
1 INTRODUCTION

The problem of composing “good” basslines for
songs is a task that is far from easy even for skilled
musicians. Many aspects should be considered such
as the quality of the note progression, the relation-
ship with the melody and the drumbeat, the structure
of the genre, among others. Within the alternative
rock genre, bass is a key element in any song as it
plays an important role in both harmonic and rhyth-
mic sections. More importantly it acts as a bridge
between the two sections, enabling the melody and
rhythm to blend nicely.

Throughout history the ability of solving such prob-
lems has been believed to be a musician-only ability.
However, due to the good results that optimization
algorithms have showed in problems of a wide range
of areas, the topic of musical composition through
optimization algorithms has been of interest for re-
searchers, especially during the latter years. This is
very important, as these problems have usually been

solved through an artistic approach while this re-
search proposes a numeric approach. Nonetheless
one can argue that music is intrinsically mathematic.

2 RELATED WORK

Early work in this field can be found in (Laine &
Kuuskankare, 1994) in which musical pieces are
composed by treating notes as a time series. This re-
search does not take into consideration a specific
genre structure, generating relatively bad solutions
consequence of the unbounded solution space and
differences between genres. With this in mind, the
problem in this research is restricted so that solu-
tions will follow the structure of the Alternative
Rock genre.

Latter researches define the genre very clearly and a
variety of genres have been studied such as Ethiopi-
an Bagana in (Herremans , Weisser, Sorensen, &
Conklin, 2015), Medieval Music in (Geem & Choi,
2007), Jazz and Blues in (Kunimatsu, Ishikawa,

Bassline Composition for Alternative Rock using SP and SDS
algorithms, a multi-objective approach

A.F. Zarta
Universidad de los Andes, Bogotá, Colombia

N. Velasco
Universidad de los Andes, Bogotá, Colombia

Esta investigación tiene como propósito solucionar el problema de encontrar un “buen” bajo para acompañar una melodía y una ba-
tería, siguiendo la estructura del genero Rock Alternativo. El método de solución consta de varias etapas las cuales incluyen: deter-
minar la tonalidad de la canción utilizando un algoritmo de Matching que compara las notas en la melodía con las notas en cada to-
nalidad, ajustar acordes a la melodía construyendo un grafo de posibles progresiones y encontrando la ruta mas corta en este,
improvisar bajos usando estos acordes como guía utilizando el algoritmo “Stochastic Diffusion Search”. Las soluciones deben satis-
facer una serie de restricciones mientras se maximiza la calidad del sonido medida usando dos criterios diferentes.

This research proposes a solution to the problem of finding a “good” bassline to accompany a melody and a drumbeat following the
structure of the alternative rock genre. The solution method is made up of different steps which include: determining the key of the
song by using a matching algorithm that compares the notes in the melody with the notes in each key, fitting chords to the melody
by constructing a graph of possible progressions using candidate chords selected through a matching algorithm and finding the
shortest path in it, improvising basslines using these chords as guidelines through the use of stochastic diffusion search algorithm.
Solutions must satisfy constraints regarding their relationship with the drumbeat and the melody while maximizing the quality of
the overall sound measured with two independent criteria.

Takata, & Joe, 2015) and fifth species counterpoint
in (Herremans et al. 2013).

A great collection of solving techniques have been
utilized such as Predictive models in
(Herremans et al. 2014), in which a classification
model is defined to determine if a song will be part
of the top ten songs billboard, machine learning in
(Dubnov, Assayag, Lartillot, & Bejerano, 2003) and
models based on user feedback in both
(Lichtenwalter, Zorina, & Chawla, 2008) and (Tojui
& Iba, 2000), in which the algorithm generates solu-
tions which are evaluated by the user in order to
construct the objective function iteratively.

Although the topic of musical composition through
optimization algorithms is common to all researches
mentioned, the aim differs vastly form one research
to another. In both (Lozano, Medaglia, & Velasco,
2009) and (Ren, Wang, Du, Liu, & Siddiqi, 2015) a
chord progression is fitted to a particular melody, in
contrast in (López-Ortega & López-Popa, 2012) and
(Alfonseca, Cebrián, & Ortega, 2007) musical sec-
tions are composed without using any predefined
section as basis. Other researches, such as (Dostál,
2005) focus on generation of rhythms and drum-like
sequences rather than note-based music. Bassline1
composition has only been taken into consideration
in (Kunimatsu, Ishikawa, Takata, & Joe, 2015) in
which chords are fitted into a melody and then a
bassline is fitted into these chords generating satis-
factory solutions.

3 PROBLEM DESCRIPTION

Similar to traditional Rock bands, Alternative Rock
bands are usually made up of a drummer, a bass
player, a singer, from one up to three guitarists and a
in some occasions a keyboard player. The writing
process regularly starts when some musician comes
up with a section or riff2 in his or her instrument and
the other members of the band use it as basis for
creating complimentary sounds. In this research we
will be focusing in the case in which a drumbeat and
a melody (produced by voice, guitar or keyboard)
have already been defined and it is desired to gener-
ate a bass riff or “bassline” that can be effectively
incorporated into the existing song. Taking this into
consideration, the quality of a bassline will depend

1 The term bassline refers to a musical line played by a bass
2 The term riff refers to a musical phrase that is repeated

throughout a song.

on the affinity of its groove3 and the groove of the
melody, the relationship between its notes and the
notes of the melody that sound at the same time and
the affinity between its groove and the drumbeat.

In order to solve the problem at hand a two-part al-
gorithm was designed, in which chords will be fitted
to the melody during the first part and basslines will
be improvised using these chords as guidelines dur-
ing the second part. Roughly, the solution algorithm
is structured as follows:

Solution algorithm
Require: M, the melody of the song; D, the drumbeat of the
song; CM, cost matrix of passing from one chord to another;
NCPB, desired number of chords per bar; DT, desired degree
of tension in the chord progression; MM, binary parameter that
determines if the progression has a major or minor character;
N, number of miners to use in SDS; p, probability of keeping
exploring.

1.1 Use a matching algorithm to determine the key of the song.

1.2 Divide the melody M into fragments of equal length de-
pending on the parameter NCPB.

1.3 Use a matching algorithm to define candidate chords that
can be fitted to each fragment, creating a graph of possible
chord progressions.

1.4 Change the CM depending on the values of DT and MM
defined by the user.

1.5 Translate the chords to its diatonic function, by using the
key found.

1.6. Use the modified CM to find the shortest path in the graph
of possible chord progressions to obtain the best progression.

2.1 Using the key and the chord progression found, start SDS
algorithm with N miners and set their statuses to “unpleased”.

2.2 Each miner randomly finds a bassline that satisfies the con-
straints regarding the melody M and the drumbeat K.

2.3 Objective functions values are calculated for each solution
and dominant solutions are included in the Pareto front of solu-
tions.

2.4 If a solution is part of the Pareto front its respective miner
is marked as pleased.

2.5 If a miner is unpleased he either continues searching the
solution space with probability 𝑝 or copies a solution of a
pleased miner with probability (1 − 𝑝).

2.6 Return solutions in the Pareto front after convergence of
the SDS algorithm.

End

3 The groove is the rhythmic feel of a section, given by the

note values used in it.

4 STRUCTURE OF THE GENRE

It was previously stated that it is imperative to con-
straint the solution space to a particular genre. The
genre at hand is Alternative Rock and to define its
structure a database including songs of artists such
as Muse, Kasabian, Red Hot Chili Peppers, War-
paint, among others, was constructed. The database
consists of fifty songs and they are used to deter-
mine different metrics necessary for the algorithm.

4.1 Metrics

The following metrics serve as quantifiers of differ-
ent properties of the genre and are used latter on to
generate, evaluate and constraint solutions:

4.1.1 Frequency of passing from one chord to an-
other

Table 1 shows the values of (100− 𝑓) of passing
from a chord to another. In this case 𝑓 stands for the
frequency with which a chord passes to another giv-
en their diatonic functions4.

Table 1. Cost of passing from chord to another given their
diatonic functions

4.1.2 Frequency of note values in basslines

The frequency in which a certain note value appears
in the basslines of the database of songs is shown in
Table 2.

4 The diatonic function of a chord represents the degree of

tension of the chord in relation to the key.

Table 2. Observed Frequency of Note Values
Whole 0%
Half 2,5%

Quarter 10%
Eight 55%

Sixteenth 30%
Thirty-Second 2,5%

4.1.3 Kick Drum / Bass Relationship

It was found that certain behaviors were very com-
mon in the songs regarding the relationship between
the kick drum and the bassline. Representing the
bassline (white) and the kick drum (gray) as squares,
in which its length is proportional to the duration of
the sound5, the only patterns found are shown in Fig
1.

 Figure 1. Allowed kick/bass patterns

In contrast, Fig 2 shows the patterns that never
showed up.

 Figure 2. Banned kick/bass patterns

4.1.4 Upper bound for musical intervals

The musical interval between each pair of notes that
overlap6 was determined. More importantly the pro-
portion in which every interval appears within each
song was found. This allows us to determine upper
bounds for each interval. The upper bound is defined
as the mean plus two standard deviations because it
resulted in values consistent with the maximum pro-
portions found. Table 3 shows explicitly the infor-
mation mentioned.

5 A square can represent any note value, the important

thing to notice is that if a square has more length than other, it
also has a smaller note value.

6 The pair is composed of one note from the melody and
one note from the bassline. Overlap means that they sound at
the same time.

Table 3. Upper bound for musical intervals
Unison 51,2%

Minor Second 3,9%
Major Second 26,9%
Minor Third 18,2%
Major Third 16,7%

Perfect Fourth 41,0%
Tritone 6,9%

Perfect Fifth 36,2%
Minor Sixth 23,5%
Major Sixth 41,3%

Minor Seventh 20,4%
Major Seventh 11,4%

4.1.4 Score of using a note in the bassline

Table 4 shows the score given to the notes when
they are included in the bassline during a section
that corresponds to a certain chord given its diatonic
function.

Table 4. Score for the musical interval between a note and
the root of the chord ringing given the diatonic function

 I ii iii IV V vi vii
Unison 5 5 2 5 5 5 0

Minor Second 0 -2 0 -2 -2 0 0
Major Second 0 -2 -2 0 2 1 0
Minor Third -2 1,5 0 -2 -2 2 0
Major Third 2 -2 -2 3 0 -2 0

Perfect Fourth 0 -2 2 -2 1 2 0
Tritone -2 -2 -2 1 -2 -2 0

Perfect Fifth 2 3 1 3 2 3,5 0
Minor Sixth 1 1,5 0 -2 -2 0 0
Major Sixth 0 -2 -2 1 2 -2 0

Minor Seventh 0 1 -2 0 0 0 0
Major Seventh 1 -2 -2 2 -2 -2 0

The values shown in Table 4 were defined based on
the frequency of their appearance and a post calibra-
tion done with the help of last semester music stu-
dents.

4.1.5 Score of using a note value in the bassline

The frequency in which a note value in the bass
overlaps with a note value in the melody is used to
define a score for each pair of note values that over-
lap as shown in Table 5.

Table 5. Score for pairs of note values (melody in rows and

bass in columns)
 Half Quarter Eight Sixteenth Thirty-Second

Half -1 1 1 -1 -1
Quarter -1 1 1 0 -1
Eight -1 2,6 5 1 -1

Sixteenth -1 2,7 5 1 -1
ThirtySecond -1 -1 1 -1 -1

As with the previous metric, the values shown in
Table 5 were defined based on the frequency of their
appearance and a post calibration done with the help
of music students.

4.1.6 Time signature of the genre

By far the most common time signature in the genre
is 4/4. For this reason all generated basslines use this
time signature as default.

5 MUSICAL NOTATION/ SOLUTION
CODIFICATION

To represent melody-like and drum music a two-
dimensional array is used. The array for melody and
bass includes the succession of notes played along
with the note value of each note, as Fig 3 shows.

Note 1 Note 2 … Last Note
NV (1) NV (2) … NV (Last)

Figure 3. Melody and bassline representation

Notes are written using the CAGED7 system and
each note value is represented by an integer which
indicates how many notes with a particular note val-
ue would fit into one bar (Table 6).

Table 6. Note Value Equivalencies
Whole 1
Half 2

Quarter 4
Eight 8

Sixteenth 16
Thirty-Second 32

7 In the CAGED system the notes Do, Re, Mi, Fa, Sol, La

and Si are represented by the letters C, D, E, F, G, A and B re-
spectively.

As an example, the bassline of the verse of the song
“Snow Hey Oh” by the Red Hot Chili Peppers is
presented in the required format (Fig 4).

G# C# D# E D# C# B D# E F# B A#

4 8 8 4 8 8 4 8 8 4 8 8

Figure 4. Bassline of the song “Snow Hey Oh”

This bassline is composed of four quarter-notes and
eight eight-notes, which implies this bassline lasts
for two bars.

This format for music representation was inspired by
traditional music notation and aims to capture the
essence of the pentagram but in a way that can be
easily handled for computer programming. Penta-
grams include the sequence of notes played as well
as the duration of each note. However in the penta-
gram this representation is of visual character as
each note is defined by its placing within the penta-
gram, not by a letter and the note value of each note
is represented by a symbol rather than an integer. In
this sense both notations are quite similar and trans-
lation from one to another can be done easily. None-
theless pentagram presents information regarding
the octave of the notes played, while the notation de-
fined for this work does not.

The format used for the drumbeat is similar to the
precedent. Since the drumbeat can be decomposed
into its three main elements: the kick drum, the snare
and the hi-hat, each percussion element is represent-
ed as a two-dimensional array, which includes if the
percussion is ringing at a certain time or not and the
duration of each sound or silence, as in Fig 5.

Percussion Silence Percussion … Silence
NV (Percussion) NV (Silence) NV (Percussion) … NV (Silence)

Figure 5. Drumbeat representation

Although it can be considered that no notes are
played in the drumbeat the use of note value is still
valid as it refers to the duration of the sound or si-
lence that is playing. Same conventions as for melo-
dy and bass are used regarding the note value equiv-
alencies.

As an example, the beat of the kick drum of the song
“Girls and Boys” by The Subways is presented in
Fig 6, in which “K” stands for kick drum and “S” for
silence:

S K K S K K S K

8 8 8 8 8 8 8 8

Figure 6. Kick drum beat of the song “Girls and Boys”

The beat is composed of eight eight-notes, making it
a one-bar beat.

Drummers use a notation similar to the pentagram,
in which each line represents a percussive instru-
ment and every time one is playing a symbol is used
to represent the duration of the sound. This is very
similar to the notation previously stated and one can
be easily translated into the other without loosing
any information.

6 FEASIBILITY OF SOLUTIONS

The feasibility of a solution is associated to two
main constraints: the drumbeat constraint and the
melody constraint.

When analyzing the relationship between the bass
and the drumbeat several conclusions were made. In
first place, the hi-hat tends to serve as an indicator of
the tempo of the song and thus it lacks a strong rela-
tionship with the bass. Secondly, the snare provides
great movement to the drumbeat but it was not pos-
sible to determine common snare/bass patterns, as
these tend to change drastically from song to song.
However this is not the case for the kick drum,
which is what was expected since both the bass and
the kick drum are the low-end sections of any alter-
native rock song. In greater detail “the bass is a low
frequency instrument, so when it hits a note simulta-
neously with the kick the syncopation is strong and
provides a solid foundation to the rest of the musical
structure” (Bassinplace, 2008).

Because of this, only the kick drum was taken into
consideration when evaluating the relationship be-
tween the bassline and the drumbeat.

6.1 Kick Drum Constraint

It was previously stated that the kick drum/bass rela-
tionship is the most important as both are the low-
end part of any song and thus its relationship has
special properties.

By looking at Figs 1 and 2 it is possible to conclude
that all kick notes are played when a bass note either
starts or right before it finishes. Also all kick notes
have a smaller or equal note value than the bass note
they accompany. For a bassline to be feasible it must

only present patterns from the allowed pattern list
shown in Fig 1.

6.2 Bass/Melody Intervals Constraint

In order to avoid the situation in which a bassline
follows too closely the melody a constraint regard-
ing the musical interval between each pair of notes8
that overlap was defined. The interval is calculated
using the melody note as the root, so if the melody
plays a C note while the bass plays a D note, the in-
terval is “major second” rather than “minor sev-
enth”.

For a bassline to be feasible the proportion of each
musical interval must not exceed the defined values
in Table 3.

7 SOLUTION EVALUATION

Recall from section 5 that a bassline is composed of
a sequence of notes, each one of them with an asso-
ciated note value. In order to evaluate the quality or
“fitness” of a bassline one must evaluate both the
notes and note values that made it up. In favor of do-
ing so, two criteria were defined. In first place how
good is the groove of the bass given the note values
used in the melody and secondly, how good is the
sequence of notes the bass plays given the chords
fitted to the melody. Both metrics are defined in a
way that better solutions will have greater scores,
meaning this is a multi-objective maximization
problem.

7.1 Quality of Notes in the Bassline

In order to quantify the quality of the notes used in
the bassline a score was constructed based on the
notes played and the diatonic function of the section
they sound in. The bassline generation is guided by
the chords fitted to the melody, because of this it is
easy to determine the diatonic function of the chord
that is ringing when a certain note is playing. For
this, the musical interval between the root of the
chord and the note that sound at the same time is
considered.

8 The pair refers to one note from the bassline and one note

from the melody.

Using the scores presented in Table 4 the final score
can be computed, which is equal to the sum of all
the scores of the notes that are playing depending on
the moment they are played, divided by the number
of notes in the bassline. This is done to correct the
effect in the final score that basslines with many
notes will have as a consequence of summing more
terms.

This metric was inspired by the work of (Lozano,
Medaglia, & Velasco, 2009), in which a score is
given to a note depending on the musical interval
between it and a note of the chord that sound at the
same time, depending on the diatonic function of the
chord and the key. By doing this we are guarantee-
ing that the notes in the bassline complement the
melody nicely without exhaustively comparing each
pair of notes but rather ensuring that the notes of the
bassline will suit the chord progression appropriate-
ly.

7.2 Groove of the bassline

The note values used in the bassline dictate its
groove. Even if the notes used complement the mel-
ody nicely, the bass and melody would not blend
pleasantly without a groove that allows it. In order to
measure the quality of the bass groove the note val-
ues of the bass and the melody are compared.

In a similar fashion to the evaluation of the quality
of the notes, using the scores presented in Table 5, a
final score is computed for each solution, which is
equal to the sum of all the scores of the notes that
overlap divided by the number of notes that overlap.
This is also done to correct the effect in the final
score that basslines with many notes will have as a
consequence of summing more terms.

This metric presents a way of determining if the note
values in the bassline present a good configuration
when compared with the note values of the melody.
After all, these note values are responsible for how
good the bass and melody blend.

8 THE SOLUTION ALGORITHM

The algorithm was designed to work best on particu-
lar riffs rather than on whole songs. This, because a
vital input for the algorithm is the key of the melody
and within the alternative rock genre it is not un-
common that the key varies throughout the song;

and in this way the algorithm is more flexible being
able to consider pieces of any length. To start the so-
lution several inputs are necessary: a melody and a
drumbeat in the format previously stated and some
parameters that will be explained next.

8.1 Input Parameters

As it has already been established, flexibility within
the algorithm is desired; because of this some pa-
rameters that change the way the solutions are con-
structed were included. These parameters must be
defined by the user and are the following:

• Key of the song (Chosen among a list of can-

didates). Only major keys are accepted as val-
id input although this can be modified with the
parameter MajorMode.

• Number of chords per bar: it takes the values
of 1, 2 and 4 since higher values are unlikely
to be found in the genre

• MajorMode: binary parameter that could be

true if the selected key is going to be used or
false if it is preferred to use the relative minor
of that key instead.

• DegreeOfTension: 0 if a low degree of tension

in the chord progression is desired, 1 if it is a
high degree.

8.2 Determining the key of the song

The key of a song dictates which notes can and can-
not be played within it, thereby determining it plays
a vital role in reducing the solution space consider-
ing only chords and notes within the key of a song.
It is important to mention that skilled musicians
break this constraint on several occasions; however
respecting it is a far more common practice. Because
of this, the constraint is applied during the rest of the
solution algorithm.

The key of a song is common to all the instruments
in it, because of this, finding the key in which the
melody most likely is, is equivalent to finding the
key of the song. A matching algorithm is used for
finding the possible keys that the melody is in. The
matching algorithm works as follows:

1. An array containing the notes within the key

is created for the twelve existing major keys.
For example, the key of C major includes the
notes C, D, E, F, G, A and B (This array is
represented on Fig 7).

C D E F G A B
Figure	
 7.	
 Array	
 of	
 the	
 C	
 major	
 key	
 	

2. All the key’s arrays are checked and a score

is assigned to each key, which is equal to the
sum of notes that appear both in the melody
and in the array for that key. The maximum
score for any key is seven as it is the number
of notes that compose each one.

3. The key with maximum score is selected be-

cause it is the one that the melody is most
likely to be in. If there are two or more keys
with the same score, the user can select the
one to be employed.

It is important to notice that only major keys are
considered. This is due to the fact that all major keys
have a relative minor, which is composed of the ex-
act same notes. However this does not present a lim-
itation since the major or minor character of the
chord progression can be manipulated with the pa-
rameter MajorMode.

8.3 Breaking the melody into fragments

Taking the note values of the melody, a partial sum
is computed from note i to note j in the following
manner: !

!"(!)
+ !

!"(!!!)
+⋯+ !

!"(!)
. Given the fact

that a 4/4 time signature is supposed, when this par-
tial sum is equal to one a chord must be selected to
accompany this fragment of the melody.

It is important to mention that the parameter Number
of chords per bar works by multiplying the quotient
!

!"(!)
 for each note value in the melody. In order to

show why this works, let’s do an example.

Suppose we have the melody represented with Fig 8,
which is a one-bar melody.

A B A C D B A A

8 8 8 8 8 8 8 8

 Figure 8. Generic melody

If one chord per bar is desired, the whole melody
would be used for the matching algorithm since it is
exactly one-bar long.

If two chords per bar are desired, the partial sum
will be equal to one after the notes A, B, A and C
are played, which can be easily seen by computing
the sum: 1

8 ∗ 2+ 1
8 ∗ 2+ 1

8 ∗ 2+ 1
8 ∗ 2 = 1.

This fragment would then be used for the matching
algorithm. The same is true for the second half of
the melody.

If four chords per bar are desired, the partial sum
will be equal to one after the notes A, and B are
played, which can be seen by computing the
sum: !

!
∗ 4+ !

!
∗ 4 = 1. The same is true for the

remaining three fragments.

8.4 Finding candidate chords

During this step the aim is to find the chords that fit
particular segments (defined by the number of
chords per bar) of the melody, as previously stated.

A matching algorithm is used in the same way as
when defining the key of the melody but this time
only for each fragment and returning chords, instead
of keys.

Thirty-six arrays are created for each one of the ma-
jor, minor and diminished chords in existence. Each
one works the same as the key arrays, but this time
the chords with the 𝑚𝑎𝑥𝑖𝑚𝑢𝑛 and the 𝑚𝑎𝑥𝑖𝑚𝑢𝑛−
1 scores are returned. This is done to have a bigger
list of candidates to use.

8.5 Constructing the graph of chord progressions

For each melody fragment a set of candidate chords
is determined using the matching, as previously ex-
plained.

Using these chords a graph is generated. Node 0 and
U are dummy nodes representing the beginning and
the end of progression. The nodes in between are the
candidate chords found, arranged in a way that each
“column” of the graph has the selected chords for
each fragment. An arc (𝑖, 𝑗) represents the possibil-
ity of passing from the chord 𝑖 to 𝑗 with an associat-
ed cost 𝑐!" defined as in Table 1.

The next example aims to make this clearer.

Suppose we are constructing the graph for the song
Warpaint by the band Warpaint. Fig 9 shows the
melody of its verse.

E G B E E E B E B D A D D D D C D E
8 8 8 16 8 16 8 8 8 8 8 8 16 8 16 8 8 8

Figure 9. Melody of the verse of the song “Warpaint”

This melody is a two-bar melody and one chord is
desired per bar. For the first bar the matching algo-
rithm returns the chords Em and G, which will be
placed in the first “column” of the graph. In the oth-
er hand, the chords Am and D are returned for the
second bar, which are placed in the second “col-
umn”. The resulting graph is shown in Fig 10.

Figure 10. Progression graph of the song “Warpaint”

Finding the shortest path from node 0 to U allows us
to find the optimal chord progression.

8.5 Finding the Shortest Path

In order to model this problem as a shortest path
problem the costs of passing from any chord to an-
other needed to be collected. As wide and broad as
the alternative rock genre is, collecting this infor-
mation for all the keys9 presents a big roadblock
since there are keys that are very popular and some
that are very unpopular within the genre. For exam-
ple, songs in the key of G major are really common

9 The cost of passing from chord to another will be differ-

ent for each key, since each chord plays a different role within
each key.

while only a few songs are in the key of D# major.
In order to solve this, the diatonic function of the
chords was used instead.

The diatonic function is independent of the key in
the sense that it functions equally for all the keys.
Take the C major key as an example. Given this key
it is possible to know the chords that are in it (C, d,
e, F, G, a, bd) being I the diatonic function of the
chord C, ii of d, iii of e and so on10. As an example,
the chords in the key and their diatonic function are
shown in Fig 11 for the keys of C and E major.

Key:
C maj

C d e F G a bd
I ii iii IV V vi vii

Key:
E maj

E f# g# A# C d dd
I ii iii IV V vi vii

Figure 11. Chords in the keys of C and E major and their dia-
tonic function

Given the key and the progression graph it is possi-
ble to translate each chord into its diatonic function
and then use the cost matrix presented in Table 1 to
find the shortest path within the graph by using the
Dijkstra algorithm.

In our example the translation will result in the
graph shown in Figure 12, given that the song is in
the key of G major.

Figure 12. Progression graph of the song “Warpaint” using

diatonic function

In this case the shortest path is 0− 𝑣𝑖 − 𝑉 − 𝑈,
which if translated back to chords means that during
the first bar an E minor chord must be played and a
D major chord during the second bar.

The graph represented in Fig 13 is an example of
how the graph will look for the verse of the song
Snow (Hey Oh) by the Red Hot Chili Peppers:

10 In this context the notation used is lower case for minor

chords and capital letters for major ones.

Figure 13. Progression graph of the song “Snow Hey Oh”

Given that the key of the song is B major and the
appropriate number of chords per bar is two, when
translating the chords to its diatonic function the
shortest path is 0− 𝑣𝑖 − 𝐼𝑉 − 𝐼 − 𝑉 − 𝑈. This
means that a G# minor chord must be played during
the first half of the first bar, an E major chord during
the second half of the first bar, a B major chord dur-
ing the first half of the second bar and a F# minor
chord during the second half of the second bar. It is
important to notice that this chord progression
shares the same root notes as the original bassline of
the song (Figs 14 and 15).

G#m E B F#m
2 2 2 2

Figure 14. Chords with duration for “Snow Hey Oh”

G# C# D# E D# C# B D# E F# B A#

4 8 8 4 8 8 4 8 8 4 8 8

Figure 15. Bassline of the song “Snow Hey Oh”

8.6 Stochastic Diffusion Search for Bassline improv-
isation

Now that the key of the song has been defined and a
chord progression has been fitted to the melody, it is
time to compose the bassline.

The stochastic diffusion search algorithm works by
selecting a number of “miners” who are responsible
for exploring the solution space in search of good
solutions. During the first iteration of the algorithm
each miner randomly selects a solution. Solutions
are then evaluated and the miner with the current
best solution is marked as pleased. Unsatisfied min-
ers will either search for a new random solution or
copy the current best one given a probability of
keeping exploring. The algorithm ends when all
miners converge to a solution meaning they are all
pleased.

This solution algorithm was chosen among many
others because it combines exploration and intensifi-
cation techniques in a way that few algorithms do.
Also, it was used in (Majid Al-Rifaie & Majid Al-
Rifaie, 2015) for generating music from plain text,
which is a similar approach to the one in this work,
and satisfactory solutions were generated.

The problem at hand tries to maximize two criteria,
because of this, the traditional SDS algorithm had to
be modified. Rather than being pleased when their
solution is the current best one, miners will be
pleased if their solution is included in the Pareto
front.

The Pareto front is composed of all the solutions that
are not dominated by any other solution11. The algo-
rithm ends when all miners are pleased.

8.7 Generating Random Solutions

It was previously stated that in SDS miners search
the solution space randomly. Because of this, an al-
gorithm that generates random and feasible solutions
needed to be developed.

Having the chord progression as well as the number
of chords per bar an empty bass is created which
contains zero notes and zero note values. Random
note values are generated and added to the bassline
until the whole, half or quarter (defined by the num-
ber of chords per bar) bar is completed. The values
in Table 2 were used to define probabilities of gen-
erating a certain note value, which are equal to the
observed frequencies presented in Table 2.

Then, a note is assigned to each note value by ran-
domly selecting one of the three notes that made up
the chord that is assigned during that time. This is
done for the same number of bars of the melody.

Each randomly generated bassline must satisfy the
constraint associated with the drumbeat. If a bassline
does not satisfy this constraint it is eliminated and
the process is repeated until one that does is found.

However these solutions rarely satisfy the constraint
imposed by the musical intervals of the notes that

11 This means that there is not any bassline that has a great-

er value in both criteria.

overlap in the bass and melody. The solution is re-
constructed until it satisfies both constrains.

For this, a position in the array of the bassline is
randomly selected and a new note value is generated
using the same probabilities as the initial solution.

If the new note value is equal to the old one,
nothing happens.

If it is bigger, the new note value is used in the
bassline and new note values are generated and add-
ed to the bassline until the bar is complete. Then for
each new note value a new note is randomly selected
from the list of notes that belong to the key of the
song12.

If it is smaller, the new note value is used in the
bassline and notes of the same bar are randomly
eliminated until the bar is complete.

It is important to notice that if a change in the solu-
tion results in it not respecting the drum constraint,
the change is not made.

By doing this, in a few iterations the initial solution
is reconstructed into a solution that satisfies both
constrains and thus is feasible.

SDS runs until all miners are pleased which means
they converge to a Pareto front.

9 RESULTS

The algorithm was tested on twenty of the songs in
the database. In order to show the results obtained a
particular and exhaustive example will be presented,
followed by the comparison of different solutions
with the original bassline for five songs.

The algorithm was applied to the song “Californica-
tion” by the Red Hot Chili Peppers, using the vocal
line of the first verse of the song as melody. The
song is in the key of C major and the chord progres-
sion generated (with one chord per bar) consists of
Am and F in loop during the six bars of the frag-
ment. Figs 16 to 20 show the Pareto front found for
different number of miners and probabilities of
keeping exploring:

12 In the same manner that chords belong to keys, notes do

so. Actually, the chords in a key exist within it as a result of the
notes that made them up.

Figure 16. Pareto front for probability = 0,1

Figure 17. Pareto front for probability = 0,3

Figure 18. Pareto front for probability = 0,5

Figure 19. Pareto front for probability = 0,7

Figure 20. Pareto front for probability = 0,9

This exercise is done in pro of calibrating the algo-
rithm by defining an appropriate number of miners
and an appropriate probability, which will result in
better solutions.

It is important to consider that SDS is a non-
deterministic algorithm and thus it generates differ-
ent solutions and different Pareto fronts every time it
runs. Even though it can vary, the behavior of the
fronts shown in this example is common to almost
all scenarios for this song.

Analyzing the Pareto fronts generated it was found
that in general, dominant fronts produce better solu-
tions over dominated fronts. The front generated by
using twenty miners is similar or worst than the one
using fifteen, because of this fifteen is a good num-
ber of miners for this particular song. Fig 21 shows
the fronts using fifteen miners and different proba-
bilities.

Figure 21. Pareto front for number of miners = 15

Comparing the fronts in Fig 21 it can be seen that
similar fronts are generated for probabilities greater
than 0,3. It is concluded that a good probability of
keeping exploring for this particular song is 0,5
since it generates good solutions in a fraction of the
time than with greater probabilities.

1	

1,5	

2	

2,5	

3	

3,5	

4	

3	
 3,5	
 4	
 4,5	

Sc
or
e	

(n
ot
e	

va
lu
es
)	

Score	
 (notes)	

5	
 Miners	

10	
 Miners	

15	
 Miners	

20	
 Miners	

1,5	

2	

2,5	

3	

3,5	

4	

3,2	
 3,7	
 4,2	

Sc
or
e	

(n
ot
e	

va
lu
es
)	
 	

Score	
 (notes)	
 	

5	
 Miners	

10	
 Miners	

15	
 Miners	

20	
 Miners	

0,5	

1	

1,5	

2	

2,5	

3	

3,5	

4	

3	
 3,5	
 4	
 4,5	

Sc
or
e	

(n
ot
e	

va
lu
es
)	
 	

Score	
 (notes)	

5	
 Miners	

10	
 Miners	

15	
 Miners	

20	
 Miners	

0	

1	

2	

3	

4	

3,6	
 3,8	
 4	
 4,2	
 Sc
or
e	

(n
ot
e	

va
lu
es
)	

Score	
 (notes)	

5	
 Miners	

10	
 Miners	

15	
 Miners	

20	
 Miners	

1	

1,5	

2	

2,5	

3	

3,5	

4	

4,5	

2,5	
 3,5	
 4,5	

Sc
or
e	

(n
ot
es
	
 v
al
ue
s)
	

Score	
 (notes)	

5	
 Miners	

10	
 Miners	

15	
 Miners	

20	
 Miners	

0	

1	

2	

3	

4	

5	

3	
 3,5	
 4	
 4,5	

Sc
or
e	

(n
ot
e	

va
lu
es
)	

Score	
 (notes)	

0,1	

0,3	

0,5	

0,7	

0,9	

Using the Pareto front of fifteen miners and proba-
bility equal to 0,5 the solutions are saved. Out of
four basslines considered, two blend nicely with the
melody and the drumbeat according to the subjective
opinion of the authors and consultants who are cur-
rently studying music.

Figures 22 to 25 present the Pareto front13 vs the ob-
jective values of the original bassline of the song for
five different songs, by Arctic Monkeys, Warpaint,
The Subways and Red Hot Chili Peppers (last two),
respectively.

Figure 22. PF14 vs OB15 for the song “Black Treacle”

Figure 23. PF vs OB for the song “Elephants”

Figure 24. PF vs OB for the song “Girls and Boys”

13 After proper calibration
14 Pareto Front
15 Original Bassline

Figure 22. PF vs OB for the song “The Zephyr Song”

Figure 25. PF vs OB for the song “This Velvet Glove”

In general terms, the original bassline of the songs
either will be part of the Pareto front or dominate it.
This was expected since the aim of this work is not
to generate similar or better solutions than the origi-
nal bassline but rather “good” basslines.

One could think that the solutions of interest are lo-
cated in the middle of the front, as extreme solutions
have a really good value for one criterion but per-
form poorly in the other. However, it was deter-
mined that this is not the case, as in many cases the
original solution is an extreme solution of the Pareto
front. This is evidence of the fact that at least one of
the solutions in Pareto front, regardless of their posi-
tion within it, blend nicely with the melody and the
drumbeat.

The algorithm was tested for several other songs and
it was determined that if a correct number of miners
and a correct probability are selected at least one of
the solutions in the Pareto front will complement the
melody and the drumbeat pleasingly according to
the subjective opinion of the authors and last semes-
ter music students.

Figures 26 to 28 present the average number of ob-
jective function evaluations, average number of iter-
ations and average time elapsed for thirty runs of the
algorithm using different numbers of miners and
probabilities for the song “Californication”.

2	

3	

4	

5	

6	

3,2	
 3,7	
 4,2	
 4,7	

Sc
or
e	

(N
ot
e	

Va
lu
es
)	

Score	
 (notes)	

Pareto	

Front	

Original	

2,7	

3,2	

3,7	

4,2	

4,7	

1,5	
 2,5	
 3,5	
 4,5	

Sc
or
e	

(N
ot
e	

Va
lu
es
)	

Score	
 (Notes)	

Pareto	
 Front	

Original	

2	

3	

4	

5	

2	
 3	
 4	

Sc
or
e	

(N
ot
e	

va
lu
es
)	

Score	
 (notes)	

Pareto	
 Front	

Original	

2,3	

2,8	

3,3	

3,8	

2	
 2,5	
 3	
 3,5	

Sc
or
e	

(n
ot
e	

va
lu
es
)	

Score	
 (notes)	

Pareto	
 Front	

Original	

2	

2,5	

3	

3,5	

4	

4,5	

1,5	
 2,5	
 3,5	
 4,5	

Sc
or
e	

(n
ot
e	

va
lu
es
)	

Score	
 (notes)	

Pareto	
 Front	

Original	

Figure 26. Number of objective function evaluations

Figure 27. Number of iterations

Figure 28. Time elapsed in seconds

As it can be seen in Figs 26 to 28, in general, the av-
erage number of objective function evaluations, the
average number of iterations and the average time
elapsed increase when there is an increment in the
number of miners and probability. This was ex-
pected because a greater probability forces the min-
ers to keep exploring instead of copying a solution
that belongs to the Pareto front and more miners al-
low greater exploration but slower convergence.

10 CONCLUSIONS

The area of music composition through optimization
techniques is an area that has developed greatly dur-
ing new millennium. Researches tend to focus on
chord fitting for melodies or generation of melodies
and rhythms. However, bassline composition is still
an underdeveloped topic in this area, which has been

studied in very few investigations. This work pre-
tends to expand the state of art of this topic.

The aim of this research was to solve the problem of
finding a good bassline for a given melody and a
given drumbeat, which was satisfactorily achieved
through the use of a flexible algorithm that combines
different metaheuristics to solve a multi-objective
optimization problem, which guaranties that at least
one good bassline will be found if calibrated appro-
priately. Nonetheless, there were cases when at least
one good solution was found but the other solutions
did not blend well, especially with the melody. This
indicates that the algorithm still can be improved by
refining the solution method and the metrics used for
quantifying the quality of the basslines, which can
be tackled in a future research.

It is important to mention that the quality of the so-
lutions was determined by the opinion of the authors
and the opinion of last-semester music students who
served as consultants.

One limitation of the algorithm is that it does not
take into consideration the octave of the notes that
are being played either in the melody or the bassline.
When transcribing a solution to musical notation it
was up to the authors to decide the octaves of the
notes in the bassline. Deciding the octave of the
notes given the bassline is an interesting problem
that can be studied in future investigations.

11 BIBLIOGRAFÍA

Alfonseca, M., Cebrián, M., & Ortega, A. (2007). A
Simple Genetic Algorithm for Music
Generation by means of Algorithmic
Information Theory. IEEE Congress on
Evolutionary Computation .

Bassinplace. (1 de December de 2008). The kick
drums relation to the bass? TalkBass
Forums.

Dostál, M. (2005). GENETIC ALGORITHMS AS A
MODEL OF MUSICAL CREATIVITY – ON
GENERATING OF A HUMAN-LIKE
RHYTHMIC ACCOMPANIMENT. olomouc:
Palack ́y University .

Dubnov, S., Assayag, G., Lartillot, O., & Bejerano,
G. (2003). Using Machine-Learning Methods
for Musical Style Modeling. IEEE Computer
Society.

Geem, Z., & Choi, J.-Y. (2007). Music Composition
Using Harmony Search Algorithm. Springer.

0	

50	

100	

150	

200	

250	

0,1	
 0,3	
 0,5	
 0,7	
 0,9	

N
um

be
r	

of
	
 O
F	

ev
al
ua
ti
on
s	

Probability	

5	
 Miners	

10	
 Miners	

15	
 Miners	

20	
 Miners	

0	

10	

20	

30	

40	

50	

0,1	
 0,3	
 0,5	
 0,7	
 0,9	

N
um

be
r	

of
	
 it
er
at
io
ns
	

Probability	

5	
 Miners	

10	
 Miners	

15	
 Miners	

20	
 Miners	

0	

5	

10	

15	

20	

25	

0,1	
 0,3	
 0,5	
 0,7	
 0,9	

Ti
m
e	

el
ap
se
d	

(s
ec
)	

Probability	

5	
 Miners	

10	
 Miners	

15	
 Miners	

20	
 Miners	

Herremans , D., Weisser, Sorensen, K., & Conklin.
(2015). Generating structured music for
bagana using quality metrics based on
Markov models. ELSEVIER.

Herremans, D., & Sorensen, K. (2013). Composing
fifth species counterpoint music with a
variable neighborhood search algorithm.
Antwerp: ELSEVIER.

Herremans, D., Martens, D., & Sorensen, K. (2014).
Dance Hit Song Prediction. Antwerp:
ANT/OR.

Kunimatsu, K., Ishikawa, Y., Takata, M., & Joe, K.
(2015). A Music Composition Model with
Genetic Programming –A Case Study of
Chord Progression and Bassline-. Nara.

Laine, P., & Kuuskankare, M. (1994). Genetic
Algorithms in Musical Style oriented
Generation. Helsinki: Sibelius Acadmy
Computer Music Studio.

Lichtenwalter, R., Zorina, K., & Chawla, N. (2008).
Applying Learning Algorithms to Music
Generation.

López-Ortega, O., & López-Popa, S. I. (2012).
Fractals, fuzzy logic and expert systems to
assist in the construction of musical pieces .
Hidalgo: ELSEVIER.

Lozano, L., Medaglia, A., & Velasco, N. (2009).
Generation of Pop-Rock Chord Sequences
Using Genetic Algorithms and Variable
Neighborhood Search. Bogotá: Springer.

Majid Al-Rifaie, A., & Majid Al-Rifaie, M. (2015).
Generative Music with Stochastic Diffusion
Search. London: SpringerLink.

Ren, T., Wang, Y.-f., Du, D., Liu, M.-m., & Siddiqi,
A. (2015). The guitar chord-generating
algorithm based on complex network.
Shenyang: ELSEVIER.

Tojui, N., & Iba, H. (2000). Music Composition with
Interactive Evolutionary Computation.
Tokyo.

