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748 Néstor Raúl Pachón R.

1. Introduction and preliminaries

Several extensions of separation axioms to ideal topological spaces have
been considered by authors s uch as Dontchev, Hamlett-Jancovic, Renuka
Devi-Sivaraj and Suriyakala-Vembu. In some cases these concepts are quite
simple and natural, but these leave the distaste of not offering an adequate
level of separation, neither between points nor between closed sets. In this
work we propose to correct this deficiency, showing that the objects of
interest really can be separated in some good way. More precisely, we will
define and study the P-Hausdorff, the P-regular and the P-normal spaces.
We will also establish relationships between these new concepts and other
separation axioms for ideal topological spaces, previously introduced.

An ideal I in a set X is a subset of P(X), the power set of X, such
that:
(i) if A ⊆ B ⊆ X and B ∈ I then A ∈ I, and
(ii) if {A,B} ⊆ I then A ∪B ∈ I.

Some useful ideals in X are: (i)P(A), where A ⊆ X, (ii)If (X), the
ideal of all finite subsets of X, (iii)Ic (X), the ideal of all countable subsets
of X and (iv)In (X), the ideal of all nowhere dense sets in a topological
space (X, τ). If I is an ideal in X and if f : X → Y is a function, then
the set f(I) = {f(I) : I ∈ I} is an ideal in Y [5]. Furthermore, if J is
an ideal in Y and if f : X → Y is an one-one function, then the set
f−1 (J ) =

©
f−1 (J) : J ∈ J

ª
is an ideal in X [5].

If (X, τ) is a topological space and I is an ideal in X, then (X, τ,I)
is called an ideal space. If (X, τ) is a topological space and A ⊆ X
then the closure and the interior of A are denoted by A (or adhτ (A), or

adh(A)) and
0
A (or intτ (A), or int(A)), respectively. Note that the set

{U\V : {U, V } ⊆ τ} is a base for a topology τ2 in X, finer than τ .

Given an ideal space (X, τ, I) and a set A ⊆ X, we denote by A∗ (I) =
{x ∈ X : U ∩A /∈ I, for every U ∈ τwith x ∈ U}, written simply asA∗ when
there is no chance for confusion. It is clear that A∗ ⊆ A. A Kura-
towski closure operator [11] for a topology τ∗ (I), finer than τ , is de-
fined by Cl∗ (A) = A ∪ A∗, for all A ⊆ X. When there is no chance
for confusion τ∗ (I) is denoted by τ∗. The topology τ∗ has as a base
β (τ, I) = {V \I : V ∈ τ and I ∈ I} [3]. In 1992 Hamlett and Jancovic in-
troduced the notion of I-open sets. If (X, τ, I) is an ideal space and A ⊆ X,
A is defined to be I-open [2] if A ⊆ intτ (A

∗).

If I is an ideal in X and J is an ideal in Y , then I ⊗ J [6] is the set
of all D ⊆ X × Y such that there exist I ∈ I, A ⊆ X, J ∈ J and B ⊆ Y ,
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The P-Hausdorff, P-regular and P-normal ideal spaces 749

with D ⊆ (A× J) ∪ (I ×B). It is shown in [6] that I ⊗ J is an ideal in
X × Y .

If {Xi : i ∈ Λ} is a collection of sets and if Ii is an ideal in Xi, for each
i ∈ Λ, we will denote by N

i∈Λ
Ii the set of all A ⊆

Q
i∈Λ

Xi such that there

exists a finite Λ0 ⊆ Λ with A ⊆ S
i∈Λ0

p−1i (Ii), for some Ii ∈ Ii, for each

i ∈ Λ0 [7]. Here pi represents the i-th projection. It is very simple to prove
that

N
i∈Λ
Ii is an ideal in

Q
i∈Λ

Xi.

The symbol 2 is used to indicate the end of a proof.

2. P-Hausdorff ideal spaces

Previous and different versions of the T2 axiom for ideal spaces have been
considered by Dontchev and Sivaraj-Renuka Devi. In this section we intro-
duce and study the P-Hausdorff spaces, a strong form of Hausdorff modulo
I spaces. The P-Hausdorffness and I-Hausdorffness turn out to be in-
dependent concepts. We recall that an ideal space (X, τ, I) is said to be
I-Hausdorff [1] if for each {a, b} ⊆ X, with a 6= b, there are disjoint I-open
sets U and V , such that a ∈ U and b ∈ V . On the other hand, (X, τ,I)
is defined to be Hausdorff modulo I [9] if for each {a, b} ⊆ X, with a 6= b,
there is a {U, V } ⊆ τ , such that a ∈ U , b ∈ V and U ∩ V ∈ I. This
last version, although interesting, does not seem entirely satisfactory, given
that the case may arise in which, for some a and b, we have {a, b} ⊆ U
or {a, b} ⊆ V . Some interesting additional properties of such spaces were
presented in [7].

Definition 2.1 The ideal space (X, τ, I) is defined to be P-Hausdorff if for
each {a, b} ⊆ X, with a 6= b, there is a {U,V } ⊆ τ such that a ∈ U\V, b ∈
V \U and U ∩ V ∈ I. A set A ⊆ X is said to be P-Hausdorff if (A, τA, IA)
is P-Hausdorff, where IA = {I ∩A : I ∈ I} and τA = {U ∩A : U ∈ τ}.

It is noted that (X, τ,If (X)) is P-Hausdorff if and only if (X, τ) is
Hausdorff, since P-Hausdorff → T1. It is also evident that Hausdorff → P-
Hausdorff, and that if (X, τ, I) is P-Hausdorff, then (X, τ,I) is Hausdorff
modulo I, and (X, τ∗) and (X, τ2) are Hausdorff spaces.

Example 2.2
1) If µ = {V ⊆ R : R\V is finite}∪ {∅} and if I = Ic (R), then (R, µ) is a
T1 space, but (R, µ, I) is not a P-Hausdorff space.
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750 Néstor Raúl Pachón R.

2) In the set R consider the topology β that consists of all V ⊆ R that
satisfy that, for all a ∈ V , there is a r > a such that {a} ∪ (r,+∞) ⊆
V . Let I be the ideal of all subsets of R that are bounded below. If
{a, b} ⊆ R and a < b, then {{a} ∪ (b+ 1,+∞) , {b} ∪ (b+ 1,+∞)} ⊆ β
and [{a} ∪ (b+ 1,+∞)] ∩ [{b} ∪ (b+ 1,+∞)] = (b+ 1,+∞) ∈ I. Thus
(R, β, I) is a P-Hausdorff space.
3) (An I-Hausdorff but not P-Hausdorff space) If β is the topology {∅,R}∪
{(a,+∞) : a ∈ R} and if I = If (R), then (R, β, I) is I-Hausdorff [1].
However, it is clear that this space is not P-Hausdorff.
4) (A Hausdorff modulo I but not P-Hausdorff space) If β = {∅,R} ∪
{(a,+∞) : a ∈ R} and if I is the ideal of all subsets of R that are bounded
below, then (R, β, I) is Hausdorff modulo I, because if a < b and if
U = V = (a− 1,+∞) then a ∈ U , b ∈ V , and U ∩ V ∈ I. But it is
evident that (R, β, I) is not P-Hausdorff.
5) (A P-Hausdorff but not I-Hausdorff space) If X = {a, b}, τ = P({a, b})
= I, then (X, τ, I) is not I-Hausdorff [1]. However (X, τ, I) is a P-
Hausdorff space, since (X, τ) is Hausdorff.

Observe that P-Hausdorff and I-Hausdorff are independent concepts.

Theorem 2.3 If (X, τ, I) is P-Hausdorff and if A ⊆ X, then A is P-
Hausdorff.

Proof. If {a, b} ⊆ A and a 6= b, there exists {U, V } ⊆ τ such that
a ∈ U\V, b ∈ V \U and U ∩ V ∈ I. Thus a ∈ (U ∩A) \ (V ∩A), b ∈
(V ∩A) \ (U ∩A) and (V ∩A) ∩ (U ∩A) = (U ∩ V ) ∩A ∈ IA. 2

In the three following theorems we consider the products and sums of
P-Hausdorff spaces.

Theorem 2.4 If (X, τ, I) and (Y, β,L) are P-Hausdorff, then the space
(X × Y, τ × β, I ⊗ L) is P-Hausdorff.

Proof. Let {(a, b) , (c, d)} ⊆ X×Y be such that (a, b) 6= (c, d). If a 6= c then
there is a {U1, U2} ⊆ τ such that {a, c}∩U1 = {a}, {a, c}∩U2 = {c} and U1∩
U2 ∈ I. So {(a, b) , (c, d)}∩(U1 × Y ) = {(a, b)}, {(a, b) , (c, d)}∩(U2 × Y ) =
{(c, d)} and (U1 × Y ) ∩ (U2 × Y ) = (U1 ∩ U2) × Y ∈ I ⊗ L. Similarly, if
b 6= d we can find a {W1,W2} ⊆ τ × β such that {(a, b) , (c, d)} ∩W1 =
{(a, b)}, {(a, b) , (c, d)} ∩ W2 = {(c, d)} and W1 ∩ W2 ∈ I ⊗ L. Hence
(X × Y, τ × β, I ⊗ L) is P-Hausdorff. 2
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The P-Hausdorff, P-regular and P-normal ideal spaces 751

Theorem 2.5 If {(Xα, τα, Iα) : α ∈ Λ} is a collection of P-Hausdorff spaces,

then

Ã Q
α∈Λ

Xα,
Q
α∈Λ

τα,
N
α∈Λ

Iα
!
is a P-Hausdorff space.

Proof. If
©
a = (aα)α∈Λ , b = (bα)α∈Λ

ª
⊆ Q

α∈Λ
Xα, with a 6= b, there ex-

ists δ ∈ Λ such that aδ 6= bδ. Since (Xδ, τδ, Iδ) is P-Hausdorff, there is
a {Uδ, Vδ} ⊆ τδ such that aδ ∈ Uδ\Vδ, bδ ∈ Vδ\Uδ and Uδ ∩ Vδ ∈ Iδ.
If pδ represents the δ-th proyection then a ∈ p−1δ (Uδ) \p−1δ (Vδ), b ∈
p−1δ (Vδ) \p−1δ (Uδ) and p−1δ (Uδ) ∩ p−1δ (Vδ) = p−1δ (Uδ ∩ Vδ) ∈

N
α∈Λ

Iα. 2

If {Xi : i ∈ Λ} is a collection of sets such that Xi∩Xj = ∅, for each {i, j} ⊆
Λ with i 6= j, and if Ii is an ideal in Xi, for each i ∈ Λ, we will denote byP
i∈Λ
Ii the set

(P
i∈Λ

Ii : Ii ∈ Ii, for each i ∈ Λ
)
. It is clear that

P
i∈Λ
Ii is an

ideal in
P
i∈Λ

Xi. On the other hand, if τi is a topology on Xi, for each i ∈ Λ,

then the topology
P
i∈Λ

τi is the set

(
A ⊆ P

i∈Λ
Xi : A ∩Xi ∈ τi, for each i ∈ Λ

)
.

Theorem 2.6 If {(Xα, τα, Iα) : α ∈ Λ} is a collection of disjoint

P-Hausdorff spaces, then
Ã P
α∈Λ

Xα,
P
α∈Λ

τα,
P
α∈Λ

Iα
!
is a P-Hausdorff space.

Proof. Suppose that {a, b} ⊆ P
α∈Λ

Xα, with a 6= b. We have that:

(a) If there is a δ ∈ Λ such that {a, b} ⊆ Xδ, then there exists {Uδ, Vδ} ⊆
τδ ⊆

P
α∈Λ

τα such that a ∈ Uδ\Vδ, b ∈ Vδ\Uδ and Uδ ∩ Vδ ∈ Iδ ⊆
P
α∈Λ

Iα.

(b) If there is a {δ, σ} ⊆ Λ such that δ 6= σ, a ∈ Xδ and b ∈ Xσ, then
{Xδ,Xσ} ⊆

P
α∈Λ

τα, Xδ ∩Xσ = ∅ ∈
P
α∈Λ

Iα, a ∈ Xδ\Xσ and b ∈ Xσ\Xδ. 2

Below we present some functional properties about P-Hausdorff spaces.

Theorem 2.7
1) If f : X → Y is an one-one function and if (Y, β,L) is a P-Hausdorff
space, then

¡
X, f−1 (β) , f−1 (L)

¢
is P-Hausdorff. 2) If f : (X, τ) → (Y, β)

is a biyective and open function, I is an ideal in X, and if (X, τ, I) is
P-Hausdorff, then (Y, β, f(I)) is P-Hausdorff.

Proof.
1) If {a, b} ⊆ X, with a 6= b, there is a {V,W} ⊆ β such that f (a) ∈ V \W ,
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752 Néstor Raúl Pachón R.

f (b) ∈ W\V and V ∩W ∈ L. This implies that a ∈ f−1 (V ) \f−1 (W )
and b ∈ f−1 (W ) \f−1 (V ). Moreover f−1 (V ) ∩ f−1 (W ) = f−1 (V ∩W ) ∈
f−1 (L) and

©
f−1 (V ) , f−1 (W )

ª
⊆ f−1 (β).

2) If {a, b} ⊆ X and f (a) 6= f (b), there is a {U, V } ⊆ τ such that a ∈ U\V ,
b ∈ V \U and U ∩ V ∈ I. Hence f(a) ∈ f(U)\f(V ), f(b) ∈ f(V )\f(U) and
f(U) ∩ f(V ) = f (U ∩ V ) ∈ f(I). 2

Theorem 2.8 Suppose that f : (X, τ) → (Y, β) and g : (X, τ) → (Y, β)
are continuous functions, that (Y, β,L) is a P-Hausdorff space, and that L
is an ideal in Y \f (X) . Then the set A = {x ∈ X : f (x) = g (x)} is closed
in (X, τ) .

Proof. If b ∈ X\A then there is a {V,W} ⊆ β such that f (b) ∈ V \W ,
g (b) ∈W\V and V ∩W ∈ L. Hence b ∈

£
f−1 (V ) \f−1 (W )

¤
∩
£
g−1 (W ) \g−1 (V )

¤
⊆ f−1 (V ) ∩ g−1 (W ).
Suppose that there is a z ∈

£
f−1 (V ) ∩ g−1 (W )

¤
∩A. Thus f (z) = g (z) ∈

V ∩W , and so {f (z)} ∈ L, absurd. Then f−1 (V ) ∩ g−1 (W ) ⊆ X\A. 2

Now we present two properties of separation for compact subsets in P-
Hausdorff spaces.

Theorem 2.9 If (X, τ,I) is a P-Hausdorff space, K ⊆ X\ S
I∈I

I is compact

and if a ∈ X\K, then there exists {U, V } ⊆ τ such that ({a} ∪K) ∩ U =
{a} , ({a} ∪K) ∩ V = K and U ∩ V ∈ I.

Proof. If x ∈ K then there is a {Ux, Vx} ⊆ τ such that {a, x} ∩ Ux = {a},
{a, x} ∩ Vx = {x} and Ux ∩ Vx ∈ I. There exists a finite K0 ⊆ K such
that K ⊆ V =

S
x∈K0

Vx. Let U =
T

x∈K0

Ux be. It is clear that U ∩ V ∈ I.

Given that a /∈ Vx, for each x ∈ K, then a /∈ V and so ({a} ∪K)∩ V = K.
Now, if there is a z ∈ U ∩K then z ∈ Ux1 ∩ Vx1 , for some x1 ∈ K0. This
implies that {z} ∈ I, but it is absurd since K ⊆ X\ S

I∈I
I. Consequently

({a} ∪K) ∩ U = {a} . 2

Theorem 2.10 If (X, τ,I) is a P-Hausdorff space and if K ⊆ X\ S
I∈I

I and

L ⊆ X\ S
I∈I

I are disjoint and compact, then there exists {U,V } ⊆ τ such

that (L ∪K) ∩ U = L, (L ∪K) ∩ V = K and U ∩ V ∈ I.

Proof. If x ∈ K then there is a {Ux, Vx} ⊆ τ such that ({x} ∪ L)∩Ux = L,
({x} ∪ L) ∩ Vx = {x} and Ux ∩ Vx ∈ I, by Theorem 2.9. There exists a

rvidal
Cuadro de texto
698



The P-Hausdorff, P-regular and P-normal ideal spaces 753

finite K0 ⊆ K such that K ⊆ V =
S

x∈K0

Vx. Let U =
T

x∈K0

Ux be. It is clear

that U ∩V ∈ I and L ⊆ U . Suppose that there is a y ∈ V ∩L. Then there
exists x0 ∈ K0 such that y ∈ Vx0 ∩ Ux0 . This implies that {y} ∈ I, but it
is impossible since L ⊆ X\ S

I∈I
I. Hence (K ∪ L) ∩ V = K. Similarly we

obtain that (K ∪ L) ∩ U = L. 2

The result that follows is related to the convergence of sequences in P-
Hausdorff spaces.

Theorem 2.11 If (X, τ,I) is P-Hausdorff and {xn} is a succession in X
such that there is no a positive integer M such that {xn : n ≥M} ∈ I,
then if {xn} converge to a and b, we have that a = b.

Proof. If a 6= b then there exists {U, V } ⊆ τ such that a ∈ U\V , b ∈ V \U
and U ∩ V ∈ I. Now, since {xn} converge to a and b, there is a M ∈ Z+
such that {xn : n ≥M} ⊆ U ∩ V . This implies that {xn : n ≥M} ∈ I,
absurd. 2

3. P-regular ideal spaces

In 1994 Jancovic and Hamlett define the I-regular spaces in [4], and in
2016 Suriyakala and Vembu define the J -regular spaces in [10]. In this
section we introduce and study the P-regular spaces, a weak form of the
J -regular spaces. The concepts of P-regularity and I-regularity turn out
to be independent. An ideal space (X, τ, I) is said to be: (i)I-regular if
for every closed set F ⊆ X and x ∈ X\F there exist disjoint open sets U
and V such that x ∈ U and F\V ∈ I, and (ii)J -regular if (X, τ) is T1
and if, for every closed set F ⊆ X and x ∈ X\F , there is a {U,V } ⊆ τ
such that x ∈ U , F ⊆ V and U ∩ V ∈ I. This last definition is a bit
disappointing, because the case may arise in which, for some a and F , we
have F ∪{a} ⊆ U or F ∪{a} ⊆ V . Several interesting additional properties
of J -regular spaces were presented in [7].

Definition 3.1 The ideal space (X, τ, I) is defined to be P-regular if for
each closed set F ⊆ X and each a ∈ X\F , there is a {U, V } ⊆ τ such that
({a} ∪ F )∩U = {a}, ({a} ∪ F )∩ V = F and U ∩ V ∈ I. If A ⊆ X then A
is P-regular if (A, τA, IA) is a P-regular space.
It is observed that Regular → P-regular and that (X, τ, {∅}) is P-regular
if and only if (X, τ) is regular. Now, if (X, τ, I) is J -regular then (X, τ,I)
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754 Néstor Raúl Pachón R.

is P-regular, because if F is a closed set and if a ∈ X\F then there exists
{U,V } ⊆ τ such that a ∈ U , F ⊆ V and U ∩ V ∈ I. Then (F ∪ {a}) ∩
(U\F ) = {a}, (F ∪ {a})∩ (V \ {a}) = F , {U\F, V \ {a}} ⊆ τ and (U\F )∩
(V \ {a}) ∈ I. In the next example we show that the reciprocal affirmation
is, in general, false.
Then T3 → J -regular → P-regular.

Example 3.2 1) (A P-regular but not I-regular space) In the set R con-
sider the topology β that consists of all V ⊆ R that satisfy that, for all a ∈
V , there is a r > a such that {a}∪(r,+∞) ⊆ V . The space (R, β) is not reg-
ular since there are no disjoint open U and V such that 1 ∈ U and (−∞, 0] ⊆
V . Let I be the ideal of all subsets of R that are bounded below. Suppose
that F is closed in (R, β) and that a ∈ R\F . There is a r > a such that
{a}∪(r,+∞) ⊆ R\F . Thus ({a} ∪ F )∩({a} ∪ (r,+∞)) = {a}, ({a} ∪ F )∩
(R\ {a}) = F , {{a} ∪ (r,+∞) ,R\ {a}} ⊆ β and ({a} ∪ (r,+∞))∩(R\ {a}) =
(r,+∞) ∈ I. Thus (R, β,I) is a P-regular space. However this space is not
I-regular because the set F = (−∞, 0] is closed, but there are no disjoint
open sets U and V such that 1 ∈ U and F\V ∈ I.
2) In R consider the topology γ in which the open neighborhoods of a real
r 6= 0 are the usual ones, and the open neighborhoods of 0 are of the form
U\F , where F = {1/n : n ∈ Z+} and U is an usual open neighborhood of
0. It is well known that F is closed in (R, γ) and that the space (X,γ) is
Hausdorff but not regular. Let I = P (Q) be. If {U,V } ⊆ γ, 0 ∈ U and
F ⊆ V , then is clear that U ∩ V ∩ (R\Q) 6= ∅, and so U ∩ V /∈ I. Hence
(X, γ,I) is not a P-regular space. However (X, γ, I) is P-Hausdorff.
3) (An I-regular but not P-regular space) If we consider X = {a, b, c, d},
τ = {∅,X, {c} , {a, b} , {a, b, c}} and I = {∅, {a} , {d} , {a, d}} then it’s very
easy to check that (X, τ, I) is an I-regular space. However (X, τ, I) is not
a P-regular space, because the set F = {a, b, d} is closed but there is no an
open set U such that [F ∪ {c}] ∩ U = F .
4) (A P-regular and not J -regular space) If X = {a, b, c} and
λ = {∅,X, {a, b} , {c}}, then (X,λ, {∅}) is a P-regular and not J -regular
space.

These examples show that I-regular and P-regular are independent con-
cepts.
The following theorem shows a characterization of P-regular spaces.

Theorem 3.3 1) If (X, τ, I) is P-regular and A ⊆ X, then A is P-regular.
2) The ideal space (X, τ,I) is P-regular if and only if, for each U ∈ τ and
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The P-Hausdorff, P-regular and P-normal ideal spaces 755

each x ∈ U , there are V ∈ τ and a closed set G ⊆ X such that x ∈ V ⊆ U ,
x ∈ G ⊆ U and V \G ∈ I.

Proof. 1) Suppose that G is closed in (A, τA) and b ∈ A\G. Since G =

G ∩ A then b /∈ G. There is a {U, V } ⊆ τ such that
³
{b} ∪G

´
∩ U = {b},³

{b} ∪G
´
∩V = G and U∩V ∈ I. Then (U ∩A)∩(V ∩A) = (U ∩ V )∩A ∈

IA, ({b} ∪G)∩(U ∩A) = {b}, and ({b} ∪G)∩(V ∩A) =
h
{b} ∪

³
G ∩A

´i
∩

(V ∩A) =
h³
{b} ∪G

´
∩A

i
∩(V ∩A) =

h³
{b} ∪G

´
∩ V

i
∩A = G∩A = G.

2) (→) If U ∈ τ and x ∈ U , there is a {V,W} ⊆ τ such that ({x} ∪ (X\U))∩
V = {x}, ({x} ∪ (X\U)) ∩W = X\U and V ∩W ∈ I. Hence x ∈ V ⊆ U ,
x ∈ X\W ⊆ U and V \ (X\W ) ∈ I. (←) Suppose that F is a closed set
and that x ∈ X\F . There are a closed set G ⊆ X and a V ∈ τ such that
x ∈ V ⊆ X\F , x ∈ G ⊆ X\F and V \G ∈ I. Thus ({x} ∪ F ) ∩ V = {x},
({x} ∪ F ) ∩ (X\G) = F and V ∩ (X\G) ∈ I. 2

If (X, τ, I) is an ideal space, the ideal I [6] is defined as the set of all A
⊆ X such that there is a I ∈ I with A ⊆ I. It is clear that, for all A ⊆ X,
A ∈ I if and only if A ∈ I.

Definition 3.4 If (X, τ, I) is an ideal space, I is said to be closed in (X, τ)
if I ∈ I, for each I ∈ I.

It is observed that I is closed in (X, τ) if and only if I = I.

Example 3.5

1) If (X, τ) is a topological space andA ⊆ X then the set I=
n
B ⊆ X : B ⊆ A

o
is a closed ideal in (X, τ).

2) If (X, τ) is a topological space then In is a closed ideal in (X, τ).

Theorem 3.6
1) If I and J are closed ideals in (X, τ), then I ∨ J is closed in (X, τ) .
b) If {Iα : α ∈ ∆} is a collection of closed ideals in (X, τ), then

T
α∈∆

Iα is

closed in (X, τ) .
2) If I and J are closed ideals in (X, τ) and (Y, β), respectively, then I⊗J
is closed in (X × Y, τ × β) .
3) If Iα is a closed ideal in (Xα, τα), for each α ∈ ∆, then N

α∈∆
Iα is closed

in

Ã Q
α∈∆

Xα,
Q
α∈∆

τα

!
.
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4)If f : (X, τ) → (Y, β) is a closed function and if I is a closed ideal in
(X, τ), then f (I) is closed in (Y, β) .
5) If f : (X, τ) → (Y, β) is an one-one continuous function, and if J is a
closed ideal in (Y, β), then f−1 (J ) is closed in (X, τ) .

Proof.
1) It is very simple.
2) Suppose that W ∈ I ⊗ J . There are A ⊆ X, B ⊆ Y , I ∈ I and J ∈ J
such that W ⊆ (I ×B) ∪ (A× J). Thus W ⊆

³
I ×B

´
∪
³
A× J

´
, and so

W ∈ I ⊗ J , because I ∈ I and J ∈ J .
3) If W ∈ N

α∈∆
Iα then there is a finite ∆0 ⊆ ∆ such that, for each α ∈ ∆0,

there exists Iα ∈ Iα with W ⊆ T
α∈∆0

p−1α (Iα). Hence W ⊆
T

α∈∆0

p−1α (Iα) ⊆T
α∈∆0

p−1α (Iα) ⊆
T

α∈∆0

p−1α
³
Iα
´
, and so W ∈ N

α∈∆
Iα, given that Iα ∈ Iα, for

each α ∈ ∆0.
4) If I ∈ I then f (I) ⊆ f

³
I
´
. This implies that f (I) ∈ f (I), given that

I ∈ I.
5) Suppose that J ∈ J . Since f−1 (J) ⊆ f−1

³
J
´
and J ∈ J , we obtain

that f−1 (J) ∈ f−1 (J ). 2

The following theorem shows a characterization of P-regular spaces, in the
case of closed ideals.

Theorem 3.7 If I is a closed ideal in (X, τ) then:
1) (X, τ, I) is P-regular if and only if for each U ∈ τ and x ∈ U , there are
V ∈ τ and a closed set G ⊆ X such that x ∈ V ⊆ U , x ∈ G ⊆ U and
V \G ∈ I.
2) If (X, τ, I) is P-regular and {a, b} ⊆ X then either {a} = {b} or {a} ∩
{b} ∈ I.

Proof.
1) (→) Suppose that U ∈ τ and x ∈ U . There are V ∈ τ , a closed set G
and I ∈ I such that x ∈ V ⊆ U , x ∈ G ⊆ U and V \G = I, by Theorem
3.3. Then V ⊆ G ∪ I and so V ⊆ G ∪ I. In this way V \G ⊆ I ∈ I and so
V \G ∈ I. (←) This is immediate if we apply Theorem 3.3.
2) Suppose that {a} 6= {b} and, without loss of generality, that a /∈ {b}. By
part (1), there exist V ∈ τ and a closed set G such that a ∈ V ⊆ X\{b},
a ∈ G ⊆ X\{b} and V \G ∈ I. Thus {a} ∩ {b} ⊆ V ∩ (X\G) ∈ I. 2
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The four theorems that follow show us something of the functional be-
havior of P-regular spaces.

Theorem 3.8 If f : (X, τ) → (Y, β) is a continuous, open, closed and
sobreyective function and if (X, τ, I) is P-regular, then (Y, β, f (I)) is P-
regular.

Proof. Suppose that H ⊆ Y is closed and that b = f (a) ∈ Y \H. Given
that a ∈ X\f−1 (H) then there is a {U, V } ⊆ τ such that U ∩ V ∈ I,£
{a} ∪ f−1 (H)

¤
∩ U = {a} and

£
{a} ∪ f−1 (H)

¤
∩ V = f−1 (H). So b =

f (a) ∈ f (U) and H ⊆ Y \ [f (X\V )]. Since a ∈ X\V then b /∈ Y \f (X\V ).
On the other hand, given that f−1 (H)∩U = ∅ we have that f (U)∩H = ∅.
Hence [{b} ∪H] ∩ f (U) = {b} and [{b} ∪H] ∩ [Y \f (X\V )] = H. Now,
let I ∈ I be such that U ∩ V = I. Thus U ⊆ (X\V ) ∪ I , f (U) ⊆
f (X\V ) ∪ f (I) and f (U) ∩ [Y \f (X\V )] ⊆ f (I) ∈ f (I). This implies
that f (U) ∩ [Y \f (X\V )] ∈ f (I). 2

Theorem 3.9 If f : X → Y is an one-one function and (Y, β,J ) is a
P-regular space, then

¡
X, f−1 (β) , f−1 (J )

¢
is P-regular.

Proof. Suppose that F ⊆ X is closed and that a ∈ X\F . There exists
a closed set G ⊆ Y such that F = f−1 (G). Since f (a) /∈ G, there is
a {U, V } ⊆ β such that [{f(a)} ∪G] ∩ U = {f(a)}, [{f(a)} ∪G] ∩ V =
G and U ∩ V ∈ J . Then a ∈ f−1 (U), F = f−1 (G) ⊆ f−1 (V ), a /∈
f−1 (V ), F ∩ f−1 (U) = f−1 (G ∩ U) = ∅,

©
f−1 (U) , f−1 (V )

ª
⊆ f−1 (β)

and f−1 (U) ∩ f−1 (V ) = f−1 (U ∩ V ) ∈ f−1 (J ). 2

Theorem 3.10 If f : (X, τ) → (Y, β) is a continuous, closed and so-
breyective function, f−1 ({y}) is compact, for all y ∈ Y , and if (X, τ,I) is
P-regular, then (Y, β, f (I)) is P-regular.

Proof. Suppose that K ⊆ Y is closed and u ∈ Y \K. For every x ∈
f−1 ({u}) there is a {Ux, Vx} ⊆ τ such that

£
{x} ∪ f−1 (K)

¤
∩ Ux = {x},£

{x} ∪ f−1 (K)
¤
∩ Vx = f−1 (K) and Ux ∩ Vx ∈ I. There exists a finite set

A ⊆ f−1 ({u}) such that f−1 ({u}) ⊆ U =
S
x∈A

Ux. Let V =
T
x∈A

Vx be. It

is clear that u ∈ Y \f (X\U) and U ∩ V ∈ I. Given that f−1 (K) ⊆ Vx
for all x ∈ A, then f−1 (K) ⊆ V , and so K ⊆ Y \f (X\V ). Let a0 ∈ A
be. Since a0 /∈ Va0 then a0 ∈ X\V . Hence u = f (a0) ∈ f (X\V ) and u /∈
Y \f (X\V ). Now, given that f−1 (K) ⊆ X\Ux, for every x ∈ A, we have
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that f−1 (K) ⊆ T
x∈A

(X\Ux) = X\U , and so K ∩ [Y \f (X\U)] = ∅. Con-

sequently [{u} ∪K] ∩ [Y \f (X\U)] = {u}, [{u} ∪K] ∩ [Y \f (X\V )] = K.
Moreover [Y \f (X\U)] ∩ [Y \f (X\V )] = Y \f [X\ (U ∩ V )] ⊆ f (U ∩ V ),
because f is sobreyective. Given that f (U ∩ V ) ∈ f (I), we have that
[Y \f (X\U)] ∩ [Y \f (X\V )] ∈ f (I). 2

Theorem 3.11 If f : X → Y is a sobreyective function, (Y, β,J ) is an
ideal space and

¡
X, f−1 (β) , If,J

¢
is P-regular, then (Y, β,J ) is P-regular.

Here If,J =
©
A ⊆ X : there is a J ∈ J with A ⊆ f−1 (J)

ª
.

Proof. Suppose that G ⊆ Y is closed and b = f (a) ∈ Y \G. Since a ∈
X\f−1 (G) andX\f−1 (G) ∈ f−1 (β), there is a {U, V } ⊆ f−1 (β) such that
U∩V ∈ If,J ,

£
{a} ∪ f−1 (G)

¤
∩U = {a} and

£
{a} ∪ f−1 (G)

¤
∩V = f−1 (G).

Let {A,B} ⊆ β be such that U = f−1 (A) and V = f−1 (B). Given that
f−1 (G) ⊆ X\U = f−1 (X\A), then G ⊆ Y \A. Hence b ∈ A, G ⊆ B,
b /∈ B and G ∩ A = ∅. On the other hand, there exists J ∈ J such that
f−1(A ∩ B) = U ∩ V ⊆ f−1 (J). Given that f is sobreyective we obtain
that A ∩B ⊆ J , and so A ∩B ∈ J . 2

In the remainder of this section we review the product and sums of P-
regular spaces.

Theorem 3.12 If (X, τ, I) and (Y, β,L) are P-regular, then the space
(X × Y, τ × β, I ⊗ L) is P-regular.

Proof. If F ⊆ X × Y is closed and if (a, b) ∈ (X × Y ) \F , then there are
U ∈ τ and V ∈ β such that (a, b) ∈ U × V ⊆ (X × Y ) \F . Since (X, τ,I)
and (Y, β,L) are P-regular spaces, there are {U1, U2} ⊆ τ and {V1, V2} ⊆ β
with [{a} ∪ (X\U)]∩U1 = {a}, [{a} ∪ (X\U)]∩U2 = X\U , [{b} ∪ (Y \V )]∩
V1 = {b}, [{b} ∪ (Y \V )] ∩ V2 = Y \V , U1 ∩ U2 ∈ I and V1 ∩ V2 ∈ L. Thus
(a, b) ∈ U1 × V1, with U1 × V1 ∈ τ × β, and F ⊆ (X × Y ) \ (U × V ) =
[(X\U)× Y ] ∪ [X × (Y \V )] ⊆ (U2 × Y ) ∪ (X × V2) ∈ τ × β. On the other
hand, (a, b) /∈ (U2 × Y ) ∪ (X × V2), F ∩ (U1 × V1) ⊆ F ∩ (U × V ) = ∅ and
(U1 × V1) ∩ [(U2 × Y ) ∪ (X × V2)] = [(U1 ∩ U2)× V1] ∪ [U1 × (V1 ∩ V2)] ∈
I ⊗ L. 2

Theorem 3.13 If {(Xα, τα, Iα) : α ∈ Λ} is a nonempty family of nonempty

P-regular spaces, then
Ã Q
α∈Λ

Xα,
Q
α∈Λ

τα,
N
α∈Λ

Iα
!
is P-regular.
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Proof. Let X =
Q
α∈Λ

Xα, τ =
Q
α∈Λ

τα and I =
N
α∈Λ

Iα. Suppose that

F ⊆ X is closed and a = (aα)α∈Λ ∈ X\F . There is a finite Λ0 ⊆ Λ such
that, for every α ∈ Λ0, there exists Uα ∈ τα with a ∈ T

α∈Λ0
p−1α (Uα) ⊆

X\F , where pα is the α-th proyection. Since, for all α ∈ Λ0, aα /∈
Xα\Uα, there is a {Vα,Wα} ⊆ τα such that [{aα} ∪ (Xα\Uα)]∩Vα = {aα},
[{aα} ∪ (Xα\Uα)] ∩Wα = Xα\Uα and Vα ∩Wα ∈ Iα. It is observed that
Vα ⊆ Uα andXα\Uα ⊆Wα, for each α ∈ Λ0. If V =

T
α∈Λ0

p−1α (Vα) andW =S
α∈Λ0

p−1α (Wα) then a ∈ V , F ⊆ S
α∈Λ0

p−1α (Xα\Uα) ⊆
S

α∈Λ0
p−1α (Wα) = W

and F ∩V ⊆ S
α∈Λ0

£
V ∩ p−1α (Xα\Vα)

¤
⊆ S

α∈Λ0
p−1α [Vα ∩ (Xα\Vα)] = ∅. Thus

F ∩V = ∅. Now, suppose that a ∈W . Then there is a δ ∈ Λ0 such that a ∈
p−1δ (Wδ)∩ p−1δ (Vδ) , and so aδ ∈ [{aδ} ∪ (Xδ\Uδ)]∩Wδ = Xδ\Uδ ⊆ Xδ\Vδ,
but this is impossible. Hence a /∈W . Finally, V ∩W ⊆ T

α∈Λ0
p−1α (Vα ∩Wα),

and so V ∩W ∈ I. 2

Theorem 3.14 If {(Xi, τi,Ii) : i ∈ Λ} is a nonempty collection of nonempty
P-regular spaces, with Xi ∩Xj = ∅ for each i 6= j, then the spaceÃP
i∈Λ

Xi,
P
i∈Λ

τi,
P
i∈Λ
Ii
!
is P-regular.

Proof. Suppose that F ⊆ P
i∈Λ

Xi is closed and that a ∈
ÃP
i∈Λ

Xi

!
\F .

Let α ∈ Λ be such that a ∈ Xα. Since F ∩ Xα is closed in Xα and a ∈
Xα\ (F ∩Xα), there is a {Uα, Vα} ⊆ τα ⊆

P
i∈Λ

τi with [{a} ∪ (F ∩Xα)] ∩

Uα = {a}, [{a} ∪ (F ∩Xα)] ∩ Vα = F ∩ Xα and Uα ∩ Vα ∈ Iα. If we
do V =

P
i∈Λ

Wi, where Wi = Xi if i 6= α, and Wα = Vα, then V ∈ P
i∈Λ

τi,

[{a} ∪ F ]∩V = F , [{a} ∪ F ]∩Uα = {a} and Uα∩V = Uα∩Vα ∈ Iα ⊆
P
i∈Λ
Ii.

2

4. P-normal ideal spaces

The I-normal spaces were defined by Renuka Devi and Sivaraj in [8], while
the J -normal spaces were defined by Suriyakala and Vembu in [10]. In this
section we introduce and study the P-normal spaces, a weak form of the
J -normal spaces. The concepts of P-normality and I-normality turn out
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to be independent. An ideal space (X, τ,I) is said to be: (i)I-normal if
for every disjoint closed sets F and G, there are disjoint open sets U and
V such that {F\U,G\V } ⊆ I, and (ii)J -normal if (X, τ) is T1 and if, for
every disjoint closed sets F and G, there is a {U, V } ⊆ τ such that F ⊆ U ,
G ⊆ V and U ∩V ∈ I. In the second case we can find a situation in which,
for some disjoint closed sets F and G, F ∪G ⊆ U or F ∪G ⊆ V , and this
is not very desired. Some interesting additional properties of J -normal
spaces are presented in [7].

Definition 4.1 The ideal space (X, τ, I) is said to be P-normal if for every
disjoint closed sets F and G, there exists {U, V } ⊆ τ such that F ⊆ U\V ,
G ⊆ V \U and U ∩ V ∈ I. A set A ⊆ X is P-normal if (A, τA, IA) is
P-normal.
It is observed that if (X, τ, I) is P-normal and A ⊆ X is closed, then A is
P-normal. Also it is noted that Normal → P-normal and that (X, τ, {∅})
is P-normal if and only if (X, τ) is normal. Now, if (X, τ, I) is J -normal
then (X, τ, I) is P-normal, because if F and G are disjoint closed sets then
there exists {U, V } ⊆ τ such that F ⊆ U , G ⊆ V and U ∩ V ∈ I. Then
(F ∪G) ∩ (U\G) = F , (F ∪G) ∩ (V \F ) = G, and (U\G) ∩ (V \F ) ∈ I. A
little later we show that the reciprocal affirmation is, in general, false.
Then T4 → J -normal → P-normal.

Example 4.2 1) (AP-normal but not I-normal or J -normal space) If X
= {a, b, c, d, e}, τ = {∅, {c, e} , {c, d, e} , {a, b, c, e} ,X} and I = P ({c, e}),
then the only nonempty and disjoint closed sets are {a, b} and {d}. If we
do U = {a, b, c, e} and V = {c, d, e}, we have that ({a, b} ∪ {d})∩V = {d},
({a, b} ∪ {d}) ∩ U = {a, b} and U ∩ V = {c, e} ∈ I. Hence (X, τ, I) is
P-normal.
Note that this space is not P-regular because c /∈ {d}, but there is no
an open set W such that W ∩ {c, d} = {d}. Moreover, this space is
not I-normal since there are not disjoint open sets U and V such that
{a, b} \U ∈ I and {d} \V ∈ I. In addition, this space is not J -normal
given that (X, τ) is not T1.
2) If X is an infinite set, β is the cofinite topology in X, and if I = Pf (X),
then the space (X,β, I) is not P-normal.
3) (An I-normal but not P-normal space) In the set Z we consider the
ideal I = P (A), where A = {2n : n ∈ Z}, and the topology β of all the
sets U ⊆ Z such that, for each n ∈ Z, if 2n ∈ U then {2n− 1, 2n+ 1} ⊆ U .
Then:
i) If F and G are disjoint closed sets and if U = F ∩ {2n+ 1 : n ∈ Z} and
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V = G∩ {2n+ 1 : n ∈ Z}, we have that {U, V } ⊆ β, {F\U,G\V } ⊆ I and
U ∩ V = ∅. Hence (Z, β, I) is an I-normal space.
ii) If F = {0, 1, 2} and G = {4, 5, 6} then F and G are closed sets. If
{W,T} ⊆ β, with F ⊆ W and G ⊆ T , then 3 ∈ W ∩ T and so W ∩ T /∈ I.
Consecuently (Z, β, I) is not P-normal.
4) (A P-normal and not J -normal space) If X = {a, b, c} and
λ = {∅,X, {a, b} , {c}}, then (X,λ, {∅}) is a P-normal and not J -normal
space.

Note that I-normal and P-normal are independent concepts.
Next we present a characterization of P-normality.

Theorem 4.3 The space (X, τ, I) is P-normal if and only if for each closed
set F ⊆ X and each W ∈ τ , if F ⊆W then there are a U ∈ τ and a closed
set G ⊆ X, such that F ⊆ U ⊆W , F ⊆ G ⊆W and U\G ∈ I.

Proof. (→) If F ⊆ X is closed and F ⊆W ∈ τ then there exists {U, V } ⊆ τ
such that (F ∪ (X\W ))∩U = F , (F ∪ (X\W ))∩V = X\W and U∩V ∈ I.
This implies that F ⊆ U ⊆W , F ⊆ X́\V ⊆W and U\ (X\V ) ∈ I.

(←) If F and G are disjoint closed sets then there are U ∈ τ and a
closed set H such that F ⊆ U ⊆ X\G, F ⊆ H ⊆ X\G and U\H ∈ I.
Hence (F ∪G) ∩ U = F , (F ∪G) ∩ (X\H) = G and U ∩ (X\H) ∈ I. 2

Now we show some characterizations of P-normality for closed ideals.

Theorem 4.4 If I is a closed ideal in (X, τ) then the following statements
are equivalents:
1) The ideal space (X, τ, I) is P-normal.
2) For each closed set F and each W ∈ τ , if F ⊆ W then there are U ∈ τ
and a closed set G such that F ⊆ U ⊆W , F ⊆ G ⊆W and U\G ∈ I.
3) For every disjoint closed sets F and G, there exists {U, V } ⊆ τ such that
(F ∪G) ∩ U = F , (F ∪G) ∩ V = G and U ∩ V ∈ I.

Proof.
1)→ 3) Suppose that F and G are disjoint closed sets. There is a {U, V } ⊆
τ such that (F ∪G) ∩ U = F , (F ∪G) ∩ V = G and U ∩ V ∈ I. Since
F ∩ (X\U) = ∅ = G∩ (X\V ), there are {U1, U2, V1, V2} ⊆ τ and {I, J} ⊆ I
such that (F ∪ (X\U))∩U1 = F , (F ∪ (X\U))∩U2 = X\U , (G ∪ (X\V ))∩
V1 = G, (G ∪ (X\V ))∩V2 = X\V , U1∩U2 = I and V1∩V2 = J . Therefore
F ⊆ U1 ⊆ U1 ⊆ (X\U2)∪I ⊆ U∪I , G ⊆ V1 ⊆ V1 ⊆ (X\V2)∪J ⊆ V ∪I and
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also U1∩V1 ⊆
³
U ∪ I

´
∩
³
V ∪ J

´
= (U ∩ V )∪

³
U ∩ J

´
∪
³
V ∩ I

´
∪
³
I ∩ J

´
∈

I, because
n
I, J

o
⊆ I. Thus U1∩V1 ∈ I. Moreover G∩U1 ⊆ G∩U = ∅ and

F ∩V1 ⊆ F ∩V = ∅. 3)→ 2) If F ⊆ X is closed, W ∈ τ and F ⊆W , there
is a {U,V } ⊆ τ such that (F ∪ (X\W )) ∩ U = F , (F ∪ (X\W )) ∩ V =
X\W and U ∩ V ∈ I. In this way, F ⊆ U ⊆ W , F ⊆ X\V ⊆ W and
U\ (X\V ) = U ∩ V ⊆ U ∩ V ∈ I. Hence U\ (X\V ) ∈ I. 2) → 1) This is
immediate if we apply Theorem 4.3. 2

Next we present a condition under which P-regular implies P-normal.

Theorem 4.5 If the space (X, τ, I) is P-regular and if (X, τ) is compact,
then (X, τ, I) is P-normal.

Proof. Suppose that F and G are disjoint closed sets. For each f ∈ F there
exists {Uf , Vf} ⊆ τ such that ({f} ∪G) ∩ Uf = {f}, ({f} ∪G) ∩ Vf = G
and Uf∩Vf ∈ I. Given that F is compact, there is a finite F0 ⊆ F such that
F ⊆ U =

S
f∈F0

Uf . If V =
T

f∈F0
Vf then G ⊆ V , U ∩G = ∅ and U ∩ V ∈ I.

Similarly, there is a {U1, V1} ⊆ τ such that F ⊆ U1 , G ⊆ V1, V1∩F = ∅ and
U1 ∩ V1 ∈ I. In this way (F ∪G) ∩ (U ∩ U1) = F , (F ∪G) ∩ (V ∩ V1) = G
and (U ∩ U1) ∩ (V ∩ V1) = (U ∩ V ) ∩ (U1 ∩ V1) ∈ I. 2

Now we show some functional properties of P-normality.

Theorem 4.6
1) If f : (X, τ) → (Y, β) is continuous, sobreyective and closed, and if
(X, τ, I) is P-normal, then (Y, β, f (I)) is P-normal.
2) If f : X → Y is sobreyective, (Y, β,L) is an ideal space and if¡
X, f−1 (β) , If,L

¢
is P-normal, then (Y, β,L) is P-normal.

Proof.
1) Suppose that L and K are disjoint closed subsets of Y . There is a
{U,V } ⊆ τ such that

£
f−1 (L) ∪ f−1 (K)

¤
∩U = f−1 (L),

£
f−1 (L) ∪ f−1 (K)

¤
∩

V = f−1 (K) and U ∩ V ∈ I. Hence L ⊆ Y \f (X\U), K ⊆ Y \f (X\V ),
L ⊆ f (X\V ) and K ⊆ f (X\U), given that f is obreyective. Thus
L ∩ [Y \f (X\V )] = ∅ and K ∩ [Y \f (X\U)] = ∅. Now [Y \f (X\U)] ∩
[Y \f (X\V )]
= Y \f (X\ (U ∩ V )). Since f is sobreyective, Y \f (X\ (U ∩ V )) ⊆ f (U ∩ V ),
with f (U ∩ V ) ∈ f (I). Hence [Y \f (X\U)] ∩ [Y \f (X\V )] ∈ f (I).
2) This is immediate. 2
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