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A mean squared error estimator of

market size in hedonic price analysis

Camilo Sarmiento

Pacific Institute for Research and Evaluation, 11710 Beltsville Drive,
Suite 300, Calverton, MD 20705, USA
E-mail: csarmiento@pire.org

This paper presents a spatial kernel estimator that allows coefficients and
market size to be estimated at the observation of interest. In economic
terms, the bandwidth length of the spatial kernel estimator captures the
size of the market incorporated in estimation at the location of interest,
and this optimal size of the market included in regression minimizes mean
square error (MSE).

I. Introduction

Sources of structural change in cross-sectional

analysis are analogous to those in time series

analysis: technology, endowments, and institutions

(Sarmiento, 2004). In the valuation of product

characteristics, for example, the structure of

parameter stability in cross-sectional analysis implic-

itly assumes a single market for all observations

(Wang, 2003) while, in contrast, models with

spatially varying coefficients allow for spatial market

fragmentation. This paper presents a spatial kernel

estimator that permits coefficients and market size

to be estimated at the observation of interest.

The size of the market selected in the spatial kernel

is evaluated with a mean square error (MSE)

criterion. In effect, the bandwidth length of the

spatial kernel estimator captures the size of the

market incorporated in estimation at the location of

interest.

Application of the spatial kernel estimator clearly

elicits heterogeneity in local markets for coal, and

systematic spatial patterns are revealed in the varia-

tion of the implicit valuation of coal quality across

location.

II. Spatial Structural Change in Price Analysis

The law of one price states that the price of a homo-

geneous product should be the same across space in

the absence of transfer costs (e.g. transportation cost

and institutional factors). In reality, transfer costs,

which restrict trade, competitiveness and mobility

of resources across space, contribute to significant

regional price differences (Haining, 1990; Case, 1991;

Florkowski and Sarmiento, 2005). For example, the

dissimilarities in the markets for coal of different

qualities in the USA hinges partly upon the distance

of the plant to transportation centres and mines and,

in particular, the plants’ location relative to mines

providing high quality coal.

In electric generation, coal with more heat content,

which is commonly measured in British thermal units

(BTU), is more productive because it increases com-

bustion needed in the production of electricity; and

the relation between sulfur content and coal price

captures the plant’s valuation of switching to cleaner

coal in the context of environmental regulation.1 The

relation between quality and price, however, depends

on local peculiarities in the supply and demand for

different types of coal (Rosen, 1974).

1 The most common mechanism used by power plants to comply with emission caps is fuel switching to coal with lower sulfur
content.
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A semiparametric formulation of the local market
valuation of coal quality that specifies the price of
coal paid by electric power plants Ys in terms of its
characteristics (the coal heat content h1s and the coal
sulfur content su2s) and the location of the plant is,
therefore,

Y ¼s ¼ �0
s

1

ln h1s

ln su2s

2
64

3
75þ us

¼ �0
sxs þ us

ð1Þ

where the econometric residual us� (0, �2
s ) depends

on market conditions at location s; and the spatially
varying coefficients �s

0 capture different local condi-
tions in the supply and demand markets for coal.

III. A Spatial Kernel

To estimate the relative implicit price of quality �s,
both coefficients and market size at the power plant
of interest need to be estimated. A spatial kernel that
estimates market size simultaneously with the param-
eters of the model is next formulated by adapting a
kernel estimator of varying coefficients in Sarmiento
(2005) to spatial modelling. In particular, a spatial
kernel estimator of the varying coefficient model in
Equation 1 evaluated at observation q minimizes the
weighted sum of squares:
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where the distance function between firms s and q is
d(s, q), and the bandwidth length h determines the size
of the spatial weights allotted to each observation,
while the density function k of the kernel captures
the shape of the weights. For example, a Gaussian
weight function for the kernel in Equation 2
evaluated at the reference point q is

k
dðs, qÞ

h

� �
¼ ð2�Þ�1=2 exp �

1

2

� �
dsq

h

� �2
" #

ð3Þ

where dsq¼ d(s, q).
Silverman (1986) shows that nonparametric regres-

sion is robust to the structure of the weights in
Equation 3 (i.e. a Gaussian kernel) but it is sensitive
to the bandwidth length h. In spatial modelling, the
extent of the market incorporated in estimation of
coefficients at location s depends on the bandwidth
length and, thus, selection of the market size in
regression is the most important factor in the spatial
kernel. By construction, the bias is inversely related
to h (market size included), and the assumption of

parameter stability, h !1, assumes a single market
for all observations.

Following Sarmiento (2005), if kðdðs, qÞ=hÞ ¼ �2
sqh,

then the nonparametric estimator of varying
coefficients is

Q
0
qEq ¼ 0 ð4aÞ

E
0
qEqP
s �

2
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where

Eq ¼ �1qhy1 � �1qhð�
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qx1Þ, . . . ,�MqhyM � �Mqhð�
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� �
Qq ¼ �1qhx1, . . . ,�MqhxM

� �
and, for inference testing, the associated variance for
an estimated parameter at reference point q is the qth
element of the vector
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where the standard errors depend on the bandwidth
length.

Yet, the extent of the market captured by the
bandwidth length in estimation of parameters at an
arbitrary location s cannot be simultaneously esti-
mated with the other coefficients in Equation 4
since in that case h! 0. Because of this difficulty,
the criterion of cross-validation is often used to esti-
mate the bandwidth (Engle et al., 1986; Schmalensee
and Stoker, 1999). Cross-validation, a mean squared
error criterion, is frequently implemented by
minimizing the estimated prediction error:

JðhÞ ¼M�1
XM
q¼1
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^
y
_

y
_

q
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where ŷ
_
y
_

q ¼ �
^̂̂
qxq is computed as the ‘leave-one-out’

estimator, which deletes the qth observation
in Equation 1 when estimating �

^̂̂
q. Thus, different

from �̂�q, the vector �
^̂̂
q is estimated as in Equation 4,

but without the qth observation. Hence, the band-
width length is selected by

Min
h

JðhÞ ð5Þ

where, given Equation 5, coefficient estimates at the
desired reference point from the spatial kernel are
obtained from Equation 4.

The solution of the optimization in Equation 5
thus generates a bandwidth h* – the optimal coverage
of the market when estimating the economic relation
for an arbitrary location s – which can be used in
Equation 4 to estimate coefficients at the observation
of interest. The derived spatial kernel estimator,
therefore, corresponds to a Nadaraya–Watson local
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estimator of the gradient at observation q when the
source of heterogeneity is location. The presence of
spatially varying coefficients and heteroscedastic
residuals could then be incorporated at any desired
location by varying the reference point in the spatial
kernel estimator.

IV. Estimation

Implementation of the spatial kernel estimator to the
fuel upgrading model in Equation 1 uses available
data on coal quality, the price of coal (per ton), and
the location of coal-powered plants for 268 observa-
tions. The Electric Power Annual (published by the
Federal Energy Commission) reports firm-level data
for the year 2000 on coal price, and the coal heat
content measured in BTU and sulfur content used
by each firm, while data on location for each firm
used in the sample is extracted from EPA’s emissions
and generation resource integrated database
(E-GRID).2 Yet, to implement the spatial kernel,
geographical coordinates need to be transformed
onto relative distances using polar coordinates
(Marsen and Tromba, 1988).

To estimate Equation 1 using the spatial kernel and
available data, a grid search is applied over the band-
width parameter h of the kernel defined in Equation 2.
Table 1 shows the estimated prediction error in
Equation 5 computed as the ‘leave-one-out’ estimator
for different values of window length. This criterion
of cross-validation captures goodness of fit through
observations not included in the regression capturing
the effect of the variance as well as the biases from the
model specification. Results show that the estimated
prediction error in Equation 5, which corresponds
to a mean square error criterion, is minimized at a
bandwidth length equal to 0.08. The estimate of the
bandwidth in Table 1 thus clearly elicits heterogeneity
in local markets for coal. After selecting the band-
width length of the spatial kernel estimator, the
valuation of coal quality in Equation 1, i.e. the impli-
cit price of fuel upgrading, can be estimated at the
location of interest.

Given the selected bandwidth in Table 1, coef-
ficients estimates can be obtained at the observation
of interest. Selected estimates in Tables 2 and 3 indi-
cate that differences in the relative implicit price of
upgrading BTU across power plants are more
pronounced from south to north than from east to
west, while the firm longitude explains better than

firm latitude differences in the implicit price of

upgrading sulfur content. The spatial kernel esti-

mates, moreover, identify that firms that face the

lowest relative implicit price of upgrading fuel heat

content BTU are located East of Lousiana (in the

intersection of latitude <328 and longitude >968),
while firms that face the lower relative implicit price

for an additional unit of less sulfur content (clean

fuel) are located at longitudes >1088 (i.e. West of

Colorado Springs). Estimates also indicate that the

relative implicit price of fuel upgrading in terms of

coal productivity is highest among US power plants

located North of Champaign, IL, while the relative

implicit price of fuel upgrading in terms of lower

sulfur content is largest for US power plants located

in Virginia.

More specifically, Tables 2 and 3 indicate that the

relative implicit price of upgrading coal productivity

is highest among US power plants located in the vici-

nity of Matinette, WI (45� 60N with 87� 380W and at

41� 800N with 90� 230W in Dubuque, IA), and lowest

at 31� 560N with 96� 050W (South of Dallas, TX),

while the relative implicit price of fuel upgrading in

terms of lower sulfur content is largest for US power

plants located in the vicinity of 38� 560N with 76�

680W (West of Norfolk, VA) and lowest at 39� 510N

2The 268 observations stem from the common denominator of coal-fired plants reported in the Electric Power Annual and the
EPA’s emissions and generation resource integrated database (E-GRID).

Table 1. Estimated prediction error

under different bandwidth lengths

Bandwidth EPE

1 0.0184
0.9 0.0184
0.8 0.0183
0.7 0.0183
0.6 0.0182
0.5 0.0181
0.4 0.018
0.3 0.0178
0.2 0.0174
0.1 0.0167
0.09 0.0167
0.08 0.0166

0.07 0.0167
0.06 0.0168
0.05 0.0171
0.04 0.0177
0.03 0.0188
0.02 0.02

Notes: The estimated prediction error
(EPE) is calculated using the ‘leave-
one-out’ estimator.
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with 112� 570W in Richfied, UT (West of Salt Lake
City, UT).

Overall, the spatial kernel permits the data to select
the extent of the market to be included in regression

using a MSE criterion where the least squares estima-
tor is a special case that assumes a single market
for all observations. In modelling the valuation of
fuel quality made by power plants, the estimated

Table 2. Selected spatial kernel coefficient estimates categorized by firms’ longitude

Firm location 32�1303300N 32�0305600N 31�8200600N 32�0505600N 32�1600000N
81�1303300W 93�5604400W 96�0504700W 109�8806100W 110�9004400W

Constant 6.00c 5.51 5.56 5.50 5.52
(46.93) (46.29) (45.70) (34.83) (34.10)

Sulfur content �0.06 �0.01 �0.00 0.02 0.03
(�2.89) (�0.47) (�0.07) (0.91) (0.96)

BTU 1.79 1.46 1.43 1.47 1.48
(20.71) (19.37) (19.07) (14.73) (14.45)

Firm location 38�5603900N 38�5607800N 38�5206700N 38�5508300N 32�1600000N
76�6800600W 85�4103900W 87�2502200W 90�8306100W 104�7005600W

Constant 6.13 6.14 6.16 6.13 5.67
(43.01) (40.11) (39.79) (38.06) (30.17)

Sulfur content �0.07 �0.07 �0.06 �0.05 0.05
(�3.58) (�3.40) (�3.25) (�2.15) (1.75)

BTU 1.91 1.93 1.94 1.92 1.63
(19.86) (19.03) (19.06) (18.22) (13.47)

Firm location 41�7203900N 41�7901400N 41�7201900N 41�8007500N 41�7507200N
81�2502200W 83�4408600W 86�9009200W 90�2303300W 110�5908600W

Constant 6.22 6.23 6.25 6.26 5.28
(41.50) (40.97) (40.04) (38.96) (31.21)

Sulfur content �0.07 �0.06 �0.05 �0.04 0.06
(�3.35) (�3.14) (�2.62) (�1.95) (1.92)

BTU 1.97 1.98 1.99 2.00 1.75
(19.78) (19.66) (19.42) (19.10) (14.74)

Notes: The terms in parentheses refer to the t-value.
BTU refers to the heat content of coal measured in British thermal units; and coal sulfur content captures coal volatility.

Table 3. Selected spatial kernel coefficient estimates categorized by firms’ latitude

Firm location 26�6102500N 33�0105800N 36�2801100N 39�7000000N
80�0607800W 79�9209700W 80�0600300W 79�9106700W

Constant 5.96c 6.04 6.09 6.12
(52.63) (46.29) (43.55) (40.82)

Sulfur content �0.05 �0.06 �0.07 �0.07
(�2.35) (�3.16) (�3.55) (�3.36)

BTU 1.74 1.82 1.88 1.91
(22.77) (20.61) (19.91) (19.04)

Firm location 30�5605800N 37�3603600N 41�6403100N 46�5609400N
87�2203900W 87�1201400W 87�11202800W 87�3903300W

Constant 5.81 6.09 6.25 6.33
(49.46) (40.46) (39.91) (46.08)

Sulfur content �0.04 �0.07 �0.05 �0.06
(�1.89) (�3.40) (�2.57) (�2.75)

BTU 1.65 1.89 1.99 2.04
(21.26) (19.08) (19.36) (22.82)

Firm location 30�6106700N 31�8200600N 41�3300000N 46�2900000N
96�0707800W 96�0707800W 95�9406700W 96�0402800W

Constant 5.51 5.46 6.22 6.29
(48.39) (45.70) (35.68) (46.24)

Sulfur content �0.01 0.00 �0.01 �0.03
(�0.30) (�0.07) (�0.55) (�1.46)

BTU 1.46 1.43 1.98 2.01
(20.48) (19.07) (17.57) (23.42)

Notes: The terms in parentheses refer to the t-value.
BTU refers to the heat content of coal measured in British thermal units; and coal sulfur content captures coal volatility.
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bandwidth length reveals the importance of hetero-
geneous local markets. Future work may further
explore performance of the spatial kernel estimator
in other applications, e.g. measuring the value of
housing attributes and environmental amenities.
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