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Abstract. We consider the most general Gaussian quantum Markov semigroup on a
one-mode Fock space, discuss its construction from the generalized GKSL representation
of the generator. We prove the known explicit formula on Weyl operators, characterize
irreducibility and its equivalence to a Hörmander type condition on commutators and es-
tablish necessary and sufficient conditions for existence and uniqueness of normal invariant
states. We illustrate these results by applications to the open quantum oscillator and the
quantum Fokker-Planck model.

Keywords: Quantum Markov semigroup, quasi-free semigroup, GKSL generator, Gaus-
sian, irreducibility.

1. Introduction

Gaussian semigroups are of utmost importance in many fields because they
arise in several relevant models, they form a class with a rich structure al-
lowing one to establish and take advantage of a number of explicit formulas.
This happens also in quantum theory of open systems with quantum Markov
semigroups (QMS), namely weakly∗-continuous semigroups (Tt)t≥0 of com-
pletely positive, identity preserving, normal maps on a von Neumann algebra.
When this is the algebra B(Γ(Cd)) of all bounded operators on the Fock space
Γ(Cd) a QMS is called Gaussian if the predual semigroup (T∗t)t≥0 acting on
trace class operators on Γ(Cd) preserves Gaussian states (see Sect. 5 for the
definition).
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There are two typical approaches to this class of semigroups. Physicists
usually consider generators represented in a Gorini-Kossakowski-Sudharshan-
Lindblad [19, 22] (GKSL) form (see (1), (3), (2) below), which is only formal
because it involves unbounded operators, and compute moments of Gaussian
observables without concern about the existence and well-definiteness of the
dynamics (see, for instance [1, 3, 4, 20, 23] and the references therein). Math-
ematicians introduce Gaussian QMSs by their action on Weyl operators (see,
e.g., [15, 30]) of a regular representation of canonical commutation relations
(CCR) but they just show ([30] Proposition 4.8, Theorem 4.9) that the ac-
tion of generator, on a certain restricted domain, admits a generalized GKSL
representation with unbounded Hamiltonian and noise operators.

The joining link for handling both techniques and exploiting the advan-
tages of each one of them is the characterization of the unbounded generator
with a generalized GKSL form involving unbounded operators that are either
linear or quadratic in creation and annihilation operators. In this way one
can go beyond explicit computations on Gaussian states and observables and
study, for instance, the evolution of any initial state applying general results
from the theory of QMS.

In this paper we consider the most general Gaussian quantum Markov
semigroup on the one mode Fock space Γ(C) of the regular representation
of one-dimensional CCR. First we discuss its construction starting from the
unbounded generator in its generalized GKSL form and give a proof of the
known explicit formula for the action on Weyl operators. Second, we fully
characterize irreducibility in terms of parameters of the model. This is an
important property of the dynamics because it implies that the system has
to be regarded as a whole and reduction to subsystems is not possible. In
particular, the support of any initial state cannot remain confined in a proper
subspace (see, e.g., [18]). Third, still in terms of these parameters, establish
necessary and sufficient conditions for existence and uniqueness of normal
invariant states. As a corollary, for any initial state, we also deduce conver-
gence towards the unique invariant state.

In this way, we provide a unified treatment of both approaches and a
thorough study of the one-dimensional case. This is quite complex because
it depends on many parameters and a detailed (somewhat lengthy) analysis
of several special subcases is necessary.

Gaussian QMSs on the von Neumann algebra of all bounded operators
on the one-mode Fock space Γ(C) are uniquely defined by pre-generators in
a generalized (GKSL) form

L(x) = i [H,x]− 1

2

2∑
`=1

(L∗`L` x− 2L∗`xL` + xL∗`L`) , (1)

where unbounded operators L1, L2, called noise operators or Kraus operators,
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depend linearly on Bosonic creation and annihilation operators on Γ(C)

L` = v`a+ u`a
† v`, u` ∈ C , ` = 1, 2 , (2)

and H is the operator

H = Ω a†a+
κ

2
a†2 +

κ

2
a2 +

ζ

2
a† +

ζ

2
a (3)

with Ω ∈ R, κ, ζ ∈ C. The operators L1, L2 will be assumed to be linearly
independent. However, we shall also consider the special case when L2 does
not appear in (1), namely the multiplicity of the completely positive part
of (1) is one. We will not consider when there are no noise operators L`,
corresponding to a closed system.

In this paper, we find three main new results. The first one is the com-
plete characterization of irreducibility and its equivalence to a Hörmander
type condition on certain commutators. More precisely, we show that the
QMS with pre-generator (1) is irreducible if the completely positive part
has multiplicity two, namely the operators L1, L2 are linearly independent
(Theorems 5). While, in the case where the completely positive part has
multiplicity one (i.e., formally, L2 does not appear in (1)), we show (Theo-
rem 7) that the QMS is irreducible if and only if the operators L1 and [H,L1]
are linearly independent. This is clearly a Hörmader type multiple commu-
tator condition in which one needs only the first order commutator because
of one-dimensionality of the CCR. Here, however, Hörmander condition is
established for a differential operator with second order anti-selfadjoint part,
not first order as in the classical case.

The second main result is the characterization of Gaussian QMSs with
normal invariant states by two simple inequalities on the parameters of the
model. We show (Theorems 8, 9) that one can find a normal invariant state,
which is explicit and is a quantum Gaussian state, if and only if

γ =
1

2

∑
`=1,2

(|v`|2 − |u`|2) > 0 and γ2 + Ω2 − |κ|2 > 0 .

Note that normal invariant states may exist also when the Hamiltonian has
no eigenvalues, however transitions to lower-level states induced by the dis-
sipative part must be stronger to compensate the effect of the Hamiltonian
H without eigenstates (see Remark after Theorem 8). The third main result
is uniqueness of Gaussian invariant states in the set of all normal invariant
states and convergence towards invariant states (Theorem 8) which follows
from irreducibility in most cases.

The paper is organized as follows. In Sect. 2 we begin by describing the
generator in the generalized GKSL form and construct Gaussian QMSs by the
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minimal semigroup method. After proving Markovianity (i.e., preservation of
the identity operator) in Theorem 1 we have a characterization of its domain
at our disposal that we exploit for proving the known explicit formula for the
action on Weyl operators (Theorem 2).

Then we turn our attention to irreducibility. In Sect. 3 we prove that
it always holds when the completely positive part of the generator has two
noise operators (Theorem 5). The case in which there is only one noise oper-
ator where the Hörmander type commutator condition appears is studied in
Sect. 4 (see the decision tree at the end of the section). In Sect. 6 we study
normal invariant states showing that, when they exist, they are also unique.
Moreover, it turns out that they are either faithful or pure (Proposition 5).
Finally, we illustrate these results by applications to the open quantum os-
cillator and the quantum Fokker-Planck model.

2. Gaussian QMSs

In this section we introduce the class of QMS that we will analyze in this
paper.

Let h = Γ(C) be the Fock space on C with canonical orthonormal basis
(en)n≥0. Each vector en is called n-particle vector. For each z ∈ C the vector

e(z) =
∑
n≥0

zn√
n!
en

is called exponential or coherent vector with parameter z. The vector space
of finite linear combinations of vectors of the canonical orthonormal basis,
denoted by D, is a natural common domain for all unbounded operators
that we will consider. One could consider as domain D the linear span of
exponential vectors, or the linear span of (en)n≥0 together with exponential
vectors, without further complications.

The number operator is the selfadjoint operator on h defined by

Dom(N) =
{
ξ =

∑
n≥0

ξnen ∈ h :
∑
n≥0

n2|ξn|2 <∞
}

Nξ =
∑
n≥0

n ξnen .

Annihilation and creation operators on h are defined on the domain Dom(N1/2)
by

a ξ =
∑
n≥1

√
n ξn en−1 , a†ξ =

∑
n≥1

√
n+ 1 ξn en+1 .

It is not difficult to see that a, a† are closed operators and they are mutually
adjoint. Alternatively, they can be defined via polar decomposition a† =
S(N + 1l)1/2, a = S∗N1/2 where 1l is the identity operator and S the right
shift defined by Sen = en+1.

2150001-4
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Annihilation and creation operators satisfy the canonical commutation
relation (CCR)

[a, a†] = 1l

on Dom(N), [ · , · ] denoting the commutator. Moreover, for all z ∈ C the
operator with domain Dom(N1/2) defined by za† − za is anti-selfadjoint an
one can define the unitary Weyl operator

W (z) = exp(za† − za) .

It is not difficult to see as well that exponential vectors belong to the domain
of Nk for all k ≥ 0. In particular, they belong to the domain of a, a† and

a e(z) = ze(z) , a†e(z) =
d

dε
e(z + ε)

∣∣∣
ε=0

.

In this paper we are concerned with quantum Markov semigroups (QMS)
with pre-generators in a generalized Gorini–Kossakowski–Sudarshan–Lindblad
(GKSL) form (1). The domain of L will be described below in Theorem 1,
after the construction of a QMS by the minimal semigroup method. The op-
erators L1, L2 are defined on Dom(N1/2) and H is the operator on Dom(N)
defined by (3). The operator L1, L2, also called noise or Kraus operators,
will be assumed linearly independent, namely

v1u2 − v2u1 6= 0 ,

so as to consider a generalized GKSL representation of L with the minimum
number of Kraus operators. We shall consider also the special case when there
is only one Kraus operator L1 but not the “reversible”, purely Hamiltonian,
case with no Kraus operator.

As shown in [13, Proposition 4.9] the operator G defined by closure of the
operator −iH − (L∗1L1 + L∗2L2)/2 defined on D by

G = −
(1

2

(
|v1|2 + |v2|2 + |u1|2 + |u2|2

)
+ iΩ

)
a†a− 1

2

(
|u1|2 + |u2|2

)
1l

−1

2
(v1u1 + v2u2 − iκ) a†2 − 1

2
(v1u1 + v2u2 + iκ) a2 − i

2

(
ζa† + ζa

)
generates a strongly continuous semigroup (Pt)t≥0 on h, therefore we can
construct the minimal QMS associated with operators G,L1, L2.

We briefly recall the construction (see [13, Sect. 3.3]). Let x ∈ B(h) and

t ≥ 0 and define non decreasing sequence of completely positive maps T (n)
t

on B(h) by T (0)
t (x) = P ∗t xPt and〈

ξ′, T (n+1)
t (x)ξ

〉
=

〈
P (t)ξ′, xP (t)ξ

〉
+

2∑
`=1

t∫
0

〈
L`P (t− s)ξ′, T (n)

s (x)L`P (t− s)ξ
〉

ds

2150001-5
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where ξ, ξ′ ∈ D. It can be shown that one can define a weak∗ continu-
ous semigroup T = (Tt)t≥0 of normal completely positive maps on B(h) by

Tt(x) = supn≥0 T
(n)
t (x) for all x positive and then extend to an arbitrary

x ∈ B(h) by decomposition as sum of positive operators.

THEOREM 1 The minimal QMS T is identity preserving. The domain of
its generator L consists of the set of x ∈ B(h) for which the quadratic form
with domain D ×D

£(x)[ξ′, ξ] =
〈
Gξ′, xξ

〉
+

2∑
`=1

〈
L`ξ
′, xL`ξ

〉
+
〈
ξ′, xGξ

〉
is bounded. Moreover, T is the unique weak*-continuous semigroup of posi-
tive operators on B(h) such that

d

dt

〈
ξ′, Tt(x)ξ

〉 ∣∣∣
t=0

= £(x)[ξ′, ξ]

for all x ∈ B(h), ξ′, ξ ∈ Dom(G).

Proof. T is identity preserving by Proposition 4.12 in [13]. The character-
ization of the domain of the generator L is given in [13] Proposition 3.33.
Finally, if (T ′t )t≥0 is another such semigroup then, for x positive, we can

prove inductively that T ′t (x) ≥ T (n)
t (x) for all n ≥ 0 and t ≥ 0, therefore

T ′t (x) ≥ Tt(x). Considering the operator x = ‖x‖1l− x, which is positive, we
have also

‖x‖1l− T ′t (x) = T ′t (‖x‖1l− x) ≥ Tt(‖x‖1l− x) = ‖x‖1l− Tt(x)

therefore Tt(x) = T ′t (x). �

2.1. Explicit formula on Weyl operators

An interesting known feature of Gaussian QMSs is the explicit formula for
their action on the dense subalgebra of Weyl operators (see [24, 25, 30] and
also [27, 31]). We will now present this formula and establish the relationship
with the GKSL generator (1).

We begin by recalling some useful formulae on the action of Weyl opera-
tors

W (z)e(f) = exp
(
−|z|2/2− zf

)
e(f + z)

A straightforward computation on exponential vectors yields the Weyl com-
mutation relations

W (z)W (z′) = exp
(
−i=(zz′)

)
W (z + z′)

2150001-6
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in particular W (z)∗ = W (−z). Moreover, we have

W (z)∗aW (z) = a+ z1l , W (z)∗a†W (z) = a† + z1l .

[a,W (z)] = zW (z) , [a†,W (z)] = zW (z) .

The following Theorem gives the explicit action of maps Tt on Weyl operators.
In the sequel <(z) and =(z) denote the real and imaginary part of a complex
number z.

THEOREM 2 Let (Tt)t≥0 be the QMS with generalized GKSL generator as-
sociated with H,L1, L2 as in (2). For all Weyl operator W (z) we have

Tt(W (z)) = exp
(
− 1

2

t∫
0

<
(
esZz CesZz

)
ds+ i

t∫
0

<
(
ζ esZz

)
ds
)
W
(
etZz

)
,

(4)
where Z and C are the real linear operators

Zz =
(

iΩ +
2∑
`=1

(|u`|2 − |v`|2)/2
)
z + iκz , (5)

Cz =

2∑
`=1

(
(|u`|2 + |v`|2)z + 2v`u` z

)
. (6)

Proof. One can check [30, Theorem 3.1] the semigroup law Tt(Ts(W (z))) =
Tt+s(W (z)) for all t, s ≥ 0. The derivative of 〈e(g), Tt(W (z))e(f)〉 at time
t = 0, namely £(W (z))[e(g), e(f)] is equal to

i (〈He(g),W (z)e(f)〉 − 〈e(g),W (z)He(f)〉)

− 1

2

2∑
`=1

(
〈L∗`L`e(g),W (z)e(f)〉 − 2 〈L`e(g),W (z)L`e(f)〉

+ 〈e(g),W (z)L∗`L`e(f)〉
)

= i 〈e(g), [H,W (z)]e(f)〉+
1

2

2∑
`=1

(
〈e(g), L∗` [W (z), L`]e(f)〉

+ 〈e(g), [L∗` ,W (z)]L`e(f)〉
)
,

where all operator compositions make sense because exponential vectors are
in the domain of any power of the number operator. Computing the commu-
tators

[W (z), L`] = − (v`z + u`z)W (z) , [L∗` ,W (z)] = (u`z + v`z)W (z)

2150001-7
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[H,W (z)] = W (z)
(

(Ωz + κz) a+ (Ωz + κz) a†
)

+
(

Ω|z|2 +
κz2

2
+
κz2

2
+
ζ z

2
+
ζz

2

)
W (z)

[L∗` , [W (z), L`]] = −
((
|u`|2 + |v`|2

)
|z|2 + v`u`z

2 + v`u`z
2
)
W (z)

we can write £(W (z))[e(g), e(f)] as 〈e(g),W (z)X(z)e(f)〉 where

X(z) =
( ((
|u`|2 − |v`|2

)
z/2 + i (Ωz + κz)

)
a†

−
((
|u`|2 − |v`|2

)
z/2− i (Ωz + κz)

)
a
)

− 1

2

(
(|u`|2 + |v`|2)|z|2 + v`u`z

2 + v`u`z
2
)

+ i
(

Ω|z|2 +
κz2 + κz2

2

)
+ i

ζ z + ζz

2
.

Since exponential vectors belong to the domain of a, a†, compute now the
derivative of W (etZz)e(f) at time t = 0 as follows

d

dt
W (etZz)e(f)

∣∣∣
t=0

=
d

dt
exp

(
− 1

2

∣∣etZz∣∣2 − etZzf)e(etZz + f)
∣∣∣
t=0

=
(
−< (z Zz)− Zzf

)
exp

(
−1

2
|z|2 − zf

)
e(z + f)

+ exp
(
− 1

2
|z|2 − zf

) d

dt
e(etZz + f)

∣∣∣
t=0

= −W (z)
(
Zz a+ < (z Zz)

)
e(f)

+ exp
(
− 1

2
|z|2 − zf

) d

dt
(etZz + f)

∣∣∣
t=0

a†e(z + f) .

Recalling the commutation relation [a†,W (z)] = zW (z) we find

d

dt
W (etZz)e(f)

∣∣∣
t=0

= −W (z)
(
Zz a+ < (z Zz)

)
e(f) + (Zz)a†W (z)e(f)

= W (z)(Zz a† − Zz a−< (z Zz) + z Zz)e(f)

= W (z)(Zz a† − Zz a+
1

2

(
z Zz − Zz z

)
)e(f) .

Computing the derivative of the exponential factor in (4) at t = 0, the deriva-
tive of the scalar product of the right-hand side of (4) with two exponential
vectors e(g), e(f) can be written as well as 〈e(g),W (z)Y (z)e(f)〉 where Y (z)
is

Y (z) = (Zz a† − Zz a) +
1

2

(
z Zz − Zz z

)
− 1

2
< (z Cz) + i<

(
ζz
)
.

The conclusion follows form X(z) = Y (z) for all z ∈ C. �
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Remark 1 If the GKSL generator has only one Kraus operator L1 formula
(4) also holds with real linear operators Z and C, formally defined in the
same way, setting v2 = u2 = 0 in (5) and (6).

3. Irreducibility: The Case of Two Noise Operators L1, L2

In the study of the evolution of an open quantum system irreducibility plays
a key role because it guarantees that there is no proper subsystem which is
invariant under the evolution. Therefore the system has to be regarded as a
whole and reduction to subsystems is not possible. In addition, irreducibility
is a key assumption of many results on the asymptotic behaviour of QMS
(see [16]) and irreducible subsystems constitute the building blocks in the
analysis of the structure of normal invariant states of a QMS (see [10]).

In this section we show that the Gaussian QMS with two linearly inde-
pendent noise operators L1, L2 is irreducible. Gaussian QMS with only one
operator L will be considered in Sect. 4.

DEFINITION 1 A QMS T on B(h) is called irreducible if there exists no
non-trivial orthogonal projection p on h such that Tt(p) ≥ p for all t ≥ 0.

A projection p such that Tt(p) ≥ p for all t ≥ 0 is called subharmonic following
the terminology in use in the classical theory of Markov processes. The
following result (see Theorem III.1 in [14]) characterizes such projections.

THEOREM 3 A projection p is subharmonic for T if and only if the range
Rg(p) of p is invariant for the operators Pt (t ≥ 0) of the strongly continuous
contraction semigroup on h generated by G and L`u = pL`u, for all u ∈
Dom(G) ∩ Rg(p), and all ` ≥ 1.

It is worth noticing here that, by general results on strongly continuous semi-
groups (see [14] Lemma III.1), if Rg(p) is invariant for the operators Pt, then
Dom(G)∩Rg(p) is dense in Rg(p) and so conditions on the operators L` are
not reduced to the sole zero vector.

In view of this characterization of subharmonic projections, it is now
intuitively clear that, if there are two linearly independent Kraus operators,
the range of a subharmonic projection should be an invariant subspace for a
and a† and so it will be trivial by irreducibility of the Fock representation of
the CCR. However, the necessary clarifications on operator domains are now
in order.

Let G0 be the closure of the operator −(L∗1L1 + L∗2L2)/2 defined on D
which is symmetric. It is easy to check that every vector in D is an analytic
vector for G0. Therefore an application of Nelson’s theorem on analytic
vectors shows that it is selfadjoint. The following is the key result on the
domain of the operator G that we need for proving irreducibility.
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THEOREM 4 If there are two linearly independent noise operator L1, L2 the
domain of the operators G and G0 coincide with the domain of the number
operator N .

We defer the proof to Appendix A and proceed to the main result of this
section. Note that the property Dom(G) = Dom(G0) = Dom(N) plays a key
role in the proof.

THEOREM 5 The QMS with generalized GKSL generator associated with
H as in (3) and two linearly independent noise operator L1, L2 as in (2) is
irreducible.

Proof. Let V be a nonzero closed subspace of h which is invariant for the con-
traction operators Pt of the semigroup generated byG and L` (Dom(G) ∩ V) ⊆
V for ` = 1, 2.

By the linear independence of L1, L2, since Dom(G) = Dom(N) we have
also

a (Dom(N) ∩ V) ⊆ Dom(N1/2) ∩ V a† (Dom(N) ∩ V) ⊆ Dom(N1/2) ∩ V
a†a (Dom(N) ∩ V) ⊆ V aa† (Dom(N) ∩ V) ⊆ V

hence, denoting by p the orthogonal projection onto V,

p⊥ap = 0 = pap⊥ , p⊥a†p = 0 = pa†p⊥

on Dom(N) ∩ V and, left multiplying by a† the first identity,

p⊥a†ap = 0 = pa†ap⊥.

It follows that, for all λ > 0, we have the commutation (λ1l +N) p =
p (λ1l +N) and, left and right multiplication by the resolvent (λ1l +N)−1

yields
p (λ1l +N)−1 = (λ1l +N)−1 p .

In particular, for all k > 0, considering bounded Yosida approximations
Nk = kN (k1l +N)−1 of N that converge strongly to N on Dom(N) we have

p kN (k1l +N)−1 = kN (k1l +N)−1 p

and so p e−tNk = e−tNkp for all t, k > 0. Taking the limit as k → +∞, by the
Trotter-Kato theorem [12, Th. 4.8 p. 209] we find

p e−tN = e−tNp ∀ t ≥ 0 . (7)

Let v ∈ V, v 6= 0 with expansion in the canonical basis

v =
∑
k≥k0

vkek ,
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where k0 is the minimum k for which vk 6= 0. Clearly, by (7), e−tNv ∈ V for
all t ≥ 0 and so

ek0te−tNv =
∑
k≥k0

e−(k−k0)tvkek = vk0ek0 +
∑
k>k0

e−(k−k0)tvkek ∈ V

for all t ≥ 0. Taking the limit at t → +∞, we find ek0 ∈ V. Acting on ek0

with operators a and a† we can immediately show that every vector ek of the
basis belongs to V and the proof is complete. �

4. Irreducibility: The Case of a Single Noise Operator L

In this section we study the case where there is a single operator

L = va+ ua† with v 6= 0 or u 6= 0 .

This case is much more entangled. We begin by considering the algebraic
aspect of the problem disregarding, for the moment, domain issues that will
be considered later.

We are looking for common invariant subspaces for the operators G and
L and so also for the commutator [L,G]. A straightforward computation
yields

−2 [L,G] = [L,L∗L+ 2iH] (8)

= [L,L∗]L+ 2i (vΩ− uκ) a− 2i (uΩ− vκ) a† + 2i
(
vζ − uζ

)
.

Thus the candidate subspace must be invariant for the operators

G = −1

2
L∗L− iH , L = va+ ua† , L̃ = (vΩ− uκ) a+ (vκ− uΩ) a† .

If the operators L and L̃ are linearly independent, namely

det

[
vΩ− uκ vκ− uΩ

v u

]
6= 0 , (9)

then the candidate subspace must be invariant for a and a† and so it should
be trivial as in the case of two Kraus operators L.

In the sequel, we prove that under condition (9), which is clearly a
Hörmander-type iterated commutator condition the QMS is irreducible. Oth-
erwise, we will see that irreducibility does not hold.

It is worth noticing here that a similar condition appears also in bilinear
control (see [11], Definition 3.6 (ii) p. 102, weak ad-condition) As a matter of
fact, if, starting from any initial non-zero vector ξ0 ∈ h with time evolution
one can reach a total set of vectors in h varying the control parameter z ∈ C
in the differential equation ξ̇t = Gξt + zLξt, then irreducibility holds.
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LEMMA 1 Suppose |v| 6= |u|. Then Dom(G0) = Dom(N) = Dom(G).

We defer the proof to Appendix B.

PROPOSITION 1 Suppose that condition (9) holds and, moreover, |v| 6= |u|.
Then the Gaussian QMS with

L = va+ ua† , H = Ω a†a+
κ

2
a†2 +

κ

2
a2 +

ζ

2
a† +

ζ

2
a

is irreducible.

Proof. Knowing that Dom(G) = Dom(N) the proof essentially follows the
line of that of Theorem 5.

Let V (V 6= {0}) be a subspace of h which is invariant for the operators
Pt and L (Dom(G) ∩ V) = L (Dom(N) ∩ V) ⊆ V for ` = 1, 2. Moreover,
since L (Dom(Nm)) ⊆ Dom(Nm−1/2) for all m ≥ 1/2 and G (Dom(Nm)) ⊆
Dom(Nm−1) for all m ≥ 1, we have also [G,L]

(
Dom(N3/2) ∩ V

)
⊆ V and

L̃
(
Dom(N3/2) ∩ V

)
⊆ V. However, the commutator [G,L] is a first order

polynomial in a, a†, therefore the previous inclusions can be extended to
Dom(N1/2) ∩ V.

By the linear independence of L and L̃, we can now follow the argument
of the proof of Theorem 5, with L2 = L̃. �

We study separately situations in which (9) does not hold distinguishing three
cases.

4.1. The case L of annihilation type

We first consider the case where (9) does not hold and |v| > |u|. Act with

the unitary squeeze operator S = e(za†2−za2)/2 (z 6= 0, z = eiϕs with s = |z|)
so that

S∗aS = cosh(s) a+ eiϕ sinh(s) a† , S∗a†S = cosh(s) a† + e−iϕ sinh(s) a .

Then

S∗LS =
(
v cosh(s) + e−iϕu sinh(s)

)
a+

(
u cosh(s) + eiϕv sinh(s)

)
a† (10)

and, by first choosing a ϕ such that u and eiϕv have the same phase, and an
s such that

|u| cosh(s) + |v| sinh(s) = 0 ⇐⇒ tanh(s) = −|u|
|v|

we can assume that L is a strictly positive multiple (multiplying L by a phase
does not change the GKSL representation) of the annihilation operator, i.e.,
u = 0.
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Of course also Ω, κ, ζ change to Ω′, κ′, ζ ′

Ω′ = Ω
(
cosh2(s) + sinh2(s)

)
+ 2 sinh(s) cosh(s)<(e−iϕκ)

κ′ = κ cosh2(s) + κ e2iϕ sinh2(s) + 2Ω eiϕ cosh(s) sinh(s)

ζ ′ = ζ cosh(s) + ζeiϕ sinh(s)

and condition (9) does not hold if and only if vκ′ = 0, i.e., by v 6= 0, κ′ = 0
and (up to an irrelevant multiple of the identity operator in H)

L = v′a , H = Ω′ a†a+
ζ ′

2
a†+

ζ
′

2
a , G = −

( |v′|2
2

+iΩ′
)
a†a− i

2
(ζ ′a†+ζ

′
a) ,

where v′ = (|v|2 − |u|2) cosh(s)/|v|, up to a phase factor. Dropping the ′ to
simplify the notation, now we apply formula (4) with

Zz = −(|v|2/2 + iΩ)z , Cz = |v|2z .

Computing esZz = e−(|v|2/2−iΩ)sz and

t∫
0

<
(
esZz CesZz

)
ds = |z|2

t∫
0

|v|2e−s|v|2ds = |z|2
(

1− e−t|v|2
)

t∫
0

<
(
ζesZz

)
ds = <

( ζz

|v|2/2− iΩ

(
1− e−t(|v|2/2−iΩ)

))
.

It follows that, for all g, f ∈ C,

lim
t→+∞

tr(|e(f)〉〈e(g)|Tt(W (z))

= e−|z|
2/2+i<(ζz/(|v|2/2−iΩ)) lim

t→+∞

〈
e(g),W (etZz)e(f)

〉
= e−|z|

2/2+2i=(iζz/(|v|2−2iΩ)) egf .

Noting that, for all µ ∈ C

e−|µ|
2 〈e(µ),W (z)e(µ)〉 = e−|z|

2/2+2i=(µz) ,

defining µ = iζ/(|v|2 + 2iΩ) we find

lim
t→+∞

tr(|e(f)〉〈e(g)|Tt(W (z)) = egfe−|µ|
2 〈e(µ),W (z)e(µ)〉 .

In particular, e−|µ|
2 |e(µ)〉〈e(µ)| is a pure invariant state and the QMS is

not irreducible. Moreover, since linear combinations of linear functionals
|e(f)〉〈e(g)| are dense in the Banach space of trace class operators by totality
of exponential vectors, that the above identity also proves that any initial
state converges in trace norm to this pure invariant state.
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PROPOSITION 2 The Gaussian QMS with GKSL generator with only one
Kraus operator L = va + ua†, |v| > |u| and Hamiltonian H as in (3) is
irreducible if and only if condition (9) holds. If it is not irreducible, it has a

unique invariant state e−|µ|
2 |e(µ)〉〈e(µ)| (pure) and all initial state converges

to it in trace norm.

Clearly, after our squeeze transformation µ = iζ ′/(|v′|2 + 2iΩ′).

4.2. The case L of creation type

We consider the case where (9) does not hold and |v| < |u|. First choosing a
φ such that u and eiφv have the same phase, and then θ such that tanh(θ) =
|v|/|u| in (10) we can assume v = 0 and L multiple of the creation operator.
Parameters Ω, κ, ζ are transformed to Ω′, κ′, ζ ′ and (9) does not hold if and
only if κ′ = 0. In this way the given QMS is transformed to the unitarily
equivalent QMS generated by

L = u′a† , H = Ω′ a†a+
ζ ′

2
a†+

ζ
′

2
a , G = −

( |u′|2
2

+iΩ′
)
aa†− i

2
(ζ ′a†+ζ

′
a),

where u′ = (|u|2−|v|2) cosh(θ)/|u| up to a phase factor. In the sequel we drop
the ′ to simplify the notation. Let V be the range of a nonzero subharmonic
projection p. Since, by Lemma 1 the operators G and N have the same
domain, by Theorem 3 we have G(Dom(N) ∩ V) ⊆ V L(Dom(N) ∩ V) ⊆ V.
Adding to G a suitable multiple of L we find the operator

G̃ = −
( |u|2

2
+ iΩ

)(
a a† + ηa+ ηa† + |η|21l

)
= −

( |u|2
2

+ iΩ
)
W (η)∗a a†W (η) ,

where η = iζ/(|u|2 − 2iΩ) such that G̃(Dom(N) ∩ V) ⊆ V. This property,
together with L(Dom(N) ∩ V) ⊆ V, is clearly equivalent to G,L invariance.

Let w ∈ V with expansion w =
∑

k≥k0
wkW (−η)ek where k0 is the mini-

mum k for which wk 6= 0. Since G̃ is a multiple of the number operator with
strictly negative real part, arguing as in the last part of the proof of Theorem
5, we can show that W (−η)ek0 ∈ V. As a consequence, by the commutation
a†W (−η) = W (−η)(a† − η1l),

LW (−η)ek0 = uW (−η)(a† − η1l)ek0

= u
√
k0 + 1W (−η)ek0+1 − u ηW (−η)ek0 ∈ V .

Applying L we can show inductively that, for all k0 ≥ 0, the linear space
generated by vectors W (−η)ek with k ≥ k0 is an invariant subspace deter-
mining a subharmonic projection and, in this case, the QMS associated with
G,L is not irreducible.
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4.3. The case L quadrature (selfadjoint)

We consider the case where (9) does not hold and |v| = |u| so that, v = reiα,
u = reiα′ with r > 0 and

L = re−iαa+ reiα′a† = rei(α′−α)/2
(
e−i(α′+α)/2a+ rei(α′+α)/2a†

)
.

Therefore, multiplying L by a phase e−i(α′−α)/2 and putting α′ + α = 2θ we
get the selfadjoint operator L

L = r(e−iθa+ eiθa†)

which is a positive multiple of a quadrature. We could also reduce ourselves
to the case where θ is zero by applying a unitary transformation eiθN on
Γ(C), however we prefer to keep the parameter θ to highlight the relationship
between the phase θ in the operator L and another phase of the coefficients
κ of the Hamiltonian H.

Indeed, in a similar way, putting κ = |κ|e2iφ we can write

H = Ω a†a+
|κ|
2

(
e2iφa†2 + e−2iφa2

)
+
(
ζa+ ζa†

)
.

Considering quadratures with angle θ given by the selfadjoint

qθ =
(
e−iθa+ eiθa†

)
/
√

2

and noting that

a† = e−iθ
(
qθ − iqθ+π/2

)
/
√

2 a = eiθ
(
qθ + iqθ+π/2

)
/
√

2 (11)

a†a+ aa† = q2
θ + q2

θ+π/2 (12)

we can write H as

H =
Ω + |κ| cos(2(φ− θ))

2
q2
θ +

Ω− |κ| cos(2(φ− θ))
2

q2
θ+π/2 (13)

+
|κ|
2

sin(2(φ− θ))
(
qθqθ+π/2 + qθ+π/2qθ

)
+ (ζa+ ζa†)− Ω

2
1l .

We can immediately see that (9) does not hold if and only if

Ω = |κ| cos(2(φ− θ)) (14)

the quadratic term q2
θ+π/2 in H vanishes and the Abelian algebra generated

by the position operator qθ is invariant. Indeed, for all smooth function
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f : R→ C, we have [L, f(qθ)] = [L∗, f(qθ)] = 0 and by the identities

[
qθ+π/2, f(qθ)

]
=

[
i

d

dqθ
, f(qθ)

]
= if ′(qθ)

[a, f(qθ)] =
eiθ

√
2

[
qθ − iqθ+π/2, f(qθ)

]
=

eiθ

√
2

[ d

dqθ
, f(qθ)

]
=

eiθ

√
2
f ′(qθ)

[a†, f(qθ)] =
e−iθ

√
2

[
qθ + iqθ+π/2, f(qθ)

]
=

e−iθ

√
2

[
− d

dqθ
, f(qθ)

]
=
−e−iθ

√
2
f ′(qθ) .

As a result, we find

L(f(qθ)) = i [H, f(qθ)] =
(
=(ζe−iθ)/

√
2− |κ| sin(2(θ − φ))qθ

)
f ′(qθ) .

Note that, if the quadratic term q2
θ+π/2 in H does not vanish, then we can

not get the same conclusion.
This is the generator of a deterministic translation process with drift

(in the generic case where |κ| sin(2(θ − φ)) 6= 0) towards the point x∞ :=
=(ζe−iθ)/(

√
2|κ| sin(2(θ − φ))) (Fig. 1 below).

Fig. 1: Deterministic translation process on the algebra generated by qθ.

The invariant density of the classical process is clearly δx∞ which does
not induce a faithful normal state on B(h). However this insight turns out to
be useful to demonstrate that the QMS we are considering in this subsection
is not irreducible if (14) holds. For all c > 0 consider the projection

x 7−→ 1[x∞−c,x∞+c](x)

which is a candidate subharmonic projection because the classical process,
starting from a point in the interval [x∞ − c, x∞ + c] does not exit for all
positive times.

To prove that this projection is indeed subharmonic, consider mollifier
ϕ, namely a C∞ function ϕ : R → R+ with support in the interval [−1, 1],
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R ϕ(x)dx = 1 and limε→0 ϕε(x) = limε→0 ε

−1ϕ(x/ε) = δ0 and, for all ε < c
define

fε(x) =

x∫
−∞

(ϕε(y − (x∞ − c))− ϕε(y − (x∞ + c))) dy .

Note that, since
∫
R ϕε(x)dx = 1 for all ε > 0 we have fε(x) = 0 for |x−x∞| >

c+ε, f(x) = 1 for |x−x∞| ≤ c−ε and f ′ε(x) ≥ 0 for x∞−c−ε < x < x∞−c+ε,
f ′ε(x) ≤ 0 for x∞ + c− ε < x < x∞ + c+ ε. It follows that the multiplication
operator by fε(qθ), which belongs to the domain of the Lindbladian L because
L(fε(qθ)) is bounded satisfies L(fε(qθ)) ≥ 0 and so

Tt(fε(qθ)) ≥ fε(qθ)

for all t ≥ 0. Taking the limit as ε goes to 0, fε converges to the pro-
jection 1[x∞−c,x∞+c] in L2 and almost surely, therefore Tt(1[x∞−c,x∞+c]) ≥
1[x∞−c,x∞+c] for all t ≥ 0 and the QMS is not irreducible.

A similar argument applies in the case where sin(2(θ − φ)) = 0 and
x∞ = +∞ (resp. x∞ = −∞) if =(ζe−iθ) > 0 (resp. =(ζe−iθ) < 0) with
projections of the form 1[c,+∞[ (resp. 1]−∞,c]).

We now consider the case where |u| = |v| and condition (9) holds, namely
Ω 6= |κ| cos(2(θ − φ)) and show that the QMS is irreducible. To this end
we need the following result also showing that irreducibility is equivalent to
coercivity of G2

0 +H2 + g2
l 1l, for some constant g2

l , with respect to the graph
norm of the number operator N = (q2

θ + q2
θ+π/2 − 1)/2.

Intuitively, looking at formula (13), one sees that the coefficient of q2
θ+π/2

is non-zero if Ω 6= |κ| cos(2(θ−φ)). Therefore, computing H2, the coefficient
of q4

θ+π/2 is non-zero. The coefficient of q4
θ may vanish but one gets an

additional term r4 by addition of G2
0 and strict positivity of leading terms is

restored.

THEOREM 6 If condition (9) holds, namely Ω 6= |κ| cos(2(φ − θ)), there
exist constants g2 > 0, g2

l ≥ 0 such that

G2
0 +H2 ≥ g2(q2

θ + q2
θ+π/2)2 − g2

l 1l . (15)

In particular Dom(G) = Dom(N).

Proof. In this proof only, to reduce the clutter of the notation, we denote
qθ by q, qθ+π/2 by p, c := cos(2(φ − θ)), s := sin(2(φ − θ)) and by {·, ·} the
anticommutator.

As a first step note that, once we show that G2
0 +H2 ≥ g2

0(q2
θ +q2

θ+π/2)2 +

l.o.t. for some constant g2
0 > 0 then, reducing the constant g0 if necessary,

we can get the conclusion. Indeed, if the lower order term is, for instance,
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{a, q2 + p2} for all ξ ∈ Dom(N2) by the Schwartz and Young inequalities, we
have〈

ξ, {a, q2 + p2}ξ
〉

= 〈a†ξ, (q2 + p2)ξ〉+
〈
(q2 + p2)ξ, a ξ

〉
≥ −‖a† ξ‖ ·

∥∥(q2 + p2)ξ
∥∥− ‖a ξ‖ · ∥∥(q2 + p2)ξ

∥∥
≥ −ε

∥∥(q2 + p2)ξ
∥∥2 − ε−1(‖a ξ‖2 + ‖a† ξ‖2)

= −ε
〈
ξ, (q2 + p2)2ξ

〉
− ε−1

〈
ξ, (q2 + p2)ξ

〉
for all ε > 0. Now, again by the Schwartz and Young inequalities we have
also

−ε−1
〈
ξ, (q2 + p2)ξ

〉
≥ −ε−1 ‖ξ‖ ·

∥∥(q2 + p2)ξ
∥∥

≥ −ε
∥∥(q2 + p2)ξ

∥∥2 − ε−3 ‖ξ‖2 .

Therefore we find the inequality〈
ξ, {a, q2 + p2}ξ

〉
≥ −2ε

〈
ξ, (q2 + p2)2ξ

〉
− ε−3 ‖ξ‖2

and, choosing ε small enough, we can reduce the constant g2 in (15), increase
g2
l and get the claimed inequality. We can proceed in a similar way if there

are more lower order terms.
It is now clear that we can assume that G2

0 + H2 is a fourth order ho-
mogenous polynomial in p, q, or, in an equivalent way, we can proceed as if
H had no terms of order 1 or 0. In this case the square of 2H is

(2H)2 = (Ω + |κ|c)2 q4 + (Ω− |κ|c)2 p4 + (Ω + |κ|c) (Ω− |κ|c) {q2, p2}
+ |κ|2s2{q, p}2 + (Ω + |κ|c) |κ|s

{
q2, {q, p}

}
+ (Ω− |κ|c) |κ|s

{
p2, {q, p}

}
and write (2H)2 as

[
q2, {q, p}, p2

]  (Ω + |κ|c)2 (Ω + |κ|c) |κ|s (Ω + |κ|c) (Ω− |κ|c)
(Ω + |κ|c) |κ|s |κ|2s2 (Ω− |κ|c) |κ|s

(Ω + |κ|c) (Ω− |κ|c) (Ω− |κ|c) |κ|s (Ω− |κ|c)2

 q2

{q, p}
p2

 .
We now apply Lemma 8 Appendix C on a 3 × 3 matrix as above with λ =
Ω − |κ|c, µ = Ω + |κ|c, x = |κ|s. Since L =

√
2rq and G0 = −r2q2, the

operator (2G0)2 + (2H)2 is associated with a 3 × 3 matrix as in Lemma 8
therefore is bigger than (r4 becomes 4r4)

ε
(
4r4q4 − { p, q }2/2 + { p2, q2 }+ λ2w q4

)
+ l.o.t.

Note that { p2, q2 } − { p, q }2/2 = −(3/2)1l and { p2, q2 } ≤ p4 + q4 which
implies

4(G2
0 +H2) ≥ ε

(
4r4q4 + λ2w q4

)
+ l.o.t.

≥ εmin{2r4, λ2w/2}
(
q4 + { p2, q2 } + p4

)
+ l.o.t.

= εmin{2r4, λ2w/2}
(
q2 + p2

)2
+ l.o.t.
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The above inequality together with (33) implies existence of constants, g, g′ >
0 such that

‖Nξ‖2 ≤ g‖Gξ‖2 + g′‖ξ‖2

for all ξ finite linear combination of vectors en of the c.o.n.b. Therefore
Dom(G) ⊆ Dom(N). The other inclusion is trivial and the proof is complete.

�

Let V be the range of a subharmonic projections. By the previous arguments
based on a, a† invariance of V ∩ Dom(N) and Dom(G) = Dom(N) as in the
proof of Theorem 5 we can now prove the following

THEOREM 7 Let T be the QMS with generator in a generalized GKSL form
associated with a single Kraus operator L = va+ ua† and H as in (3). The
following are equivalent:

(1) Operators L and [H,L] are linearly independent, i.e., 2Ω vu 6= v2κ +
u2κ,

(2) T is irreducible.

Proof. (1) ⇒ (2) If |u| 6= |v|, the conclusion follows from Proposition 1. If
|u| = |v|, we know from Theorem 6 that Dom(G) = Dom(N) therefore the
proof of Proposition 1 goes through again and shows that T is irreducible.
(2) ⇒ (1) We showed, in Sect. 4.1 for |u| < |v|, in Sect. 4.2 for |u| > |v|, and
in Sect. 4.3 for |u| = |v|, that if condition (1) does not hold then the QMS T
is not irreducible. �

Solution to the irreducibility problem is summarized by the following decision
tree.

5. Gaussian States

As a preliminary to the study of invariant states, in this section, we recall
some basic properties of Gaussian states of a one-dimensional CCR algebra.
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DEFINITION 2 A density matrix ρ is called a quantum gaussian state if
there exist ω ∈ C and a real linear, symmetric, invertible operator S such
that

ρ̂(z) = exp
(
− 1

2
<(z Sz)− i<(ωz)

)
∀ z ∈ C . (16)

In that case ω is said to be the mean vector and S the covariance operator
and we will denote it also with ρ(ω,S).

This notation is well posed since there is a bijection between density matrices
and characteristic functions.

Let S be a real linear operator on C and z = x+ iy ∈ C. In the following
it will be useful to identify them with a real linear operator S acting on R2

and a vector z in R2 that will be denoted with characters in boldface for the
sake of clarity. Namely, z = (x, y) and, if Sz = s1z+ s2z for every z ∈ C, we
have

Sz =

[
<s1 + <s2 =s2 −=s1

=s1 + =s2 <s1 −<s2

] [
x
y

]
.

Vice versa, given a linear operator on R2

S =

[
S11 S12

S21 S22

]
,

we can induce a real linear operator S on C via

Sz =

(
S11 + S22

2
+ i

S21 − S12

2

)
z +

(
S11 − S22

2
+ i

S12 + S21

2

)
z.

In the following we will also use J as the linear linear operator corresponding
to the multiplication by −i, namely

Jz = −iz , J =

[
0 1
−1 0

]
.

Eventually we will denote the adjoint of S with respect to the real scalar
product (z, w)→ <(zw) with ST . This operator is explicitly given by

ST z = s1z + s2z ,

while ST is given by the usual matrix transposition of S.

Remark 2 For a generic real linear, symmetric, invertible operator S to be a
suitable covariance operator of a gaussian state it also needs to satisfy

S − iJ ≥ 0 , (17)

where S and J are now intended as complex linear operator on C2 (see
[24, Theorem 3.1] with a little warning: J there is the multiplication by i).
Therefore positivity is evaluated with respect to the usual complex inner
product.
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LEMMA 2 The real linear operators C and Z given by (5), (6) satisfy

C + i
(
ZTJ + JZ

)
≥ 0 , C ≥ 0 ,

where the first inequality is intended with respect to the complex scalar product
on C2. Moreover, the first inequality holds strictly if and only if there are
exactly two linear independent Kraus operator L1, L2. The second one is
strict if and only if the parameter

γ =
1

2

2∑
`=1

(
|v`|2 − |u`|2

)
is non-zero.

Proof. Let us begin by observing that

C =
∑
`

[
|u` + v`|2 2=(v`u`)

2=(v`u`) |u` − v`|2
]
, Z =

[
−γ −=(κ) <(κ)− Ω
<(κ) + Ω −γ + =(κ)

]
.

(18)
Now a straightforward computation leads to

C + i
(
ZTJ + JZ

)
= 2

[ ∑
`
|u`+v`|2

2 −iγ +
∑

`=(v`u`)

iγ +
∑

`=(v`u`)
∑

`
|u`−v`|2

2

]
=: 2Q

hence positivity of C + i
(
ZTJ + JZ

)
is equivalent to positivity of Q. One

has tr(Q) > 0, while

detQ =
1

4

(∑
`

|u` + v`|2
)(∑

`

|u` − v`|2
)
−
(∑

`

=(u`v`)
)2
− γ2 .

Now we can use |u` ± v`|2 = |u`|2 + |v`|2 ± 2<(u`v`) in order to obtain

detQ =
(∑

`

|u`|2
)(∑

`

|v`|2
)
−
∣∣∣∑

`

u`v`

∣∣∣2
which is positive by the Cauchy-Schwarz inequality. In the case where there is
only a Kraus operator L1 clearly det (Q) = 0. Conversely, if det (Q) = 0 then
the Cauchy-Schwarz inequality becomes an equality, therefore we can find λ ∈
C such that u` = λv` for every ` = 1, 2 which contradicts linear independence
of L1 and L2. The analysis of the first inequality is now complete.
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For the second one observe that tr(C) ≥ 0 and, with similar computa-
tions,

det (C) =
(∑

`

(
|u`|2 + |v`|2

))2
− 4
∣∣∣∑

`

u`v`

∣∣∣2
≥

(∑
`

(
|u`|2 + |v`|2

))2
− 4
(∑

`

|u`|2
)(∑

`

|v`|2
)

=
(∑

`

(
|u`|2 − |v`|2

))2
= 4γ2 ≥ 0 .

This completes the proof. �

6. Invariant States

In this section we characterize Gaussian QMS with normal invariant states
in terms of the parameters in the model. We begin by the explicit formula
for the action of the predual semigroup on Gaussian states.

PROPOSITION 3 Let (Tt)t≥0 be the quantum Markov Semigroup with GKSL
generator associated with H,L1, L2 as in (2), (3) and let (T∗t)t≥0 be its pre-
dual semigroup. If ρ = ρ(ω0,S0) is a gaussian state then ρt := T∗t(ρ) is still a
Gaussian state for every t ≥ 0 with mean vector ωt and covariance operator
St given by

ωt = etZ
T
ω0 −

t∫
0

esZ
T
ζds (19)

St = etZ
T
S0e

tZ +

t∫
0

esZ
T
CesZds . (20)

Proof. Applying the explicit formula (4) of Theorem 2 we can write

ρ̂t(z) = tr(ρTt(W (z)))

= exp

−1

2
<

〈
z,

t∫
0

esZ
T
CesZzds

〉
− 1

2
<
〈
z, etZ

T
S0e

tZz
〉

× exp

i<

〈 t∫
0

esZ
T
ζds, z

〉
− i<

〈
etZ

T
ω0, z

〉 .
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Comparing the previous equation with (16) we find (20) and (19). Now for
St to be a suitable covariance matrix it should hold St − iJ ≥ 0. Indeed,
using S0 − iJ ≥ 0 and Lemma 2, one gets

St − iJ ≥
t∫

0

esZ
T

CesZds+ etZ
T

iJetZ − iJ

=

t∫
0

esZ
T (
C + i

(
ZTJ + JZ

))
esZds ≥ 0 .

Note that all the operators in the previous inequality were considered as
complex linear and therefore commutation with i was legit. �

Remark 3 One could extend Proposition 3 proving that QMSs with general-
ized GKSL generator (1) with Hamiltonian H given by (3) and two, one or
none operator L` linear in a, a† as (2) form the most general class of weakly∗

continuous semigroups of completely positive, identity preserving maps on
B(Γ(C)) that preserve Gaussian states. We omit the proof because, albeit
interesting, on one hand it would be too long, and, on the other hand, it is
just a slight extension of existing results. Here we limit ourselves to mention
some bibliographic references. The proof can be done in two steps by char-
acterizing, first completely positive maps preserving Gaussian states, then
semigroups composed by such maps. The first step is quite lengthy because
it involves the extension of Theorem 4.5 [15], proved for automorphisms, to
general completely positive maps. This proof occupies the major part of the
paper, accounting for Lemmas and accessory results. An extension of The-
orem 4.5 would not be too difficult but lengthy. Indeed the authors of [8],
at the very end of the paper, claim such an extension is possible, without
spelling out the details.

We now turn our attention to finding Gaussian invariant states.

THEOREM 8 Let (Tt)t≥0 be the QMS with GKSL generator associated with
H,L1, L2 as in (2), (3) or with H and a single Kraus operator. If γ > 0 and
γ2 + Ω2 − |κ|2 > 0 the Gaussian state ρ = ρ(ω,S) with

ω = (ZT )−1ζ =
(−γ + iΩ)ζ − iκζ

γ2 + Ω2 − |κ|2
, S =

∞∫
0

esZ
T
CesZds (21)

is the unique normal invariant state for the semigroup. Moreover, for all
initial state ρ0

lim
t→∞

1

t

t∫
0

T∗s(ρ0)ds = ρ

in trace norm.
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Proof. First note that, since γ2 + Ω2 − κ2 > 0, the matrix Z in (18) has
eigenvalues with strictly negative real part, therefore the integral in (21) is
well-defined.

We now check that ρ is an invariant state. Proposition 3 implies that
ρt = T∗t(ρ) is still a Gaussian state with mean vector and covariance matrix
given by equations (19) and (20). The state ρ is invariant if and only if
ωt = ω and St = S for every t ≥ 0 that means

t∫
0

esZ
T

(ZTω − ζ)ds = 0 ,

t∫
0

esZ
T

(C +ZTS + SZ)esZds = 0

for all t ≥ 0. Since both esZ
T

and esZ are invertible, the invariance of ρ is
equivalent to

ζ = ZTω , ZTS + SZ = −C . (22)

Conditions on the parameters of the semigroup imply the existence of a pair
(ω,S) satisfying (22). Indeed γ2 + Ω2 − |κ|2 6= 0 implies invertibility of ZT ,
which leads to ω = (ZT )−1ζ. Furthermore

ZTS + SZ =

∞∫
0

(
ZT esZ

T

CesZ + esZ
T

CesZZ
)

ds

=

∞∫
0

( d

ds
esZ

T

CesZ
)

ds

=
[
esZ

T

CesZ
]∞

0
= −C .

Moreover we can show as in the proof of Proposition 3 that S is a suitable
covariance matrix by noting that

S − iJ =

∞∫
0

esZ
T

(C + i
(
ZTJ + JZ

)
)esZds ,

which exists, since Z has only eigenvalues with negative real part, and is
positive thanks to Lemma 2.

Uniqueness follows from irreducibility by standard results on QMS with
faithful normal invariant states (see, e.g., [16] Theorem 1 and Lemma 1),
otherwise it follows from Proposition 2 since γ > 0. Convergence towards
the invariant state follows in a similar way either from known results on QMS
with faithful normal invariant states (see, e.g., [17, Theorem 2.1]), or from
Proposition 2 since γ > 0. �
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Fig. 2: Parameter region I (shaded) of QMS with Gaussian invariant states.

Remark 4 Condition γ > 0 indicates an overall higher rate of transitions
to lower-level states. In order to interpret the other condition we begin
by recalling that the Hamiltonian H has discrete spectrum and the QMS
generated by i[H, · ] has normal invariant states if and only if |κ|2 < Ω2.
In the case where Ω2 − |κ|2 < 0 the Hamiltonian H has only continuous
spectrum and the additional condition γ2 > |κ|2 − Ω2 appears. This means
that transitions to lower-level states must be stronger to compensate the
effect of transitions induced by the Hamiltonian without eigenstates.

Theorem 8 shows that a faithful normal Gaussian invariant state exists and
is unique for all parameters (γ,Ω2 − |κ|2) lying in the open shaded region
denoted by I (see Fig. 2). We will now show that a normal invariant state,
whether Gaussian or not, does not exist for any choice of parameters (γ,Ω2−
|κ|2) lying outside of the region I.

Equations (4) and (21) suggest that the quantity <(esZz CesZz) plays an
important role in the existence of invariant states. Therefore we begin by the
following two Lemmas, investigating the asymptotic behaviour etZz and the
convergence of the integral (21).

LEMMA 3 For all choices of parameters γ,Ω, κ such that (γ,Ω2− |κ|2) falls
outside the region I \ {(0, 0)} there exist V+, a vector subspace of R2, such
that

∣∣etZz∣∣ diverges as t→∞ for every z ∈ V+ \ {0}.

Proof. Recall that the matrix Z is given by (18). We can divide the re-
maining set of parameters in four subsets:

1. γ < 0 and Ω2 ≥ |κ|2 : eigenvalues of Z are −γ± i
√

Ω2 − |κ|2 both with

strictly positive real part,

2. γ ≤ 0 and Ω2 < |κ|2 : eigenvalues of Z are −γ −
√
|κ|2 − Ω2 < −γ +√

|κ|2 − Ω2. At least −γ +
√
|κ|2 − Ω2 is strictly positive,
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3. γ > 0 and γ2 + Ω2 − |κ|2 < 0 so that Ω2 − |κ|2 < 0 : eigenvalues of Z

are −γ ±
√
|κ|2 − Ω2. Only the biggest eigenvalue −γ +

√
|κ|2 − Ω2 is

strictly positive,

4. γ = 0 and Ω = ± |κ| : the only eigenvalue of Z is 0.

In each of the first three cases there is an eigenvalue λ+ with positive real part
and it is sufficient to choose as V+ the subspace generated by an eigenvector
of λ+. Indeed if z0 is an eigenvector of λ+ we have

∣∣etZz0

∣∣ = et<λ+ |z0|.
In the fourth case we have Z 6= 0 but Z2 = 0. Hence etZ = 1 + tZ and

there exists z0 ∈ R2 such that Zz0 6= 0. Therefore∣∣etZz0

∣∣ = |z0 + tZz0| ≥ t |Zz0|

and
∣∣etZz0

∣∣ diverges as t → ∞. It is then sufficient to choose V+ generated
by z0. �

LEMMA 4 For all choices of parameters γ,Ω, κ such that (γ,Ω2 − |κ|2) be-
longs to the boundary of I except the origin (0, 0) there exists a vector subspace
V+ of R2 such that for every z ∈ V+ \ {0} the integral

t∫
0

zT esZ
T

CesZzds (23)

diverges as t→∞.

Proof. Consider first the case γ > 0, γ =
√
|κ|2 − Ω2.

Since γ2+Ω2−|κ|2 = 0, Z has 0 as an eigenvalue. Let z0 be an associated
eigenvector and fix V+ as the vector subspace generated by z0. For every
z ∈ V+ \ {0} we have zT etZCetZz = zTCz. This quantity does not depend
on t and is also strictly positive, since C is invertible thanks to Lemma 2.
Therefore its integral (23) diverges as t→∞.

Consider now the case γ = 0, Ω2 > |κ|2.
For every such choice of the parameters Z has two distinct eigenvalues,

namely λ± = ±i
√

Ω2 − |κ|2 = ±iδ and it can be diagonalized. Let v+,v−
be two eigenvectors corresponding to λ± respectively. If z = w−v+ + w+v−
we have etZz = w−e

itδv+ + w+e
−itδv−. Now consider the quantity fz(t) :=

zT etZ
T
CetZz which is non negative and periodic, from the above considera-

tions. We will show fz(t) cannot be identically zero for every z ∈ R2. Indeed
if it were the case then fz(0) = 0 for every z ∈ R2 and thus z ∈ kerC
for every z ∈ R2. However kerC is one-dimensional and there must exists
z0 ∈ R2 such that fz0(t) is not identically zero. Therefore, if V+ is defined to
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be the vector subspace generated by z0, the integral (23) diverges, since its
argument is a non-negative, periodic function which is not identically zero.

�

The previous two Lemmas can now be applied to prove the non-existence of
invariant states, for some choices of parameters γ,Ω, κ.

PROPOSITION 4 If
w*-lim
t→∞

Tt(W (z)) = 0 (24)

(in weak∗ operator topology) for all z in a vector subspace of R2 except (0, 0),
then T has no normal invariant state. In particular, for any choice of the
parameters γ,Ω, κ such that (γ,Ω2 − |κ|2) falls outside of the region I a
normal invariant states for the QMS T does not exist.

Proof. If ρ is a normal invariant state then for every z 6= 0 such that z is in
the subspace of R2 of the hypothesis

tr(ρW (z)) = tr(ρTt(W (z)))

for all t ≥ 0. Taking the limit as t → ∞, by Lemma 3 and Lemma 4 and
the explicit formula (4), we get tr(ρW (z)) = 0. This is a contradiction since
z → tr(ρW (z)) is continuous and tr(ρW (0)) = 1.

Observe now that if we are also outside of the region I \ {(0, 0)} we can
use Lemma 3 and fix z0 ∈ V+ \ {0}. Letf, g ∈ C, thanks to equation (4) we
have

∣∣〈e(g),W (etZz0)e(f)〉
∣∣ = exp

{
−
∣∣etZz0

∣∣2
2

− etZz0f − ḡetZz0 + ḡf
}
.

Since
∣∣etZz0

∣∣ diverges as t→∞, we have that W (etZz0) converges weakly to

0. Moreover the Weyl operators are unitary, hence the set {W (etZz0) : t ∈ R}
is bounded and the weak topology coincides with the weak* one. Therefore
W (etZz0) converges weakly* to 0 and

|tr(ρTt(W (z0)))| = |ct(z0)|
∣∣tr(ρW (etZz0))

∣∣ ≤ ∣∣tr(ρW (etZz0))
∣∣ ,

where ct(z0) is the constant multiplying the Weyl operator in (4). This means
Tt(W (z0)) converges to 0 in the weak* topology for every z0 ∈ V+\{0}. Hence
there can be no normal invariant states.

Suppose we are now in the region ∂I \ {0}. Let z0 ∈ V+, whose existence
is given by Lemma 4. Thanks to (4) one has

|tr(ρTt(W (z0)))| ≤ exp
{
− 1

2

t∫
0

z0
T esZ

T

CesZz0ds
}
,
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since |tr(ρW (z))| ≤ 1 for every z ∈ C. Letting t→∞ one has Tt(W (z0))→ 0
in the weak* topology for every z0 ∈ V+ \ {0}. Hence also in this case there
are no normal invariant states. �

Summarizing we proved the following complement to Theorem 8.

THEOREM 9 Let (Tt)t≥0 be the QMS with GKSL generator associated with
H,L1, L2 as in (2), (3) or with H and a single Kraus operator. The QMS
T has a normal invariant state if and only if γ > 0 and γ2 + Ω2 − |κ|2 > 0.
The normal invariant state is also unique.

Moreover, we also showed that the above invariant states are either faithful
or pure.

PROPOSITION 5 The invariant state given by Theorem 8 is pure if and
only if Ω2 − |κ|2 > 0, there is a single Kraus operator L = v̄a+ ua† and

=(uv)

|u− v̄|2
=

=(κ)

2(Ω−<(κ))
,

γ√
Ω2 − |κ|2

=
|u− v̄|2

2 |<(κ)− Ω|
. (25)

In all the other cases it is faithful.

Proof. A Gaussian state is faithful if and only if S − iJ > 0 otherwise it is
pure (see [24, Sect. 2] and also [25]). As in the proof of Theorem 8 we can
use

S − iJ =

∞∫
0

esZ
T (
C + i

(
ZTJ + JZ

))
esZds , (26)

and study its kernel. Clearly, if C + i
(
ZTJ + JZ

)
> 0, also S − iJ > 0,

since esZ is invertible. This happens whenever there are two Kraus operators,
thanks to Lemma 2. So the state can be pure only if there is a single Kraus
operator. We restrict ourselves to this case. Now the kernel of S − iJ is
non-trivial if and only if the argument of the integral (26). has a nontrivial
kernel. This happens whenever at least one of the eigenvectors of Z belongs
to ker(C+i(ZTJ+JZ)). Indeed suppose there is z0 ∈ R2\{(0, 0)} such that
(C+i(ZTJ+JZ))etZz0 = 0 for all t ≥ 0. Since ker(C+i(ZTJ+JZ)) is one-
dimensional suppose it is generated by v0 ∈ R2, we have then etZz0 = λtv0

for some λt ∈ R. In particular λs+tv0 = e(t+s)Zz0 = λse
tZv0 which means

v0 is an eigenvector for etZ and therefore it is also an eigenvector for Z. The
converse implication is trivial.

Suppose Ω 6= <(κ), via explicit calculations the eigenvectors of Z are

v± = (<(κ)− Ω,=(κ)±
√
|κ|2 − Ω2). We have

(C + i(ZTJ + JZ))v±

=

 |u+ v̄|2 (<(κ)− Ω) + 2
(
=(κ)±

√
|κ|2 − Ω2

)
(=(uv)− iγ)(

=(κ)±
√
|κ|2 − Ω2

)
|u− v̄|2 + 2 (<(κ)− Ω) (=(uv) + iγ)

 . (27)
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Now if this were the null vector the imaginary part of the second entry
should be zero. If |κ|2 − Ω2 ≥ 0 this would imply γ(<(κ) − Ω) = 0 which is
impossible since γ > 0 and we supposed <(κ) 6= Ω. Therefore, for (27) to be

zero, |κ|2 − Ω2 < 0 and, letting δ :=
√

Ω2 − |κ|2, this is equivalent to{
|u+ v̄|2 (<(κ)− Ω) + 2=(κ)=(uv)± 2δγ = ±δ=(uv)− γ=(κ) = 0

=(κ) |u− v̄|2 + 2(<(κ)− Ω)=(uv) = ±δ |u− v̄|2 + 2γ(<(κ)− Ω) = 0 .

Those equation are in turn equivalent to

=(uv)

|u− v̄|2
= − =(κ)

2(<(κ)− Ω)
,

γ

δ
= ∓ |u− v̄|2

2(<(κ)− Ω)
,

that lead to , having chosen v± in order to have γ > 0. Vice versa if u, v, κ,Ω
satisfy equations then one of v± is in ker(C + i(ZTJ + JZ)).

Suppose now Ω = <(κ). The proper eigenvectors ofZ are v1 = (0, 1),v2 =
(=(κ),<(κ)) if =(κ) 6= 0 or v1 = (0, 1),v3 = (1, 0) if =(κ) = 0. One has

=((C + i(ZTJ + JZ))v1) =

[
−2γ

0

]
,

=((C + i(ZTJ + JZ))v2) =

[
−2γ<(κ)
2γ=(κ)

]
,

=((C + i(ZTJ + JZ))v3) =

[
0

2γ

]
,

that cannot both be zero since this would require either γ = 0 or κ = 0,
which would imply v2 is the null vector. �

7. Examples

In this section we present the application of our results in two remarkable
cases. These also serve to illustrate the relationships we have found between
the parameters that determine the behaviour of the dynamics.

7.1. Open quantum harmonic oscillator

Let T be the QMS with generator in a generalized GKSL form with

L1 = µa , L2 = λ a†, H = Ω a†a+
κ

2
a†2 +

κ

2
a2 +

ζ

2
a† +

ζ

2
a (28)
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with λ, µ ≥ 0, Ω ∈ R, κ, ζ ∈ C. The special case where κ = ζ = 0 has been
analyzed in [7] providing the full spectral analysis of the generator L in the
L2 space of the invariant state for λ < µ.

In this model γ = (µ2−λ2)/2. Moreover, in the case where both λ, µ are
strictly positive, the QMS is irreducible (Theorem 5) and admits a unique
faithful normal invariant state if and only if λ2 < µ2 and

(
µ2 − λ2)

/
4 +

Ω2 − |κ|2 > 0 (Theorem 8) with the explicit mean vector ω and covariance
operator S as in (21).

If µ = 0 and λ > 0 we obtain a QMS which is irreducible if and only if
κλ2 6= 0, namely κ 6= 0 and has no normal invariant state (Sect. 4.2).

Finally, in the case where λ = 0 and µ > 0 we find a QMS which is
irreducible if and only if κµ2 6= 0, i.e., κ 6= 0. It admits invariant states if
and only if |κ|2 < Ω2 + λ4/4; these will be faithful if <(κ) 6= 0 and pure

otherwise (Sect. 4.1). For any initial state ρ0, in both cases, t−1
∫ t

0 T∗s(ρ0)ds
converges towards the unique invariant state by Theorem 8.

It is worth noticing here that the Hamiltonian H is bounded from below
or above if and only if Ω2 − |κ|2 ≥ 0, in which case it has discrete spectrum.
Therefore condition |κ|2 < Ω2 + λ4/4 appears as a relaxation of discreteness
of spectrum that allows existence of normal invariant states.

7.2. Quantum Fokker-Planck model

The quantum Fokker–Planck (QFP) model is an open quantum system in-
troduced to describe the quantum mechanical charge-transport including dif-
fusive effects (see [2, 21, 26] and the references therein). In this subsection
we show that a simple application of our results allows one to study the
dynamics.

The formal generator

L(x) =
i

2

[
p2 + ω2q2, x

]
+ ig {p, [q, x]}

− Dqq[p, [p, x]]−Dpp[q, [q, x]] + 2Dpq[q, [p, x]] ,

can be written in generalized GKSL form (1) with

H =
1

2

(
p2 + ω2q2 + g(pq + qp)

)
,

and L1, L2 are the operators

L1 =
−2Dpq + ig√

2Dpp

p+
√

2Dpp q , L2 =
2
√

∆√
2Dpp

p ,
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where ω2 > 0, Dpp > 0, Dqq ≥ 0, Dpq ∈ R and ∆ = DppDqq−D2
pq−g2/4 ≥ 0.

Clearly, L1, L2 are linearly independent if and only if ∆ > 0. Moreover,

L1 =
−2iDpq − g

2
√
Dpp

(a† − a) +
√
Dpp(a

† + a) ,

L2 =
i
√

∆√
Dpp

(a† − a) ,

H =
ω2 + 1

2
aa† +

ω2 − 1 + 2ig

4
a†2 +

ω2 − 1− 2ig

4
a2 +

ω2 + 1

4

so that

v1 =
2iDpq + g

2
√
Dpp

+
√
Dpp , u1 = −2iDpq + g

2
√
Dpp

+
√
Dpp , v2 = − i

√
∆√
Dpp

,

u2 =
i
√

∆√
Dpp

, Ω =
ω2 + 1

2
, κ =

ω2 − 1

2
+ ig .

Compute

γ =
1

2

2∑
`=1

(
|v`|2 − |u`|2

)
= g , Ω2−|κ|2 = ω2−g2 , γ2+Ω2−|κ|2 = ω2 .

Therefore, in the case where ∆ > 0 Kraus operators L1, L2 are linearly
independent, the QFP semigroup is irreducible and a Gaussian invariant
state exists if and only if g = γ > 0. This is given explicitly in Theorem 8.
Moreover, it is also faithful and it is the unique normal invariant state by
irreducibility.

The case ∆ = 0 has to be considered separately (see [2, 26]). By Theorem
(7) the QFP semigroup is irreducible if and only if 2Ωv1u1 = κv2

1 + κu2
1.

Taking the imaginary parts of this identity we find

gDpp = −ω2Dpq . (29)

Taking real parts we find ω2
(
4D2

pq − g2
)

+ 4D2
pp = −8gDpqDpp and, from

(29), we find the identity

ω2
(
4D2

pq − g2
)

+ 4D2
pp = −8gDpqDpp = 8ω2D2

pq

namely 4D2
pp = ω2

(
4D2

pq + g2
)

and, by ∆ = 0 together with Dpp > 0

Dpp = ω2Dqq . (30)

Note that ∆ = 0 together with (29) and (30) are equivalent to conditions
under which, for γ > 0, the Gaussian normal invariant state of the QFP
model is pure (see [2, Lemma 9.1]).
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Clearly, they are equivalent to (25). Indeed, a straightforward compu-
tation shows that the first identity is equivalent to Dpq = −gDqq and the
second one to Dqq = g/(2δ) which follows from ∆ = 0, (29) and (30) (see [2,
Lemma 9.1] for details).

Convergence towards the unique invariant state of t−1
∫ t

0 T∗t(ρ0)ds holds
for any initial state ρ0 by Theorem 8.

8. Conclusions and Outlook

We considered the most general Gaussian QMS on the one mode Fock space
Γ(C) of the regular representation of one-dimensional CCR. The GKSL gen-
erator associated with unbounded operators (2) and (3) depends on 7 param-
eters (or 5 in the case where there is only one noise operator). We presented
its construction starting form the unbounded generator and proved the known
explicit formula for the action Weyl operators. We characterized irreducibil-
ity in terms of parameters of the model. This property always holds true
when there are two linearly independent noise operators L1, L2. However, if
there is only a single noise operator L1, irreducibility holds if and only if the
operators L1 and [H,L1] are linearly independent (the Hörmander type com-
mutator condition that appears in many fields of mathematics, from partial
differential equations to control theory). Finally, still in terms of the pa-
rameters of the model, we established the necessary and sufficient condition
γ > 0 and γ2 +Ω2−|κ|2 > 0 for existence and uniqueness of normal invariant
states. This condition also implies, by irreducibility convergence towards the
unique invariant state.

It would be useful and interesting to extend the above results to Gaus-
sian QMS on the algebra of bounded operators on d-mode Fock spaces. The
explicit formula for the action on Weyl operators is known also in this case.
We guess that the equivalence of irreducibility with an Hörmander type com-
mutator condition can be proved as well considering commutators of H and
noise operators L` of order up to 2d−1. This advance seems to require a deep
study of regularity properties of Gaussian semigroups as in the classical case.
However, we think that it is a necessary step in order to establish precise
relationships between the behaviour of the infinite dimensional QMS and the
2d×2d dimensional matrices Z and C and reduce a lot of infinite dimensional
problems on the dynamics to finite dimensional ones on matrices. Results
will be the object of a forthcoming paper.

Appendix A

In this section we prove Theorem 4. We begin with the following lemma.
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LEMMA 5 For all ξ ∈ Dom(N2) and all θ ∈ R we have∥∥∥(eiθa† + e−iθa)ξ
∥∥∥2
≤ 2

∥∥∥(aa† + a†a)1/2ξ
∥∥∥2

∥∥∥(eiθa†2 + e−iθa2)ξ
∥∥∥2
≤

∥∥∥(aa† + a†a)ξ
∥∥∥2

+ 3 ‖ξ‖2 .

Proof. Computations below should be done on quadratic forms defined on
the domain D × D. However, we do only the algebraic computations to
simplify the notation.

To prove the first inequality we begin by expanding

0 ≤ |eiθa† − e−iθa|2 = a†a− e2iθa†2 − e−2iθa2 + aa†

which implies

e2iθa†2 + e−2iθa2 ≤ a†a+ aa† .

It follows that

|eiθa† + e−iθa|2 ≤ 2(a†a+ aa†)

and the first inequality is proved. To prove the second inequality, first note
that

0 ≤ |eiθa†2 − e−iθa2|2 = a2a†2 − e2iθa†4 − e−2iθa4 + a†2a2

and so

e2iθa†4 + e−2iθa4 ≤ a2a†2 + a†2a2 .

Now

(eiθa†2 + e−iθa2)2 − (aa† + a†a)2 = e2iθa†4 + a†2a2 + a2a†2 + e−2iθa4

− (aa†)2 − (a†a)2 − aa†2a− a†a2a†

≤ 2a†2a2 + 2a2a†2 − (aa†)2 − (a†a)2 − aa†2a− a†a2a† .

The right-hand side is equal to

2N(N − 1) + 2(N + 1)(N + 2)− (N + 1)2−N2− (N + 1)N −N(N + 1) = 3

and so

(eiθa†2 + e−iθa2)2 ≤ (aa† + a†a)2 + 3 .

The claimed inequality readily follows. �

We will show that the graph norms of G,G0 and N are equivalent. To this
end need two preliminary lemmas.
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LEMMA 6 Let λ0 be the smallest eigenvalue of the 2× 2 matrix[
v1 v2

u1 u2

]
·
[
v1 u1

v2 u2

]
which is strictly positive by the linear independence of L1, L2. There ex-
ists a constant c1 > 0 depending on v1, u1, v2, u2 and uniformly bounded for
v1, u1, v2, u2 in a bounded subset of C4 such that

(−2G0)2 ≥ λ2
0(a†a+ a a†)2 − c1(a†a+ a a†) .

Proof. Since −2G0 = L∗1L1 + L∗2L2,

G0 = −1

2

2∑
`=1

((
|v`|2a†a+ |u`|2aa†

)
+ v`u`a

†2 + v`u`a
2
)

for all ξ ∈ D, thinking of (a ξ, a†ξ) as a vector in h ⊕ h and of product of a
row vector with a column vector as the natural scalar product in h ⊕ h, we
can write 〈ξ,G0ξ〉 as follows

〈ξ,G0ξ〉 = −1

2
[a†ξ, a ξ]

[
v1 v2

u1 u2

] [
v1 u1

v2 u2

] [
a ξ
a†ξ

]
.

This notation is typical in the study of quadratic Hamiltonians (see, for
instance, [9, 27, 28, 29]). Recall that, by linear independence of L1, L2, the
above matrices have non-zero determinant. Therefore their product is strictly
positive definite and, calling λ1 its biggest eigenvalue, we have

λ1

〈
ξ, (a†a+ a a†)ξ

〉
≥ 〈ξ,−2G0ξ〉 ≥ λ0

〈
ξ, (a†a+ a a†)ξ

〉
. (31)

In a similar way, dropping the vector ξ and denoting by l.o.t. monomials of
order 2 or less in creation and annihilation operators we have the inequalities

(−2G0)2 =
∑
`

L∗` (−2G0)L` + l.o.t.

= [a†, a]

[
v1 v2

u1 u2

] [
−2G0 0

0 −2G0

] [
v1 u1

v2 u2

] [
a
a†

]
+ l.o.t.

≥ λ0 [a†, a]

[
v1 v2

u1 u2

] [
a†a+ aa† 0

0 a†a+ aa†

] [
v1 u1

v2 u2

] [
a
a†

]
+ l.o.t.

= λ0 a [a†, a]

[
v1 v2

u1 u2

] [
v1 u1

v2 u2

] [
a
a†

]
a†

+ λ0 a
† [a†, a]

[
v1 v2

u1 u2

] [
v1 u1

v2 u2

] [
a
a†

]
a+ l.o.t.

= λ0 a(−2G0)a† + λ0 a
†(−2G0)a+ l.o.t.

≥ λ2
0 a(a†a+ aa†)a† + λ2

0 a
†(a†a+ aa†)a+ l.o.t.

= λ2
0(a†a+ aa†)2 + l.o.t.
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Lower order terms can be controlled in terms of (2N + 1) = (a†a + a a†) by
Lemma 5 and the proof is complete. �

LEMMA 7 The commutator [H,G0] is a second order degree polynomial in
a, a† and

|〈ξ, [H,G0]ξ〉| ≤ c2〈ξ, (a†a+ a a†)1/2ξ〉

for some constant c2 > 0 depending on all parameters in the model.

Proof. A long but straightforward computation yields (summation on ` =
1, 2 is implicit)

[H,G0] = i=(κ (v`u`))(a
†a+ aa†) +

(
Ω (v`u`)−

κ

2

(
|v`|2 + |u`|2

) )
a2

+
(
− Ω (v`u`) +

κ

2

(
|v`|2 + |u`|2

) )
a†2

+
(ζ

2
(v`u`)−

ζ

2

(
|v`|2 + |u`|2

) )
a+

(
− ζ

2
(v`u`) +

ζ

2

(
|v`|2 + |u`|2

) )
a†.

The claimed inequality follows from Lemma 5 and the Schwarz inequality. �

Proof of Theorem 4. Clearly Dom(N) is contained in Dom(G0) and Dom(G).
In order to prove the opposite inclusion we show that there exist constants

c3, c4 such that ‖Nξ‖2 ≤ c3‖G0ξ‖2 + c4‖ξ‖2 for all ξ ∈ D. The conclusion
follows because D is an essential domain for G0 and G by their definition.

For all ξ ∈ D, ε > 0 by Lemma 6 and the Young’s inequality, we have the
following inequalities

‖G0ξ‖2 =
〈
ξ,G2

0ξ
〉

≥ λ2
0

4

〈
ξ, (a†a+ a a†)2ξ

〉
− c1

4

〈
ξ, (a†a+ a a†)ξ

〉
≥ λ2

0

4

〈
ξ, (a†a+ a a†)2ξ

〉
− c1

4
‖ξ‖ ·

∥∥∥(a†a+ a a†
)
ξ
∥∥∥

≥ λ2
0

4

〈
ξ, (a†a+ a a†)2ξ

〉
− λ2

0

8

∥∥∥(a†a+ a a†)ξ
∥∥∥2
− c2

1

8λ2
0

‖ξ‖2

=
λ2

0

8

∥∥∥(a†a+ a a†)ξ
∥∥∥2
− c2

1

8λ2
0

‖ξ‖2 .

Since
∥∥(a†a+ a a†

)
ξ
∥∥2 ≥ 4 ‖Nξ‖2 we find the inequality

‖Nξ‖2 ≤ 2

λ2
0

‖G0ξ‖2 +
c2

1

4λ4
0

‖ξ‖2 (32)

for all ξ ∈ D implying that Dom(G0) ⊆ Dom(N).
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In order to prove that the domain of G is also contained in the domain
of N note that G = G0 − iH on D and write

‖Gξ‖2 = 〈ξ, (G0 + iH)(G0 − iH)ξ〉 =
〈
ξ, (G2

0 +H2)ξ
〉

+ i 〈ξ, [H,G0]ξ〉 .
(33)

Now by Lemma 7,
〈
ξ,H2ξ

〉
≥ 0 and the previous inequality (32) we find

‖Gξ‖2 ≥ 〈ξ,G2
0ξ〉 − c2

〈
ξ, (a†a+ a a†)1/2ξ

〉
≥ λ2

0

2
‖Nξ‖2 − c2

√
2 ‖ξ‖ · ‖N1/2ξ‖ − c2

1

4
‖ξ‖2 .

We can now proceed as in the final part of the proof of (32) with an applica-
tion of the Young inequality to show that Dom(G) ⊆ Dom(N). �

Appendix B

In this appendix we prove Lemma 1. We begin by noting that Dom(N) ⊆
Dom(G0).

Conversely, note that for all r ∈ R, on the domain Dom(N) of the number
operator, in a natural matrix notation, we have

L∗L = |v|2a†a+ vu a†2 + vu a2 + |u|2aa†

=
(
|v|2 + r

)
a†a+ vua†2 + vua2 +

(
|u|2 − r

)
aa† + r1l

=
[
a† a

] [ |v|2 + r vu
vu |u|2 − r

] [
a
a†

]
+ r1l

The trace of the above 2× 2 matrix is strictly positive and the determinant

r
(
|u|2 − |v|2

)
− r2

if we choose r =
(
|u|2 − |v|2

)
/2, it is equal to

(
|u|2 − |v|2

)2
/4 > 0 and the

lowest eigenvalue is (|v| − |u|)2 /2. It follows that

L∗L ≥ (|v| − |u|)2

2

(
aa† + a†a

)
+
|v|2 − |u|2

2
1l

and, denoting by l.o.t. monomials of order 2 or less in creation and annihi-
lation operators,

(L∗L)2 = L∗(LL∗)L = L∗(L∗L)L+ l.o.t.

≥ 1

2
(|v| − |u|)2 L∗

(
aa† + a†a

)
L+ l.o.t.

=
1

2
(|v| − |u|)2

(
aL∗La† + a†L∗La

)
+ l.o.t.
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≥ 1

4
(|v| − |u|)4

(
a
(
aa† + a†a

)
a† + a†

(
aa† + a†a

)
a
)

+ l.o.t.

= (|v| − |u|)4
(
a†a
)2

+ l.o.t.

Therefore there exists a constant c > 0 such that

(|v| − |u|)4 ‖a†a ξ‖2 ≤ ‖L∗Lξ‖2 + c ‖ξ‖2 (34)

for all ξ ∈ D and Dom(L∗L) ⊆ Dom(N). This shows the identity Dom(G0) =
Dom(N).

In order to prove the other one, note first that Dom(N) ⊆ Dom(G).
Then, for all ξ ∈ D, compute

‖Gξ‖2 = ‖G0ξ‖2 + ‖Hξ‖2 + 〈ξ, i[H,G0]ξ〉 .

Since the commutator [H,G0] is a second order polynomial in a, a† there
exists a constant c′ > 0 such that 〈ξ, i[H,G0]ξ〉 ≥ −c′‖N1/2ξ‖2. Recalling
(34), by the Young inequality, we have

‖Gξ‖2 ≥ ‖G0ξ‖2 − c′‖N1/2ξ‖2

≥ (|v| − |u|)4

4
‖a†aξ‖2 − c‖ξ‖2 − (|v| − |u|)4

8
‖a†aξ‖2 − 4

c′2 (|v| − |u|)4 ‖ξ‖
2

=
(|v| − |u|)4

8
‖a†aξ‖2 − c′′‖ξ‖2

where c′′ is another constant. Thus Dom(G) ⊆ Dom(N) and the proof of
Lemma 1 is complete.

Appendix C

LEMMA 8 Let µ, λ, x, y ∈ R with λ 6= 0. For all r > 0 and w > 0 such that
w < min{1, (2x2)−1} there exists ε > 0 such that µ2 + r4 µx λµ

µx x2 λx
λµ λx λ2

 ≥ ε

 r4 0 1
0 −1/2 0
1 0 λ2w


Proof. The difference of the above matrices is µ2 + r4(1− ε) µx λµ− ε

µx x2 + ε/2 λx
λµ− ε λx λ2(1− wε)

 ,
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which is positive, by the Sylvester’s criterion, if and only if all principal
minors are positive. For all ε > 0, the principal minor obtained by removing
the first row and column is positive if and only if wε < 1 and its determinant

λ2((1− 2wx2)ε− wε2)/2 = λ2ε((1− 2wx2)− wε)/2

is positive. This is clearly the case if ε < min{1, w−1, (1− 2wx2)/w} := ε1.
The principal minor obtained by removing the second row and column,

namely [
µ2 + r4(1− ε) λµ− ε

λµ− ε λ2(1− wε)

]
has positive diagonal elements for 0 < ε < ε1 and determinant

λ2r4 + (2λµ− λ2µ2w − λ2r4(1 + w))ε+ λ2r4wε2

which is clearly strictly positive for all 0 < ε < ε2 for some ε2 < ε1. Finally,
the principal minor obtained by removing the third row and column, namely[

µ2 + r4(1− ε) µx
µx x2 + ε/2

]
which has positive diagonal elements for ε < 1, has determinant

r4x2 + (µ2 + r4 − 2r4x2)ε/2− r4ε2/2 .

This is clearly positive for all ε small enough if x 6= 0 because it tends to
r4x2 6= 0 but also for x = 0 since, in this case it is equal to ε(µ2 +r4−r4ε/2).
This completes the proof. �
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