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To reduce dimensionality issues, this article derives a globally flexible demand system that can be
estimated non-parametrically with a specially devised temporal kernel. Statistical and economic re-
sults from a meat demand application underscores the usefulness of a temporal kernel in globally
approximating an integrable demand system.
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Much progress has been made in specifying
globally flexible demand systems that model
demand functions and their derivatives (elas-
ticities) for the entire range of the data
(Diewert; Gallant).1 In some multivariate
applications, the effectiveness of globally flex-
ible approximations may, however, be lim-
ited by dimensionality problems (C.J. Stone)
and possible inaccurate parameterizations of
nonlinearities. The issue of dimensionality is
particularly relevant in time series applica-
tions, and price variability necessary for iden-
tification of price elasticities tends to require
time series rather than cross-sectional data
(Jorgenson, Lau, and Stoker).

A recurrent challenge in econometric anal-
ysis is choosing a functional form. For ex-
ample, Granger has recently raised the ques-
tions: “How much nonlinearity should a model
contain? Should time-varying parameters be
considered (perhaps as an alternative to non-
linearity)?” This article uses time varying co-
efficients and kernel regression in place of
nonlinear parameterizations to achieve both
integrability and global flexibility in demand
analysis. To do so, the paper applies the Rank
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1 For a comprehensive analysis and empirical performance of
globally flexible systems, see Piggott.

Theorem (see Rudin, p. 228) to model global
nonlinearities of any continuously differen-
tiable demand system in terms of time varying
coefficients, which reduces the dimensionality
requirement in non-parametric estimation of
elasticities to the one-dimensional space.

The functional structure derived from us-
ing the Rank Theorem yields a globally
flexible varying coefficient (GFVC) demand
system that represents the level of the func-
tion and its derivatives (elasticities) for the
entire range of the data. In this article, for es-
timation, a one-dimensional temporal kernel
of the GFVC demand system, which captures
both nonlinearities and changes in economic
structure non-parametrically, is implemented.
The temporal kernel of the GFVC model al-
lows elasticities to be estimated for any differ-
entiable demand system by modeling curves
in a one-dimensional space. Global flexibility
is thus achieved by using the Rank theorem
and the temporal kernel.

This varying coefficient approach is applied
to meat demand analysis, which previous work
has shown the presence of structural breaks
and nonlinearities.2 Results from the esti-
mated GFVC meat demand system indicate:
(a) global flexibility in functional structure can
be attained by means of time varying coeffi-
cients; and (b) mean squared error (MSE) with
the temporal kernel estimator is lower than
the MSE with traditional ways of modeling

2 For the range of notable efforts in meat demand analysis in
both functional form and modeling structural breaks, see Alston
and Chalfant, Moschini and Meilke, and Moschini and Moro.
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varying coefficients (time trend, dummy
variables). Therefore, modeling global flexi-
bility with time varying coefficients increases
model performance, and the best statistical fit
under a MSE criterion occurs when the coef-
ficient variation in the demand system is esti-
mated non-parametrically.

Globally Flexible Demand System: A Time
Varying Coefficient Approach

A Stone Index Approach

Assume �kt represents the logarithm of con-
sumption for commodity k; Pt = (ln p1t, . . . ,
ln pnt) where pit represents the price of good i at
time t and Yt = lnyt where yt is income at time t.
Following the variable definitions, a demand
system with n-commodities and variables ex-
pressed in logarithms can be represented as:

F(Xt ) = [�1t (Xt ), . . . , �nt (Xt )]′(1)

where Xt = (Pt , Yt )′; and nonlinearities and in-
tegrability are defined in the n-dimensional
space. To reduce the scope of the dimensional-
ity requirement in the specification of integra-
bility and global flexibility in (1), this article
applies the Rank Theorem (Rudin, p. 228).

Under smoothness assumptions, the Rank
Theorem defined in terms of a time dependent
�-ball generates a semi-log linear representa-
tion of the demand system in (1) using time
varying coefficients. In particular, under the as-
sumption that the demand equations in (1) are
continuously differentiable, by the Rank The-
orem, there exists an open set Et ⊂ �n such
that (1) can be represented as:

F(Xt ) = At Xt + �(At Xt )(2)

where

At =




a11t a12t . . . a1nt a1n+1t

...
an−1,1t an−1,2t . . . an−1,nt an−1,n+1t

an1t an2t . . . annt ann+1t


 ;

aijt = ∂�i/∂ ln pjt, for j ≤ n;

ain+1t = ∂�i/∂ ln yt;

�(AtXt) = 0 only if the rank of At equals n
(i.e., full rank);

and

Xt = (Pt , Yt )′ ∈ �t ⊂ Et .

Therefore, there exists a time dependent �t-
ball (i.e., time dependent neighborhood) such
that any continuously differentiable demand
system is exactly represented by the time
varying coefficient model in (2);3 and the
system is globally flexible (Diewert, Gallant,
Piggott) since it represents the function and its
derivatives (elasticities) for the entire range
of the data. Time dependent local neighbor-
hoods (i.e., �t-balls) in the application of Rank
Theorem then yield an exact globally flexible
functional form in demand with time varying
coefficients, as opposed to the nonlinear form
with respect to all explanatory variables in (1).

The definition of the variables in logarithms
in (2), furthermore, implies (from the Rank
Theorem) that time varying coefficients in At
correspond to elasticities and, hence, integra-
bility conditions (symmetry, homogeneity, and
summability) in At can be imposed following
Stone’s seminal work. Specifically, the prop-
erty of symmetry of the Slutsky matrix implies
that

�∗
it

(
aijt + �∗

jtain+1t
)

= �∗
jt

(
ajit + �∗

ita jn+1t
)(3a)

where the share of commodity j in total con-
sumption is defined as �∗

jt; and the Stone index∑
j �∗

j t ln pjt emerges in each equation when
(3a) is incorporated in (2). Furthermore, the
property of homogeneity of degree zero of
Marshallian demands implies that:∑

j

aijt = 0(3b)

which can be imposed by choosing a numeraire
pnh, while the adding up property implies that:

ann+1t = 1/�∗
nt −

∑
i �=n

(
�∗

i t

/
�∗

nt

)
ain+1t .(3c)

Any differentiable and integrable demand sys-
tem is then exactly represented by (2) with the
coefficient restrictions in (3).

An Almost Ideal Demand Index Approach

The structure of the Stone index while conve-
nient to incorporate integrability conditions in
(2) has also been a subject of much criticism

3 The Rank Theorem applies under the same assumption of the
implicit function theorem, that is, the �-ball in which demand equa-
tions are explicitly defined. This underscores the generality of the
Rank Theorem.
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in demand analysis. For example, Alston and
Green demonstrate limitations of the Stone in-
dex to incorporate integrability conditions in
terms of evaluation of derivatives because the
differential of the function does not take into
account the derivative of shares in the Stone in-
dex. To derive a theoretically consistent glob-
ally flexible demand system with time varying
coefficients that does not depend on the Stone
index for specification of integrability, consider
a demand system that uses shares �∗

kt as the de-
pendent variable and explanatory variables in
logarithms:

F∗(Xt ) = [
�∗

1t

(
X∗

t ), . . . , �∗
nt (X∗

t

)]′(4)

where X∗
t = (Pt, Yt − Pt)′ and the logarithm

of income Yt is normalized by Pt, an arbitrary
quadratic function with respect to Pt:

Pt =
∑

i

�i t ln pit

+ 1/2
∑

i

∑
j

�∗
i j t ln pit ln p jt .

This normalization of the income variable fa-
cilitates imposition of integrability conditions,
while it does not restrict generality of the de-
mand system representation.

As in (2), application of the Rank Theorem
implies that there exists an open set Et ⊂ �n

such that (4) can be represented as:

F∗(X∗
t

) = A∗
t X∗

t + �
(
A∗

t X∗
t

)
(5)

where

A∗
t =




a∗
11t a∗

12t . . . a∗
1nt a∗

1n+1t

...
a∗

n−1,1t a∗
n−1,2t . . . a∗

n−1,nt a∗
n−1,n+1t

a∗
n1t a∗

n2t . . . a∗
nnt a∗

nn+1t




a∗
ijt = ∂�∗

i /∂ ln pjt, for j ≤ n

a∗
in+1t = ∂�∗

i /∂ ln yt = −∂�∗
i /∂Pt

and

X∗
t ∈ �t ⊂ Et .

Moreover, since Pt is a function of Pt it follows
that:

a∗
i j t = ∂�d∗

i

/
∂ ln p jt + (

∂�∗
i

/
∂ Pt

)
× (∂ Pt/∂ ln p jt ), for j ≤ n;

a∗
in+1t = ∂�∗

i /∂ ln yt

which implies that

a∗
ijt = �ijt − �it

[
�jt +

∑
i

�∗
ijt ln pit

]

for j ≤ n

(6a)

a∗
in + 1t = �it(6b)

where �ijt = ∂�d∗
i /∂ln pjt and � it = ∂�∗

i /∂ ln yt .
Therefore, there exists a time dependent �t-

ball such that any continuously differentiable
demand system is exactly represented by (5)
and its derivatives in (6). Indeed, the structure
in (6) exactly represents the derivatives of (4)
at time t under each �t-ball. A global represen-
tation of derivatives is thus achieved by allow-
ing coefficients in (6) to vary across time, while
a time varying intercept can be used to repre-
sent the one-dimensional nonlinear function,
�(A∗

t X∗
t ), i.e.,

Ht = �(A∗
t X∗

t ).(7)

The varying coefficients in (6) in (7) are,
however, consistent with an integrable de-
mand system (symmetry, summability, and ho-
mogeneity) in (4) only if

�it = �∗
it ;

�ijt = �jit;
∑

i

�it = 1;
∑

j

�i j t = 0;

∑
i

�i t = 0

and

Ht = (�1t , . . . , �n−1,t , �nt )′

where any differentiable and integrable de-
mand system can be modeled using these ap-
propriate coefficient restrictions; and system
(5) with integrability conditions entails the
structure of the almost ideal demand system
(Deaton and Muellbauer).

An alternative representation of (5) that in-
cludes symmetry, summability, and homogene-
ity conditions is, therefore,

F(Xt ) = Zt · �t + (Yt − Pt )�t

+ �[Zt · �t + (Yt − Pt )�t ]

(8)
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where

Zt = [Z1t . . . Zn−1t ]

with sub-matrices:

Z1t =




ln(p1t/pnt ) ln(p2t/pnt ) . . . ln(pn−1t/pnt )
0 ln(p1t/pnt ) . . . 0
...

...
0 0 . . . ln(p1t/pnt )

− ln(p1t/pnt ) − ln
(

p2t p1t
/

p2
nt

)
. . . − ln

(
pn−1t p1t

/
p2

nt

)


 ;

and

Zjt =




0 0 . . . 0
...

...
ln(p jt/pnt ) ln(p j+1t/pnt ) . . . ln(pn−1t/pnt )

0 ln(p jt/pnt ) . . . 0
...

...
0 0 . . . ln(p jt/pnt )

− ln(p jt/pnt ) − ln
(

p j+1t p jt
/

p2
nt

)
. . . − ln

(
pn−1t p jt

/
p2

nt

)




;

and, the price index in (4) is now structured as:

Pt = Pt (Ht , �t ) =
∑

i

�it ln(pit/pnt)

+ 1/2
∑

i

∑
j

�ijt ln(pit/pnt) ln(pjt/pnt);

with parameter vectors defined by:

�t = (�11t , . . . , �1n−1t , �22t , . . . , �2n−1t , . . . ,

� j−1,n−1t , �jjt, . . . , � jn−1t , . . . , �n−1,n−1t )′

�t =
(

�1t , . . . , �n−1,t , −
∑

i

�it

)′
;

and

� = Ht =
(

�1t , . . . , �n−1,t , 1 −
∑

i

�it

)′
.

The derivatives and integrability condition
in (4) can then be globally represented (for the
entire range of the data) using the time varying
parameter demand system:

�t = Zt · �t + [Yt − Pt (Ht , �t )]�t + Ht(9)

where the system in (9) is referred as a globally
flexible varying coefficient (GFVC) demand
system that only requires modeling curves in
a one-dimensional space to capture global

nonlinearities of the demand system. This
dimensionality reduction in (9), however, im-
plies that the GFVC is not best for separating
changes in economic structure from changes in
variables since they are jointly modeled in (9).

In the application of (9), the caveat is that the
variation of coefficients (e.g., �t) across obser-
vations needs to be properly captured.

A Kernel Regression of a Globally
Flexible Demand System

Econometric Model

A statistical model of the GFVC demand sys-
tem is obtained by adding a residual. In par-
ticular, the econometric model of the GFVC
demand system, in which the conditional ex-
pectation component of the model stems from
the Rank Theorem, is

Qt = [Q1t . . . Qnt ]′ = Ft + Ut(10)

where

Qit jt = �jt + εjt

and

�jt = zjt�t + (Yt − Pt )�jt + hjt

where zjt and hjt are the jth rows of Zt and Ht,
respectively, and εjt is the jth row of the econo-
metric residual Ut. To avoid ad hoc param-
eterizations in the estimation of elasticities,
however, a non-parametric estimator of (10)
needs to be specified.
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A Temporal Weighted Estimator:
A Kernel Approach

To model nonparametrically the temporal
variation of elasticities in the GFVC demand
system in (10), an estimator is specified fol-
lowing C.J. Stone and Cleveland criterion of
kernel regression defined in terms of minimiz-
ing a weighted sum of squares of the errors.4 In
particular, a kernel estimator of the GFVC de-
mand system in (10) evaluated at coefficients
in observation q is

Min
{�q ,Hq ,�q }

=
M∑

t=1

{
k

[
d(t, q)

h

]

× (Qt−Zt�q − (Yt − P tq)�q − Hq)′

(Qt − Zt�q − (Yt − P tq)�q − Hq)
}

(11)

for Ptq = Pt(Hq, �q)

where the distance between observation t and
q is d(t, q) (e.g., the time length |t − q|); and the
bandwidth length h determines the size of the
temporal weights allotted to each observation,
while the density function k of the kernel cap-
tures the shape of the weights. For example, a
Gaussian weight function for the kernel in (11)
evaluated at time q is:

k

(
d(t, q)

h

)
= (2�)−1/2

× exp

[
−

(
1
2

) (
dtq

h

)2
]

(12)

where dtq = d(t, q).
Now, re-defining k( d(t,q)

h ) = �2
tqh, a non-

parametric estimator of time varying coeffi-
cients around a reference point q that min-
imizes (11) is, therefore, the nonlinear least
squares estimator of the system:

�1qhQ1

= �1qh(Z1�q + (Y1 − P1q)�q + Hq)

�2qhQ2

= �2qh(Z2�q + (Y2 − P2q)�q + Hq)

(13)

4 See also Fan (1992, 1993) and Ruppert and Wand (1994).

�MqhQM

= �Mqh[ZM�q + (YM − PMq)�q + Hq ]

where, from the definition of the nonlinear
least squares estimator, the temporal kernel
estimator of the GFVC demand system in (10)
then solves:

R′
qEq = 0(14a)

(E′
qEq)/n

( ∑
t

�2
tqh

)
= �2

q(14b)

where Rq is the matrix of the gradient of (13)
for all observations with respect to all param-
eters in the model:5

Rq =




�1qh∇1q

�2qh∇2q

...

�Mqh∇Mq




where

∇tq = [∂Qi/∂�q : ∂Qi/∂�q : ∂Qi/∂Hq ]

= [Zi − �q∂ P tq/∂�q : (Yt − P tq)i :

i − �q∂ P tq/∂Hq ]

where i is an n × 1 vector of ones, and the vector
Eq is the regression error:

Eq =




�1qhQ1 − �1qh(Z1�q + �q(Y1 − P1q) + Hq)

�2qhQ2 − �2qh(Z2�q + �q(Y1 − P1q) + Hq)
...

�MqhQM − �Mqh(ZM�q + �q(Y1 − P1q) + Hq)


 .

A global approximation of derivatives re-
sults from evaluating (14) at different time
periods in the data set. In the case of non-
spherical disturbances, however, the variance–
covariance matrix of the estimator in (14) may
not be adequate for inference testing. Tradi-
tionally, demand system estimation incorpo-
rates the presence of contemporaneous serial
correlation across equations, Cov(εjt, εkt) =
�jk �= 0, by using the seemingly unrelated re-
gression (SUR) estimator. A kernel estimator
of the GFVC demand system that filters out

5 In a linear in parameter model, for example, Stone model, Rq
corresponds to the matrix of explanatory variables.
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contemporaneous serial correlation is consid-
ered next.

Kernel with Contemporaneous
Serial Correlation

From the temporal-weighted least-squares
representation of the kernel estimator in (14),
a filter of non-spherical disturbances can be
incorporated similarly to the case of the non-
linear least squares estimator. In particular, the
kernel estimator of the GFVC demand system
with a filter for contemporaneous serial corre-
lation is the SUR estimator of (13), i.e.,

R̃′
q(Ωq ⊗ Im)−1Ẽq = 0(15a)

Ωq =
( ∑

t
�2

tqh

)−1

×




E1q
′E1q . . . E′

nqE1q

...
E′

nqE1q . . . E′
nqEnq




(15b)

where

R̃q =




R1q

R2q

...
Rnq


 , for Rjq =




�1qh∇ j1q

�2qh∇ j2q

...
�Mqh∇jMq




where ∇ jtq is the gradient of equation j at time
t with respect to parameters of the model at
reference point q:

∇ j tq = [∂ Qjt/∂�q : ∂ Qjt/∂�jq : ∂ Qjt/∂hjq] = [zji

− �jq∂ P tq/∂�q : Yt − P tq : 1 − �jq∂ P tq/∂hjq]

and Ẽq is the regression error,

Ẽq =




E1q

E2q

...
Enq


 for Ejq =




�1qhQ j1 − �1qh(z j1�q + �jq(Y1 − P1q) + hjq)

�2qhQ j2 − �2qh(z j2�q + �jq(Y2 − P2q) + hjq)

...
�MqhQjM − �Mqh(zjM�q + �jq(YM − PMq) + hjq)


 .

And the variance–covariance matrix associ-
ated with the kernel in (15) is:

Cov(�̂q , �̂q , Ĥq) = R̃′
q(Ωq ⊗ I)−1R̃q

where the standard errors are conditional on
the estimated bandwidth.6

6 Again, in a linear in parameter model R̃q corresponds to the
matrix of explanatory variables.

Yet, the bandwidth length cannot be simul-
taneously estimated with the other coefficients
in (15) since in that case h → 0. Because of
this difficulty, the criterion of cross validation
is often used to estimate the bandwidth (e.g.,
see Engle et al. 1986, Schmalensee et al. 1999).
Cross validation, a mean squared error crite-
rion, is frequently implemented by minimizing
the estimated prediction error:

Min
h

J (h) = (M · n)−1

×
M∑

q=1

(Qq − ˆ�Qq)′(Qq − ˆ�Qq)

(16)

where ˆ�Qq = Zq
ˆ̂Γq + (Yt − ˆ̂Ptq) ˆ̂�q + ˆ̂Hq is

computed as the “leave-one-out” estimator,
which deletes the qth observation in (13)
when estimating ˆ̂�q , ˆ̂�q , and ˆ̂Hq .

7

A simple algorithm that solves (15) based on
(16) for bandwidth selection is

1. Select the bandwidth length by solving
(16) and solve (14a) for elasticity esti-
mates;

2. From step (1), find the variance–
covariance estimates in (15b);

3. Use estimates in step (2) to solve (15a) for
coefficient estimates;

4. Iterate steps (2)–(3),

where this step-based approach, in particular,
corresponds to Zellner’s estimator for the case
of a parametric SUR estimator (i.e., when h
→ ∞ in (15)). The presence of time varying
coefficients may then be incorporated at any
desired time using the temporal kernel, and

automation in the estimation of the bandwidth
in the estimator avoids imposing arbitrary dis-
crete partitions of coefficients in the data. A
GFVC meat demand model is next estimated
non-parametrically.

7 That is, the parameters ˆ̂�q , ˆ̂�q , and ˆ̂Hq are estimated as in (14),
but without the qth observation in (13).
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Data and Kernel-Based Elasticities Estimates

The temporal kernel estimator of the GFVC
demand system is applied to a meat demand
system that includes the three main meat
groups: beef, pork, and poultry, plus the nu-
meraire captured by all other goods. The anal-
ysis uses annual USDA data from 1950 to 2000
on per-capita retail weights of beef, pork and
poultry consumption, and Bureau of Labor
Statistics data on price indexes for each meat
group considered. Data on personal disposable
income and a price index for the numeraire
that captures all other goods complete the data
needs for estimation of a weakly separable
meat demand system.

For the distance between observations t and
q, the temporal kernel in (15) with weights
based only on time lengths, d(t, q) = |t − q|,
is a non-parametric estimator of the GFVC
model. A potential limitation of using only
the time length to specify the kernel could
be, however, its inability to capture closeness
in variable values in terms of the explanatory
variables. Alternatively, to model coefficient
variation across time in a one-dimensional
space, while incorporating closeness in vari-
able values in terms of the explanatory vari-
ables, a distance function is

d(t, q) =
n∑

i=1

oi |rit − rqt | + on+1|t − q|(17)

where oi = {0, 1}; and rit is the ranking of vari-
able i at observation t in terms of its value-size.8
The structure in (17) avoids the dimensional-
ity curse of unrestricted multivariate kernels
(Stone), while the need to define the temporal
kernel in terms of some or all the components
in (17) can be determined based on statistical
evidence.

A numerical approach based on Gauss–
Newton algorithm solves the first-order con-
ditions in (15), while the components of the
distance function in (17) and the bandwidth
length in (12) are chosen based on the low-
est estimated prediction error (EPE) in (16).
The selected distance function with the lowest
EPE only uses the time length between obser-
vations and, for this distance function,9 table
1 shows the estimated prediction error (EPE)

8 This use of ranks homogenizes the metric across explanatory
variables and the metric of a time trend to assign weights in the
distance function.

9 The EPE, when using a distance function based only trend
and the rank of income, is 0.128, and when using all explanatory
variables in the distance function, the EPE is 0.284.

Table 1. Estimated Prediction
Error under Different Bandwidth
Lengths

Bandwidth EPE

∞ 0.4460
15 0.2662
10 0.2412
8 0.2256
7 0.2125
6 0.1941
5 0.1697
4 0.1408
3.5 0.1278
3.4 0.1258
3.3 0.1241
3.2 0.1229
3.1 0.1221
3 0.1222
2 0.2078
1.5 0.3855
1 0.7276

Note: The estimated prediction error (EPE) is
calculated using the “leave-one-out” estimator. The
EPE in the table is multiplied by 103.

in (16) for different bandwidth lengths applied
to the meat demand system. The bandwidth
determines the weights allotted to an obser-
vation for each point of approximation. The
“leave-one-out” estimator indicates that the
EPE is minimized at h = 3.1, and the tempo-
ral kernel EPE is 63% lower than the EPE
associated with the nonlinear least squares es-
timator. After selecting the bandwidth that
minimizes the EPE in table 1, coefficient es-
timates for any given reference point of the
GFVC demand system can be obtained by
solving (15). In the analysis of elasticities, how-
ever, the kernel tends to be ineffective (large
standard errors) when the point of approxima-
tion is far-off from the mean value of the data.

In selecting the reference points, upper and
lower bounds of the explanatory variables in
the data are thus avoided, and the selected ref-
erence points in this article are chosen so that
they represent different periods in the data, but
at the same time consist of observations within
values of other observations. Accordingly, the
kernel estimator of the GFVC demand system
is evaluated at the reference points: 1955, 1975,
and 1995, and elasticity estimates at each ref-
erence point are illustrated in table 2. Table 2
also reports a special case of the kernel estima-
tor of the GFVC demand system in (15), which
occurs when h →∞. (Table 3 reports estimates
of the variance–covariance matrix for different
reference points.)
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Table 2. Own Price and Income Elasticity Estimates Derived from the Globally Flexible Varying
Coefficient Demand System

Variable GLS Kernel-1955 Kernel-1975 Kernel-1995

Beef price—BE −0.32 (−1.81) −0.66 (−6.91) −0.62 (−3.18) −0.48 (−0.68)
Pork price—PE −1.25 (−5.72) −1.38 (−4.42) −1.08 (−3.52) −0.83 (−3.24)
Poultry price–poultry Eq. −0.63 (−3.29) −0.73 (−3.30) −0.74 (−2.27) −0.81 (−3.04)
Income—BE 0.31 (5.23) 0.76 (4.91) 0.12 (0.50) −0.25 (−0.47)
Income—PE 0.20 (2.21) 0.55 (2.07) −0.01 (−0.30) 0.14 (0.51)
Income–poultry Eq. 0.95 (4.25) 0.07 (0.23) 0.86 (2.27) 0.65 (1.91)

Notes: The symbol BE refers to the beef equation, and the symbol PE refers to the pork equation. All values in parenthesis are t-values. GLS estimates assume
time invariant coefficients.

Table 3. Selected Variance–Covariance Ma-
trix Coefficient Estimates from the Temporal
Kernel

Variable 1955 1975 1995

Variance BE 0.74 1.08 0.16
Covariance BE and PE 0.26 0.38 0.06
Covariance BE and

poultry Eq.
0.07 −0.17 −0.09

Variance PE 1.37 0.59 0.04
Covariance PE and

poultry Eq.
0.64 0.05 −0.03

Variance poultry Eq. 0.58 0.63 0.09

Notes: The symbol BE refers to the beef equation, and the symbol PE
refers to the pork equation. All reported estimates of the covariance
matrix in the table need to be multiplied by 10−5.

Analysis of the GFVC demand system esti-
mated with the temporal kernel in (15) shows
some interesting patterns. For example, in
table 2, the norm (absolute value) of the own
price elasticity of beef and pork is lowest at the
most recent reference point, 1995. In the year
1955, results indicate (with statistical signifi-
cance) that beef and pork have positive income
elasticities, while the income elasticity of poul-
try is not significant. In 1975, in contrast, the
income elasticities for beef and pork are sta-
tistically insignificant, while the income elas-
ticity for poultry is significant. (Interestingly,
Moschini and Meilke show that around 1975
there was a structural break in meat demand.)

In 1995, estimates show that the income elas-
ticity of beef is negative, but not statistically
significant, while poultry has the largest in-
come elasticity. The size of the price elastic-
ity for beef and pork are lower in 1995 than in
1975 and 1955, while the own price elasticity of
poultry is largest in 1995. Overtime, red meat
products (beef and pork) have thus become
less price and income elastic and, in particular,
red meat products have become quite income
inelastic in comparison to 1955.

MSE Performance of the Temporal Kernel

In meat demand, kernel estimation of time
varying coefficients adds non-parametric flex-
ibility, while significance of the elasticity esti-
mates tends to be maintained at each reference
point in table 2. Alternatively, for parsimony,
the GFVC model can be approximated us-
ing simpler structures for modeling the coeffi-
cient variation, e.g., dummy variables and time
trends. Yet, ad hoc parameterizations in the
variation of coefficients across time and arbi-
trary partitions of the data may impose dis-
tortions in coefficient estimates. This section
compares the temporal kernel to parame-
terizations of time varying coefficients with
dummy variables and time trends.

For the model comparison, cross-validation
evaluates goodness of fit through observa-
tions not included in the regression captur-
ing the effect of the variance as well as
the biases from the model specification (see
Piggott). Specifically, the method of cross val-
idation computed as the “leave-one-out” es-
timator (see [16]) provides a mean square
error (MSE) criterion for model selection (see
Schmalensee et al.). Table 4 shows the MSE
resultant from the cross-validation analysis
of the GFVC model with intercept shifters,
as well as with dummy variables (time
trends) for both intercept and interaction
variables.

Clearly, results in table 4 show that the tem-
poral kernel has lower MSE than traditional
approaches for modeling varying coefficients.
For example, the model with dummy variables
that provides best MSE performance occurs
for the case with one partition for both inter-
cept and slope with an estimated prediction
error (EPE) of 0.27, which represents a lower
performance than the EPE of 0.122 under
the temporal kernel. Overall, under the tradi-
tional method, flexibility attained with dummy
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Table 4. EPE Using the “Leave-One-Out”
Estimator of Different Varying Coefficient
Forms

GFVC Model EPE

With parameter stability 0.446
Intercept dummy: One

partition
0.470

Intercept dummy: Two
partitions

0.446

Intercept dummy: Three
partitions

0.498

Intercept trend 0.375
Intercept quadratic trend 0.344
Intercept-slope dummy: One

partition
0.278

Intercept-slope dummy: Two
partitions

0.297

Intercept-slope dummy: Two
partitions

3.254

Parametric model: Time trend
as interaction variable

0.259

Parametric model: Quadratic
trend as interaction variable

0.213

Parametric model: Cubic trend
as interaction variable

0.284

Temporal Kernel 0.122

Note: The estimated prediction error (EPE) is calculated using the
“leave-one-out” estimator. The globally flexible varying coefficient
model (GFVS) model is estimated under the different structures for the
coefficient variation described in the table.

variables quickly becomes very expensive in
terms of degrees of freedom after two parti-
tions reflected by drastic increases in MSE (see
table 4).

A parametric modeling of the variation of
the coefficients with a time trend is simi-
larly limited relative to the temporal kernel.
For parametric specification, the lowest MSE
uses a quadratic trend polynomial entering in
the intercept and as an interaction variable
with EPE of 0.21, which—again—represents
a lower performance than under the temporal
kernel. Therefore, in addition to the properties
of non-parametric flexibility and automa-
tion provided by the temporal kernel, cross-
validation shows empirically that the temporal
kernel has lower MSE than traditional ways
of modeling varying coefficients (time trend,
dummy variables).

Conclusion

This article applies the Rank Theorem to
derive an exact representation of a demand
system in terms of time varying coefficients.

Restrictions are then imposed on the elements
of the vector of parameters to impose integra-
bility conditions, and the integrable demand
system with time varying coefficients repre-
senting derivatives of the function for all ob-
servations in the data; and the system is then
globally flexible. In estimation, this GFVC
model only requires modeling curves in a one-
dimensional space to capture global nonlinear-
ities of the demand system.

To approximate the variation of coefficients
in the GFVC demand system, the paper de-
rived a temporal kernel estimator that allows
elasticities to be estimated without any ad hoc
parametric assumptions in the functional form,
and elasticity estimates can be tailored to the
observation of interest to the researcher. As a
result, different from past work, flexibility was
achieved by using the Rank Theorem and a
temporally weighted estimator.

In the meat demand application, the tem-
poral kernel maintains statistical significance
of price elasticity estimates, and the estima-
tor simultaneously captures nonlinearities and
structural change with minimum parameteri-
zations. The temporal kernel also yields better
MSE fit than alternative forms of the GFVC
demand system that includes traditional para-
metric modeling of the variation of time vary-
ing coefficients with dummy variables or time
trends.

A temporal kernel approach may thus be
considered as a viable approach in estimation,
and the importance of price elasticity estimates
based on time series data underscores a use-
ful place of the GFVC among the variety of
forms available for food demand analysis. Fu-
ture work may explore the use of the tempo-
ral kernel in the context of other forms (e.g.,
see Barten and Bettendorf), and consider the
use of the rank theorem to define new classes
of globally flexible systems in production with
reduced dimensionality.

[Received July 2003;
accepted May 2004.]
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