Errores	10.87 118.09 EK_P1 440.53 20.99 440.53 EKRML_P1	13.95 194.55 EK_P2 1174.84 34.28 1174.84 EKRML_P2	174.28 EK_P3 1473.71 38.39 1473.71 EKRML_P3	129.92 EK_P4 961.39 31.01 961.39 EKRML_P4	106.39 EK_P5 834.76 28.89 834.76 EKRML_P5	119.91 EK_P6 1706.59 41.31 1706.59 EKRML_P6	183.60 EK_P7 946.80 30.77 946.80 EKRML_P7	12.78 163.25 EK_P8 1012.27 31.82 1012.27 EKRML_P8	174.56 EK_P9 1011.18 31.80 1011.18 EKRML_P9	170.82 EK_P10 914.91 30.25 914.91 EKRML_P10	84.54 EK_P11 320.97 17.92 320.97 EKRML_P11	78.60 EK_P12 304.00 17.44 304.00 EKRML_P12	130.49 EK_P13 892.37 29.87 892.37 EKRML_P13

Tabla 24. Medición del error de predicción de los modelos planteados para los datos de precipitación

Errores	ES_T1	ES_T2	ES_T3	ES_T4	ES_T5	ES_T6	ES_T7	ES_T8	ES_T9	ES_T10	ES_T11	ES_T12	ES_T13
MSE	0.039	0.038	0.039	0.034	0.033	0.032	0.033	0.035	0.032	0.029	0.034	0.040	0.034
RMSE	0.198	0.195	0.197	0.185	0.183	0.180	0.183	0.188	0.178	0.171	0.184	0.199	0.184
MAE	0.170	0.168	0.171	0.158	0.157	0.151	0.152	0.161	0.145	0.142	0.158	0.172	0.157
Errores	ESRML_T1	ESRML_T2	ESRML_T3	ESRML_T4	ESRML_T5	ESRML_T6	ESRML_T7	ESRML_T8	ESRML_T9	ESRML_T10	ESRML_T11	ESRML_T12	ESRML_T13
MSE	0.079	0.083	0.091	0.065	0.077	0.071	0.061	0.079	0.055	0.059	0.074	0.086	0.074
RMSE	0.281	0.289	0.302	0.254	0.278	0.267	0.248	0.280	0.233	0.243	0.272	0.294	0.271
MAE	0.311	0.234	0.238	0.258	0.226	0.224	0.215	0.229	0.199	0.205	0.220	0.235	0.224
Errores	EI_T1	EI_T2	EI_T3	EI_T4	EI_T5	EI_T6	EI_T7	EI_T8	EI_T9	EI_T10	EI_T11	EI_T12	EI_T13
MSE	0.565	0.534	0.502	0.506	0.486	0.502	0.525	0.527	0.509	0.466	0.486	0.537	0.510
RMSE	0.752	0.731	0.709	0.711	0.697	0.708	0.725	0.726	0.713	0.682	0.697	0.733	0.714
MAE	0.562	0.548	0.528	0.533	0.526	0.545	0.569	0.546	0.558	0.535	0.524	0.540	0.542
Errores	EIRML_T1	EIRML_T2	EIRML_T3	EIRML_T4	EIRML_T5	EIRML_T6	EIRML_T7	EIRML_T8	EIRML_T9	EIRML_T10	EIRML_T11	EIRML_T12	EIRML_T13
Errores MSE	EIRML_T1 0.506	EIRML_T2 0.488	EIRML_T3 0.465	EIRML_T4 0.451	EIRML_T5 0.442	EIRML_T6 0.450	EIRML_T7 0.455	EIRML_T8 0.475	EIRML_T9 0.435	EIRML_T10 0.403	EIRML_T11 0.439	EIRML_T12 0.492	EIRML_T13 0.457
													_
MSE	0.506	0.488	0.465	0.451	0.442	0.450	0.455	0.475	0.435	0.403	0.439	0.492	0.457
MSE RMSE	0.506 0.711	0.488 0.699	0.465 0.682	0.451 0.672	0.442 0.665	0.450 0.670	0.455 0.674	0.475 0.689	0.435 0.660	0.403 0.635	0.439 0.662	0.492 0.701	0.457 0.676
MSE RMSE MAE	0.506 0.711 0.572	0.488 0.699 0.522	0.465 0.682 0.503	0.451 0.672 0.504	0.442 0.665 0.483	0.450 0.670 0.487	0.455 0.674 0.478	0.475 0.689 0.501	0.435 0.660 0.456	0.403 0.635 0.450	0.439 0.662 0.478	0.492 0.701 0.508	0.457 0.676 0.487
MSE RMSE MAE Errores	0.506 0.711 0.572 EK_T1	0.488 0.699 0.522 EK_T2	0.465 0.682 0.503 EK_T3	0.451 0.672 0.504 EK_T4	0.442 0.665 0.483 EK_T5	0.450 0.670 0.487 EK_T6	0.455 0.674 0.478 EK_T7	0.475 0.689 0.501 EK_T8	0.435 0.660 0.456 EK_T9	0.403 0.635 0.450 EK_T10	0.439 0.662 0.478 EK_T11	0.492 0.701 0.508 EK_T12	0.457 0.676 0.487 EK_T13
MSE RMSE MAE Errores MSE	0.506 0.711 0.572 EK_T1 2.414	0.488 0.699 0.522 EK_T2 1.009	0.465 0.682 0.503 EK_T3 0.959	0.451 0.672 0.504 EK_T4 2.379	0.442 0.665 0.483 EK_T5 1.529	0.450 0.670 0.487 EK_T6 1.745	0.455 0.674 0.478 EK_T7 1.855	0.475 0.689 0.501 EK_T8 2.697	0.435 0.660 0.456 EK_T9 2.501	0.403 0.635 0.450 EK_T10 2.401	0.439 0.662 0.478 EK_T11 2.453	0.492 0.701 0.508 EK_T12 2.541	0.457 0.676 0.487 EK_T13 2.840
MSE RMSE MAE Errores MSE RMSE	0.506 0.711 0.572 EK_T1 2.414 1.554 1.815	0.488 0.699 0.522 EK_T2 1.009 1.004 1.027	0.465 0.682 0.503 EK_T3 0.959 0.979 0.990	0.451 0.672 0.504 EK_T4 2.379 1.542 1.730	0.442 0.665 0.483 EK_T5 1.529 1.236 1.232	0.450 0.670 0.487 EK_T6 1.745 1.321 1.320	0.455 0.674 0.478 EK_T7 1.855 1.362 1.502	0.475 0.689 0.501 EK_T8 2.697 1.642 1.850	0.435 0.660 0.456 EK_T9 2.501 1.582 1.783	0.403 0.635 0.450 EK_T10 2.401 1.550 1.748	0.439 0.662 0.478 EK_T11 2.453 1.566 1.763	0.492 0.701 0.508 EK_T12 2.541 1.594 1.805	0.457 0.676 0.487 EK_T13 2.840 1.685 1.883
MSE RMSE MAE Errores MSE RMSE	0.506 0.711 0.572 EK_T1 2.414 1.554 1.815	0.488 0.699 0.522 EK_T2 1.009 1.004 1.027	0.465 0.682 0.503 EK_T3 0.959 0.979 0.990	0.451 0.672 0.504 EK_T4 2.379 1.542 1.730	0.442 0.665 0.483 EK_T5 1.529 1.236 1.232	0.450 0.670 0.487 EK_T6 1.745 1.321 1.320	0.455 0.674 0.478 EK_T7 1.855 1.362 1.502	0.475 0.689 0.501 EK_T8 2.697 1.642 1.850	0.435 0.660 0.456 EK_T9 2.501 1.582 1.783	0.403 0.635 0.450 EK_T10 2.401 1.550 1.748	0.439 0.662 0.478 EK_T11 2.453 1.566 1.763	0.492 0.701 0.508 EK_T12 2.541 1.594 1.805	0.457 0.676 0.487 EK_T13 2.840 1.685 1.883
MSE RMSE MAE Errores MSE RMSE MAE	0.506 0.711 0.572 EK_T1 2.414 1.554 1.815 EKRML_T1	0.488 0.699 0.522 EK_T2 1.009 1.004 1.027 EKRML_T2	0.465 0.682 0.503 EK_T3 0.959 0.979 0.990 EKRML_T3	0.451 0.672 0.504 EK_T4 2.379 1.542 1.730 EKRML_T4	0.442 0.665 0.483 EK_T5 1.529 1.236 1.232 EKRML_T5	0.450 0.670 0.487 EK_T6 1.745 1.321 1.320 EKRML_T6	0.455 0.674 0.478 EK_T7 1.855 1.362 1.502 EKRML_T7	0.475 0.689 0.501 EK_T8 2.697 1.642 1.850 EKRML_T8	0.435 0.660 0.456 EK_T9 2.501 1.582 1.783 EKRML_T9	0.403 0.635 0.450 EK_T10 2.401 1.550 1.748 EKRML_T10	0.439 0.662 0.478 EK_T11 2.453 1.566 1.763 EKRML_T11	0.492 0.701 0.508 EK_T12 2.541 1.594 1.805 EKRML_T12	0.457 0.676 0.487 EK_T13 2.840 1.685 1.883 EKRML_T13

Tabla 25. Medición del error de predicción de los modelos planteados para los datos de precipitación

Fuente: Autores

7. ANÁLISIS DE RESULTADOS

En el proceso de evaluar los modelos de predicción temporal para completar y extender las series temporales de precipitación, se evidencio que la distancia entre estaciones no es factor determinante para mejorar la calidad del resultado. Ya que en algunas series temporales era un factor influyente al disminuir el error de predicción, pero en otras incluir esta condición aumentaba el valor del estadístico de evaluación. Sin embargo, al ser una condición puntual para cada estación se sugiere siempre tener en cuenta su influencia para determinar si esta mejora o no la calidad de la predicción en el proceso de llenado de datos faltantes. De igual forma se concibe que el criterio del número o cantidad de estación a incluir para la evaluación de los polinomios razonables debe ser evaluada de manera puntual para cada estudio.

En cuanto al método de homogenización se evidencia la estabilización de la media del proceso, ya que no se rechaza las hipótesis de la prueba T-Students al 1% de nivel de significancia. Pero en cuanto a la varianza, se tuvo mayor dificultad para no ser rechazada la hipótesis nula de la prueba de F-Fisher.

Se compró a nivel estadístico que la temperatura media se encuentra altamente relaciona con el gradiente altitudinal, con lo cual las alturas más altas (sur-oriente) de la zona presenta las más bajas temperaturas, mientras que el valle del Rio magdalena que presenta las cotas topográficas más bajas registra los más altos valores de la variable (occidente de la zona de estudio), y poca influencia entre la latitud y longitud; esto debido a que la longitud no puede brindar mayor información de la que brinda la altura, al presentar colinealidad que físicamente se evidencia ya que la topografía del sector tiene una tendencia N – S. En cuanto a la longitud es una variable que dentro del desarrollo del fenómeno es físicamente importante ya que la temperatura

disminuye a medida que nos alejamos del ecuador, pero al regionalizar la variable en una zona donde la coordenada norte no varía mucho ya que es local, pierde la connotación física la cual se refleja en el análisis exploratorio estadístico.

Las covariables incluidas para explicar la variable de temperatura parecen ser suficientes, pero se identifica una baja capacidad predictora de los modelos de regresión para la variable de precipitación, lo cual parece generar modelos estadístico fortuitos y no que realmente estén dando sentido físico a la explicación del fenómeno estudiado, lo que sugiere la inclusión de otras covariables que permitan identificar de mejor mañanera el fenómeno espacial de las lluvias como: variables ambiental (ej.: cobertura), variables asociadas a la distancia de influencia de focos (ej.: la distancia al mar) o estados atmosféricos generados por sensores climáticos de escala regional entre otros (vientos, temperatura, etc.), los cuales pueden ser predictores influyentes en la explicación de la formación de las lluvias y su distribución espacio-temporal.

La inclusión de estudios climatológicos que interpolan propiedades espaciales basándose únicamente en la dependencia espacial, como los métodos splines, ponderación del inverso de la distancia y kriging son funcionales cuando la red de observación representa de forma adecuada la población de la variable estudiada y se manejan a escalas regionales. Sin embargo, cuando la estructura espacial no es bien representada por la muestra como se presenta en casos de escalas detallados, los modelos de predicción espacial comunes son limitados por la resolución espacial de los mismos, por lo que la inclusión de variables auxiliares como se plantea en el presente estudio permite generar un modelo espacial de la variable climática ante la falta de la identificación de la estructura espacial adecuada, mejorando la predicción ante la falencia de una idónea

representatividad de la muestra basado en el concepto de que una serie de precipitaciones puede descomponerse en un componente de tendencia y un componente residual.

Lo errores tienden a disminuir cuando se aplica regresiones lineales múltiples usando cualquiera de los métodos de interpolación tanto determinístico como probabilístico. Pero el método de curvatura mínima o spline presenta mejor ajuste para los datos de la región estudiada, los cuales disminuyen cuando se integran con métodos de regresiones lineales múltiples, mientras que el método probabilístico (Kriging ordinario) es el que mayor error de predicción presenta, esto debido a que se ve la dificultad de replicar las ecuaciones que rigen la dependencia espacial en el software manejado, con lo se sugiere realizar dichas interpolaciones en software más flexibles, además que el método es muy sensible a las extrapolaciones, como lo son los valores extremos de las variables explicativas que se hallan fuera los valores máximos y mínimos de los modelo regresivos, lo cual generan valores extremos que no corresponden al desarrollo real del fenómeno.

La inclusión de variables fisiográficas que presentan mucha variabilidad adyacente (cambios brusco en los valores entre pixeles vecinos), genera así mismo predicciones de alta variabilidad espacial. Una solución es incorporar superficies de variables explicativas suavizadas o aplicar modelos probabilísticos que permiten introducir al modelo variables explicativas y generar directamente dentro del proceso de interpolación la dependencia de otras variables en la variable respuesta, estos métodos son conocidos como Cokriging.

Los esquemas clásico de interpolación generan representaciones de la distribución de las precipitaciones y temperatura demasiado suaves, la cual puede verse intensificada si la red de muestre es escaza. A nivel espacial se demuestra la capacidad de construir superficies de interpolación regionalizadas que pueda reflejar el comportamiento espacial de forma más realista

mediante la incorporación de predictores de fácil acceso y físicamente relevante dentro de desarrollo del fenómeno.

Dado que los procesos atmosféricos generadores de lluvias son diferentes en cada región (Montañosa, piedemonte, llanura, etc.) se sugiere implementar procesos de interpolación independientes para cada región homogéneas que permitan refinar los resultados y disminuir la variabilidad de los datos de entrada del modelo.

Los procesos de homogeneización tanto temporal como espacial disminuye la varianza de las variables climáticas, y contribuye a generar modelos de predicción que se forjan en la serie de supuestos en los que se fundamenta los procesos de interpolación, especialmente asociado a los métodos probabilísticos. La implementación de definir un modelo regresivo que permite definir un componente residual cuya media es constante y es estacionaria, admite generar superficie de predicción probabilista físicamente más consistentes, lo cual es una ventaja.

La implementación de algoritmos de fácil uso impide a los usuarios realizar el análisis estadístico exploratorio de los datos, el cual corresponde a una etapa previa que se debe realizar ya que determina las ecuaciones y supuestos que rigen el fenómeno, esta fase es de gran importancia dentro de los procesos de interpolación espacial si se desea un adecuado resultado.

8. CONCLUSIONES

En este estudio, se utilizó una simulación estocástica de espacio-tiempo para estimar los totales de lluvia mensuales para una región determinada durante un período de 27 años. Los aspectos atractivos de la metodología fueron la consideración de la dependencia de la lluvia tanto en el dominio del tiempo como en el espacio y su componente estocástico. Debido a la baja densa red de estaciones en la mayor, la mayor fuente de información se encuentra en el dominio temporal. Las simulaciones sintéticas condicionales de lluvia y temperatura proporcionan un modelo de incertidumbre con respecto a los niveles mensuales desconocidos de precipitaciones totales en el espacio y el tiempo. Tal modelo, aunque conservador en este trabajo debido a que solo el residual se considera una variable estocástica.

El principal problema encontrado en este estudio fue la estimación del modelo de tendencia espacial para la variable de precipitación. Este problema se reveló como una subestimación o sobrestimación de las precipitaciones en regiones específicas, donde se dan las mayores alturas y en la región sureste. En este caso, la sobreestimación o subestimación de la tendencia temporal podría relacionarse con el modelo, ya que se requiere de variables que expliquen mejor la variabilidad temporal de los datos de lluvia, más allá de las variables que condicionan las caracterizaciones topográficas y geográficas, puesto que estas generan una relación débil entre los valores de las estaciones reportadas. El modelo de tendencia espacial resultante se volvió inadecuado y no representó bien la variabilidad uniforme y suavizada del promedio de las precipitaciones. Sin embargo, existen varias opciones para mejorar la precisión de las estimaciones de tendencias temporales.

La metodología dio como resultado un modelo de temperatura razonablemente precisas, identificándose como relación totalmente dependiente la altura más que las coordenadas Nortes y Estes.

Los puntos fuertes de este método son la utilización de información del dominio del tiempo y el espacio y la evaluación de la incertidumbre espacial en los valores estimados de las variables climáticas.

Para la zona de estudio las ecuaciones que rigieron el comportamiento determinísticos de las variables de estudio fueron:

Para los modelos estocásticos cuyos residuales fueron modelados con métodos determinísticos fueron determinados con la siguiente ecuación:

$$\hat{T} = 45.618 - 0.007 * Z - 1.736e - 11 * (N^2) + 0.00001 * E + Residuo$$

Y para los modelos probabilísticos la ecuación que regio el fenómeno espacial de Temperatura fue:

$$\hat{T} = 29.736 - 0.007 * Z - 2.002e - 12 * (N^2) + 0.00001 * E + Residuo$$

Para las Precipitación el modelo que gobernó el componente estocástico fue:

$$\begin{split} \hat{P} &= 2012000\text{-}\,6.439 * \\ \text{Longitud} + &\ 0.000006791 * (Longitud^2) - \ 0.000000000002387 * (Longitud^3) + \ 0.0409 * \\ Latitud - &\ 0.00000001857 * (Latitud^2) \\ &+ &\ 0.00000003259 * (Altura^3) - \ 0.0000000001115 * (Altura^4) \\ &+ &\ 0.01397 * (Pendiente^3) - \ 0.00040897 * (Pendiente^4) \\ &+ &\ 5.324 * (Exposición de ladera^2) + Residuo \end{split}$$

9. BIBLIOGRAFÍA

Aparicio, J., Martínez, M., & Morales, J. (2004). Modelos lineales aplicados en R. Dto. Estadística, Matemáticas e Informática.

Alexandersson, H. (1986). A homogeneity test applied to precipitation data. Journal of Climate, 6, 661-675.

Alexandersson, H., & Moeberg, A. (1997). Homogeneization of Swedish temperature data. Part I: Homogeneity test for linear trends. International Journal of Climatology, 17, 25-34.

Almorox, J.. (2003). Climatología aplicada al medio ambiente y agricultura.

Alzate Velásquez, D. F., Araujo Carrillo, G. A., Rojas Barbosa, E. O., Gómez Latorre, D. A., & Martínez Maldonado, F. E. (2018). Interpolación Regnie para lluvia y temperatura en las regiones andina, caribe y pacífica de Colombia. Colombia forestal, 21(1), 102-118.

Corporación Autónoma Regional de Cundinamarca, (2019). Coberturas y Usos Actuales de la Tierra. Escala 1:100.000.

Díaz-Granados. (2018). Aspectos Estadísticos en la Modelación en Hidrología. Aspectos Estadísticos En La Modelación En Hidrología, 152. Bogotá.

Elousa, P, Introducción Al Entorno R en: Introducción al entorno R, Servicio Editorial de la Universidad del París Vasco. Bilbao, 2011.

Ekström, M, PC Kyriakidis, A. Chappell, PD Jones (2007). Simulación estocástica espacio-temporal de patrones de lluvia mensual en el Reino Unido (1980-1987). Journal of Climate, 20, 4194 ?? 4210.

Guzmán D.; Ruíz, J. F.; Cadena M. Grupo de Modelamiento de Tiempo, Clima y Escenarios de Cambio Climático Subdirección de Meteorología – IDEAM (2014).

Hengl, T. (2009). A practical guide to geostatistical mapping. Luxembourg: Office for Official Publications of the European Communities. 290 p.

Instituto de Hidrología, Meteorología y Estudios Ambientales - IDEAM (2015). Mapas de cambio de la cobertura de bosque 2013-2014. Escala 1:100.000. Sistema de Monitoreo de Bosques y Carbono SMByC.

Instituto de Hidrología, Meteorología y Estudios Ambientales - IDEAM, IAvH, INVEMAR, SINCHI, IIAP, IGAC. (2017). Mapa de ecosistemas continentales, costeros y marinos de Colombia 2017. Versión 2.1.

Instituto de Hidrología, Meteorología y Estudios Ambientales - IDEAM (2019). Mapas de cambio de la cobertura de bosque 2017-2018. Escala 1:100.000. Sistema de Monitoreo de Bosques y Carbono SMByC.

Instituto de Hidrología, Meteorología y Estudios Ambientales - IDEAM. (2020). Catálogo Nacional de Estaciones. Obtenido de https://www.datos.gov.co/Ambiente-y- Desarrollo-Sostenible/Cat-logo-Nacional-de-Estaciones-del-IDEAM/hp9r- jxuu/data.

Jalal, Aras. (2019). Using Regression Kriging to Analyze Groundwater According to Depth and Capacity of Wells. 3. 39-47. 10.21928/uhdjst.v3n1y2019.pp39-47.

Mejía, F., Mesa, O., Poveda, G., Vélez, J., Hoyos, C., Mantilla, R., Barco, J., Cuartas, A., Montoya, M., & Botero, B. (1999). Distribución espacial y ciclos anual y semianual de la precipitación en Colombia. DYNA, 127, 7-26.

Montero Granados. R (2016): Modelos de regresión lineal múltiple. Documentos de Trabajo en Economía Aplicada. Universidad de Granada. España.

Petterssen, S. (1968). Introducción a la meteorología. Uabc.

Prudhomme, C. y DW Reed (1998). Relaciones entre la precipitación diaria extrema y la topografía en una región montañosa: un estudio de caso en Escocia. Revista Internacional de Climatología, 18, 1439-1453.

Rauthe, M., Steiner, H., U., Riediger, A., Mazurkiewicz, A., & Gratzki, A. (2013). A Central European precipitacion climatology—Part I: Generation and validation of a high-resolution gridded daily data set (HYRAS). Meteorologische Zeitschrift, 22(3), 235-256. DOI: https://doi.org/10.1127/0941-2948/2013/0436.

Linsley, R. K., Kohler, M. A., & Paulhus, J. L. H. (1982). Hydrology for engineers. 3rd ed. New York: McGraw-Hill.

Saz, M., Serrano, R., De Luis, M., & Longares, L. (2010). Comparación de métodos de interpolación y de regresión para la cartografía de temperaturas máximas y mínimas absolutas: el caso de Navarra (norte de España) en 2009. En F. Fernández-García, E. Gallan-Gallego & R. Cañada-Torrecilla (eds.). Clima, ciudad y ecosistemas (pp. 473-484). Madrid: Publicaciones de la Asociación Española de Climatología.

Sluiter, R. (2009). Interpolation methods for climate data–Literature review. De Bilt: KNMI. 24 p.

Soenario, I., Plieger, M., & Sluiter, R. (2010). Optimization of rainfall interpolation. De Bilt: KNMI. 31 p.

Wilks, D. S. (2011). Statistical methods in the atmospheric sciences (Vol. 100). Academic press.

Xu, T., & Hutchinson, M. F. (2013). New developments and applications in the ANUCLIM spatial climatic and bioclimatic modelling package. Environmental Modelling & Software, 40, 267-279.