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A B S T R A C T   

In this paper, a parametric study of the Stress Concentration Factor (SCF) has been carried out in cylindrical 
pressure vessels with circular holes. A three-dimensional finite element analysis has been carried out performing 
a variation of dimensionless parameters (thickness ratio, size ratio and aspect ratio) exploring a wider range than 
other investigations. It is observed that the maximum value of the SCF increases as the hole size ratio and the 
aspect ratio increase, although the location of the maximum SCF is located from the internal area of the vessel to 
the external part depending on the geometric configuration, defining thus three differentiated zones. Addi-
tionally, in the final part of the document, a fit model is defined to determine the value of the maximum SCF for 
different continuous values of the defined dimensionless parameters. This model allows to quickly calculate or 
locate from a contour map the maximum value of SCF for a specific geometry of pressure vessel.   

1. Introduction 

Pressurized vessels (tanks and pressurized fluid pipelines) have 
various applications both in industrial processes and research, and holes 
are commonly found in their walls to connect with other elements or 
accessories related to the process to be developed, to measure some 
variable or simply as sight window [13,16,18,22]. The presence of these 
holes in the pressure vessels, acts as a stress concentrator, increasing 
significantly the local stress than those present at normal section of the 
vessel, without any concentrator. The stress concentration depends 
mainly on the geometric characteristics of the vessel, the hole, its po-
sition, alignment and inclination [19]. 

An important indicator is the Stress Concentration Factor (SCF), 
which relates the maximum stress near of hole in the vessel, with the 
maximum stress of the same container without hole. This indicator is 
often used in the pressurized cylindrical vessels design to preliminarily 
estimate the stresses to which the vessel is subjected and thus determine 
different additional variables such as size, thickness, geometry and 
indirectly make a budget of the project. 

The aim of this paper is to study the behavior of SCF in cylindrical 
pressure vessels with circular holes through its wall, with the thickness 
ratio, the aspect ratio or slenderness and the size ratio of the hole with 
respect to the internal diameter of the cylinder as variables. To get a 

global understanding of SCF behavior, the parametric variation range of 
the considered variables is wider than what explored in other studies [2, 
14,15,17,23], and the location of maximum stress and SCF maximum 
values due the hole have been determined using a Finite Element 
Analysis (FEA) software. In addition, a useful fit model is proposed to 
easily find the value of the Stress Concentration Factor for a specific 
geometric configuration. 

This document is structured in six sections. Section 2 shows the state 
of the art related to behavior of SCF pressure vessels with holes. In 
section 3, the parameters and operating conditions established for the 
simulations are disclosed, as well as the identification of the points of 
interest where the maximum SCF is presented. Subsequently, section 4 
presents the results and its discussion, including SCF value and location 
analysis respect to variations of geometric parameters and the contrast 
with the data found by other authors. 

In section 5, a correlation from the continuous analysis of the three 
geometric relationships previously established in the study (thickness 
ratio, aspect ratio and hole size ratio) is proposed, in order to mathe-
matically predict the value of the SCF for any geometry that can be used 
in a cylindrical pressure vessel. Finally, section 6 presents the main 
conclusions of the study and possible future work. 
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2. Theoretical background 

Geometric variables related to this type of concentrators are mainly 
derived from the geometry of the vessel and the holes they have. Ac-
cording to Fig. 1, the following geometric variables are defined in a 
closed end cylindrical vessel with a crosshole: main cylinder length (L), 
outer radius of the cylinder (Re), inner radius of the cylinder (Ri) and 
hole radius (Ra). 

The relationships between these geometric variables define dimen-
sionless parameters that lends to compare to related investigations [4, 
11,20]. These dimensionless relationships are defined as: thickness ratio 
(Re/Ri) obtained from relating the external and internal radius of the 
cylinder, aspect ratio or slenderness calculated from the ratio between 
cylinder length and the outer diameter (L/(2Re)), and the size ratio of 
the hole derived from the ratio between the radius of the hole and the 
inner radius (Ra/Ri). 

Other authors have used similar parameters, with some variations in 
their definitions and values [11,19]. Specifically, aspect ratio or slen-
derness values are defined based on specific investigation objectives, 
and their definition is different and in some cases are not clearly indi-
cated. Makulsawatudom et al. [14] and Camilleri et al. [2] used a ratio 
of L/(2Re) = 1; Dixon et al. [4] used the Decay cylinder length concept, 
Masu [15] used L/(2Re) ≥ 2; Kharat [9] used a ratio L/ (2Re) = 3; 
Iwadate et al. [8] used a L/(2Re) ratio between 2.7 and 3.2; Raju [23] 
used a ratio L/(2Re) = 1.2; and finally Kihiu et al. [12], Adenya [1] and 
Nihous [19] used a L value of nine times the wall thickness. The ranges 
of the parameters considered by the cited authors are summarized in 
Fig. 2. 

In any case, the SCF calculated by several authors retains the concept 
of relating the maximum stress of the vessel with hole and the maximum 
stress of the same vessel without hole. The maximum tangential stress on 
a cylinder without a hole is calculated with equation (1) proposed by 
Lamé [24], where Re and Ri, are respectively the external and internal 
radius of the vessel and p is the internal pressure of the vessel. Lamé 
equations assume a homogeneous and isotropic material with linear 
elastic deformations. 

HoopStress= σHoop = p

[
(Re/Ri)

2
+ 1

(Re/Ri)
2
− 1

]

(1) 

In closed ends cylindrical vessels without crosshole, the tangential 
stress (σθ) or Hoop Stress (σHoop), are equal to the maximum main stress 
(σ1max). However, to perform the calculation of the SCF in pressure 

Fig. 1. Reference geometry and nomenclature in cylindrical vessels.  

Fig. 2. Ranges of values for the parameters analyzed by different authors.  
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vessels with crosshole, different relations are used according to the 
specific aim of the study and there is not consensus among the authors. 
The maximum stresses and their respective SCF are indicated as: the 
maximum tangential or hoop stress (σθmax) and SCFθmax (equation (2)), 
the maximum main stress (σ1max) and SCF1max (equation (3)), the 
maximum shear stress (τmax) and SCFτmax (equation (4)), and the 
maximum equivalent or maximum von Mises stress (σemax) and SCFσemax 

(equation (5)), where σec, is the value of the equivalent stress of plain 
cylinder calculated from the Lamé solution [3]. 

SCFθmax =
σθmax

σHoop
(2)  

SCF1max =
σ1max

σHoop
(3)  

SCFτmax =
2τmax

σHoop
(4)  

SCFσemax =
σemax

σec
(5) 

Table 1 presents a summary of types of SCF estimated by each author 
using equations (2)–(5) and the methodology employed. The SCF values 
found by each author vary depending on the relationships established, 
and the way in which the study was conducted, either analytically, by 
finite element models or experimental test. 

The following sections present a global study, using wider ranges of 
geometric relations, allows comparison with other results found in the 
literature. This approach, also enable to learn more about the trend in 
location and value of the maximum SCF in cylindrical vessels with holes. 

3. Simulation setup and validation 

This simulation apply for cylindrical vessels with closed ends, 
centered crosshole, and with internal pressure applied on main vessel 
surface and crosshole surface. In this study, it is considered a thick- 
walled cylinder with closed ends and a crosshole whose geometric 
variables, Ra, Re, Ri and L, as shown in Fig. 1, related to each other to 
obtain dimensionless parameters that can be subsequently compared to 
the results obtained by other authors. For the cylinder with crosshole 
centered on both, length and diameter, 1008 models were considered 
taking different values of geometric relations, Re/Ri, L/ (2Re) and Ra/ Ri 
as shown in Table 2. A fixed value of Ri was defined for all models, 100 
mm, similar to the study conducted by Comlekci et al. [3]. Values lower 
than Re/Ri = 1.125 were not considered since usually considered to 
correspond to the thin sheet theory which is beyond the scopes of this 
study. According to the range given in Table 2, the L values were be-
tween 84 mm and 1600 mm; Re between 112 mm and 400 mm and Ra 

between 1.25 mm and 98.75 mm; considering that in the range of Ra/Ri 
between 0.9 and 0.9875 for values of L/(2Re) equal to 0.625, 0.75 and 
0.875 are geometrically incompatible. 

To study the effect of geometry on generated stresses for a cylindrical 
pressure vessel, the simulation was conducted using ANSYS Workbench, 
applying parametric functionality to vary cylinder and holes dimen-
sional values to get the parameters values predefined and specific results 
(maximum principal stress and its 3D position). For all simulations, the 
modeling of 1/8 of a symmetrical cylinder was performed, with respect 
to three planes of symmetry (Fig. 3). First plane (face E) is perpendicular 
to the base F that passes through the center of the cylinder and the hole, 
the second plane (face D) perpendicular to face E and base F and passes 
through the center of the cylinder and the third plane (face C) parallel to 
base F and passes through the center of the hole. Fig. 3 (left side), shown 
an example of the geometry used for simulations. 

An unstructured mesh using three dimensional tetrahedral solid el-
ements, 10− node isoparametric (Solid187 elements) was used in order 
to adapt mesh to huge number of models. Because the variation in stress 
values occurs mainly around the edges and corners near the hole, and 
according to the FEA results of Comlekci [3] and Nihous [19], a local 
refinement was included for the mesh. Fig. 3 (right side) shown the 
refinement detail. This refinement, similar to Nihous [19], leads sizing 
of the elements close to the selected edges achieving a balance between 
the processing time and the reliability of the data obtained in the area of 
interest, getting a precise identification of the position of the maximum 
principal stress in zones nearest or along the edges of the hole. Due to the 
dimensional difference of the models presented in Table 2, especially the 
length, reference mesh sizes were used, carrying out the respective mesh 
convergence for each model; thus obtaining, in general, seed elements 
from 5 mm and adapted according with total volume for each model. 

Regarding the boundary conditions, a vessel with closed ends was 
assumed, then, base F was studied as completely rigid, while the faces D 
and E were considered deformable in the radial and longitudinal di-
rections. In addition, a distributed load was applied to face C according 
to the load applied by the rigid closed ends, taking into account 1/4 of 
this load and the geometry for each simulation. The internal pressure of 
the cylinder for all simulated models was imposed at 17.5 MPa and this 
value was applied both to the internal surface of the cylinder (B) and to 
the surface of the hole (A). Because rigid face F assumption it not real, it 
can be derived in different results. Also, the faces on which the pressure 

Table 1 
Types of calculated stress and related methodology.  

Autor σθmax σ1max τmax σemax FEM 

Faupel [6] a X     
Morrison [17] a X  X  X 
Gerdeen [7] b X     
Iwadate [8] a X     
Masu [15]  X   X 
Kihiu [12] X    X 
Comlekci [3]  X  X X 
Dixon [5]  X X  X 
Camilleri [2] X    X 
Nihous [19]  X   X 
Adenya [1] X    X 
Kharat [9] a X     
Raju [23] X   X X 
Nziu [20] X    X  

a Experimental method. 
b Analytic method. 

Table 2 
Established values for the simulations.  

Parameter Values 

Re/Ri 1.125, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 3, 4 
Ra/Ri 0.0125, 0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 

0.95, 0.975, 0.9875 
L/(2Re) 0.625, 0.75, 0.875, 1, 1.5, 2, 3, 4  

Fig. 3. Mesh of 1/8 cylinder. Left-General view, Right-Refinement in areas 
of interest. 
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is applied can also affect the numerical result. Some authors did not use 
pressure on face A and other studies do not provide information on 
pressure on this face. To analyze each model, a carbon steel material 
with a modulus of elasticity of 200 GPa, a Poisson’s ratio of 0.3, a yield 
strength (Sy) of 250 MPa and an ultimate strength (Su) of 400 MPa was 
used, applying a linear stress analysis. Table 3 summarizes main issues 
related to simulation. 

In order to validate the parametrization of the mesh, simulations of 
vessels without hole (Ra/Ri = 0) are initially performed for all ranges of 
Re/Ri and L/(2Re) shown in Table 2 and these results are compared with 
equation (1) proposed by Lamé. In Fig. 4, it is observed that the principal 
stress values for different thickness and aspect ratios are properly 
adjusted to the Lamé equation, finding a maximum average deviation of 
8.5% for the thickness ratios Re/Ri smaller and tending to decrease to 
one third at higher values of Re/Ri, showing that the mesh parameteri-
zation used in the simulations is consistent with the Lamé equation. In 
general, it is observed that for aspect ratios L/(2Re) less than unity and 
for values of Re/Ri close to 1, the deviations of the simulation with 
respect to the calculation with equation (1) increase. A final post process 
was performed to estimate the SCF1max (equation (3)), from σ1max ob-
tained from simulations and σHoop calculated from Lamé equation. 

4. Results and discussion 

In this section, the results obtained from the simulations are shown 
taking into account the different possible combinations of Table 2, 
where an elastic linear analysis was carried out, finding that in most of 
the cases analyzed (approximately 60%) the maximum SCF is located in 
the G corner of the hole (see Fig. 3 left side), which in agreement with 
various studies that define corner G as the most critical [14,20]. How-
ever, Nziu [20] highlights that for certain configurations of Ra/ Ri and 
Re/Ri, the maximum stress was not found in the corner G of the hole but 
on the edge adjacent to the cylinder (edge G-J in Fig. 3 left side). 

From the results obtained from the present study, it is observed that 
in thick-walled cylinders with very small holes, the location of the point 
of maximum stress moves from the corner G to the exterior of the cyl-
inder (edge G-H in Fig. 3 left side), such as it is observed in Fig. 5 for a 75 
mm thick wall thickness with a maximum stress located 1 mm from the 
corner G on the edge G-H. Fig. 6 shows a cylinder with the same values 
of Ra/Ri and L/(2Re) of the previous case but with a thicker wall, 200 
mm, showing that the behavior is similar to that shown previously, 
moving along the edge G-H outwards. 

On the other hand, when reviewing values of Re/Ri = 1.125 and L/
(2Re) = 1.5 for different values of Ra/Ri; the displacement of the 
maximum point SCF is notable. In Fig. 7a, it is observed that for values of 
Ra/Ri close to 0.5 the point of maximum principal stress is located 
slightly away from the corner G on the edge G-J and as the ratio Ra/ Ri 
increases, the maximum SCF moves on the same edge (G-J) moving 
further away from the corner G (Fig. 7b), even reaching values close to 
Ra/2 (Fig. 7c). In other more critical cases, as Ra/Ri approaches 1, the 
point of maximum stress after moving away from G on edge G-J, also 
moves outwards, thus finding the maximum SCF covering part of face A 

as seen in Fig. 7d and e. The above is an extreme case, close to the theory 
of a thin sheet for vessels (cylinder wall thickness is less than 10% of the 
cylinder radius [24]), which makes it difficult to propose an analytical 
theory, due to the change in position point of maximum stress. Finally, 
for values of L/(2Re) less than unity, the behavior is similar to that 
shown in Fig. 7d and e; i. e, the maximum SCF is presented on face A. 

Fig. 8 represents the location of the maximum SCF presenting the 
percentage of the radius of the hole Ra on the abscissa (X axis), showing 
how far the maximum SCF is from corner G along edge G-J, and on the 

Table 3 
Simulation conditions.  

Information Description 

Software ANSYS Workbench 
Element 3Dsolid 10− node isoparametric, Solid187 
Mesh Unstructured Mesh. Refined in specific Edges 
Symmetry 3 planes 
Internal Pressure 17.5 MPa 
Material Carbon Steel Linear elastic 
Analysis Type Parametric Linear elastic 
Geometric variables Re/Ri, Ra/Ri and L/(2Re)

Output Max Principal Stress and its 3D Location 
Simulated models 1008  

Fig. 4. Validation of mesh parameterization with Lamé’s equation for cylinders 
without holes. 

Fig. 5. Point of maximum stress for Ra/Ri = 0.0125; Re/Ri = 1.75 and L/
(2Re) = 3. Left-General View and Right-Detail of the position of the maximum 
main stress point. 

Fig. 6. Point of maximum stress for Ra/Ri = 0.0125; Re/Ri = 3 and L/(2Re) =

3. Left-General View and Right-Detail of the position of the maximum main 
stress point. 
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ordinate (Y axis) the percentage of wall thickness, showing how far the 
maximum SCF is from the corner G by the normalized edge G-H with 
respect to the thickness of the cylinder. Fig. 8 shows that most of the 
cases are in the area near the corner G, especially on the edge G-J, edge 
G-H and on the surface A. The other points are seen on the surface A and 
in some of the simulated cases, the point of maximum SCF extends to 
outer cylinder wall (100% wall thickness). 

In order to deepen and link the location of the points in Fig. 8 with 
the thickness ratio (Re/Ri) and the hole size ratio (Ra/ Ri) for all aspect 
ratio ranges (L/(2Re)) studied, in Fig. 9 different zones are shown 
depending on these relationships. 

It is possible to see that for all the cases of Ra/Ri = 0.3, independent 
of the other variables, the point of maximum SCF is located in the corner 
G, which coincides with the studies of Nziu [21]. Thus, Fig. 9 is divided 
into three zones, depending on the possible combinations with the other 
geometric relationships throughout its range. A first zone named Z1 for 

combinations with values of Ra/Ri > 0.3; a second zone called Z2 for 
combinations with Ra/Ri = 0.3, and a third zone called Z3 for combi-
nations with Ra/Ri < 0.3. 

Zone Z1, is delimited by the blue dotted line, corresponding to values 
of Ra/Ri > 0.3 and where the points of maximum SCF move moving 
away from point G on edge G-J as Ra/Ri increases until it reaches a value 
close to 0.5, where the distance is approximately 70% of the hole radius, 
and then moving away towards the center of surface A for values of Ra/

Ri > 0.5 reaching in some cases up to the outer wall of the cylinder. The 
Z3 zone delimited by the solid red line corresponds to values of 
Ra/Ri < 0.3, where the maximum point SCF is not located beyond 40% 
of the hole radius and all the values of this zone come off the surface 
internal up to a maximum of 50% of the wall thickness. As the values of 
Ra/Ri approach zero, the values have more dispersion in the delimited 
zone; which may be an effect of the size of the hole in the model and it is 
consistent with most of the Nziu data [21]. 

The zones previously described show the limit zones of the values of 
Ra/Ri. It is also possible to see that for the same value of Ra/Ri, the limits 
for the values of Re/Ri close to 1.25 tend to be further away from the 
internal surface of the cylinder, while those values closer to 3.0 are 
closer to both the inner surface and the corner G. Fig. 10 clearly shows 
this last variation for Re/Ri in the area near the corner G. The variations 

Fig. 7. Point of maximum stress for Re/Ri = 1.125 and L/ (2Re) = 1.5.  

Fig. 8. Location of the maximum SCF for all the values studied.  

Fig. 9. Maximum SCF location zones.  

Fig. 10. Detail of the location zones of the maximum SCF.  
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of L/(2Re) distribute the data in the areas delimited by the other two 
variables, making the locations move towards or away from the G 
corner. 

The detail of the position in zones close to the corner G (Fig. 10), can 
be very useful for designers of this type of vessels, since it allows easy 
positioning the maximum SCF or at least know the tendency that these 
may present in failure analysis investigations with similar geometric 
relationships. 

Fig. 11 shows the location of these maximum points as a function of 
the combinations of Ra/Ri, Re/Ri and L/(2Re) and the zones described 
above, which are delimited by envelopes with iso-values of L/ (2Re). In 
Fig. 11 the values of L/(2Re) = 2 are shown, since it is a value widely 
used in this type of study and the directions to where these enveloping 
limits move are indicated with arrows. 

Analyzing Fig. 11, when using combinations of values of Ra/ Ri > 0.3 
and Re/Ri > 1.75 the position will always be in the corner G (zone Z2). 
For combinations of values of Ra/Ri > 0.3 and Re/Ri < 1.75 and 
depending on the envelopes L/(2Re), the maximum point SCF will be 
located in zone Z2 or in the zone Z1. For combinations of values of Ra/

Ri < 0.3 and Re/Ri > 1.5, it depends on the value of L/ (2Re); thus, for 
values of L/(2Re) close to the lower limit of the study, 0.75, the point of 
maximum SCF is in the corner G; as the values of the envelopes L/ (2Re)

increase, the probability that the maximum point SCF is in zone Z2 in-
creases, too. 

The results shown in zone Z3 of the present study coincide with the 
results of Masu [15], Makulsawatudom [14], Kihiu [10] and Adenya [1]. 
Also, the results of the present study are consistent with the data of Nziu 
y Masu [21] (shown as circles in Fig. 11), which provide more infor-
mation on the positions of the maximum SCF. 

Fig. 12 shows a comparison between some values of Re/ Ri for L/
(2Re) = 2 with the data of various authors who evaluated cylinders with 
through holes such as Masu [15], Dixon [4], Nihous [19] and Nziu [20], 
finding average percentage deviations lower than 6% and with a stan-
dard deviation of 0.084. 

Finally, in Fig. 13, the maximum SCF data for all ranges of the 
dimensionless parameters studied in this document are exposed, 
showing that for each value of L/(2Re) the SCF increases as parameter 
Re/Ri gets smaller for values of Ra/Ri between 0.2 and 0.4; for values of 
Ra/Ri less than 0.1 the SCF increases as the parameter Re/ Ri is larger 
and lastly, values of Ra/Ri greater than 0.4 do not follow the same trend 
for small values of Re/Ri (1.125, 1.25 and 1.5). 9.1 was the highest SCF 
value found (for Re/Ri = 1.25; L/(2Re) = 4; Ra/Ri = 0.9875) and the 

lowest value was 2.4 (for Re/Ri = 1.25; L/(2Re) = 0.0625; Ra/Ri = 0.6). 
For all values of Re/Ri with values of L/(2Re) > 0.75, and Ra/Ri nearest 
to 0.1, the SCF values are between 2.8 an d 3.2 showing a commune zone 
of inflection, that are also shown by other authors and suggest a relative 
low sensibility to the Re/Ri, and L/(2Re) parameters for Ra/Ri = 0.1 
values. 

5. Fit model using dimensionless parameters 

Once all the results of the simulation have been obtained, Fig. 13 
shows the effect of the geometric relationships on the SCF. It is of great 
interest for the design of pressure vessels with large holes, to have an 
equation that allows to easily finding the value of SCF for a specific 
geometric configuration, based on the geometric relationships discussed 
in the previous sections. In this way, in order to obtain an adequate fit 
model, the authors initially analyze the sensitivity of SCF to Ra/Ri while 
keeping Re/Ri and L/(2Re) fixed. Subsequently, only parameter L/(2Re)

is kept fixed and it is observed how SCF varies as a function of Re/Ri. 
According to these variations, the authors propose equation (6), which 
does not have a physical or theoretical meaning of the SCF, but of the 
effect of the geometric relationships (Ra/Ri and Re/Ri) in SCF obtained 
from the simulations. The variables included in the model are limited to 
Ra/Ri and Re/Ri for different values of L/(2Re), to limit the complexity 
and length of the model. 

SCF = ζ − λ ⋅ e− τ(Ra/Ri)⋅cos[ω(Ra /Ri)+φ] (6)  

where; 

ζ=A+B⋅sin[C ⋅ (Re /Ri)+D]

λ=E * cos[G ⋅ (Re /Ri)+H] + I  

τ= J +K⋅(Re /Ri)

ω= Ĺ ⋅ eM(Re/Ri) ⋅ cos[N ⋅ (Re /Ri)+O] + P  

φ=Q ⋅ eŔ⋅Ψ ⋅ cos[S ⋅ Ψ + T] + U  

Ψ =Re/Ri − 0.65 

To this aim, the authors use the Statgraphics software, which allows 
statistical determination of the values of each of the constants (A to U) of 
equation (6), taking into account the evolution shown in Fig. 13. In this 
way, the global fit model presented in equation (6), predicts the stress 
concentrator factor (SCF) as a function of the size ratio (Ra/Ri), the 
thickness ratio (Re/Ri) and applies to different aspect ratio (L/(2Re)) by 
varying the constants from A to U (Table 4, Table 5 and Table 6). Fig. 11. Location of maximum point of SCF and comparison with data from 

Nziu and Masu [18] (circles). 

Fig. 12. Comparison of SCF from simulations (lines) with other authors for L/
(2Re) = 2 and different values of Re/Ri. 
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As an example, for L/(2Re) = 2, Table 4 shows the estimated values 
for each constant (A to U) through the statistical study using the Mar-
quardt estimation method (Statgraphics software), with a correlation 
coefficient R2 of 99.08%, showing a good fit of the proposed model to 
the simulation data obtained. Table 4 shows the asymptotic error and 
the intervals (lower and upper) for a 95% confidence interval. 

Fig. 14 shows the evolution of SCF obtained from the model (equa-
tion (6)) for an L/(2Re) = 2 for different values of Ra/ Ri and Re/ Ri. 
When comparing Fig. 14 (model) with Fig. 13 (for the same value of L/

(2Re) = 2), the good fit obtained statistically is evidenced, showing 
negligible differences when Ra/Ri approaches zero. 

Similarly, the fit model (equation (6)) is applied for different values 
of L/(2Re) and for each of these the constants and the correlation coef-
ficient (R2) are obtained again as shown in Tables 5 and 6. The variable 
L/(2Re) has not been introduced in the correlation (equation (6)) in 
order not to be excessively complex. 

The tabulated values in Tables 5 and 6, are useful in future studies to 
obtain an exact value of the SCF as a function of the dimensionless 

Fig. 13. Evolution of SCF for different values of Re/Ri, Ra/Ri, and L/(2Re).  
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parameters Re/Ri, Ra/Ri and L/(2Re). Fig. 15 shows a contour map that 
allows to quickly locate and know the value of SCF for any value of Re/

Ri, Ra/Ri and L/(2Re) within the ranges established in this study 
(Table 2). In this way, values of Re/Ri ≤ 2 the SCF increases as L/ (2Re)

and Ra/Ri increase and for values of Re/Ri > 2 the SCF is no longer 
dependent on the aspect ratio L/(2Re). In Fig. 15, the small dark areas 
(for Re/Ri equals 1.125, 1.25 and 1.5), represent geometrically incom-
patible zones and therefore these combinations were not taken into 
account during the study. 

Finally, comparing the simulation data (Fig. 13) with the fit model 
data (Fig. 15), a clear correspondence of the SCF values is observed, 
although the contour map allows us to observe the continuous behavior 
of the SCF when varying the dimensionless parameters Ra/ Ri and L/
(2Re) for each value of Re/Ri. Thus, it is concluded that the SCF increases 
gradually as the cylinder aspect ratio increases and the hole size in-
creases, for all values of Re/Ri. 

6. Conclusions 

In this document, a three-dimensional finite element study was 
carried out to identify the maximum SCF and its location in pressure 
vessels with circular crossholes. This study was carried out using a wider 
range of geometric relationships used by other authors; this aspect 
enabled not only to compare the results of the present study with the 
particular results obtained by other authors but also to identify the 
behavior of the maximum SCF and its location in a wider range of 
geometric configurations (Re/Ri between 1.125 and 4, Ra/Ri between 
0.0125 and 0.9875, and L/(2Re) between 0.625 and 4). 

From state of the art review, there is a lack of consistency in the 
methodology for the estimation of the SCF for a given geometry in 
pressurized vessel with orifices, no clear consensus among authors, 
finding at least four different ways to calculate it: SCFθmax, SCF1max, 
SCFτmax, SCFσemax. In this study, initially a parametric validation of the 
mesh was carried out using the Lamé equation for cylinders without 
crosshole, finding a maximum average deviation of 8.5% for the smallest 
Re/Ri thickness ratios. Subsequently, for the 1008 models of pressure 
vessel with crosshole, the maximum SCF 1max has been used and its 

Table 4 
Statistically estimated constants for L/(2Re) = 2.   

Estimate Error Lower Upper 

A 5.87243 0.0980817 5.67842 6.06645 
B 2.35371 0.0561608 2.24262 2.4648 
C − 107.97 1.23176 − 110.407 − 105.534 
D 320.078 2.60091 314.933 325.222 
E − 5.67637 0.139752 − 5.95282 − 5.39993 
G − 116.331 0.660023 − 117.636 − 115.025 
H 67.718 2.50167 62.7695 72.6666 
I 5.3465 0.209388 4.93231 5.76069 
J 3.61627 0.114802 3.38917 3.84336 
K − 0.85885 0.0452558 − 0.948371 − 0.76933 
Ĺ 1976.53 278.557 1425.51 2527.55 
M − 0.968788 0.0625958 − 1.09261 − 0.844967 
N − 42.6847 2.27992 − 47.1946 − 38.1748 
O − 388.765 3.5646 − 395.816 − 381.713 
P 209.342 9.00266 191.534 227.15 
Q 328.936 77.8571 174.926 482.945 
Ŕ − 2.13934 0.283113 − 2.69937 − 1.57931 
S 34.0433 7.14803 19.9037 48.1828 
T − 659.491 6.50134 − 672.352 − 646.631 
U − 58.1806 1.58785 − 61.3216 − 55.0397  

Table 5 
Statistically estimated constants for L/(2Re) < 1.   

L/(2Re)

0.625 0.750 0.875 1.000 

A 5.17719 4.58489 4.82469 4.99127 
B 2.35575 1.51165 1.39513 1.22057 
C − 119.922 − 114.529 − 98.0588 − 102.245 
D 433.053 441.797 423.765 423.419 
E − 3.59702 − 2.35017 − 2.01924 − 2.01616 
G − 123.512 − 119.201 − 104.127 − 111.739 
H 164.343 174.543 160.867 164.606 
I 3.58965 2.44007 2.52638 3.04155 
J 2.04636 3.18506 2.41475 3.35661 
K − 0.44879 − 0.794853 − 0.519778 − 0.774697 
Ĺ 4914.59 3773.13 2848.51 3204.92 
M − 0.57629 − 0.398451 − 0.308604 − 0.324903 
N − 20.1416 − 18.9695 − 17.92 − 16.1582 
O − 426.597 − 431.345 − 434.216 − 436.537 
P 583.565 756.521 763.487 764.764 
Q 3686.35 307.061 242.66 270.22 
Ŕ − 3.73822 − 1.22322 − 1.06648 − 0.910646 
S 36.1436 38.3746 33.9955 30.1892 
T − 656.486 − 657.797 − 648.241 − 643.339 
U − 52.1502 − 37.4654 − 35.5196 − 28.9093 
R2 86.6% 89.1% 92.9% 96.8%  

Table 6 
Statistically estimated constants for L/(2Re) > 1.   

L/(2Re)

1.5 2.0 3.0 4.0 

A 5.07909 5.87243 5.89189 5.88183 
B 1.53149 2.35371 2.20899 2.16963 
C − 86.778 − 107.97 − 94.9887 − 74.6168 
D 300.428 320.078 268.044 210.921 
E − 2.98539 − 5.67637 − 4.4904 − 4.00222 
G − 109.54 − 116.331 − 108.754 − 96.8276 
H 73.0618 67.718 42.4599 12.6292 
I 4.00825 5.3465 5.26064 5.09826 
J 4.29287 3.61627 2.1793 1.86163 
K − 1.09777 − 0.85885 − 0.21861 − 0.0734957 
Ĺ 2191.99 1976.53 618.216 68.1164 
M − 0.506532 − 0.968788 − 1.10092 − 0.200859 
N − 17.6558 − 42.6847 − 94.2791 − 110.085 
O − 432.097 − 388.765 − 293.17 − 256.044 
P 374.406 209.342 136.559 135.763 
Q 208.425 328.936 278.119 1026.96 
Ŕ − 1.85469 − 2.13934 − 3.19082 − 4.15783 
S 67.3123 34.0433 − 0.405139 18.8221 
T − 686.665 − 659.491 − 667.505 − 664.201 
U − 54.4126 − 58.1806 − 62.6983 − 61.5961 
R2 98.6% 99.1% 99.0% 99.2%  

Fig. 14. SCF obtained from the model for L/(2Re) = 2.  
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respective location, establishing in this way three specific zones. 
From the established zones, it was possible to identify that in most of 

the cases analyzed (approximately 60%) the maximum SCF is found in 
the corner G of the hole that corresponds to zone Z2 with values of Ra/

Ri = 0.3. The other cases analyzed are distributed in zones Z1 and Z3. 
The Z1 zone corresponds to values of Ra/Ri > 0.3 and where the points 
of maximum SCF move away from point G up to 70% of the radius of the 
hole (edge G-J) as Ra/Ri increases. From that 70% it tends to move on 
the surface A for values of Ra/Ri > 0.5, reaching even in some cases up 
to the external wall of the cylinder. Regarding the Z3 zone for values of 
Ra/Ri < 0.3, the points of maximum SCF are located in an almost 
triangular area defined by the corner G, 40% of the radius of the hole 
(edge G-J) and 50% of the wall thickness (edge G-H). 

In general, the influence of the aspect ratio, L/(2Re), both on the 
position and on the value of the maximum SCF was determined, finding 
that values below 2 have a high impact on the value of the maximum 
SCF, while values above 3 have no influence on said value. Regarding 
the location, although it depends on the other variables, small values of 
aspect ratio place the maximum stress point in zone Z2 (corner G) and 
high values of aspect ratio place the maximum SCF in zones Z1 or Z3, 
depending on the values of the other parameters. 

Once the maximum SCF and its location have been determined, the 
information given here is useful for the design of cylindrical vessels with 
holes with different geometric configurations. In fact, from the present 
study it has been possible to show that always taking the location of the 

point of maximum stress in the corner G as a unique design criterion is 
not suitable, since the maximum value of SCF can move away from the 
corner G depending on the geometric configuration, according to the 
zones established in this study. 

Finally, a fit model has been proposed, which is statistically repre-
sentative of the data obtained from finite elements and allows deter-
mining the SCF as a function of Ra/Ri and Re/Ri valid for different values 
of L/(2Re). Thus, the model defined in equation (6) is useful in the 
design of pressure vessels with hole, since it allows to obtain in a simple 
and fast way an accurate value of the maximum SCF by varying the 
dimensionless parameters. In addition, a contour map has been 
included, which allows to observe the behavior of the SCF continuously 
by varying Ra/Ri, L/(2Re) and Re/Ri. Thus, globally for all the values of 
Re/Ri, it is observed that the SCF gradually increases as the relationship 
between slenderness and hole size increases. 
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