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Abstract— One of the most challenging problems in intensive
care is still the process of discontinuing mechanical ventilation,
called weaning process. Both an unnecessary delay in the
discontinuation process and a weaning trial that is undertaken
too early are undesirable. In this study, we analyzed respiratory
pattern variability using the respiratory volume signal of
patients submitted to two different levels of pressure support
ventilation (PSV), prior to withdrawal of the mechanical ven-
tilation. In order to characterize the respiratory pattern, we
analyzed the following time series: inspiratory time, expiratory
time, breath duration, tidal volume, fractional inspiratory
time, mean inspiratory flow and rapid shallow breathing.
Several autoregressive modeling techniques were considered:
autoregressive models (AR), autoregressive moving average
models (ARMA), and autoregressive models with exogenous
input (ARX). The following classification methods were used:
logistic regression (LR), linear discriminant analysis (LDA)
and support vector machines (SVM). 20 patients on weaning
trials from mechanical ventilation were analyzed. The patients,
submitted to two different levels of PSV, were classified as
low PSV and high PSV. The variability of the respiratory
patterns of these patients were analyzed. The most relevant
parameters were extracted using the classifiers methods. The
best results were obtained with the interquartile range and the
final prediction errors of AR, ARMA and ARX models. An
accuracy of 95% (93% sensitivity and 90% specificity) was
obtained when the interquartile range of the expiratory time
and the breath duration time series were used a LDA model.
All classifiers showed a good compromise between sensitivity
and specificity.

I. INTRODUCTION

Mechanical ventilation is the principal medical treatment
for acute respiratory failure and one of the most commonly
used techniques in intensive care. Weaning is a process that
usually involves the gradual removal of mechanical support
to recover spontaneous breathing. McConville et al. recently
presented an overview of strategies to reduce the duration
of mechanical ventilation, and a list of risk factors for
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unsuccessful discontinuation of mechanical ventilation [1].
They showed that most patients who receive mechanical
ventilation have acute respiratory failure in the postoper-
ative period, pneumonia, congestive heart failure, sepsis,
trauma, or acute respiratory distress syndrome. Spontaneous
breathing trials assess a patients ability to breathe while
receiving minimal or no respiratory support. However, both
an unnecessary delay in the discontinuation process and a
weaning trial that is undertaken too early are undesirable
[2], [3].

Different studies have been performed to detect which
physiological variables identify readiness to undertake a
weaning trial [2], [3]. However, one of the most challenging
problems in intensive care is still the process of discontinuing
mechanical ventilation, as the percentage of patients who
perform a successful trial but have to be reconnected to
mechanical ventilation before 48 hours ranges from 6% to
47% [4] for different populations. A failed weaning trial is
uncomfortable for the patient and may induce cardiopul-
monary distress. Ventilator support should be withdrawn
promptly when no longer necessary, to reduce the likelihood
of known nosocomial complications and costs [5].

Spectral analysis is a tool that is widely used to assess
many types of biomedical signals. Several studies have been
carried out to estimate AutoRegressive (AR) and Moving
Average (MA) models. Processes with spectral poles or nar-
row peaks are best described with AR models. MA models
are suitable for processes with spectral zeros or narrow
valleys using few parameters. AR models require many more
parameters to approximate a spectrum with deep valleys.
Finally, the combined ARMA models may be the optimal
type for processes with a combination of spectral poles and
zeros. Durbin used long AR models in MA estimation [6].
This method can produce accurate estimates if the order of
the AR model is chosen correctly. Durbin’s MA method is
based on the theoretical and asymptotic equivalence of AR
(∞) and MA (q) processes. In practice, estimates of finite
order AR models must be used. A common choice has been
to use the parameters of the best predicting AR model order,
or an AR model order that depends on the number of MA
parameters that are estimated [7], [8].

The quality of the selected model depends on the sample
size used for the estimation, the number of observations,
the estimation algorithm, and the order selection criterion.
Several autoregressive estimation algorithms have been de-
veloped [9]. The asymptotic theory is more or less the same
for all them. Many criteria exist for order selection, such
as the final prediction error, asymptotic information criteria
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and the autoregressive transfer function criterion. Different
variants of these criteria have been reported and studied. The
penalty for estimating more parameters becomes a function
of the sample size in the consistent method. A test for any
model selection and estimation procedure is to apply it to
the selection of a model class, and then analyze the results
under the assumption that the data are generated by a model
in one of the classes.

In our previous study, we used the respiratory flow signal
to analyze the respiratory pattern of patients in the wean-
ing process. We studied the variability of the respiratory
time series and the pattern variability using autoregressive
modeling techniques [10], [11]. In this study, we analyzed
the respiratory pattern of the patients submitted to low and
high pressure support (PSV), using the respiratory volume
signal. We studied variability in the respiratory pattern using
autoregressive models (AR), autoregressive moving average
models (ARMA), and autoregressive models with exogenous
input (ARX). The most relevant parameters were used to
classify the patients. The aim of this study is to provide
enhanced information of the respiratory pattern of patients
submitted to different pressure support levels, on weaning
trials process.

II. METHODOLOGY

A. Datasets

Respiratory volume signals were recorded from 20 pa-
tients on weaning trials from mechanical ventilation, in the
Department of Intensive Care at the Santa Creu i Sant
Pau Hospital in Barcelona, Spain. All subjects gave their
informed consent and were studied according to a protocol
previously approved by the local ethics committee. The
respiratory volume signal was acquired by means of a non-
invasive respiratory inductive plethysmograph. All subjects
remained awake throughout the acquisition.

Patients were submitted to two levels of pressure support
ventilation (PSV), classified as low PSV (5 ± 2 cmH2O)
and high PSV (12 ± 2 cmH2O). Therefore, the database
contains volume signals with different respiratory pattern
variability. Respiratory volume signals were acquired for 30
min, recorded at 250 Hz sampling rate. Figure 1 illustrates
an excerpt of respiratory volume signal from a patient.
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Fig. 1. Excerpt of respiratory volume signal from a patient.

The following time series were obtained from each
recorded signal: inspiratory time (TI), expiratory time (TE ),
breath duration (TTot), tidal volume (VT ), fractional inspira-
tory time (TI/TTot), mean inspiratory flow (VT/TI) and rapid

shallow breathing ( f/VT ), where f is the respiratory rate.
For each time series mean (M), standard deviation (SD) and
interquartile range (IQR) were obtained.

B. Modeling techniques

- Autoregressive model (AR). The autoregressive (AR)
model of order p can be written as AR(p), and is defined as

x(n) = a1x(n−1)+ · · ·+apx(n− p)+ e(n) (1)

where x(n) is the series under investigation, a1, ...,ap are the
autoregressive coefficients, and e(n) is a zero-mean white
noise with variance λ 2. The coefficients ap and the variance
λ 2 are estimated using the Levinson-Durbin recursion. The
model order determination was based on the Akaike Final
Prediction Error (FPE) [12], [13], defined as

FPE = s2 p
N + p+1
N − p−1

(2)

where p is the order of the model, N the number of data
items and s2 p the total square error, which is given by

s2 p =
1
N

N−1

∑
p

e2(n). (3)

- Autoregressive moving-average model (ARMA). The
power of ARMA models is that they can incorporate both
autoregressive and moving average terms. The use of ARMA
models was popularized by Box and Jenkins. The ARMA(p,
q) model is given by

x(n)+a1x(n−1)+ · · ·+apx(n− p) =

e(n)+b1e(n−1)+ · · ·+bqe(n−q)+ (4)

where p and q are the orders of the process estimated by
the Akaike criterion, and a1, ...,ap and b1, ...,bq are the
coefficients of the model.

- Autoregressive model with exogenous input (ARX). This
model is defined with an exogenous input u(n) and output
x(n), by

x(n)+a1x(n−1)+ · · ·+apx(n− p) =

b1u(n−1)+ · · ·+bqu(n−q)+ e(n) (5)

since p and q are the orders of the model, and a1, ...,ap and
b1, ...,bq their coefficients [14]. The following parameters
were calculated for each time series: model order, first
coefficient of the model and final prediction error. The non-
parametric Wilcoxon signed-rank test was used to compare
the two groups.

C. Classification methods

Once the most relevant parameters had been obtained
with the models presented above, the next classification
methods were applied. The leave-one-out procedure was
used to validate the results.
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- Logistic regression is an approach to prediction, like
ordinary least square regression. However, with logistic re-
gression, research predicts a dichotomous outcome [15]. The
model is given by

p =
1

1+ e−(α0+α1X1+α2X2+···+αiXi)
(6)

where p is the occurrence probability of an event x of the
data series X , and αi is the weight of the parameters.

- Linear discriminant analysis can be used only for
classification (i.e., with a categorical target variable), not
for regression. The target variable may have two or more
categories [16]. It has been defined as

Y = μ0 +μ1X1 + · · ·+μkXi (7)

where Xi and μ0 are the independent parameters and
independent term, respectively, and μi are the discriminant
function coefficients.

- Support vector machines (SVM) are based on transform-
ing data into a higher dimensional space since they may
convert a complex classification problem into a simpler one
that can be solved by a linear discriminant function, known
as a hyperplane, defined by [16]

f (x) = wz+b =
L

∑
i=1

αiyiK(xi,x j)+b (8)

where αi and b are determined to solve a large-scale
quadratic programming problem, for which efficient algo-
rithms exist that guarantee global optimum values [17], [18].
The linear Kernel (K) was selected.

III. RESULTS

Figure 2 illustrates the respiratory time series of low and
high PSV. Table I shows the mean and standard deviation
of the respiratory time series by comparing the breathing
pattern in low and high PSV. The mean number of breaths
in the low PSV was 774, whereas in the high PSV it was 569,
from 30 minutes of records. The most relevant parameters
were selected to compare the low and high PSV breathing
patterns.

Table II presents the lists of parameters that showed a
higher statistically significant difference with the functions
used for sorting by means of linear discriminant analysis,
logistic regression and SVM. All possible combinations of
parameters were analyzed.

Table III presents the best values for accuracy (Acc), sen-
sitivity (Sn) and specificity (Sp) obtained with the proposed
classification methods.

The linear discriminant function (Eq. 9), combining IQR
TE (X2) and TTot (X9), presented the best classification rate
(95%).
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Fig. 2. Time series plots of breath duration (TTot ), expiratory time (TE ) and
inspiratory time (TI ) for two different levels of pressure support ventilation
(PSV).

TABLE I
MEAN(X), SD(X) AND IQR(X) OF TIME SERIES WHEN COMPARING LOW

PSV AND HIGH PSV

Low PSV High PSV p-value

M TI (s) 0.88±0.12 1.05±0.29 0.011
SD TI (s) 0.19±0.15 0.24±0.17 0.050
IQR TI (s) 0.14±0.07 0.20±0.14 0.026
M TE (s) 1.60±0.59 2.59±0.84 0.0001
SD TE (s) 0.74±0.44 1.17±0.81 0.002
IQR TE (s) 0.34±0.37 .99±0.78 0.0001
M TTot (s) 2.48±0.65 3.63±0.80 0.0002
SD TTot (s) 0.34±0.16 1.49±0.64 0.005
IQR TTot (s) 0.29±0.13 1.22±0.71 0.0001
M TI/TTot 0.38±0.06 0.31±0.06 0.001
SD TI/TTot 0.058±0.03 0.09±0.03 0.015
IQR TI/TTot 0.06±0.04 0.08±0.05 0.011
M VT (ml) 467±195 602±266 0.005
SD VT (ml) 107±52 128±66 n.s.
IQR VT (ml) 89±39 95±35 n.s.
M VT /TI 548±226 597±209 n.s.
SD VT /TI 154±86 161±84 n.s.
IQR VT /TI 131±76 129±77 n.s.
f (breaths/min) 26±6 18±6 0.0001

0 = 1.5586−5.1853X2 +3.1998X9 (9)

The best classification rate (93%) when using the logistic
regression function (Eq. 10) was obtained with the same
parameters IQR TE (X2) and TTot (X9).

p =
1

1+ e(40.1757−250.9031X2+174.8104X9)
(10)
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TABLE III
RANKING FUNCTIONS PROPOSED FOR THE DISCRIMINATION BETWEEN THE LOW AND HIGH PSV USING LINEAR DISCRIMINANT (LDA) ANALYSIS,

LOGISTIC REGRESSION (LR) AND THE SUPPORT VECTOR MACHINE (SVM), IN TERMS OF ACCURACY (ACC), SPECIFICITY (SP) AND SENSITIVITY (SN)

Parameters Acc Sp Sn

LDA RL SVM LDA RL SVM LDA RL SVM

X2, X9 0.95 0.93 0.93 0.90 0.92 0.93 0.93 0.95 0.92
X2, X7, X9 0.94 0.91 0.92 0.91 0.92 0.92 0.90 0.89 0.92
X2, X6, X9 0.91 0.91 0.92 0.93 0.94 0.92 0.88 0.89 0.93

X2, X7, X8,X9 0.94 0.89 0.91 0.91 0.89 0.90 0.87 0.87 0.92
X2, X11 0.87 0.90 0.86 0.79 0.92 0.91 0.92 0.88 0.81
X2, X8 0.88 0.87 0.86 0.81 0.89 0.91 0.92 0.86 0.81

X1, X2, X3, X9 0.92 0.86 0.89 0.88 0.87 0.87 0.85 0.86 0.90
X2, X9 0.95 0.93 0.93 0.90 0.92 0.93 0.93 0.95 0.92

X2, X3,X9 0.93 0.88 0.88 0.88 0.85 0.85 0.85 0.97 0.90
X2, X10 0.87 0.90 0.87 0.75 0.92 0.92 0.94 0.87 0.82
X2, X5 0.87 0.88 0.86 0.77 0.91 0.91 0.90 0.85 0.81

TABLE II
THE RELEVANT PARAMETERS THAT CHARACTERIZED THE BREATHING

PATTERN FOR LOW AND HIGH PSV USING LINEAR DISCRIMINANT

ANALYSIS, LOGISTIC REGRESSION, AND SVM CLASSIFIERS

Name Parameters Series p-value

X1 Mean TE 0.0002
X2 IQR TE 0.0011
X3 Mean TTot 0.0002
X4 Mean VT 0.036
X5 AR model FPE TE 0.0007
X6 AR model FPE TTot 0.0016
X7 ARMA model FPE TE 0.0009
X8 ARX model FPE TE 0.0007
X9 IQR TTot 0.0012
X10 ARMA model FPE TTot 0.0015
X11 ARX model FPE TTot 0.0013

IV. CONCLUSIONS

The analysis of respiratory time series by autoregressive
modeling techniques significantly improved the identification
of low and high variability levels, in comparison with the
time domain analysis. The interquartile range and the final
prediction errors of AR, ARMA and ARX models were
statistical significant parameters in comparisons of the time
series. When the groups of signals were classified using
logistic regression, linear discriminant analysis and support
vector machines, the accuracy was above 95%, with the best
relation between specificity (90%) and sensitivity (93%).
It seems that the proposed methodology could allow the
automatic classification of volume signals into high (HV)
and low variability (LV) levels. As a preliminary study these
results suggest that the most relevant parameters obtained in
the characterization of the respiratory pattern, using autore-
gressive modeling techniques, offer a promising approach
to evaluate differences between patients on weaning trials,
in order to identify the optimal extubation moment. The
significance of the results, though being promising, needs
to be further established on a larger set.
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