International Journal of Pure and Applied Mathematics Volume 108 No. 2 2016, 199-214

ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.12732/ijpam.v108i2.2

$\rho \mathrm{C}(\mathcal{I})\text{-}\mathrm{COMPACT}$ AND $\rho \mathcal{I}\text{-}\mathrm{QHC}$ SPACES

Néstor Raúl Pachón

Department of Mathematics Colombian School of Engineering AK 45 No 205-59, 111166, Bogotá, COLOMBIA

Abstract: In this paper we introduce and investigate two new ideal topological spaces, which are strong forms of Gupta-Noiri concepts. Interesting characterizations of this spaces are presented, as well as several useful properties of these. We compare this new spaces with C-compact and quasi-H-closed spaces.

AMS Subject Classification: 54D30, 54C10 **Key Words:** C-compact, quasi-H-closed, \mathcal{I} -compact, $C(\mathcal{I})$ -compact, \mathcal{I} -QHC, $\rho \mathcal{I}$ -compact

1. Introduction and Preliminaries

The ideal topological spaces has been introduced in Kuratowski [5] and Vaidyanathaswamy [12] books. The concept of compactness modulo an ideal was introduced by Newcomb [7], but popularized by Hamlett-Jancovic papers [3][4]. The C-compact spaces and QHC spaces were defined by Viglino [13] and Porter-Thomas [10], respectively, and are generalizations of compactness. In 2006 Gupta-Noiri [2] generalize Viglino and Porter through the notion of $C(\mathcal{I})$ -compact and \mathcal{I} -QHC spaces.

In this paper we introduce and study the $\rho C(\mathcal{I})$ -compact and $\rho \mathcal{I}$ -QHC spaces, which are strong forms of the Gupta-Noiri concepts. Interesting characterizations of this new spaces will also be presented, as well as their relationship with the $\rho \mathcal{I}$ -compact spaces [9].

Received: March 18, 2016 Published: June 18, 2016 © 2016 Academic Publications, Ltd. url: www.acadpubl.eu An ideal \mathcal{I} in a set X is a subset of $\mathcal{P}(X)$, the power set of X, such that: (i) if $A \subseteq B \subseteq X$ and $B \in \mathcal{I}$ then $A \in \mathcal{I}$, and (ii) If $A \in \mathcal{I}$ and $B \in \mathcal{I}$ then $A \cup B \in \mathcal{I}$.

Some useful ideals in X are: (i) $\mathcal{P}(A)$, where $A \subseteq X$, (ii) \mathcal{I}_f , the ideal of all finite subsets of X, (iii) \mathcal{I}_c , the ideal of all countable subsets of X, (iv) \mathcal{I}_n , the ideal of all nowhere dense subsets in a topological space (X, τ) .

If (X,τ) is a topological space and \mathcal{I} is an ideal in X, then (X,τ,\mathcal{I}) is called an *ideal space*.

If (X, τ, \mathcal{I}) is an ideal space then the set $\mathcal{B} = \{U \setminus I : U \in \tau \text{ and } I \in \mathcal{I}\}$ is a base for a topology τ^* , finer than τ .

If (X,τ) is a topological space and $A \subseteq X$ then \overline{A} (or adh(A), or $adh_{\tau}(A)$) and $\stackrel{0}{A}$ (or int(A), or $int_{\tau}(A)$) will, respectively, denote the closure and interior of A in (X,τ) .

If (X,τ) is a topological space and $A \subseteq X$ then A is said to be regular open if $A = \overline{A}$, and A is defined to be regular closed if $A = \overline{A}$. If $A \subseteq \overline{A}$ then A is called *pre-open* [6]. The set of all pre-open subsets of X is denoted by PO(X). $\frac{0}{0}$

If $A \subseteq A$ then A is called α -open [8]. Clearly open $\Rightarrow \alpha$ -open \Rightarrow pre-open.

Moreover, if \mathcal{I} is an ideal in X and $\mathcal{I} \cap \tau = \{\emptyset\}, \mathcal{I}$ is called *codense* [1]. If $\mathcal{I} \cap PO(X) = \{\emptyset\}$ then \mathcal{I} is said to be *completely codense* [1].

2. $\rho \mathcal{I}$ -QHC spaces

A topological space (X,τ) is said to be *quasi-H-closed*, or simply *QHC* [10], if for each open cover $\{V_{\alpha}\}_{\alpha \in \Lambda}$ of X, there exists $\Lambda_0 \subseteq \Lambda$, finite, with $X = \bigcup_{\alpha \in \Lambda_0} \overline{V_{\alpha}}$.

An ideal space (X,τ,\mathcal{I}) is defined to be \mathcal{I} -compact [7] if for all open cover $\{V_{\alpha}\}_{\alpha\in\Lambda}$ of X, there exists $\Lambda_0\subseteq\Lambda$, finite, such that $X\setminus\bigcup_{\alpha\in\Lambda_0}V_{\alpha}\in\mathcal{I}$.

The space (X, τ, \mathcal{I}) is said to be \mathcal{I} -QHC [2] if for all open cover $\{V_{\alpha}\}_{\alpha \in \Lambda}$ of X, there exists $\Lambda_0 \subseteq \Lambda$, finite, such that $X \setminus \bigcup_{\alpha \in \Lambda_0} \overline{V_{\alpha}} \in \mathcal{I}$.

It is noted that $QHC \Rightarrow \mathcal{I}\text{-}QHC$.

An ideal space (X,τ,\mathcal{I}) is defined to be $\rho\mathcal{I}$ -compact [9] if for each family $\{V_{\alpha}\}_{\alpha\in\Lambda}$ of open subsets of X, if $X \setminus \bigcup_{\alpha\in\Lambda} V_{\alpha} \in \mathcal{I}$ there exists $\Lambda_0 \subseteq \Lambda$, finite, with $X \setminus \bigcup_{\alpha\in\Lambda_0} V_{\alpha} \in \mathcal{I}$.

In this section we define the $\rho \mathcal{I}$ -QHC spaces and study some of its properties and characterizations.

Definition 2.1 If (X, τ, \mathcal{I}) is an ideal space and $A \subseteq X$, then A is said to be $\rho \mathcal{I}$ -QHC if for all family $\{V_{\alpha}\}_{\alpha \in \Lambda}$ of open subsets of X, if $A \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha} \in \mathcal{I}$, there exists $\Lambda_0 \subseteq \Lambda$, finite, with $A \setminus \bigcup_{\alpha \in \Lambda_0} \overline{V_{\alpha}} \in \mathcal{I}$. The ideal space (X, τ, \mathcal{I}) is said to be $\rho \mathcal{I}$ -QHC if X is $\rho \mathcal{I}$ -QHC.

Clearly $(X, \tau, \{\emptyset\})$ is $\rho \mathcal{I}$ -QHC $\Leftrightarrow (X, \tau, \{\emptyset\})$ is \mathcal{I} -QHC $\Leftrightarrow (X, \tau)$ is QHC. It is also evident that $\rho \mathcal{I}$ -QHC $\Rightarrow \mathcal{I}$ -QHC and $\rho \mathcal{I}$ -compact $\Rightarrow \rho \mathcal{I}$ -QHC, but the converse, in general, are not true.

Example 2.1 We denote by $2\mathbb{Z}$ the set of even integers, and by $2\mathbb{Z} + 1$ the set of odd integers.

Let τ be the topology on \mathbb{Z} given by: If $V \subseteq \mathbb{Z}$ then $V \in \tau \Leftrightarrow$ [if $0 \in V$ then $2\mathbb{Z} \subseteq V$, and if $1 \in V$ then $2\mathbb{Z} + 1 \subseteq V$].

Let $\mathcal{I} = \mathcal{P}[(2\mathbb{Z}+1) \cup \{0\}]$. We have that:

a) (\mathbb{Z}, τ) is a QHC space, and then $(\mathbb{Z}, \tau, \mathcal{I})$ is \mathcal{I} -QHC.

If $\{V_{\alpha}\}_{\alpha\in\Lambda}$ is a family of open subsets of \mathbb{Z} and $\mathbb{Z} = \bigcup_{\alpha\in\Lambda} V_{\alpha}$, then there are $\alpha_0 \in \Lambda$ and $\alpha_1 \in \Lambda$ with $0 \in V_{\alpha_0}$ and $1 \in V_{\alpha_1}$. Then $2\mathbb{Z} \subseteq V_{\alpha_0}$ and $2\mathbb{Z} + 1 \subseteq V_{\alpha_1}$, and so $\mathbb{Z} = \overline{V_{\alpha_0}} \cup \overline{V_{\alpha_1}}$.

b) $(\mathbb{Z}, \tau, \mathcal{I})$ is not $\rho \mathcal{I}$ -QHC.

 $\mathbb{Z} \setminus \bigcup_{n \neq 0} \{2n\} = (2\mathbb{Z} + 1) \cup \{0\} \in \mathcal{I}, \text{ but if } n \neq 0 \text{ we have that } \overline{\{2n\}} = \{0, 2n\},$

and if $\{n_1, n_2, ..., n_r\} \subseteq \mathbb{Z} \setminus \{0\}$ then $\mathbb{Z} \setminus \bigcup_{j=1}^r \overline{\{2n_j\}} \notin \mathcal{I}$.

In the Examples 3.1 and 3.2 we show $\rho \mathcal{I}$ -QHC spaces.

It is easy to see that an open and closed subset of a $\rho \mathcal{I}$ -QHC space is $\rho \mathcal{I}$ -QHC.

In the next theorem we present interesting characterizations of $\rho \mathcal{I}$ -QHC spaces. The proof is similar to that of Theorems 3.2 and 3.3, so we omit it.

If \mathcal{I} is an ideal in a set X, a family \mathcal{F} of subsets of X is said to have the *finite-intersection property modulo* \mathcal{I} , if for each $\mathcal{F}_0 \subseteq \mathcal{F}$, finite, we have that $\bigcap_{V \in \mathcal{F}_0} V \notin \mathcal{I}$.

Theorem 2.1 For an ideal space (X, τ, \mathcal{I}) , the following statements are equivalents:

1) (X, τ, \mathcal{I}) is $\rho \mathcal{I}$ -QHC.

2) For each family $\{F_{\alpha}\}_{\alpha \in \Lambda}$ of closed subsets of X, if $\bigcap_{\alpha \in \Lambda} F_{\alpha} \in \mathcal{I}$, there exists $\Lambda_0 \subseteq \Lambda$, finite, such that $\bigcap_{\alpha \in \Lambda_0} \overset{0}{F_{\alpha}} \in \mathcal{I}$.

3) For each family $\{F_{\alpha}\}_{\alpha \in \Lambda}$ of closed subsets, if $\left\{ \begin{matrix} 0\\F_{\alpha}: \alpha \in \Lambda \end{matrix} \right\}$ has the finite-intersection property modulo \mathcal{I} , then $\bigcap F_{\alpha} \notin \mathcal{I}$.

4) For each family $\{V_{\alpha}\}_{\alpha \in \Lambda}$ of regular open subsets of X, if $X \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha} \in \mathcal{I}$, there is $\Lambda_0 \subseteq \Lambda$, finite, such that $X \setminus \bigcup_{\alpha \in \Lambda_0} \overline{V_{\alpha}} \in \mathcal{I}$.

5) For each family $\{F_{\alpha}\}_{\alpha \in \Lambda}$ of regular closed subsets of X, if $\bigcap_{\alpha \in \Lambda} F_{\alpha} \in \mathcal{I}$,

there is $\Lambda_0 \subseteq \Lambda$, finite, such that $\bigcap_{\alpha \in \Lambda_0} \overset{0}{F_{\alpha}} \in \mathcal{I}$.

6) For each family $\{F_{\alpha}\}_{\alpha \in \Lambda}$ of regular closed subsets of X, if $\left\{ \begin{matrix} 0\\F_{\alpha}: \alpha \in \Lambda \end{matrix} \right\}$ has the finite-intersection property modulo \mathcal{I} , then $\bigcap_{\alpha \in \Lambda} F_{\alpha} \notin \mathcal{I}$.

7) For each open filter base Ω on X such that $\Omega \subseteq \mathcal{P}(X) \setminus \mathcal{I}$, one has $\bigcap_{V \in \Omega} \overline{V} \notin \mathcal{I}$.

It follows from a result in [11] that if (X, τ) is a topological space and \mathcal{I} is a completely codense ideal in X, then (X, τ) and (X, τ^*) have the same regular open subsets, and $adh_{\tau}(V) = adh_{\tau^*}(V)$, for all $V \in \tau^*$. Then the following result is clear.

Theorem 2.2 If \mathcal{I} is a completely codense ideal in X, the space (X, τ, \mathcal{I}) is $\rho \mathcal{I}$ -QHC if and only if (X, τ^*, \mathcal{I}) is $\rho \mathcal{I}$ -QHC.

Now we review the behavior of $\rho \mathcal{I}$ -QHC spaces under continuous or open functions.

Theorem 2.3 1) If (X, τ, \mathcal{I}) is $\rho \mathcal{I}$ -QHC and $f : (X, \tau) \to (Y, \beta)$ is a biyective continuous function, then $(Y, \beta, f(\mathcal{I}))$ is $\rho f(\mathcal{I})$ -QHC, where $f(\mathcal{I})$ is the ideal $\{f(I) : I \in \mathcal{I}\}$.

2) If (X, τ, \mathcal{I}) is $\rho \mathcal{I}$ -QHC and $f : (X, \tau) \to (Y, \beta)$ is a continuous function, then (Y, β, \mathcal{J}) is $\rho \mathcal{J}$ -QHC, where \mathcal{J} is the ideal $\{V \subseteq Y : f^{-1}(V) \in \mathcal{I}\}.$ 3) If (Y, β, \mathcal{J}) is $\rho \mathcal{J}$ -QHC and $f : (X, \tau) \to (Y, \beta)$ is a biyective and open function, then $(X, \tau, f^{-1}(\mathcal{J}))$ is $\rho f^{-1}(\mathcal{J})$ -QHC, where $f^{-1}(\mathcal{J})$ is the ideal $\{f^{-1}(V) : V \in \mathcal{J}\}.$

Proof. 1) Suppose that $\{W_{\alpha}\}_{\alpha \in \Lambda}$ is a family of open subsets of Y with $Y \setminus \bigcup_{\alpha \in \Lambda} W_{\alpha} \in f(\mathcal{I})$. There exists $I \in \mathcal{I}$ such that $Y \setminus \bigcup_{\alpha \in \Lambda} W_{\alpha} = f(I)$. Since $X \setminus \bigcup_{\alpha \in \Lambda} f^{-1}(W_{\alpha}) = f^{-1}(f(I)) = I \in \mathcal{I}$, there exists $\Lambda_0 \subseteq \Lambda$, finite, with $X \setminus \bigcup_{\alpha \in \Lambda_0} \overline{f^{-1}(W_{\alpha})} \in \mathcal{I}$. Given that f is continuous, $f^{-1}\left(Y \setminus \bigcup_{\alpha \in \Lambda_0} \overline{W_{\alpha}}\right) = X \setminus \bigcup_{\alpha \in \Lambda_0} f^{-1}(\overline{W_{\alpha}}) \subseteq X \setminus \bigcup_{\alpha \in \Lambda_0} \overline{f^{-1}(W_{\alpha})}$, and so $f^{-1}\left(Y \setminus \bigcup_{\alpha \in \Lambda_0} \overline{W_{\alpha}}\right) \in \mathcal{I}$. Then $Y \setminus \bigcup_{\alpha \in \Lambda_0} \overline{W_{\alpha}} = f\left(f^{-1}\left(Y \setminus \bigcup_{\alpha \in \Lambda_0} \overline{W_{\alpha}}\right)\right) \in f(\mathcal{I})$. 2) It is easy to see that \mathcal{J} is an ideal in Y. Suppose that $\{W_{\alpha}\}_{\alpha \in \Lambda}$ is a family of open subsets of Y with $Y \setminus \bigcup_{\alpha \in \Lambda} W_{\alpha} \in \mathcal{J}$. Since $X \setminus \bigcup_{\alpha \in \Lambda} f^{-1}(W_{\alpha}) = f^{-1}\left(Y \setminus \bigcup_{\alpha \in \Lambda} W_{\alpha}\right) \in \mathcal{I}$, there is $\Lambda_0 \subseteq \Lambda$, finite, with $X \setminus \bigcup_{\alpha \in \Lambda_0} \overline{f^{-1}(W_{\alpha})} \in \mathcal{I}$. Given that f is continuous, $X \setminus \bigcup_{\alpha \in \Lambda_0} f^{-1}(\overline{W_{\alpha}}) \subseteq X \setminus \bigcup_{\alpha \in \Lambda_0} \overline{f^{-1}(W_{\alpha})}$, and so

 $f^{-1}\left(Y \setminus \bigcup_{\alpha \in \Lambda_0} \overline{W_{\alpha}}\right) = X \setminus \bigcup_{\alpha \in \Lambda_0} f^{-1}(\overline{W_{\alpha}}) \in \mathcal{I}. \text{ Thus } Y \setminus \bigcup_{\alpha \in \Lambda_0} \overline{W_{\alpha}} \in \mathcal{J}.$ 3) Suppose that $\{V_{\alpha}\}_{\alpha \in \Lambda}$ is a family of open subsets of X, with $X \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha} \in f^{-1}(\mathcal{J}).$ There exists $J \in \mathcal{J}$ such that $X \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha} = f^{-1}(J).$ Then $Y \setminus \bigcup_{\alpha \in \Lambda} f(V_{\alpha})$ $= J \text{ and so there is } \Lambda_0 \subseteq \Lambda, \text{ finite, with } Y \setminus \bigcup_{\alpha \in \Lambda_0} \overline{f(V_{\alpha})} \in \mathcal{J}. \text{ Given that } f \text{ is open and biyective, } f \text{ is closed, and so } \overline{f(V_{\alpha})} \subseteq f(\overline{V_{\alpha}}), \text{ for each } \alpha \in \Lambda_0.$ This implies that $Y \setminus \bigcup_{\alpha \in \Lambda_0} f(\overline{V_{\alpha}}) \in \mathcal{J}$, and then $X \setminus \bigcup_{\alpha \in \Lambda_0} \overline{V_{\alpha}} \in f^{-1}(\mathcal{J}).$

We end this section by presenting a characterization of $\rho \mathcal{I}$ -QHC spaces in terms of pre-open and α -open subsets. The proof is similar to that of Theorem 3.7.

Theorem 2.4 If (X, τ, \mathcal{I}) is an ideal space, the following statements are equivalents:

1) (X,τ,\mathcal{I}) is $\rho\mathcal{I}$ -QHC.

2) For each family $\{V_{\alpha}\}_{\alpha \in \Lambda}$ of pre-open subsets , if $X \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha} \in \mathcal{I}$ then there exists $\Lambda_0 \subseteq \Lambda$, finite, with $X \setminus \bigcup_{\alpha \in \Lambda_0} \overline{V_{\alpha}} \in \mathcal{I}$. 3) For each family $\{V_{\alpha}\}_{\alpha \in \Lambda}$ of α -open subsets , if $X \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha} \in \mathcal{I}$ then there exists $\Lambda_0 \subseteq \Lambda$, finite, with $X \setminus \bigcup_{\alpha \in \Lambda_0} \overline{V_{\alpha}} \in \mathcal{I}$.

3. $\rho C(\mathcal{I})$ -compact spaces

A topological space (X,τ) is defined to be *C*-compact [13] if for each $F \subseteq X$, closed, and each τ -open cover $\{V_{\alpha}\}_{\alpha \in \Lambda}$ of F, there exists $\Lambda_0 \subseteq \Lambda$, finite, with $F \subseteq \bigcup_{\alpha \in \Lambda_0} \overline{V_{\alpha}}$.

An ideal space (X,τ,\mathcal{I}) is said to be $C(\mathcal{I})$ -compact [2] if for each $F \subseteq X$, closed, and each τ -open cover $\{V_{\alpha}\}_{\alpha \in \Lambda}$ of F, there exists $\Lambda_0 \subseteq \Lambda$, finite, with $F \setminus \bigcup_{\alpha \in \Lambda_0} \overline{V_{\alpha}} \in \mathcal{I}$.

It is noted that C-compact \Rightarrow QHC, C(\mathcal{I})-compact $\Rightarrow \mathcal{I}$ -QHC and that if (X, τ) is C-compact then (X, τ, \mathcal{I}) is C(\mathcal{I})-compact.

In this section we introduce and study the $\rho C(\mathcal{I})$ -compact spaces, which are stronger forms of $C(\mathcal{I})$ -compactness and \mathcal{I} -QHC. We present some of its properties and characterizations.

Definition 3.1 The ideal space (X, τ, \mathcal{I}) is said to be $\rho C(\mathcal{I})$ -compact if for each closed subset F of X, and each family $\{V_{\alpha}\}_{\alpha \in \Lambda}$ of open subsets of X such that $F \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha} \in \mathcal{I}$, there exists $\Lambda_0 \subseteq \Lambda$, finite, with $F \setminus \bigcup_{\alpha \in \Lambda_0} \overline{V_{\alpha}} \in \mathcal{I}$.

Note that if (X, τ^*, \mathcal{I}) is $\rho C(\mathcal{I})$ -compact then (X, τ, \mathcal{I}) is $\rho C(\mathcal{I})$ -compact. It is also clear that:

1) (X, τ) is C-compact $\Leftrightarrow (X, \tau, \{\emptyset\})$ is $\rho C(\{\emptyset\})$ -compact $\Leftrightarrow (X, \tau, \{\emptyset\})$ is $C(\{\emptyset\})$ -compact.

2) $\rho C(\mathcal{I})$ -compact $\Rightarrow \rho \mathcal{I}$ -QHC.

3) $\rho C(\mathcal{I})$ -compact $\Rightarrow C(\mathcal{I})$ -compact.

This implications are, in general, irreversible.

Example 3.1 1) We consider again the ideal space $(\mathbb{Z}, \tau, \mathcal{I})$ of Example 2.1, which is not $\rho \mathcal{I}$ -QHC. We will demonstrated that (\mathbb{Z}, τ) is C-compact, and so $(\mathbb{Z}, \tau, \mathcal{I})$ is C(\mathcal{I})-compact.

Let F be a closed subset of \mathbb{Z} and $\{V_{\alpha}\}_{\alpha \in \Lambda}$ an open cover of F.

(i) If $F \cap \{0,1\} = \emptyset$ then $2\mathbb{Z} \cap F = \emptyset$ and $(2\mathbb{Z}+1) \cap F = \emptyset$, and so $F = \emptyset$. If $\alpha_0 \in \Lambda$ then $F \subseteq \overline{V_{\alpha_0}}$.

(*ii*) If $F \cap \{0,1\} = \{0,1\}$ then there are $\alpha_0 \in \Lambda$ and $\alpha_1 \in \Lambda$ such that $0 \in V_{\alpha_0}$ and $1 \in V_{\alpha_1}$. This implies that $\overline{V_{\alpha_0}} \cup \overline{V_{\alpha_1}} = X$ and $F \subseteq \overline{V_{\alpha_0}} \cup \overline{V_{\alpha_1}}$.

(*iii*) If $F \cap \{0,1\} = \{0\}$ then $(2\mathbb{Z}+1) \cap F = \emptyset$, and there exists $\alpha_0 \in \Lambda$ with $0 \in V_{\alpha_0}$. Thus $F \subseteq 2\mathbb{Z} \subseteq V_{\alpha_0} \subseteq \overline{V_{\alpha_0}}$.

(*iv*) If $F \cap \{0,1\} = \{1\}$ then $2\mathbb{Z} \cap F = \emptyset$, and there exists $\alpha_1 \in \Lambda$ with $1 \in V_{\alpha_0}$. Thus $F \subseteq 2\mathbb{Z} + 1 \subseteq V_{\alpha_1} \subseteq \overline{V_{\alpha_1}}$.

Hence the space $(\mathbb{Z}, \tau, \mathcal{I})$ is $C(\mathcal{I})$ -compact. However this space is not $\rho C(\mathcal{I})$ compact, because (X, τ, \mathcal{I}) is not $\rho \mathcal{I}$ -QHC.

2) Let \mathcal{U} be the usual topology for X = [0, 1].

Let $F = \{1/n : n \in \mathbb{Z}^+\}$. We consider the topology \mathcal{U}^* for X generated by $\mathcal{U} \cup \{X \setminus F\}$. A base for \mathcal{U}^* is $\mathcal{B} = \mathcal{U} \cup \{V \setminus F : V \in \mathcal{U}\}$.

We have that:

a) F is closed and discrete in (X, \mathcal{U}^*) .

If $n \in \mathbb{Z}^+$, $r_n = \frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+1} \right)$, and if $W_n = \left(\frac{1}{n} - r_n, \frac{1}{n} + r_n \right) \cap X$, then $W_n \in \mathcal{U} \subseteq \mathcal{U}^*$ and $W_n \cap F = \left\{ \frac{1}{n} \right\}$.

b) The family $\{W_n\}_{n \in \mathbb{Z}^+}$ is a \mathcal{U}^* -open cover of F.

c) F is nowhere dense in (X, \mathcal{U}^*) , because $int_{\mathcal{U}^*}(adh_{\mathcal{U}^*}(F)) = int_{\mathcal{U}^*}(F)$ = \emptyset , since \emptyset is the only element in \mathcal{B} which is contained in F.

d) If $V \in \mathcal{U}^*$ then $adh_{\mathcal{U}^*}(V) = adh_{\mathcal{U}}(V)$.

It is clear that $adh_{\mathcal{U}^*}(V) \subseteq adh_{\mathcal{U}}(V)$. Suppose that $z \in adh_{\mathcal{U}}(V)$ and that $B \in \mathcal{B}$, with $z \in B$. If $B \in \mathcal{U}$ then $V \cap B \neq \emptyset$. If there exists $W \in \mathcal{U}$ such that $B = W \setminus F$ then $W \cap V \neq \emptyset$. Since F is nowhere dense in (X, \mathcal{U}^*) , we have that $(W \cap V) \cap (X \setminus F) \neq \emptyset$, and so $V \cap B \neq \emptyset$. Thus $z \in adh_{\mathcal{U}^*}(V)$.

e) The space (X, \mathcal{U}^*) is not C-compact, and then $(X, \mathcal{U}^*, \{\emptyset\})$ is not $\rho C(\{\emptyset\})$ -compact.

If $n \in \mathbb{Z}^+$, $adh_{\mathcal{U}^*}(W_n) = adh_{\mathcal{U}}(W_n) = \left[\frac{1}{n} - r_n, \frac{1}{n} + r_n\right] \cap X$ and so $adh_{\mathcal{U}^*}(W_n) \cap F = \left\{\frac{1}{n}\right\}$. Hence $F \subseteq \bigcup_{n \in \mathbb{Z}^+} W_n$, but if $n_1, n_2, ..., n_r \in \mathbb{Z}^+$, F

 $\nsubseteq \bigcup_{j=1}' adh_{\mathcal{U}^*}(W_{n_j}).$

f) The space (X, \mathcal{U}^*) is QHC, and then $(X, \mathcal{U}^*, \{\emptyset\})$ is $\rho\{\emptyset\}$ -QHC.

Let $\{V_{\alpha}\}_{\alpha \in \Lambda}$ be a \mathcal{U}^* -open cover of X. There exists $\alpha_0 \in \Lambda$ such that $0 \in V_{\alpha_0}$. Let B be an element of \mathcal{B} with $0 \in B \subseteq V_{\alpha_0}$.

(i) If $B \in \mathcal{U}$ then there exists $r \in (0, \frac{1}{2}) \setminus F$ with $[0, r) \subseteq B$. Then $[0, r] \subseteq adh_{\mathcal{U}^*}(B) \subseteq adh_{\mathcal{U}^*}(V_{\alpha_0})$.

The set $F \setminus [0, r]$ is finite. Suppose that $F \setminus [0, r] = \{f_1, f_2, ..., f_n\}$, and that $f_1 < f_2 < \cdots < f_{n-1} = \frac{1}{2} < f_n = 1$. For all $j \in \{1, 2, ..., n\}$ there exists $\alpha_j \in \Lambda$ with $f_j \in V_{\alpha_j}$, and there exists $\epsilon_j > 0$ such that $(f_j - \epsilon_j, f_j + \epsilon_j) \subseteq V_{\alpha_j}$ if $j \in \{1, 2, ..., n-1\}$, $(f_n - \epsilon_n, f_n] \subseteq V_{\alpha_n}$ and $(f_j - \epsilon_j, f_j + \epsilon_j) \cap F = \{f_j\}$ for each $j \in \{1, 2, ..., n\}$.

Let
$$F_j = [f_j - \epsilon_j, f_j + \epsilon_j], T_j = (f_j - \epsilon_j, f_j + \epsilon_j)$$
 if $j \in \{1, 2, ..., n-1\}, F_n = [f_n - \epsilon_n, f_n]$ and $T_n = (f_n - \epsilon_n, f_n].$
Clearly $\{f_1, f_2, ..., f_n\} \subseteq \bigcup_{k=1}^n F_k \subseteq \bigcup_{k=1}^n adh_{\mathcal{U}^*}(V_{\alpha_k}).$
Now, $[0, 1] \setminus \left([0, r) \cup \bigcup_{k=1}^n T_k\right)$ is a finite union of closed intervals, each of

which disjoint of F. Suppose that $[0,1] \setminus \left([0,r) \cup \bigcup_{k=1}^{n} T_k \right) = \bigcup_{i=1}^{m} [a_i, b_i]$. It is easy to see that for every $i \in \{1, 2, ..., m\}$ there exists $\Lambda_i \subseteq \Lambda$, finite, such that $[a_i, b_i] \subseteq \bigcup_{\alpha \in \Lambda_i} adh_{\mathcal{U}^*}(V_{\alpha})$.

Therefore
$$X = \left(\bigcup_{k=0}^{n} adh_{\mathcal{U}^{*}}(V_{\alpha_{k}})\right) \cup \left(\bigcup_{i=1}^{m} \bigcup_{\alpha \in \Lambda_{i}} adh_{\mathcal{U}^{*}}(V_{\alpha})\right).$$

(*ii*) If there exists $V \in \mathcal{U}$ with $B = V \setminus F$, then there exists $r \in (0, \frac{1}{2}) \setminus F$ such that $[0, r) \subseteq V$, and so $[0, r] = adh_{\mathcal{U}^*}([0, r) \setminus F) \subseteq adh_{\mathcal{U}^*}(B) \subseteq adh_{\mathcal{U}^*}(V_{\alpha_0})$. Now we proceed as in case (*i*).

In conclusion, the space (X, \mathcal{U}^*) is QHC.

Theorem 3.1 If the space (X, τ, \mathcal{I}) is $\rho \mathcal{I}$ -compact then (X, τ, \mathcal{I}) is $\rho C(\mathcal{I})$ compact.

Proof. Suppose that K is a closed subset of X, and that $\{V_{\alpha}\}_{\alpha \in \Lambda}$ is a family of open subsets of X with $K \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha} \in \mathcal{I}$, this is, $X \setminus \left[(X \setminus K) \cup \bigcup_{\alpha \in \Lambda} V_{\alpha} \right] \in \mathcal{I}$. By hypothesis, there exists $\Lambda_0 \subseteq \Lambda$, finite, such that $X \setminus \left[(X \setminus K) \cup \bigcup_{\alpha \in \Lambda_0} V_{\alpha} \right] \in \mathcal{I}$, this is, $K \setminus \bigcup_{\alpha \in \Lambda_0} V_{\alpha} \in \mathcal{I}$. Hence $K \setminus \bigcup_{\alpha \in \Lambda_0} \overline{V_{\alpha}} \in \mathcal{I}$.

The converse of this theorem, in general, is not true.

Example 3.2 If $X = [0, \infty)$, $\tau = \{(r, \infty) : r \ge 0\} \cup \{\emptyset, X\}$, and $\mathcal{I} = \mathcal{I}_f$ then we know that (X, τ, \mathcal{I}) is not $\rho \mathcal{I}$ -compact [9].

However, (X, τ, \mathcal{I}) is $\rho C(\mathcal{I})$ -compact, and so $\rho \mathcal{I}$ -QHC, since if $V \in \tau \setminus \{\emptyset\}$, $\overline{V} = X$.

The following example shows that QHC and $\rho \mathcal{I}$ -QHC are independent concepts, as well as C-compact and $\rho C(\mathcal{I})$ -compact.

Example 3.3 1) The space $(\mathbb{Z}, \tau, \mathcal{I})$ of Example 2.1 is not $\rho\mathcal{I}$ -QHC, but (\mathbb{Z}, τ) is compact. This implies that Compact $\Rightarrow \rho\mathcal{I}$ -compact, C-compact $\Rightarrow \rho C(\mathcal{I})$ -compact and QHC $\Rightarrow \rho\mathcal{I}$ -QHC.

2) If \mathcal{U} is the usual topology for \mathbb{R} , then clearly $(\mathbb{R}, \mathcal{U}, \mathcal{P}(\mathbb{R}))$ is $\rho \mathcal{P}(\mathbb{R})$ compact, but $(\mathbb{R}, \mathcal{U})$ is not QHC. This implies that $\rho \mathcal{I}$ -compact \Rightarrow compact, $\rho C(\mathcal{I})$ -compact \Rightarrow C-compact and $\rho \mathcal{I}$ -QHC \Rightarrow QHC.

Then we have the following diagram:

Theorem 3.2 The ideal space (X, τ, \mathcal{I}) is $\rho C(\mathcal{I})$ -compact if and only if, for each closed subset F of X, and each open filter base Ω on X such that $\{V \cap F : V \in \Omega\} \subseteq \mathcal{P}(X) \setminus \mathcal{I}$, one has $\bigcap_{V \in \Omega} \overline{V} \cap F \notin \mathcal{I}$.

Proof. (\Rightarrow) Suppose that (X, τ, \mathcal{I}) is $\rho C(\mathcal{I})$ -compact and that there are $F \subseteq X$, closed, and an open filter base Ω on X such that $\{V \cap F : V \in \Omega\} \subseteq \mathcal{P}(X) \setminus \mathcal{I}$ and $\bigcap_{V \in \Omega} \overline{V} \cap F \in \mathcal{I}$.

Since $F \setminus \bigcup_{V \in \Omega} (X \setminus \overline{V}) \in \mathcal{I}$, there is, $\{V_1, V_2, ..., V_n\} \subseteq \Omega$ with $F \setminus \bigcup_{i=1}^n \overline{X \setminus \overline{V_i}} \in \mathcal{I}$, or equivalently, $F \setminus \bigcup_{i=1}^n \left(X \setminus \overline{V_i}\right) \in \mathcal{I}$. Since $F \setminus \bigcup_{i=1}^n (X \setminus V_i) \subseteq F \setminus \bigcup_{i=1}^n \left(X \setminus \overline{V_i}\right)$, we have that $\left(\bigcap_{i=1}^n V_i\right) \cap F = F \setminus \bigcup_{i=1}^n (X \setminus V_i) \in \mathcal{I}$.

But there exists $V \in \Omega$ with $V \subseteq \bigcap_{i=1}^{n} V_i$, and so $V \cap F \in \mathcal{I}$. This contradicts that $\{V \cap F : V \in \Omega\} \subseteq \mathcal{P}(X) \setminus \mathcal{I}$.

(\Leftarrow) Suppose that (X, τ, \mathcal{I}) is not $\rho C(\mathcal{I})$ -compact. There exist $F \subseteq X$, closed, and a family $\{V_{\alpha}\}_{\alpha \in \Lambda}$ of open subsets of X, such that $F \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha} \in \mathcal{I}$, but for each $\Lambda_0 \subseteq \Lambda$, finite, $F \setminus \bigcup_{\alpha \in \Lambda_0} \overline{V_{\alpha}} \notin \mathcal{I}$. In particular, for all $\alpha \in \Lambda$, $F \setminus \overline{V_{\alpha}} \notin \mathcal{I}$. We may assume that $\{V_{\alpha}\}_{\alpha \in \Lambda}$ is closed for finite unions, because otherwise we can replace $\{V_{\alpha}\}_{\alpha \in \Lambda}$ by the family of all finite unions of elements in $\{V_{\alpha}\}_{\alpha \in \Lambda}$.

Then the set $\mathcal{B} = \{X \setminus \overline{V_{\alpha}} : \alpha \in \Lambda\}$ is an open filter base on X, and

 $\{B \cap F : B \in \mathcal{B}\} \subseteq \mathcal{P}(X) \setminus \mathcal{I}.$

The hypothesis implies that $\bigcap_{B\in\mathcal{B}}\overline{B}\cap F\notin\mathcal{I}$, this is $\bigcap_{\alpha\in\Lambda}\overline{X\setminus\overline{V_{\alpha}}}\cap F\notin\mathcal{I}$. But for each $\alpha\in\Lambda$, $\overline{X\setminus\overline{V_{\alpha}}}=X\setminus\overline{V_{i}}\subseteq X\setminus V_{\alpha}$, and so $F\setminus\bigcup_{\alpha\in\Lambda}V_{\alpha}=\bigcap_{\alpha\in\Lambda}(X\setminus V_{\alpha})\cap F\notin\mathcal{I}$, contradiction.

Next we present other interesting characterizations of $\rho C(\mathcal{I})$ -compactness.

Theorem 3.3 For an ideal space (X, τ, \mathcal{I}) , the following statements are equivalents:

1) (X, τ, \mathcal{I}) is $\rho C(\mathcal{I})$ -compact.

2) For all closed subset F and all family $\{F_{\alpha}\}_{\alpha \in \Lambda}$ of closed subsets of X, if $(F \cap F) \in \mathcal{T}$ there is $\Lambda \in \mathcal{L}$ finite much that $O = (F \cap \overset{0}{F}) \in \mathcal{T}$

 $\bigcap_{\alpha \in \Lambda} (F \cap F_{\alpha}) \in \mathcal{I}, \text{ there is } \Lambda_0 \subseteq \Lambda, \text{ finite, such that } \bigcap_{\alpha \in \Lambda_0} (F \cap F_{\alpha}^0) \in \mathcal{I}.$ 3) For each closed subset F and each family $\{F_{\alpha}\}_{\alpha \in \Lambda}$ of closed subsets of

X, if $\left\{F \cap \overset{0}{F_{\alpha}} : \alpha \in \Lambda\right\}$ has the finite-intersection property modulo \mathcal{I} , then $\bigcap_{\alpha \in \Lambda} (F \cap F_{\alpha}) \notin \mathcal{I}$.

4) For all closed subset F and all family $\{V_{\alpha}\}_{\alpha \in \Lambda}$ of regular open subsets of X, if $F \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha} \in \mathcal{I}$, there is $\Lambda_0 \subseteq \Lambda$, finite, such that $F \setminus \bigcup_{\alpha \in \Lambda_0} \overline{V_{\alpha}} \in \mathcal{I}$. 5) For each closed subset F of X and each family $\{F_{\alpha}\}_{\alpha \in \Lambda}$ of regular closed

5) For each closed subset F of X and each family $\{F_{\alpha}\}_{\alpha \in \Lambda}$ of regular closed subsets of X, if $\bigcap_{\alpha \in \Lambda} (F \cap F_{\alpha}) \in \mathcal{I}$, there is $\Lambda_0 \subseteq \Lambda$, finite, such that $\bigcap_{\alpha \in \Lambda_0} (F \cap F_{\alpha}) \in \mathcal{I}$.

6) For each closed subset F and each family $\{F_{\alpha}\}_{\alpha \in \Lambda}$ of regular closed subsets of X, if $\{F \cap \overset{0}{F_{\alpha}} : \alpha \in \Lambda\}$ has the finite-intersection property modulo \mathcal{I} , then $\bigcap_{\alpha \in \Lambda} (F \cap F_{\alpha}) \notin \mathcal{I}$.

7) If $F \subseteq X$ is closed, $W \subseteq X$ is open with $F \setminus W \in \mathcal{I}$, and if $\{V_{\alpha}\}_{\alpha \in \Lambda}$ is a family of open subsets of X, such that $(X \setminus F) \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha} \in \mathcal{I}$, then there exists

$$\Lambda_0 \subseteq \Lambda$$
, finite, with $X \setminus \left(W \cup \bigcup_{\alpha \in \Lambda_0} \overline{V_{\alpha}} \right) \in \mathcal{I}$.

Proof. The implications $1 \ge 2$, $2 \ge 3$, $5 \ge 6$) are easy to be established.

3) \Rightarrow 4) Let F a closed subset of X and $\{V_{\alpha}\}_{\alpha \in \Lambda}$ a family of regular open subsets of X with $F \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha} \in \mathcal{I}$, or equivalently, $\bigcap_{\alpha \in \Lambda} (F \cap (X \setminus V_{\alpha})) \in \mathcal{I}$. Then the family $\{F \cap int(X \setminus V_{\alpha}) : \alpha \in \Lambda\}$ has no the finite-intersection property modulo \mathcal{I} , and so there exists $\Lambda_0 \subseteq \Lambda$, finite, with $\bigcap_{\alpha \in \Lambda_0} (F \cap int(X \setminus V_{\alpha})) \in \mathcal{I}$, or equivalently, $F \setminus \bigcup_{\alpha \in \Lambda_0} \overline{V_{\alpha}} \in \mathcal{I}$.

4) \Rightarrow 5) It is sufficient to note that the complement of a regular closed subset of X is regular open.

 $(6) \Rightarrow 1)$ Let F a closed subset of X and $\{V_{\alpha}\}_{\alpha \in \Lambda}$ a family of open subsets of X with $F \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha} \in \mathcal{I}$, that is, $\bigcap_{\alpha \in \Lambda} (F \cap (X \setminus V_{\alpha})) \in \mathcal{I}$. Since $int(X \setminus V_{\alpha}) \subseteq X \setminus V_{\alpha}$, for all $\alpha \in \Lambda$, then $\bigcap_{\alpha \in \Lambda} (F \cap int(X \setminus V_{\alpha})) \in \mathcal{I}$. But $int(X \setminus V_{\alpha})$ is regular closed, for all $\alpha \in \Lambda$. By the hypothesis there exists $\Lambda_0 \subseteq \Lambda$, finite, such that $\bigcap_{\alpha \in \Lambda_0} (F \cap int(int(X \setminus V_{\alpha}))) \in \mathcal{I}$, and so $\bigcap_{\alpha \in \Lambda_0} (F \cap int(X \setminus V_{\alpha})) \in \mathcal{I}$, that is, $F \setminus \bigcup_{\alpha \in \Lambda_0} \overline{V_{\alpha}} \in \mathcal{I}$.

7) \Rightarrow 1) Suppose that $F \subseteq X$ is closed and that $\{V_{\alpha}\}_{\alpha \in \Lambda}$ is a family of open subsets of X, with $F \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha} \in \mathcal{I}$. Let $W = \bigcup_{\alpha \in \Lambda} V_{\alpha}$ and $K = X \setminus W$. We have that $K \setminus (X \setminus F) = (X \setminus W) \setminus (X \setminus F) = F \setminus W \in \mathcal{I}$, and that $(X \setminus K) \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha}$ $= \emptyset \in \mathcal{I}$. The hypothesis implies that there exists $\Lambda_0 \subseteq \Lambda$, finite, such that $X \setminus \left[(X \setminus F) \cup \bigcup_{\alpha \in \Lambda_0} \overline{V_{\alpha}} \right] \in \mathcal{I}$, this is, $F \setminus \bigcup_{\alpha \in \Lambda_0} \overline{V_{\alpha}} \in \mathcal{I}$.

1) \Rightarrow 7) Suppose that $F \subseteq X$ is closed, $W \subseteq X$ is open with $F \setminus W \in \mathcal{I}$, and that $\{V_{\alpha}\}_{\alpha \in \Lambda}$ is a family of open subsets of X, with $(X \setminus F) \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha} \in \mathcal{I}$.

Since $(X \setminus W) \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha} = X \setminus \left[W \cup \bigcup_{\alpha \in \Lambda} V_{\alpha} \right] \subseteq \left[(X \setminus F) \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha} \right] \cup (F \setminus W) \in \mathcal{I}$, and $X \setminus W$ is closed, there exists $\Lambda_0 \subseteq \Lambda$, finite, with $(X \setminus W) \setminus \bigcup_{\alpha \in \Lambda_0} \overline{V_{\alpha}} \in \mathcal{I}$,

this is,
$$X \setminus \left[W \cup \bigcup_{\alpha \in \Lambda_0} \overline{V_\alpha} \right] \in \mathcal{I}.$$

In the following theorem we review the behavior of $\rho C(\mathcal{I})$ -compact spaces under continuous or open functions.

Theorem 3.4 1) If (X, τ, \mathcal{I}) is $\rho C(\mathcal{I})$ -compact and if $f : (X, \tau) \to (Y, \beta)$ is a continuous biyective function, then $(Y, \beta, f(\mathcal{I}))$ is $\rho C(f((\mathcal{I}))$ -compact.

2) If (X, τ, \mathcal{I}) is $\rho C(\mathcal{I})$ -compact, $f : (X, \tau) \to (Y, \beta)$ is a continuous function and if \mathcal{J} is the ideal $\{V \subseteq Y : f^{-1}(V) \in \mathcal{I}\}$, then (Y, β, \mathcal{J}) is $\rho C(\mathcal{J})$ compact.

3) If (Y, β, \mathcal{J}) is $\rho C(\mathcal{J})$ -compact and if $f : (X, \tau) \to (Y, \beta)$ is an open and biyective function, then $(X, \tau, f^{-1}(\mathcal{J}))$ is $\rho C(f^{-1}(\mathcal{J}))$ -compact, where $f^{-1}(\mathcal{J})$ is the ideal $\{f^{-1}(\mathcal{J}) : \mathcal{J} \in \mathcal{J}\}$.

Proof. 1) Let B a closed subset of Y, and $\{V_{\alpha}\}_{\alpha \in \Lambda}$ a family of open subsets of Y, with $B \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha} \in f(\mathcal{I})$. There exists $I \in \mathcal{I}$ such that $B \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha} = f(I)$. Since $f^{-1}(B) \setminus \bigcup_{\alpha \in \Lambda} f^{-1}(V_{\alpha}) = f^{-1}(f(I)) = I \in \mathcal{I}$, there exists $\Lambda_0 \subseteq \Lambda$, finite, with $f^{-1}(B) \setminus \bigcup_{\alpha \in \Lambda_0} \overline{f^{-1}(V_{\alpha})} \in \mathcal{I}$. But $f^{-1}(B) \setminus \bigcup_{\alpha \in \Lambda_0} f^{-1}(\overline{V_{\alpha}}) \subseteq f^{-1}(B) \setminus \bigcup_{\alpha \in \Lambda_0} \overline{f^{-1}(V_{\alpha})}$, and this implies that $f^{-1}(B) \setminus \bigcup_{\alpha \in \Lambda_0} f^{-1}(\overline{V_{\alpha}}) \in \mathcal{I}$. Then $B \setminus \bigcup_{\alpha \in \Lambda_0} \overline{V_{\alpha}} = f\left(f^{-1}(B) \setminus \bigcup_{\alpha \in \Lambda_0} f^{-1}(\overline{V_{\alpha}})\right) \in f(\mathcal{I})$. 2) Suppose that $B \subseteq Y$ is closed and that $\{V_{\alpha}\}_{\alpha \in \Lambda}$ is a family of open subsets of Y, with $B \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha} \in \mathcal{J}$.

Given that $f^{-1}(B) \setminus \bigcup_{\alpha \in \Lambda} f^{-1}(V_{\alpha}) = f^{-1}\left(B \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha}\right) \in \mathcal{I}$, there exists Λ_0 $\subseteq \Lambda$, finite, such that $f^{-1}(B) \setminus \bigcup_{\alpha \in \Lambda_0} \overline{f^{-1}(V_{\alpha})} \in \mathcal{I}$, and given that for all $\alpha \in \Lambda_0$, $\overline{f^{-1}(V_{\alpha})} \subseteq f^{-1}(\overline{V_{\alpha}})$, we have that $f^{-1}(B) \setminus \bigcup_{\alpha \in \Lambda_0} f^{-1}(\overline{V_{\alpha}}) \in \mathcal{I}$, this is, $f^{-1}\left(B \setminus \bigcup_{\alpha \in \Lambda_0} \overline{V_{\alpha}}\right) \in \mathcal{I}$. Hence $B \setminus \bigcup_{\alpha \in \Lambda_0} \overline{V_{\alpha}} \in \mathcal{J}$.

3) Note that since f is biyective and open then f is closed. Suppose that $A \subseteq X$ is closed and that $\{V_{\alpha}\}_{\alpha \in \Lambda}$ is a family of open subsets of X, with

210

$$A \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha} \in f^{-1}(\mathcal{J}). \text{ There exists } J \in \mathcal{J} \text{ such that } A \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha} = f^{-1}(J), \text{ and so}$$

$$f(A) \setminus \bigcup_{\alpha \in \Lambda} f(V_{\alpha}) = f\left(A \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha}\right) = f\left(f^{-1}(J)\right) = J \in \mathcal{J}. \text{ Since } f(A) \text{ is closed}$$
in Y , there is $\Lambda_0 \subseteq \Lambda$, finite, with $f(A) \setminus \bigcup_{\alpha \in \Lambda_0} \overline{f(V_{\alpha})} \in \mathcal{J}.$ Given that f is closed,

$$\overline{f(V_{\alpha})} \subseteq f\left(\overline{V_{\alpha}}\right) \text{ for all } \alpha \in \Lambda_0, \text{ and so } f\left(A \setminus \bigcup_{\alpha \in \Lambda_0} \overline{V_{\alpha}}\right) = f(A) \setminus \bigcup_{\alpha \in \Lambda_0} f\left(\overline{V_{\alpha}}\right) \in \mathcal{J}.$$
Then $A \setminus \bigcup_{\alpha \in \Lambda_0} \overline{V_{\alpha}} = f^{-1}\left(f\left(A \setminus \bigcup_{\alpha \in \Lambda_0} \overline{V_{\alpha}}\right)\right) \in f^{-1}(\mathcal{J}).$

Next we consider some special subsets of $\rho C(\mathcal{I})$ -compact spaces.

Definition 3.2 If (X, τ, \mathcal{I}) is an ideal space and $A \subseteq X$, A is said to be $\rho C(\mathcal{I})$ -compact if for each $F \subseteq A$, closed in A, and for each family $\{V_{\alpha}\}_{\alpha \in \Lambda}$ of open subsets of X, if $F \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha} \in \mathcal{I}$, there exists $\Lambda_0 \subseteq \Lambda$, finite, with $F \setminus \bigcup_{\alpha \in \Lambda_0} V_{\alpha} \in \mathcal{I}$.

Example 3.4 In the following ideal spaces, each subset it is $\rho C(\mathcal{I})$ -compact. 1) $(X, \tau, \mathcal{P}(X))$, where (X, τ) is any topological space.

2) (X, β, \mathcal{I}) , where X is an infinite set, β is the cofinite topology on X, and \mathcal{I} is any ideal in X.

3) $(\mathbb{Z}, \tau, \mathcal{I})$, where $\mathcal{I} = \mathcal{P}(2\mathbb{Z} + 1)$ and τ is the topology on \mathbb{Z} given by: $V \in \tau \Leftrightarrow$ [for each $n \in \mathbb{Z}$, if $n \in V$ then $[n]_2 \in V$]. Here $[n]_2 = \begin{cases} 0 \text{ if } n \text{ is even} \\ 1 \text{ if } n \text{ is odd.} \end{cases}$

Theorem 3.5 1) If (X, τ, \mathcal{I}) is $\rho C(\mathcal{I})$ -compact and $A \subseteq X$ is closed, then A is $\rho C(\mathcal{I})$ -compact.

2) If (X, τ, \mathcal{I}) is an ideal space and $A_1 \subseteq X$ and $A_2 \subseteq X$ are $\rho C(\mathcal{I})$ -compact, then $A_1 \cup A_2$ is $\rho C(\mathcal{I})$ -compact.

Proof. 1) It is clear because if B is closed in A, then B is closed in X.

2) Suppose that *B* is closed in $A_1 \cup A_2$, and that $\{V_\alpha\}_{\alpha \in \Lambda}$ is a family of open subsets of *X* with $B \setminus \bigcup_{\alpha \in \Lambda} V_\alpha \in \mathcal{I}$. There exists $G \subseteq X$, closed, such that $B = (A_1 \cup A_2) \cap G = (A_1 \cap G) \cup (A_2 \cap G)$. Since $A_i \cap G$ is closed in A_i and $(A_i \cap G) \setminus \bigcup_{\alpha \in \Lambda} V_\alpha \in \mathcal{I}$, for each $i \in \{1, 2\}$, there exists $\Lambda_i \subseteq \Lambda$, finite, with $(A_i \cap G) \setminus \bigcup_{\alpha \in \Lambda_i} \overline{V_\alpha} \in \mathcal{I}$, for each $i \in \{1, 2\}$.

Thus
$$(A_i \cap G) \setminus \bigcup_{\alpha \in \Lambda_1 \cup \Lambda_2} \overline{V_\alpha} \in \mathcal{I}$$
, and $[(A_1 \cup A_2) \cap G] \setminus \bigcup_{\alpha \in \Lambda_1 \cup \Lambda_2} \overline{V_\alpha} \in \mathcal{I}$, this is $B \setminus \bigcup_{\alpha \in \Lambda_1 \cup \Lambda_2} \overline{V_\alpha} \in \mathcal{I}$.

In the next result we present a new characterization of $\rho C(\mathcal{I})$ -compactness, in terms of some special open subsets.

Definition 3.3 If (X,τ,\mathcal{I}) is an ideal space and $Y \subseteq X$, then Y is *closure* $\rho C(\mathcal{I})$ -compact if for all $K \subseteq Y$, closed in Y, and all family $\{V_{\alpha}\}_{\alpha \in \Lambda}$ of open subsets of X, if $\overline{K} \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha} \in \mathcal{I}$, there exists $\Lambda_0 \subseteq \Lambda$, finite, with $K \setminus \bigcup_{\alpha \in \Lambda_0} adh_{\tau_Y}(V_{\alpha} \cap Y) \in \mathcal{I}$.

Example 3.5 Let \mathcal{U} the usual topology for X = [0, 1], Y = (0, 1] and $K \subseteq Y$, closed in Y.

(i) Suppose that $\{V_{\alpha}\}_{\alpha \in \Lambda}$ is a \mathcal{U} -open cover of \overline{K} . Since \overline{K} is compact in X, there exists $\Lambda_0 \subseteq \Lambda$, finite, with $\overline{K} \subseteq \bigcup_{\alpha \in \Lambda_0} V_{\alpha}$, and so $K \subseteq \bigcup_{\alpha \in \Lambda_0} (\overline{V_{\alpha}} \cap Y)$. But, for all $\alpha \in \Lambda_0$, $adh_{\mathcal{U}_Y}(V_{\alpha} \cap Y) = \overline{V_{\alpha} \cap Y} \cap Y = \overline{V_{\alpha}} \cap Y$, because Y is open. Therefore Y is closure $\rho C(\{\varnothing\})$ -compact.

(*ii*) Y is not $\rho C(\{\emptyset\})$ -compact, because $Y \subseteq \bigcup_{0 < r < 1} (r, 1]$, but if $0 < r_1 < r_2$ $< \cdots < r_n < 1$ then $Y \not\subseteq \bigcup_{i=1}^n \overline{(r_i, 1]} = \bigcup_{i=1}^n [r_i, 1] = [r_1, 1].$

Theorem 3.6 The ideal space (X, τ, \mathcal{I}) is $\rho C(\mathcal{I})$ -compact if and only if each $Y \in \tau$ is closure $\rho C(\mathcal{I})$ -compact.

Proof. (\Rightarrow) Suppose that (X, τ, \mathcal{I}) is $\rho C(\mathcal{I})$ -compact and that $Y \in \tau$.

Let $K \subseteq Y$, closed in Y, and $\{V_{\alpha}\}_{\alpha \in \Lambda}$ a family of open subsets of X with $\overline{K} \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha} \in \mathcal{I}$. Since \overline{K} is closed in X and (X, τ, \mathcal{I}) is $\rho C(\mathcal{I})$ -compact, there exists $\Lambda_0 \subseteq \Lambda$, finite, with $\overline{K} \setminus \bigcup_{\alpha \in \Lambda_0} \overline{V_{\alpha}} \in \mathcal{I}$, and so $K \setminus \bigcup_{\alpha \in \Lambda_0} \overline{V_{\alpha}} \in \mathcal{I}$. Given that Y is open in X, $adh_{\tau_Y} (V_{\alpha} \cap Y) = \overline{V_{\alpha}} \cap Y$, for all $\alpha \in \Lambda_0$. But $K \setminus \bigcup_{\alpha \in \Lambda_0} (\overline{V_{\alpha}} \cap Y) = K \setminus \bigcup_{\alpha \in \Lambda_0} \overline{V_{\alpha}} \in \mathcal{I}$. Thus $K \setminus \bigcup_{\alpha \in \Lambda_0} adh_{\tau_Y} (V_{\alpha} \cap Y) \in \mathcal{I}$. (\Leftarrow) Suppose that F is closed in X and that $\{V_{\alpha}\}$, \downarrow is a family of open

 (\Leftarrow) Suppose that F is closed in X, and that $\{V_{\alpha}\}_{\alpha \in \Lambda}$ is a family of open subsets of X with $F \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha} \in \mathcal{I}$. Let $\alpha_0 \in \Lambda$. The set $Y = X \setminus \overline{V_{\alpha_0}}$ is open in X and $F \cap Y$ is closed in Y. Since $\overline{F \cap Y} \subseteq F$ we have that $\overline{F \cap Y} \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha} \in \mathcal{I}$. Now, $\overline{F \cap Y} \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha} = \overline{F \cap Y} \setminus \bigcup_{\alpha \in \Lambda \setminus \{\alpha_0\}} V_{\alpha}$. Thus there exists $\Lambda_0 \subseteq \Lambda \setminus \{\alpha_0\}$, finite, such that $(F \cap Y) \setminus \bigcup_{\alpha \in \Lambda_0} adh_{\tau_Y}(V_{\alpha} \cap Y) \in \mathcal{I}$. Given that $Y \in \tau$, $adh_{\tau_Y}(V_{\alpha} \cap Y) = \overline{V_{\alpha}} \cap Y \subseteq \overline{V_{\alpha}}$, and so $(F \cap Y) \setminus \bigcup_{\alpha \in \Lambda_0} \overline{V_{\alpha}}$ $\in \mathcal{I}$, this is, $\left[F \cap \left(X \setminus \overline{V_{\alpha_0}}\right)\right] \setminus \bigcup_{\alpha \in \Lambda_0} \overline{V_{\alpha}} \in \mathcal{I}.$ Therefore $F \setminus \bigcup_{\alpha \in \Lambda_0 \cup \{\alpha_0\}} \overline{V_{\alpha}} \in \mathcal{I}.$

Finally, we show an additional characterization of $\rho C(\mathcal{I})$ - compactness, by means of pre-open and α -open subsets.

Theorem 3.7 If (X, τ, \mathcal{I}) is an ideal space, the following statements are equivalents:

1) (X,τ,\mathcal{I}) is $\rho C(\mathcal{I})$ -compact.

2) For each $F \subseteq X$, closed, and each family $\{V_{\alpha}\}_{\alpha \in \Lambda}$ of pre-open subsets of X, if $F \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha} \in \mathcal{I}$ then there exists $\Lambda_0 \subseteq \Lambda$, finite, with $F \setminus \bigcup_{\alpha \in \Lambda_0} \overline{V_{\alpha}} \in \mathcal{I}$. 3) For each $F \subseteq X$, closed, and each family $\{V_{\alpha}\}_{\alpha \in \Lambda}$ of α -open subsets of X, if $F \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha} \in \mathcal{I}$ then there exists $\Lambda_0 \subseteq \Lambda$, finite, with $F \setminus \bigcup_{\alpha \in \Lambda_0} \overline{V_{\alpha}} \in \mathcal{I}$.

Proof. It is sufficient to show that 1) \Rightarrow 2), since open $\Rightarrow \alpha$ -open \Rightarrow pre-open. 1) \Rightarrow 2) Suppose that $F \subseteq X$ is closed and that $\{V_{\alpha}\}_{\alpha \in \Lambda}$ is a family of

pre-open subsets of X, with $F \setminus \bigcup_{\alpha \in \Lambda} V_{\alpha} \in \mathcal{I}$. Given that $V_{\alpha} \subseteq \frac{0}{V_{\alpha}}$, for each $\alpha \in \mathcal{I}$.

 $\Lambda, \text{ we have that } F \setminus \bigcup_{\alpha \in \Lambda} \overline{\overline{V_{\alpha}}} \in \mathcal{I}, \text{ and then there exists } \Lambda_0 \subseteq \Lambda, \text{ finite, such that} \\ F \setminus \bigcup_{\alpha \in \Lambda_0} \overline{\overline{V_{\alpha}}} \in \mathcal{I}. \text{ But } \overline{\overline{V_{\alpha}}} \subseteq \overline{V_{\alpha}}, \text{ for all } \alpha \in \Lambda_0. \text{ Thus } F \setminus \bigcup_{\alpha \in \Lambda_0} \overline{V_{\alpha}} \in \mathcal{I}.$

References

- [1] J. Dontchev, M. Ganster and D. A. Rose, Ideal resolvability, Top. and its Appl., 93, No 1 (1999), 1-16. DOI:10.1016/S0166-8641(97)00257-5
- [2] M. K. Gupta and T. Noiri, C-compactness modulo an ideal, Int. Jour. of Math. and Math. Sci., 2006 (2006), 1-12.DOI: 10.1155/IJMMS/2006/78135

- [3] T. R. Hamlett and D. Jancovic, Compactness with respect to an ideal, Boll. Un. Mat. Ital., 7, No 4B (1990), 849-861.
- [4] T. R. Hamlett, D. Jancovic and D. Rose, Countable compactness with respect to an ideal, Math. Chronicle, 20 (1991), 109-126.
- [5] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
- [6] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deep, On precontinuous and weak precontinuous mappings, Proc. Math. and Phys. Soc. of Egypt, 53 (1982), 47-53.
- [7] R. L. Newcomb, Topologies which are compact modulo an ideal, Ph. Dissertation. Thesis, Univ. of Calif. at Santa Barbara, California, 1967.
- [8] O. Njastad, On some classes of nearly open subsets, *Pacific J. Math.*, 15, (1965), 961-970.
 DOI: 10.2140/pjm.1965.15.961
- N. R. Pachón, New forms of strong compactness in terms of ideals, Int. Jour. of Pure and App. Math., 106, No 2 (2016), 481-493. DOI: 10.12732/ijpam.v106i2.12
- [10] J. Porter and J. Thomas, On H-closed and minimal Hausdorff spaces, Trans. Amer. Math. Soc., 138 (1969), 159-170. DOI: 10.1090/S0002-9947-1969-0238268-4
- [11] V. Renuka Devi, D. Sivaraj and T. Tamizh Chelvam, Codense and completely codense ideals, Acta Mathematica Hungarica, 108, No 3 (2005), 197-205. DOI: 10.1007/s10474-005-0220-0
- [12] R. Vaidyanathaswamy, Set Topology, 2nd ed., Chelsea, New York, 1960.
- G. Viglino, C-compact spaces, Duke Mathematical Journal, 36, No 4 (1969), 761-764.
 DOI: 10.1215/S0012-7094-69-03691-6