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Modelling firm heterogeneity with

spatial ‘trends’

C. SARMIENTO

Department of Agri/Business & Applied Economics, North Dakota State University,
PO Box 5636, Fargo, ND 58105-5636, USA; E-mail: csarmien@ndsuext.nodak.edu

The hypothesis underlying this article is that firm heterogeneity can be captured
by spatial characteristics of the firm (similar to the inclusion of a time trend in
time series models). The hypothesis is examined in the context of modelling electric
generation by coal powered plants in the presence of firm heterogeneity.

I . INTRODUCTION

Applied production analysis with time series data com-

monly uses a time trend as a proxy for technological

change. This proxy is justified by the obvious correlation

between time and technological change (Cooley and

Prescott, 1973, Diewert and Wales, 1992).1 As a corollary

to the use of a trend variable in time series analysis, this

article introduces for cross sectional analysis a proxy

of firm heterogeneity based on the location of each firm.

The potential usefulness of this proxy depends on the

correlation between location and firm heterogeneity.

The correlation between location and firm heterogeneity

stems from the existence of peculiar characteristics of firms

maintained to a large extent because of transfer costs

(e.g. transportation cost and institutional factors), which

restrict trade, competitiveness and mobility of resources

across space. Location is thus an indicator of systematic

differences of firms dispersed over space, and the correla-

tion between location and technological characteristics

of the firm is likely to be stronger in production processes

that involve large transfer costs.

This article constructs a proxy of firm heterogeneity based

on the location of the firm, which is a two-dimensional

analogue of the concept of a time trend. In an application,

the proxy of heterogeneity is used to capture spatial trends

generated by omitted technological differences across firms

in the modelling of coal-powered technologies (a process

subject to large transfer cost). The relevance of the proxy of

heterogeneity is tested using a maximum likelihood (ML)

estimator that incorporates spatial autoregressive residuals
and instrumental variables. Statistical analysis shows signi-
ficant correlation between the location of the firm and firm
heterogeneity, and results show that estimates without the
proxy of heterogeneity overstate the input elasticities asso-
ciated with coal based electric generation. This direction of
the likely bias is consistent with a case where omitted
heterogeneity consists of factors of production that are
positively correlated with fuel in electric generation.

II . MODELLING SPATIAL
HETEROGENEITY

Assume the technology of a coal-powered plant is:

yj ¼ zðqj, zj; sjÞ ð1Þ

where electric generation by firm j is yj; quantity and qual-
ity of coal used by the firm are zj and qj; and fixed inputs
and other variables inputs are indexed by the indicator
function sj. In terms of Jorgenson and Griliches (1967)
terminology, the indicator function can be defined as all
elements that contribute to coal demand but not captured
in the data. For example, the indicator sj captures techno-
logical heterogeneity (e.g. pulverizer mills of different qual-
ity)2, and generally unreported information in electric
power reports such as regional variation in the equipment
and labor used at different plants.
In estimation, when firm heterogeneity sj is omitted

in Equation 1, the econometric residual is likely to show
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1Examples of various applications that use time trends as a proxy for technology are in Griffiths et al. (1993), e.g. p. 491.
2A more refined pulverization increases combustion of coal in electric generation and, thus, increases efficiency.



spatial correlation. Spatial correlation, in a fashion similar

to temporal correlation, means that the econometric

residual of a given observation is correlated with the resi-

dual of geographically nearby observations (Dubin, 1999).

Spatial correlation, however, occurs in the two-dimensional

space whereas temporal correlation occurs in the one-

dimensional space.

An estimable form of the production function in

Equation 1 is the econometric model:

yj ¼ zðqj, zjÞ þ �j ð2Þ

where �j is the residual and cov(�j,�jþ i) 6¼ 0, for i 6¼ 0,

in the presence of spatial correlation. The error term in

Equation 2 can be decomposed as:

�j ¼ �1j þ �2j ð3Þ

where �1j and �2j are random and non-random compon-

ents of the spatial correlated error term and, for the non-

random spatial correlation term, E(�2j) 6¼ 0.

Kelejian and Robinson (1995) modelled the random

spatial correlation term using the structure:

e1 ¼ ðI� �WÞ
�1k1 ð4Þ

where k1¼ (�11, . . . ,�1T) for �1t�N(0, �2); I is the identity
matrix; W is a row standardized matrix with zeroes in the

diagonal matrix and rows summing to one; and the spatial

correlation coefficient is �.
To model non-random spatial correlation, a proxy of

heterogeneity is defined in terms of a ranked representation

of the geographical coordinates of the firm. In particular,

assuming the longitude and latitude of firm j are L1j and

L2j, respectively, the support of the function of firm j with

the proxy of heterogeneity is:

�2j ¼
X2

i¼1

aiRij ð5Þ

where:

Rij ¼
XT

k¼1

Dijk

Dijk ¼ 1 if ðLij � LikÞ5 0; and

Dijk ¼ 0 if ðLij � LikÞ < 0:

The rank representation in Equation 5, which resembles
a spatial trend, avoids parametric nuances from modelling
relative differences across firms, and guarantees sufficient
variability in the proxy of heterogeneity across observa-
tions to track unobserved spatial heterogeneity. In parti-
cular, because each firm has a unique location and the
technology varies over space, geographical information in
Equation 5 is potentially a useful signal of technological
differences across firms, and the degree of correlation
between the firm’s location and the underlying technology
of each firm depends on the size of the transfer costs.
The hypothesis underlying the article is that firm hetero-
geneity, sj, can be captured by Equation 5 similar to the
inclusion of a time trend in time series models.

III . APPLICATION

To estimate the production function in Equation 2, this
article uses data on coal power plants. The data source
contains information on the fuel usage, the quality of the
fuel, electric generation, and the location of coal-powered
plants. The Electric Power Annual (published by the
Federal Energy Commission) reports firm level data for
the year 2000 on coal usage, the coal heat content mea-
sured in BTU used by each firm, and generated megawatts.
Data on location for each firm used in the sample is
extracted from EPA’s emissions and generation resource
integrated data base (E-GRID). A total number of 268
observations are used in estimation of a log-linear form
of y(qj, zj) in Equation 2.
Ordinary least squares (OLS) estimates with and without

the proxy for heterogeneity in Table 1 indicate that the

Table 1. Input elasticity estimates of a coal powered plant production function

Coefficient OLS
OLS
(with n.r.s.c.) ML

ML
(with n.r.s.c.)

Constant (t-stat) 9.22* (29.77) 9.12* (28.19) 9.41* (34.5) 9.34* (27.43)
Coal quantity elasticity (t-stat) 1.00* (29.44) 0.96* (28.21) 0.99* (31.38) 0.95* (29.65)
Coal quality elasticity (t-stat) 1.09* (5.56) 0.66* (2.43) 1.19* (6.92) 0.82* (3.26)
F-test of n.r.s.c. 9.45* 9.16*
F-test of r.c. 3.25* 3.64*

Notes: Models with non-random spatial correlation (n.r.s.c) include the proxy of heterogeneity. The asterisk (*)
denotes statistical significance at the 5% level. The F-test of n.r.s.c. evaluates the null hypothesis of absence of
non-random spatial correlation, and the F-test of r.c. evaluates the null hypothesis of absence of random spatial
correlation.
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proxy of heterogeneity in Equation 5 is strongly significant,
and its omission is a source of bias in the probable
direction indicated by Table 1. The OLS estimator may,
however, be subject to endogeneity bias since in production
both inputs and outputs are simultaneously determined.

An instrumental variable based on ranks

The instrumental variable (IV) estimator of the loglinear
form of y(qj, zj) in Equation 2 can be used to reduce sources
of endogeneity bias. A readily available instrument for
the explanatory variables in Equation 2 is the rank of the
variables in the data:

Ij ¼
XT

k¼1

wjk and Hj ¼
XT

k¼1

vjk ð6Þ

where wjk¼ 1 if zj� zk5 0 and wjk¼ 0 if zj� zk<0; and
vjk¼ 1 if qj � qk5 0 and vjk¼ 0 if qj� qk<0.3 Haussman
test in Table 2 accepts the IV estimates with the proxy of
heterogeneity when using Equation 6 relative to its coun-
terpart under the OLS estimator, and the IV estimates
indicate with statistical significance the existence of spatial
trends.

Modelling both random and non-random
spatial correlation in a ML estimator

The OLS and IV estimators with the proxy of heteroge-
neity in Equation 5 capture spatial trends, but omit forms
of random spatial correlation. To incorporate spatial
autocorrelation terms in Equation 4, this section uses a
concentrated ML estimator. The covariance matrix of the
random spatial correlation term in Equation 4 is, however,
specified with two weighting matrices with corresponding
coefficients for spatial correlation across latitude and
longitude. This generalization of Equation 4 by allowing
spatial correlation to differ across latitude and longitude is
relevant in coal-based technologies because coal resources

categorized by quantity and quality differ more markedly
from West to East than South to North. Specifically,
the structure for the random spatial correlation for �1t in
Equation 3 is represented by:

e1 ¼ ½I� ð&1W1 þ &2W2Þ�
�1k1 ð7Þ

whereW1 andW2 are row standarized matrices with spatial
correlation terms &1 and &2 with respect to the longitude
and latitude of the firms, respectively.
A log-linear form of Equation 2 under the structure of

the residual in Equation 7 can be estimated by concentrat-
ing the likelihood function with respect to &1 and &2, which
obtains the ML estimator:

Max
&1, &2

�½lnj�j þ lnðE0��1EÞ�

s.t.

Q
0��1E ¼ 0; ð8aÞ

E0��1E ¼ Ts2
ð8bÞ

where:

�¼s2
I�ð&1W1þ&2W2Þ½ �

�1
I�ð&1W1þ&2W2Þ½ �

�1
� �0n o�1

¼s2
½I�ð&1W1þ&2W2Þ�

0
½I�ð&1W1þ&2W2Þ�;

¼s2�;

E¼flny1��0
Q1, . . . , lnyT��0

QT g;

and

Q ¼ fQ1, . . . ,QT g where Qi ¼ f1, ln qi, ln zi,R1i,R2iÞ:

Similarly, in the context of an instrumental variable, the
ML estimator of Equation 7 derived from concentrating
the likelihood function with respect to &1 and &2 is

Max
&1, &2

�½lnj�j þ lnðE0��1EÞ�

3 Intuitively, the instrument based on ranks in Equation 6 reduces sources of feedback between the residual of the econometric model and the explanatory
variable by using only qualitative information of the variable (ranking) suspicious of causing simultaneity biases. In particular, while the residual of the
econometric model affects the ranking of the observations only if it also affects the variable in levels, the residual may explain the variable in levels without
affecting the ranking of the variable.

Table 2. Elasticity estimates with an instrumental variable based on ranks

Coefficient IV IV (with n.r.s.c.) IV-ML IV-ML (with n.r.s.c.)

Constant (t-stat) 9.18* (29.62) 8.87* (24.50) 9.56* (36.1) 8.69 (25.14)
Coal quantity elasticity (t-stat) 1.01* (29.74) 0.97* (28.41) 1.02* (32.88) 0.96* (26.01)
Coal quality elasticity (t-stat) 1.11* (5.68) 0.50 (1.82) 1.22* (7.02) 0.63* (2.61)
F-test of n.r.s.c. 9.20* 9.51*
F-test of r.c. 3.32* 3.66*
Haussman test 3.06 6.43* 3.11 7.20*

Notes: Same as the notes in Table 1. At the 5% level, the critical value of the Haussman test for using instruments for
fuel quantity and quality is 5.99.

Modelling firm heterogeneity with spatial ‘trends’ 273



s.t.

Q
0��1E ¼ 0; ð9aÞ

E0��1E ¼ Ts2
ð9bÞ

where Q is the instrument for Q defined in (6).4

Using Gauss, coefficient estimates that maximize Equa-
tions 8 and 9 are found using a grid search over &1 and &2.
Statistical significance of the spatial autocorrelation terms
in Tables 1 and 2 show the relevance of the ML estimator
in Equations 8 and 9 relative to the OLS and IV estimators.
Input elasticity estimates derived from the concentrated
likelihood function in Equations 8 and 9 are reported in
Tables 1 and 2.

IV. CONCLUSION

Comparison of input elasticity estimates shows that elasti-
city estimates are more sensitive to spatial trends than
to random spatial correlation. Specifically, elasticity esti-
mates of the quality of coal (productivity of coal effect
on output) are quite sensitive to the inclusion of spatial
trends.Moreover, the spatial autocorrelation term increases
the efficiency of the estimator by generating more signifi-
cant t-statistics relative to the OLS and IV estimators in
Tables 1 and 2.

Analysis of estimates shows that random spatial correla-
tion omits information on spatial trends captured by the
proxy of heterogeneity in Equation 5, while spatial trends
omit information captured by the spatial autocorrelation
term. Therefore, simultaneous modelling of Equations 5

and 7 is potentially useful when estimating a production
function subject to large transfer costs. This result under-
scores an interesting spatial analogy of model specifications
in time series analysis that incorporate both time trends
and autocorrelation terms (Cooley and Prescott, 1973), and
shows the potential need of non-random spatial correlation
in future extensions to applications that include random
spatial correlation in estimation (e.g. Bell and Bockstael,
2000).
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