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Neural network-based optimization of fibres for seismic
retrofitting applications of UHPFRC
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ABSTRACT
Ultra-high-performance fibre reinforced concrete (UHPFRC) is an advanced
construction material that provides new opportunities in the future of the
construction industry around the world. Among those new applications,
rehabilitation, and seismic retrofitting of existing damaged or non-ductile
concrete structures can be highlighted. The main objective of this paper is
to optimise the hybrid blend of fibres that allows a previously optimised
eco-friendly ultra-high-performance cementitious paste to achieve the duc-
tility requirements for seismic retrofitting applications at lower costs. To
meet this goal, two artificial neural network models (ANNs) were created
to predict the energy absorption capacity (g) and maximum post-cracking
strain (epc). A total of 50 own experimental campaign data added to 550
published works throughout the world data were used for training pur-
poses by using the R-code language. Once the models were trained and
validated, a multi-objective optimisation was used to select the combin-
ation of fibres that achieved the limit values of g� 50 kJ/m3 and epc �
0.3% considering cost constraints. The experimentally validated results indi-
cated that the adequate blend of high strength steel micro-fibres and
hooked end normal strength steel fibres fulfil the threshold values at a
lower cost.
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1. Introduction

Seismic retrofitting of existing buildings and civil works is a challenging task that demands effective, inex-
pensive, and feasible strategies and technologies depending on the different structural typologies (De
Domenico et al., 2019). The need to carry out seismic reinforcement of structures located in high-hazard
earthquake areas can appear for different reasons and circumstances. For example, the map of seismic
hazard is continuously changing and evolving, prompting the current peak ground acceleration of a par-
ticular installation site, as determined by seismic regulations currently in force today, to be higher than
those prescribed in the past (De Domenico et al., 2019). Besides, many concepts of modern seismic
design codes as ultimate limit states and capacity design principles have been applied in seismic stand-
ards only in very recent times and were absolutely unknown when these buildings and civil works were
originally constructed (Bracci et al., 1955; Dogan & Krstulovic-Opara, 2003; Parra-Montesinos & Wight,
2000). Another possible reason for seismic retrofitting can be attributed to the increase in importance of
a given structure, which automatically leads to higher seismic demand (Dagenais et al., 2018).

For example, Colombia, where this paper was written, sits at the complex junction of three small tec-
tonic plates: the Caribbean plate to the north, the Cocos plate to the west, and the Nazca plate to the
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southwest. All of them border the northwest corner of the giant South American plate (Abell�an et al.,
2020a; Garcia, 2014).

As a result of the latter, and according to data from National Statistics and NSR-10, an estimated 90%
of the Colombian population lives under high or moderate seismic hazard (Garcia, 2014; S�ısmica & de,
2010). Besides, since 1984 Colombia has had regulations for earthquake-resistant constructions (Garcia,
2014; S�ısmica & de, 2010). Thus, buildings and civil works constructed before that date have a good
chance of being considered as vulnerable, depending on their location. In addition, there is a high per-
centage of informal construction in the country, which also can be considered as vulnerable (Abell�an
et al., 2020a).

As a result of this, and according to several researches from Universidad de Los Andes and the
Colombian Association of Seismic Engineering, it is estimated that about 80% of buildings in the city of
Bogot�a were built without complying with any seismic regulations (Centro de Estudios e Investigaciones
Sobre Riesgo, 2005). If this happens in the capital of the country, it can be concluded that it also hap-
pens in the rest of the country.

Nowadays some of the most used solutions for structural retrofitting encompasses FRP (fibre rein-
forced polymer) and FRCM (fabric reinforced cementitious matrix). However, those techniques are expen-
sive to develop in Colombia due to import and patent issues, making it difficult to expand their
applications around the country. In addition, because of the differences in thermal and mechanical prop-
erties with concrete, especially under circumstances of moisture and terminal changes, these solutions
can be detached from concrete, which invalidates them from external structural elements (Byars et al.,
2001; Vega Vargas, 2015). Another usual solution for this problem consists in performing the seismic
strengthening system of concrete structures by means of a steel jacketing (Ruiz-Pinilla et al., 2014).
However, this option also must face the significant cost of the necessary steel.

On the one hand, a set of special traits, such as durability, ductility, and ease of application, render
UHPFRC particularly attractive for the improvement and seismic retrofitting of concrete structures
(Martin-Sanz et al., 2016). Several researches have demonstrated that, with a slight surface treatment of
the old concrete, UHPFRC is able to develop a high bond strength as repair material (Dagenais et al.,
2018; Martin-Sanz et al., 2016; Tayeh et al., 2013). Among others, this is due to the pozzolanic reaction of
the amorphous silica oxide of the supplementary cementitious materials of its components (such as silica
fume or recycled glass powder) and the portlandite crystals of the old concrete, thus creating a mechan-
ical and chemical bond between both concretes (AlHallaq et al., 2017).

On the other hand, to lower costs and become viable, the development of UHPFRC dosages should
be carried out based on locally available raw materials (Abell�an et al., 2020b; Abell�an-Garc�ıa, 2020c;
Abell�an-Garc�ıa, N�u~nez-L�opez, Torres-Castellanos, et al., 2020). However, the key properties of UHPFRC
containing hybrid blending fibres as well as several locally available supplementary cementitious materi-
als require to be studied experimentally because of the unclear combination effects of these components
(Zhang et al., 2017). Besides, it is important to highlight that laboratory tests are usually labor-intensive,
time-consuming, and costly (Abell�an-Garc�ıa, 2020c; Abell�an-Garc�ıa, Fern�andez-G�omez, & Torres-
Castellanos, 2020; Zhang et al., 2017). To reduce the experimental campaign and its associated costs and
times, probabilistic models can be employed to predict the mechanical properties of concrete. However,
these models cannot be applied when the approaching problem involves too many factors and the inter-
relations amidst them are too complex, unknown, or both (Chandwani et al., 2015; Ghafari et al., 2015;
Zhang et al., 2017). In cases such as UHPFRC, using several types of fibres and supplementary cementi-
tious materials, due to their large amount of components, the use of traditional techniques is unsuccess-
ful in achieving the expected precision (Abell�an-Garc�ıa, 2020c; Chandwani et al., 2015).

In the last decades, Artificial Neural Network (ANN) applications have spread due to their great ability
to reproduce non-linear and unknown relationships between input and output data pairs (Abell�an-Garc�ıa,
2020c; Abell�an-Garc�ıa, Fern�andez-G�omez, & Torres-Castellanos, 2020). That is why those mathematical
procedures have demonstrated their ability to be helpful in complex engineering issues (Abell�an-Garc�ıa,
2020c; Abell�an-Garc�ıa, Fern�andez-G�omez, & Torres-Castellanos, 2020; Khashman & Akpinar, 2017).

The first objective of this paper is to develop two models through the R language (R Core Team,
2018) to forecast the behaviour of UHPFRC under direct tensile strength, when concrete incorporates
supplementary cementitious materials and different types of fibres (even hybrid blends of two different
fibres). A single model will be created for each response, i.e. the energy absorption capacity (g) and max-
imum post-cracking strain (epc). A total of 50 own experimental campaign data added to 550 published
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works throughout the world data, totalising 600 data, were used for training purposes. To avoid overfit-
ting, the models were adjusted by using the k-fold validation procedure. Once the two models were con-
structed and validated, a multi-objective algorithm was adopted to determine the optimum blend of
locally available fibres in Colombia that, incorporated on a previously optimised high strength cementi-
tious paste, result in the proper ductility properties for seismic retrofitting applications (i.e. g� 50 kJ/m3

and epc�0.3%) at lower cost.

2. UHPFRC

Ultra-high-performance fibre reinforced concrete is a novel high-tech material developed over the last
two decades (Abellan et al., 2018a; Abell�an et al., 2020b; Abell�an-Garc�ıa, N�u~nez-L�opez, Torres-Castellanos,
& Fern�andez-G�omez, 2019; Martin-Sanz et al., 2016; Soliman & Tagnit-Hamou, 2017a). It is a kind of high-
tech fibre cementitious composite material with superb mechanical and durability properties compared
to other types of concrete. Its excellent properties can be attributed to its high particle packing density,
its low water to binder ratio, its selected materials and precise mixing processes, which leads to an
extremely low porosity cementitious matrix (Abellan et al., 2018a; Abell�an et al., 2020a). These extremely
low porosity and low permeability characteristics of UHPFRC are mainly responsible of enhanced durabil-
ity and mechanical properties over other types of concrete (Abbas et al., 2016; Abellan et al., 2018;
Ghafari et al., 2014; Schmidt & Schmidt, 2012; Soliman & Tagnit-Hamou, 2017c). Laboratory tests indicate
a superb compressive strength, which ranges from 150 to 200MPa, while tensile strength without fibres
lies in the range of 6–9MPa (Abellan et al., 2018a, 2018b; Martin-Sanz et al., 2016). The overcoming of
the brittleness of ultra-high performance concrete (UHPC) via addition of fibres also improves the materi-
al’s toughness, and tensile and flexural capacity (Kou & Xing, 2012; Soliman & Tagnit-Hamou, 2017b). The
effect of the fibres on UHPFRC’s properties has a strong dependency on the content (1–6%), orientation,
material, shape, length, and equivalent diameter of the fibre (Kou & Xing, 2012; Soliman & Tagnit-
Hamou, 2017b).

Among others, the superb properties achieved by UHPFRC render it particularly attractive for both
construction of new infrastructure such as footbridges, precast deck panel bridge joints, tunnel boring
machine key-stones, special prestressed and precast concrete elements, marine platforms, precast walls,
urban furniture, and other architectural applications, in addition to the improvement (rehabilitation,
strengthening) of concrete structures, as well as overlay over damaged pavements and industrial floors
(Abell�an et al., 2020; Abell�an-Garc�ıa, Nu~nez-Lopez, & Arango-Campo, 2020; Acker & Behloul, 2004; Haber
et al., 2017; Kalny et al., 2016; Martin-Sanz et al., 2016; Shaaban et al., 2016; Soliman & Tagnit-
Hamou, 2017b).

2.1. Composition of UHPFRC

The use of exclusively raw materials in its composition is one of the main disadvantages of UHPFRC
because of the increase of both carbon footprint and final cost of the material (Abell�an et al., 2020a,
2020b; Ghafari, Costa, Nuno, et al., 2015; Tagnit-Hamou et al., 2016). This factor prevents a wider use of
the material and especially its introduction in new markets.

Figure 1. Average dosage of 150 dosages from the scientific literature.
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A typical UHPFRC dosage is composed by Portland cement (C), silica fume (SF), quartz powder (QP),
silica sand (SS) with a maximum size of 600lm, high-range water reducers (HRWR) also known as super-
plasticizers, and steel fibre (De Larrard & Sedran, 2002; Richard & Cheyrezy, 1995; Tagnit-Hamou et al.,
2016). Abellan et al.(2018b) showed an average UHPFRC dosage obtained from 150 UHPFRC mixtures
from scientific articles, sharing the following characteristics in common: compressive strength over
150MPa with no special curing conditions, maximum aggregate size between 0.5 and 0.6mm, and 2% of
steel fibre content in volume. This average dosage and the cost implication of its components calculated
based on market prices in Colombia is depicted in Figure 1.

On the one hand, the high quantity of cement in UHPC (over 800 kg/m3) has a detrimental impact on
sustainability (Abdulkareem et al., 2018; Abellan et al., 2018a; Abell�an-Garc�ıa et al., 2021; Richard &
Cheyrezy, 1995). In fact, Portland cement, the principal hydraulic binder used worldwide in modern con-
crete, in addition to be a product of an energy-intensive industry (4 GJ/ton of cement) is also responsible
for large emissions of CO2, thus contributing to global warming (Abell�an, N�u~nez-L�opez, Torres-
Castellanos, et al., 2020; Abell�an-Garc�ıa et al., 2019, 2020b). Manufacturing one ton of Portland-cement
clinker releases approximately one ton of CO2 into the atmosphere, while nowadays the world’s yearly
cement output of 1.5 billion tons of mostly Portland cement is responsible of nearly 7% of global CO2

emissions (Van Tuan et al., 2011). Therefore, one of the key sustainability challenges is to design and pro-
duce UHPFRC with less cement and in consequence lower CO2 emissions than a traditional one, while
providing the similar mechanical properties, and durability. On the other hand, it is important to note
that only 2% by volume of steel fibre represents almost 40% of the total cost of the mixture.

2.2. Use of supplementary cementitious materials in UHPFRC

To address the cost and carbon footprint issues, at least partially, in the last decades, a great effort has
been made in analysing the effect of supplementary cementitious materials in partial substitution of
cement – because of CO2 emissions – and silica fume – regarding the final cost of the mixture (Abell�an
et al., 2020a, 2020c; Abell�an-Garc�ıa, Fern�andez-G�omez, & Torres-Castellanos, 2020; Abell�an-Garc�ıa et al.,
2020b). Among those, the work of Abellan et al. (2020a), who optimised a UHPC dosage by using locally
available raw materials in Colombia, could be highlighted. In their work they showed a combined meth-
odology that blends techniques such as neural networks data mining, design of experiments, and multi-
objective optimisation to analyse the possibility of achieving compressive strength over 150MPa without
special curing conditions and limiting the content of silica fume to 100 kg/m3. The supplementary cemen-
titious materials used in this study included fly ash, ground granulated blast slag furnace, electric arc slag
furnace, recycled glass powder, FC3R, metakaolin, and limestone powder. According to their results, the
combination of limestone powder and recycled glass powder yield to a reduction of cement content of
over 30% of the cement content and over 40% of the final cost when compared with a reference UHPC
dosage with no more binder’s component than cement and silica fume. This optimised cementitious
matrix will be the one used in the multi-objective optimisation section of this research.

On the other hand, the use of supplementary cementitious materials as partial substitution of silica
fume also presented an improvement in some durability properties, such as autogenous shrinkage and
permeability (Ghafari et al., 2012).

From the above, it can be concluded that it is possible to reduce the carbon footprint and the cost of
the UHPFRC cementitious matrix (Abell�an et al., 2020a; Ghafari et al., 2012). However, it will be necessary
to evaluate the locally available raw materials in each case.

2.3. Ductility of UHPFRC

Ductility is the most important feature of UHPFRC for seismic retrofitting applications (Chao, 2016; Dogan
& Krstulovic-Opara, 2003; Khan et al., 2018; Kim et al., 2009; Massicotte et al., 2013). Ductility of UHPFRC
is usually measured by direct tensile tests (Soranakom & Mobasher, 2008; Kwon et al., 2014; Massicotte
et al., 2013; Wille et al., 2014). Regarding direct tensile tests behaviour, UHPFRC can be classified as
strain-softening or strain-hardening (Pyo et al., 2016; Wille et al., 2011). The fibres’ bridging effect signifi-
cantly affects performance in the hardening and softening domain [13). In accordance with Naaman
(Naaman & Reinhardt, 2007), strain hardening happens as output of the maximum post-cracking tensile
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strength, rpc, exceeding the cracking tensile strength, rcc. Equation (1) depicted strain hardening condi-
tion, that is:

rpc � rcc (1)

Figure 2 shows how the tensile behaviour of UHPFRC could be explained by three different phases, as
follows (Wille et al., 2011, 2014). Zone I, elastic behaviour up to cracking strength rcc which produces first
crack, followed by activation of fibres as result of the development of several micro cracks (multi-cracking
phenomenon). The stress level is characterised by rcc, its associated strain ecc and Ecc where the material
enters its strain hardening behaviour. Zone II, or the domain of strain-based hardening with multiple
cracking, whose evolution is ruled by the fibres, affected by the dissipated energy per unit volume g,
which is the area under the stress–strain curve up to rpc and its associated strain epc. Finally, Zone III or
the softening behaviour domain which can be characterised by the slip of the fibre until the pullout.

On the one hand, according to Wille et al. (Wille et al., 2014), a value of g� 50 kJ/m3 is suggested to
define performance of high energy absorbing UHPFRC. On the other hand, it should be noted that in
structural applications which involves both UHPFRC and conventional steel bar reinforced concrete, such
as seismic retrofitting of non-ductile existing structures, accomplishing epc � 0.3% would assure that the
UHPFRC fully contributes until and further than the yielding of bars (Wille et al., 2011). Therefore, the
ductility properties to be met in the multi-objective optimisation algorithm for seismic retrofitting appli-
cations of UHPFRC will be g� 50 kJ/m3 and epc � 0.3%, thus, ensuring high ductility and the contribution
of the UHPFRC beyond the steel yield of the concrete structure reinforcement to be retrofitted.

2.4. Fibres in UHPFRC

As the UHPC matrix is very brittle, fibre reinforcement is added to obtain tensile ductility and strain hard-
ening behaviour (61). Typical UHPFRC has fibre contents of 2 % or above by volume. The maximum fibre
content to achieve the proper ductility parameters is a function of the fibre aspect ratio (lf/df , where df
and lf represent the equivalent diameter and the length of the fibre respectively), material and shape,
and even if there is a mixture of different fibres looking for synergies between them (ACI Committe
239R, 2018; Kwon et al., 2014; Wille et al., 2011).

Figure 2. Idealised strain hardening UHPFRC behavior under direct tensile test.
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However, in budget terms, although the partial replacement of cement and silica fume can help lower
the final cost of the mixture, it is important to note that the greatest weight in this cost is represented
by the content of steel fibre (see Figure 1). Thus, reducing the amount of fibres needed, the total cost of
the fibres, or both is a challenge for engineers.

Some of the ways to face that problem consists in the use of high-technology fibres, particularly high
strength twisted steel fibres (Kim et al., 2009; Pyo et al., 2016; Wille et al., 2011, 2014). The characteristics
of those special fibres reported in scientific literature can be observed in Table 1.

The use of such special fibres allows to achieve outstanding properties of UHPFRC even with only 1%
of volume content (Ryu et al., 2012; Wille et al., 2011), which represents an important reduction in fibre
content in comparison to the dosage depicted in Figure 1. However, these steel fibres reported here
were homemade high strength twisted steel fibres (Kim et al., 2009; Pyo et al., 2016; Wille et al., 2011;
2014), not even commercially available in the most developed countries.

Another way to address the fibre issue is through the hybrid blending of fibres. The effect of blending
fibres on the behaviour of UHPFRC was the focus of several studies (Ghafari et al., 2014; Kim et al., 2011;
Kwon et al., 2014; Park et al., 2012; Yu et al., 2015). Their results showed the synergy achieved by the
mixture of micro and macro fibres which lead to a higher efficiency of the overall use of fibres in this
type of concrete.

Finally, a less explored option would be the use of low-cost fibres. In this case, the use of fibres is
greater, but the final cost of the total fibres remains below the cost of higher quality fibres with a lower
volume. This option is very interesting in cases of developing countries where import costs are usually
high (Abell�an-Garc�ıa et al., 2021).

The present study addresses the question through an analysis of the last two options considering mix-
ing up to two different types of fibre in a previously optimised UHPC matrix.

3. Neural networks

The simplest architecture of a neural network model was the perceptron, devised by Rosenblant (1958).
Perceptron is composed of one neuron which processes information from two inputs and produces one
output (Ghafari, 2012). It is defined as a four-tuple entity (i.e. sensors that (i) receive inputs, (ii) multiply
them by weights, (iii) a function collecting all the weighted data to produce a measurement on the
impact of the observed phenomenon, and (iv) a constant threshold). Ascertaining these weights to pro-
duce a particular result is known as ‘training the model’, which is the methodology that allows the model
to learn (Estebon, 1997). Figure 3 shows the schematic diagram of perceptron structure.

For more complex applications, multi-layer perceptron (MLP) is employed, which could contain one or
more hidden layers in addition to the input and output layers. The multilayer perceptron has been a
commonly used neural network architecture (Abell�an-Garc�ıa, 2020a; Aderaw et al., 2018; Chandwani
et al., 2015; Gupta, 2013).

In the engineering field, MLP models have been employed in applications like detection of structural
damage, water resources engineering, traffic engineering, structural system identification, material behav-
iour modelling, concrete mix proportioning, and concrete strength forecasting (Adeli, 2001; Aderaw et al.,
2018). In fact, the application of artificial neural networks to forecast mechanical properties of pastes,
mortars, and concretes had become one of the most fertile fields in the scientific literature of civil engin-
eering production (Chandwani et al., 2014). However, until now, few investigations have been conducted

Table 1. High strength twisted steel fibres used in special UHPFRC dosages in scientist literature.

Reported high strength steel twisted fibres

Number of twists per total length df (mm) lf (mm) lf/df Tensile strength (MPa) Reference

16 0.30 30 100 �2100 Wille et al. (2011)
6-8 0.30 30 100 �3100 Wille et al. (2011)
n/a 0.30 25 83 �2670 Pyo et al. (2016)
n/a 0.30 18 60 �2600 Wille et al. (2014)
n/a 0.20 20 100 �3000 Ryu et al. (2012)

0.22 22 100 �3000 Ryu et al. (2012)
n/a 0.30 30 100 �3000 Ryu et al. (2012)
n/a 0.30 30 100 �2500 Yoo and Kim (2019)
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on forecasting the performance of UHPC/UHPFRC using neural networks. Among those Abell�an-Garc�ıa
(2020c), Zhang et al. (2017), Abell�an-Garc�ıa, Fern�andez-G�omez, and Torres-Castellanos (2020), Ghafari
et al. (2015), Taghaddos et al. (2004), and Abell�an-Garc�ıa et al. (2020) investigations can be highlighted,
as presented in Table 2.

As far as the authors are aware, there is no previous work dealing with the neural network-based pre-
diction tool to forecast the direct tensile behaviour of UHPFRC.

4. Databases

4.1. Data collection

Datasets containing dosages and direct tensile behaviour of UHPFRC were collected from several inter-
national symposiums on high and ultra-high-performance concrete (including Kassel 2004, 2008, 2012
and 2016), PhD dissertations, and other published works. Only those dosages with information of the dis-
sipated energy per unit volume g or the necessary data to its calculation (i.e. rcc , ecc , rpc , and epc) were
collected, totalising 550 observations from scientific literature. In addition, 50 experimental tests with dif-
ferent combinations of locally available fibres in Colombia were performed in various laboratories. The
cementitious matrix used in the test corresponds to a previously optimised ultra-high performance
cementitious matrix (Abell�an et al., 2020a). As a result, the present investigation has had a total of 600
observations for the development of the artificial neural network models.

The database includes both dosages with a single type of fibre (referred to in the database as fibre 1),
and UHPFRC’s dosages with hybrid binary fibre mixtures (fibre 1 and fibre 2).

The presence of qualitative variables in the database, specifically the type of fibre, has been resolved
using dummy or dichotomous variables, the value of which is 1 if the fibre is of the type considered and
0 otherwise.

The independent variables (which will be the input variables for the neural network models) collected
in the database, as well as their coding can be seen in Table 3.

With the proposal to subtract possible mathematical effects of the fibre ordering in the UHPFRC mix,
the considered database has been duplicated by swapping the fibre ordering.

4.2. Outliers treatment

Before adjusting the artificial neural network, it is necessary to deal with outliers, as they can greatly
affect the resulting model (Atkinson & Riani, 2000). Therefore, a descriptive statistical analysis was per-
formed on each variable to point out outliers (H€ardle & Simar, 2012). Unusual distributions (skewness),
data entry errors, and outliers in the data were identified employing bagplots. Bagplots (or bivariate box-
plots) are two-dimensional equivalent of single variable boxplots that are utilised to spot anomalous data
and outliers by robust methods, drawing ellipses that lay out possible inconsistent observations (Abell�an-

Figure 3. Schematic diagram of perceptron structure.
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Garc�ıa & Guzm�an-Guzm�an, 2021; Everitt & Hothorn, 2015). Nonetheless, having confidence in the use of
this procedure without a critical analysis of the data could also be a dangerous practice. Some of the sus-
picious points indicated by bagplots could be depicting the real behaviour of the data, while the rest of
the observations could just be clumped together very closely. Figure 4 depicts the bagplot for the pair of
variables energy absorption capacity g (expressed in kJ/m3) and total fibre factor vT. The graph shows as
possible anomalies some dosages with PVA monofilament microfibers (see Figure 8h) whose diameter is
less than 50 microns, when located outside the ellipse. However, its location outside the ellipse is only
due to the low value of its diameter, which leads to a high value of vT and not because it really was
inconsistent data. For this reason, removing this data would result in a loss of important information.

Once this procedure was completed, 95 observations were eliminated from the database, leaving 505
for training and validation purposes.

4.3. Data normalisation

After the outliers were removed from the database, the next step consists in data normalisation. The
input data and output data usually comprise of different identities either having no or minimum similar-
ities. Normalisation of data removes the possibility of neural network bias towards the different identities
and scales down all the input and output data. In this study, linear scaling in the range [0, 1] has been
used as depicted in Equation (2).

xnorm�sigmoid ¼ x�xmin

xmax � xmin
(2)

where xnorm represents the normalised value of the variable x, xmax, and xmin represent the minimum and
maximum values of variable x, respectively.

Table 4 shows the range of variation and other statistics of all independent variables considered in
this research.

Table 2. Scientific literature references on applications of ANN to predict mechanical properties of UHPC/UHPFRC.

ANN Architecture
Number of observations

in dataset Output(s) Reference

4-2-2-1 38 12-day compressive strength
under heat treatment

Taghaddos et al. (2004)

7-15-3 53 Slump Flow, 28-day
compressive strength, 2-
day compressive strength
under heat treatment

Ghafari et al. (2015)

11-10-4 78 7, 28, 90- and 365-day
compressive strength

Zhang et al. (2017)

11-4-4-4-1a 696 Limit of Proportionality (LOP),
its corresponding
deflection (dLOP), Modulus
of Rupture (MOR), and its
corresponding deflection
(dMOR) of UHPFRC under
bending test

Abell�an-Garc�ıa et al. (2020)

17-4-2-1 927 28-day compressive strength Abell�an-Garc�ıa (2020)
17-4-1 604 1-day compressive strength Abell�an-Garc�ıa (2021)
12-10-5-1b

12-9-5-1c

12-4-2-1d

12-4-4-1e

265 Slump Flow, 1, 7, and 28-day
compressive strength

Abell�an-Garc�ıa et al. (2020)

aFour different models with the same architecture, one model for each response.
bModel for slump flow.
cModel for 1-day compressive strength.
dModel for 7-day compressive strength.
eModel for 28-day compressive strength.

6312 J. ABELLÁN-GARCÍA ET AL.



5. Experimental research

5.1. Ultra-high-performance cementitious matrix (UHPC)

For the experimental campaign a previously optimised eco-friendly ultra-high-performance concrete
(UHPC) with low cement content was used (Abell�an et al., 2020a; Abell�an-Garc�ıa, 2020b). The proposed
mixture used recycled glass powder and micro-limestone powder as partial substitution of cement and
silica fume, optimising the mixture’s packing density, leading to a compressive strength of 156MPa under

Table 3. Input variables: Coded and description.

Coded variable Description Coded variable Description

X1 Cement content in kg/m3 X18 Tensile strength of fibre 1
in MPa

X2 Silica fume content in kg/m3 X19 Length of fibre 1 in mm (lf1)
X3 Supplementary cementitious

materials (without
considering either cement
or silica fume) in kg/m3

X20 Equivalent diameter of fibre
1 in mm (df1)

X4 Quartz powder content in
kg/m3

X21 fibre volume fraction of fibre
1 in % (Vf1)

X5 Water content in kg/m3 X22 fibre factor of fibre 1
expressed as vf1 ¼ Vf1 �
lf1/df1

X6 Superplasticizer content in
kg/m3

X23 Dummy variable whose value
is 1 if fibre 2 is a straight
steel fibre and 0 otherwise

X7 Sand content in kg/m3 X24 Dummy variable whose value
is 1 if fibre 2 is a hooked
end steel fibre and
0 otherwise

X8 Maximum size of sand in mm X25 Dummy variable whose value
is 1 if fibre 2 is a twisted
steel fibre and 0 otherwise

X9 Water to binder ration (w/b) X26 Dummy variable whose value
is 1 if fibre 2 is a
polyethylene fibre and
0 otherwise

X10 Total fibre volume fraction
in %

X27 Dummy variable whose value
is 1 if fibre 2 is a
polypropylene fibre and
0 otherwise

X11 Total fibre factor defined as
vT ¼ vf1 þ vf2

X28 Dummy variable whose value
is 1 if fibre 2 is a PVA
fibre and 0 otherwise

X12 Dummy variable whose value
is 1 if fibre 1 is a straight
steel fibre and 0 otherwise

X29 Tensile strength of fibre 2
in MPa

X13 Dummy variable whose value
is 1 if fibre 1 is a hooked
end steel fibre and
0 otherwise

X30 Length of fibre 2 in mm (lf2)

X14 Dummy variable whose value
is 1 if fibre 1 is a twisted
steel fibre and 0 otherwise

X31 Equivalent diameter of fibre
2 in mm (df2)

X15 Dummy variable whose value
is 1 if fibre 1 is a
polyethylene fibre and
0 otherwise

X32 fibre volume fraction of fibre
2 in % (Vf2)

X16 Dummy variable whose value
is 1 if fibre 1 is a
polypropylene fibre and
0 otherwise

X33 fibre factor of fibre 2
expressed as vf2 ¼ Vf2 �
lf2/df2

X17 Dummy variable whose value
is 1 if fibre 1 is a PVA
fibre and 0 otherwise

X34 Compressive strength of
concrete in MPa
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normal curing conditions (Abell�an et al., 2020a). The introduction of micro-limestone powder and
recycled glass powder not only allowed the partial replacement of cement and silica fume, but also led
to a lower need for superplasticizer (Abell�an et al., 2020b), consequently providing a more sustainable
UHPC, at lower cost and with satisfactory mechanical properties (Abell�an et al., 2020a). The dosage pro-
portions for plain UHPC are given in Table 5. Some relevant information is depicted below:

� Cement was Type III ASTM with a C3S content of 65%, an average particle size (d50) of 8 mm, a spe-
cific gravity of 3.15, and a low C3A content (<5%).

� Silica fume employed in this research is characterised by an exceedingly high SiO2 content (92.3%), a
specific gravity of 2.20, and an average particle size of 0.15 mm.

� Micro-limestone powder with an average particle size of 2.1 mm and a specific gravity of 2.73 was uti-
lised as partial substitution of expensive silica fume.

� The average particle size of the recycled glass powder used was 28 mm and its specific gravity 2.55.
Glass powder was obtained by grounding locally available recycled glass with a jet mill.

� The proportion of cement:silica fume:micro-limestone powder:glass powder was 1:0.17:0.39:0.55.
� A superplasticizer based on polycarboxylate ether was selected because it produced the best settling

flow and enhanced air release from the pulp at the lowest content.
� The optimum water to binder ratio was determined to be 0.16.
� Silica sand with a specific gravity of 2.65, maximum particle size (dmax) of 600lm, and d50 of

165 lm, was used. The proportion of cement:silica sand was 1:1.50

Figure 4. Bagplot for the pair of variables g and vT.

Table 4. Statistics of the input variables considered in this research.

Coded
variable Xmax Xmin Mean

Standard
deviation

Coded
variable Xmax Xmin Mean

Standard
deviation

X1 1,412.90 511.62 765.72 247.63 X18 3,250.00 0.00 1,490.23 1,203.92
X2 701.27 42.00 164.22 64.00 X19 62.00 0.00 12.49 12.21
X3 898.75 0.00 225.08 282.91 X20 0.80 0.00 0.14 0.18
X4 430.00 0.00 84.09 110.91 X21 5.00% 0.00% 0.93% 0.89%
X5 392.39 119.40 222.12 68.37 X22 6.15 0.00 0.82 1.23
X6 40.03 9.97 25.76 10.56 X23 1.00 0.00 0.22 0.42
X7 1,512.95 0.00 751.11 263.82 X24 1.00 0.00 0.10 0.27
X8 3,750.00 0.00 481.07 536.63 X25 1.00 0.00 0.11 0.30
X9 0.31 0.11 0.22 0.10 X26 1.00 0.00 0.11 0.30
X10 5.00% 0.00% 1.86% 0.65% X27 1.00 0.00 0.02 0.12
X11 6.34 0.00 1.77 1.42 X28 1.00 0.00 0.09 0.28
X12 1.00 0.00 0.22 0.42 X29 3,250.00 0.00 1,490.23 1,203.92
X13 1.00 0.00 0.10 0.27 X30 62.00 0.00 12.49 12.21
X14 1.00 0.00 0.11 0.30 X31 0.80 0.00 0.14 0.18
X15 1.00 0.00 0.11 0.30 X32 5.00% 0.00% 0.93% 0.89%
X16 1.00 0.00 0.02 0.12 X33 6.15 0.00 0.82 1.23
X17 1.00 0.00 0.09 0.28 X34 230.00 98.12 151.68 24.92
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Table 6 depicts the chemical composition of the materials used in this study. The analysis trough scan-
ning electron microscopy (SEM) of the supplementary cementitious materials is displayed in Figure 5.
Because of the average particle size of recycled glass powder is over ten times higher than the average
particle size of micro-limestone powder, which is almost twenty times higher than the silica fume particle,
it was necessary to employ different magnifications in the SEM images to appreciate the characteristics
of the particles of these components. Results pointed out the lack of porosity of the recycled glass pow-
der, the rough surface of the micro-limestone powder particle, and the spherical shape together with
small size of the silica fume particles.

Figure 6 presents the X-ray powder diffraction (XRD) of the cement and the cementitious materials.
Figure 6a shows the mineralogical analysis obtained for the cement. The XRD pattern for silica fume is
depicted in Figure 6b. The intense broad peak observed for silica fume pointed out that this material is
totally amorphous. The analysis exhibited in Figure 6c shows a majority composition of calcite for the
limestone powder. The XRD analysis performed on the recycled glass powder (Figure 6d) revealed its
amorphous nature.

The particle size distribution (PSD) of the components and the A&Amod curve (Funk & Dinger, 1994)
obtained by using a q value of 2.64 (Abellan et al., 2018) is depicted in Figure 7. The A&Amod curve (Funk

Table 5. Mixture for UHPC used in this study (Abell�an et al., 2020).

Properties and proportions by weight of cement of UHPC

Cement Silica fume
Micro-limestone

powder
Recycled glass

powder Water Superplasticizer Silica sand VPDa fc (MPa)

1.00 0.17 0.39 0.55 0.31 0.0054 1.50 0.81 156
aVirtual Packing Density (VPD) according to Larrard (De Larrard & Sedran, 2002; De Larrard,1999; Larrard, 1994).

Table 6. Chemical characterisation and properties of cement, silica fume, micro limestone powder, recycled glass powder and
silica sand.

Properties of UHPC’s components

Chemical analysis Cement Silica fume
Micro-limestone

powder
Recycled glass

powder Silica sand

Specific gravity (g/cm3) 3.16 2.20 2.73 2.55 2.65
Loss of ignition (%) 2.58 0.60 42.21 1.00 0.20
SiO2 (%) 19.42 92.29 0.90 72.89 99.80
Al2O3 (%) 4.00 0.59 0.10 1.67 0.14
CaO (%) 64.42 3.89 55.51 9.73 0.17
MgO (%) 1.52 0.26 0.70 2.08 0.01
SO3 (%) 1.93 0.07 0.10 0.01 –
Na2O (%) 0.19 0.31 0.03 12.54 –
K2O (%) 0.39 0.54 0.00 0.76 0.05
TiO2 (%) 0.38 0.01 0.00 0.04 –
Mn3O4 (%) 0.05 0.01 0.01 0.01 –
Fe2O3 (%) 3.61 0.24 0.05 0.81 0.04

Figure 5. SEM of supplementary cementitious materials used in research: (a) silica fume; (b) micro-limestone powder; and (c)
recycled glass powder.
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& Dinger, 1994) is one of the most used packing models for the design of UHPC and UHPFRC mixtures
(Abell�an et al., 2020b; Abellan-Garcia, N�u~nez-L�opez, Torres-Castellanos, N., & Fern�andez-G�omez, 2020;
Abell�an-Garc�ıa et al., 2019).

5.2. Fibres

Straight high strength (rfu � 2100MPa) steel fibres were used in this study (see Table 7), with an aspect
ratio of 65 (lf/df ¼ 13/0.2mm) and 30 (lf/df ¼ 6/0.2mm). Those fibres are the most used worldwide for
UHPFRC dosages.

In addition, three types of commercially available non-high strength steel (rfu � 2100MPa) deformed
steel fibres and three types of polymeric fibres were included. On the one hand, the normal strength
steel fibres encompass two types of hooked end and a twisted one. In hooked end fibres, its hook
deformation at the end of the fibre provides a mechanical bond at the end, while an uniformly distrib-
uted deformation over the entire twisted fibre length, provides a mechanical bond along the entire fibre
length (Kim et al., 2009; Pyo et al., 2016; Wille et al., 2014 ). Two types of commercially available hooked
fibres were utilised (lf/df ¼ 35/0.50mm, and lf/df ¼ 60/0.75), in which the mechanical bond is controlled
by the resistance of the hooked end to straightening, when subjected to pull-out. A unique type of
twisted fibre (lf/df ¼ 13/0.50mm) was found in the Colombian market.

On the other hand, the polymeric fibres considered involve two macro-fibres, one of polypropylene
and the other of polyethylene, as well as a fibrillated polyvinyl alcohol (PVA) microfiber

Figure 6. XRD of: (a) cement; (b) silica fume; (c) micro-limestone powder; and (d) recycled glass powder.
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The detailed information of used fibres is summarised in Table 7 and Figure 8.
It is important to note that although the prices per kilogram of polymeric fibres are higher than those

of steel fibres, the dosage of concrete is done by volume, where the density of the material plays an
important role.

5.3. Blending procedure, casting, and curing

Cement, silica fume, micro-limestone powder, glass powder, water, high-range-water-reduce superplasti-
cizer (HRWR) and steel fibres were mixed together in a 11-liter Hobart type mixer according to the fol-
lowing methodology: first, all cementitious materials were dry-mixed for about 10minutes. Water that
was previously pre-blended with HRWR was then incorporated gradually and mixed for another
5minutes. After that, sand was also gradually added and mixed for another 3minutes. Finally, fibres were
incorporated and the whole concrete was blended for 2 more minutes. After blending, the cement mix-
ture with fibres was then placed in a JSCE (Yokota et al., 2008) dog bone mould to full capacity applying
slight vibration during the pouring and 1minute after. It is important to note that the small dimensions
of the JSCE dog bone specimen (see Figure 9) in height (30mm) and width (30mm) compared to the
length of the fibres (from 6 to 60mm) leads to a positioning of the fibres in a preferential way, with
most fibres aligned along each specimen’s major axis, which is the direction of the applied tensile load.

After casting the UHPFRC into the dog bone moulds, the specimens were covered with plastic lids
and squirrelled away at room temperature for 24 h. After 24 hours, the specimens were taken out of their

Figure 7. Particle size distribution of the matrix materials, target and mix curve.

Table 7. Properties of steel fibres used in this study.

Notation Form df (mm) lf (mm) df/lf Material Tensile strength (MPa) Cost (COP/kg)a

S1 Straight 0.20 13 65 Steel �2600 11,000
S2 Straight 0.20 6 30 Steel �2600 10,500
H1 Hooked 0.50 35 70 Steel �2000 9,000
H2 Hooked 0.75 60 80 Steel �1600 4,855
T Twisted 0.50 13 26 Steel �1700 7,500
PP Straight 0.72 48 75 Polypropylene �650 30,000
PE Straight 0.67 50 67 Polyethylene �550 27,000
PVA Straight 0.025 6 240 Polyvinyl alcohol �1600 35,000

aEstimated cost in the Colombian market and expressed in Colombian pesos per kilo.
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moulds and cured in a moisture room at 20�C until reaching a designed age of 28 days. The direct tensile
tests were performed at the age of 28 days.

5.4. Test setup

The geometry of the dog bone specimen, also the system presented in Figure 9, was established accord-
ing to the JSCE-08 (Yokota et al., 2008). The section of the tensile specimens employed was 30� 30mm.
Each specimen was evaluated with a gage length of 75mm. No steel wire mesh was used as reinforce-
ment at the ends of the specimens to avoid the failure of specimens out of gage length. The alignment
of the tensile set-up was carefully verified before testing by using a plumb. The specimens were installed
with care to avoid any influence of eccentricity. A universal testing machine performing displacement
control was used to run the tensile tests. The tensile tests were conducted at a fixed speed of displace-
ment of 0.5mm/min according to JSCE-08 (Yokota et al., 2008). The boundary conditions at ends of the
tensile test set-up were one end fixed and another end loaded. Two linear variable differential transform-
ers (LVDT) were placed on both sides of the specimen, to measure its elongation. The average value

Figure 9. Direct tensile specimen and setup.

Figure 8. Different types of steel fibres used in this research: (a) high strength steel straight lf/df ¼ 13/0.20mm (S1); (b) high
strength steel straight lf/df ¼ 13/0.20mm (S2); (c) normal strength steel hooked lf/df ¼ 35/0.50mm (H1), (d) normal strength steel
hooked lf/df ¼ 60/0.75mm (H2); (e) normal strength steel twisted lf/df ¼ 13/0.50mm (T); (f) polypropylene lf/df ¼ 48/0.72mm
(PP); (g) polyethylene lf/df ¼ 50/0.67mm (PE); and (h) polyvinyl alcohol lf/df ¼ 6/0.025mm (PVA).
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from the two LVDTs was utilised in the calculation of the tensile strain in the gauge region, up to the
point it reached the peak tensile stress. The load signal was measured from a load cell that was directly
fixed to the bottom of the cross head. Three samples were evaluated for each fibre combination, hence
the reported values of g (kJ/m3) and epc (%).

6. Analytical research

6.1. Cross validation

To facilitate training and testing of the artificial neural network models, the obtained database was rand-
omised and divided into training and test datasets. 379 observations were utilised for training purposes
and the remaining 126 were utilised for testing the trained models. Both subsets contained all the pos-
sible types of fibres considered.

Besides, to evaluate the neural network model while keeping its parameters adjusted (such as the
number of neurons in the hidden layers), the training data could be divided into a training and a valid-
ation set. Nonetheless, since there are such few data observations, the validation set would end up being
small for a neural network validation (as in our case). Therefore, the validation scores might change a lot
depending on which data points were chosen to use for validation and which were selected for training,
that is, the validation scores might have a high variance regarding the validation division. This would pre-
vent from reliably assessing the model (Abell�an-Garc�ıa et al., 2021; Chollet & Allaire, 2018).

The best practice in such situations is to utilise k-fold cross-validation (see Figure 10). It is based on
the division of the available data into k partitions, instantiating k identical models, and training each one
on k � 1 partitions while evaluating by using the remaining partition. The validation score for the model
employed is then the average of the k validation scores obtained (Chollet & Allaire, 2018). In this research
k¼ 5 was considered.

6.2. Neural network architecture design

To avoid the loss of accuracy for any response when a multi output model is used (Chollet & Allaire,
2018), a different model was developed for each response (i.e. g and epc). Thus, in this research, two artifi-
cial neural network models were developed using R version 4.0.2 (2020-06-22) (R Core Team, 2018) by
using the Keras package (Chollet & Allaire, 2018). The selection of hidden layers and hidden layer neurons
is a trial and error process which frequently started by selecting a network with a minimum number of
hidden layers and hidden neurons (Chandwani et al., 2015). For each response, different configurations
were evaluated: one hidden layer, two hidden layers, and three hidden layers to achieve one optimal
neural network architecture for g and epc. In each of these configurations, the number of neurons in each
hidden layer ranged from 1 to 70 (about twice the amount of input data). Additionally, given the import-
ance of the initial assignment of weights in the convergence of the learning algorithms, each architecture

Figure 10. k-fold validation (Chollet & Allaire, 2018).
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dealt with 100 different assignments of initial weights, selecting the allocation that produced the least
error between the real and predicted values of the model in the first 100 epochs (number of times that
the training data is passed through the artificial neural network during the adjusting process). In all these
stages, the k-fold cross validation was used to assess the performance of the models. Once the architec-
ture improvement has been selected for each configuration (number of hidden layers 1, 2 and 3), the
selected models will be trained until epoch 2000. The chosen model for each response will be the one
that offer the least error in k- fold cross-validation, having therefore selected the number of hidden
layers, the number of neurons per layer, and the number of epochs required for training each of them
(i.e. g-model and epc-model).

Table 8 shows some of the characteristics common to all the network models tested in this research.
Regarding the concepts depicted in Table 8, a feed forward neural network is an artificial neural net-

work wherein connections between the nodes do not form a cycle. In this network, the information
moves in only one direction, forward, from the input nodes, through the hidden nodes and to the output
nodes. The loss function takes the predictions of the network and the true target and computes a dis-
tance score, capturing how well the network has done on this specific example. It is used to enhance the
model performance during the adjusting process. The activation function is the function that processes
the signals inside each node and ascertains the model output. This function is what brings nonlinearity
to the predictive model. Finally, the learning algorithm rules a step-by-step procedure for adjusting the
connection weights of an artificial neural network. For further information about those neural network’s
concepts, some studies are listed in the references (Abell�an-Garc�ıa, 2020c; Abell�an-Garc�ıa, Fern�andez-
G�omez, & Torres-Castellanos, 2020; Chollet & Allaire, 2018; Hudson Beale, 2012; Mushgil et al., 2015;
Prasad et al., 2013).

6.3. Model performance evaluation

The artificial neural network models were trained on the training data by using the k-fold validation, and
then the selected models’ goodness was assessed on the test set. In this research, seven different statis-
tical parameters have been used for measuring the model’s predictive accuracy, viz., root mean square
error (RSME), mean absolute error (MAE), average error (AE), coefficient of efficiency (E), root mean square
error to the standard deviation of measured data ratio (RSR), normalised mean bias error (NMBE), and
coefficients of multiple determination (R2), as indicated in Equations (3)–(9) respectively.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ai � âið Þ
n

s
(3)

MAE ¼ 1
n

Xn
i¼1

ai � âij j (4)

AE ¼ 1
n

Xn
i¼1

ai � âið Þ (5)

E ¼ 1�
Pn

i¼1 ai � âið Þ2Pn
i¼1 ai � aið Þ2 (6)

RSR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RMSE
1
n

Pn
i¼1 ai � aið Þ2

vuut (7)

NMBE %ð Þ ¼
1
n

Pn
i¼1 ai � âið Þ

ai
� 100 (8)

Table 8. Parameters of artificial neural networks analysed in this research.

Parameters of ANN models

Type of neural network Loss function Activation function Learning algorithm

Feed forward Root mean squared error (RMSE) Relu (rectified linear unit function) RMSprop
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R2 ¼ 1�
Pn

i¼1 ai � âið Þ2Pn
i¼1 âið Þ2 (9)

where: a represents the target or real value of the response; �a is the mean of the target, â is the model’s
forecast and n represents the total number of observations in the dataset.

RMSE is one of the most commonly employed error index statistics (Moriasi et al., 2007). RMSE meas-
ures the differences between the predicted values and the target values and computes the square root
of the average residual error, pointing out the error in the units of the response. For a perfect fit, the
optimal value of RMSE is zero. However, a weak point of this statistic would be that it provides more
weightage to large errors (Chandwani et al., 2015). MAE is based on the absolute differences between
the measured and the estimated; for a perfect fit the optimal value of MAE is zero (Abell�an-Garc�ıa,
2020c). AE represents the average error; the smaller values of AE, the better performance of the model
(Aderaw et al., 2018). The Nash Sutcliffe efficiency or coefficient of efficiency (E) (Nash & Sutcliffe, 1970)
represents a ratio of residual error variance to contrasted variance in observed data; for a perfect associ-
ation between the observed and predicted values the optimal value of E is 1. RSR was presented by
(Moriasi et al., 2007); it incorporates the benefits of error index statistics and includes a normalization fac-
tor, thus, the resulting statistic and reported values can apply to various constituents. A lower value of
RSR indicates a good performance of the model. NMBE supplies information on the mean bias in the esti-
mations from a predictive model; a negative NMBE points out over-prediction while a positive NMBE
points out under-prediction of the model (Srinivasulu & Jain, 2006). Coefficient of determination (R2) com-
pares the accuracy of the regression model with the accuracy of a surface benchmark model wherein the
forecast is the average of all samples (Gupta, 2013); R2 statistics is dependent on the linear relationships
between the predicted and target values and may sometimes provide biased results when this relation-
ship is not linear or when the values contain many outliers. For perfect association between the observed
and predicted values, the perfect value of R2 is 1. A combined use of the performance metrics can supply
an unbiased estimate for prediction ability of the artificial neural network models.

7. Results and discussion

7.1. Artificial neural network models’ architecture

Choosing the artificial neural network model architecture is the first important step in developing a
model that best suits the problem at hand. Table 9 summarises the results obtained for the different con-
figurations (number of hidden layers) measured by RMSE during the training using k-fold validation. It is
important to highlight that Table 9 only depicts the best performing initial weight allocation of the neu-
rons for each of the tested architectures during the first 100 epochs.

After selecting the best architectures for each number of hidden layers, the next step was to train
each of these architectures during 2000 epochs. Figure 11 represents a smoothed curve of the measured
error versus the number of epochs for each of these models.

There are three important issues to note in Figure 11. On the one hand, in both cases, the three hid-
den layer models outperformed the other models. On the other hand, according to this figure, validation
RMSE stopped improving significantly after 261 and 273 epochs for g and epc. Finally, there is a consider-
able enhancement in both models, going from a validation RSME of 13.762 to 10.344 in the case of g-
model and from 0.1567 to 0.1149 in the case of epc-model.

Table 9. Summary of results obtained for different configurations of neural network models.

Response Number of hidden layers Best result (RMSE) Model architecture

g 1 16.566 34-63-1
2 14.112 34-62-45-1
3 13.762 34-67-54-57-1

epc 1 0.1584 34-60-1
2 0.1577 34-62-43-1
3 0.1567 34-63-24-52-1
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Therefore, the selected model for g had 34 input nodes, 67 neurons in the first hidden layer, 54 neu-
rons in the second hidden layer, 57 neurons in the third hidden layer, and one output (see Figure 12)
and it was trained until epoch 261. Likewise, epc-model had 34 input nodes, 63 neurons in the first hid-
den layer, 24 neurons in the second hidden layer, 52 neurons in the third hidden layer, and one output
(see Figure 13) and in this case trained until epoch 261.

7.2. Performance evaluation of trained model

The results of the performance evaluation of the selected model are presented in Tables 10 and 11.
According to Tables 10 and 11, performance evaluation indicators have a similar value in training and

test set. The latter indicates the proper performance of the k-fold validation utilised as methodology to
avoid the overfitting of the artificial neural network model (Chollet & Allaire, 2018) during the training
process. The proposed g-model predicted the energy capacity absorption on the test dataset with a
RMSE value of 11.5488 and MAE value of 8.3143 kJ/m3, pointing out that the differences between pre-
dicted and target values of compressive strength were relatively small. The model under-predicted the
energy capacity absorption on average by �0.2044 kJ/m3, according to the AE value resulted in the test
set. E and RSR statistics, 0.7572 and 0.4828 respectively, confirmed the good performance of g-model.
The NMBE statistic for training and testing was evaluated as 0.7477% and 0.0657%, showing the same
sign which indicated both the consistency and under-prediction of the model. Finally, a R2 value of
0.7581 was shown in the test data set. Moreover, Figure 14 clearly depicts that the predicted values were
highly close to the corresponding target values.

In the case of the model to predict the maximum post-cracking strain (epc), results depicted in Table
11 and Figure 15 exhibits the strong coherence between the predicted strain values and the real ones,
achieving a RMSE, MAE, E, RSR and R2 values of 0.1051, 0.0781, 0.7811, 0.4583 and 0.7924, respectively, in
the test data set. In addition, NMBE and AE pointed out a slight under-prediction, as can be also
observed in Figure 15b, where most of the points fell below the 45-graded line.

7.3. Discussion

As shown in Tables 10 and 12 and Figures 14 and 15, artificial neural network models present an accur-
ate method for predicting the behaviour of UHPFRC under direct tensile test, even when blending up to
two different types of fibres. The latter can be explained because of the immense ability of this artificial
intelligence algorithms to map complex and nonlinear relationships between the inputs and the
response. However, it can be observed that the R2 values achieved for the g and epc prediction were
smaller than those obtained by other authors consulted, who achieved higher correlation coefficients in
the range between 0.96 and 0.98 when predicting the properties of UHPC/UHPFRC using neural networks

Figure 11. Smoothed curves of RMSE versus the number of epochs for each response: (a) energy capacity absorption, g; and the
strain associated to the maximum post-cracking tensile strength - epc.
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(Abell�an-Garc�ıa et al., 2020; Ghafari et al., 2015; Zhang et al., 2017). This may be due to the fact that
those references used only data from their own experimental work, limiting therefore the incorporation
of statistical noise into the system, viz., the use of different types of cement and the characteristics of the
supplementary cementitious materials such as physical and chemical properties, the unreported detail of
the use of vibration during the pouring of the concrete, the different nature and shape of aggregates
used in the database, and the different technology of superplasticizers considered in the database,
among others.

On the other hand, other investigations that considered a mixture of their own data and data from
the scientific literature obtained slightly better results than those presented here (Abell�an-Garc�ıa, 2020;
Abell�an-Garc�ıa et al., 2020). In this case the differences may lay in the complexity of the tensile behaviour
modelled here, in contrast to the compressive strength (Abell�an-Garc�ıa, 2020) and flexural behaviour
(Abell�an-Garc�ıa et al., 2020) of UHPC/UHPFRC reported in those studies.

Finally, the good results obtained in the predictions of the direct tensile behaviour (g, epc) on the
experimental data (see Tables 10 and 11, and Figures 14b and 15b), encourage the authors to the next
phase of the research: experimentally contrasted multi-objective optimisation.

Figure 12. Artificial neural network model for predicting the energy capacity absorption of UHPFRC under direct tensile test
(g-model).
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Figure 13. Artificial neural network model for predicting the strain associated to the maximum post-cracking tensile strength of
UHPFRC under direct tensile test (epc-model).

Table 10. g-Model performance measures.

Data subset

Model performance

RMSE MAE AE E RSR NMBE (%) R2

Training 10.3340 7.1365 0.2217 0.7981 0.4388 0.7477 0.7997
Test 11.5488 8.3143 –0.2044 0.7572 0.4828 0.0657 0.7581
Experimental 5.9824 3.2952 0.0055 0.7394 0.5105 0.0821 0.7548

The neural netrwok models are trained with the training data subset but are evaluated with the test data subset.

Table 11. epc-Model performance measures.

Data subset

Model performance

RMSE MAE AE E RSR NMBE (%) R2

Training 0.1149 0.1070 –0.0211 0.7899 0.4826 1.0410 0.7527
Test 0.1051 0.0781 0.0096 0.7811 0.4583 1.4966 0.7924
Experimental 0.0602 0.0431 –0.0380 0.3320 0.8173 0.3012 0.7427

The neural netrwok models are trained with the training data subset but are evaluated with the test data subset.
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Figure 14. Regression plot for g-model: (a) training data; (b) experimental and test data.

Figure 15. Regression plot for epc-model: (a) training data; (b) experimental and test data.

Table 12. Optimisation of the individual responses for a UHPFRC mixture for seismic retrofitting applications with locally avail-
able materials (fibres) at lower cost.

Responses and variables Lower Upper Goal Importance

g (kJ/m3) 50 75 Maximum 5
epc (%) 0.3 0.5 Maximum 5
Cost (�1,000 COP)a 500 2,000 Minimum 5

a�1,000 Colombian pesos.
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8. Multi-objective optimisation

8.1. Methodology

A multi-objective optimisation R-coded algorithm (Roth, 2016) was employed, aimed at settling the opti-
mum values for the input variables (fibres properties only in this case) that can reach the best value for
the response. Once the artificial neural networks models were selected, inputs variable corresponding to
the fibres (i.e. from X10 to X33, both included) were assigned simultaneously and independently to
enhance the best trade-off of the objective functions without excessively compromising any of the
requirements (Abell�an et al., 2020; Abell�an-Garc�ıa et al., 2020; Ghafari et al., 2014; Ghafari, Costa, & J�ulio,
2015) by considering the commercially available fibres in Colombia depicted in Table 7. The input varia-
bles corresponding to the cementitious matrix (i.e. from X1 to X9 plus X34) were fixed to the values of
the optimised mixture shown in Table 5 (Abell�an et al., 2020).

The optimisation R-coded algorithm used in this study was based on the desirabilities approach devel-
oped by Derringer & Suich (Derringer & Suich, 1980), where the predicted values of each response varia-
bles are transformed into values within the interval [0.1] using three different desirability methods for the
three different optimisation criteria (i.e. minimise, maximise, in range). Each value of a response variable
can be assigned a specific desirability, optimising more than one response variable.

Derringer & Suich (Derringer & Suich, 1980) defined the desirability cases of minimisation, maximisa-
tion, and in range individual responses, as in Equations (10), (11) and (12), respectively.

d ¼
1 Yi � L
U�Yi
U�L

h iwti
L<Yi<U

0 Yi � U

8><
>: (10)

d ¼
0 Yi � L
Yi�L
U�L

h iwti
L<Yi<U

1 Yi � U

8><
>: (11)

d ¼
0 Yi � L
1 L<Yi<U
0 Yi � U

8<
: (12)

There are several ways to draw the optimal solution considering multiple individual desirability func-
tions, but the most widely used method is to optimise by converting multiple desirability functions into
single desirability D (Derringer & Suich, 1980; Ghafari et al., 2014; Ghafari, Costa, & J�ulio, 2015). The geo-
metric mean of the specific desirabilities characterises the overall desirability as follows in Equation (13):

D ¼ ðdr11 � dr22 � dr33 � 	 	 	 � drnn Þ
1=P

ri ¼
Yn
i¼1

drni

" #1=P
ri

(13)

A value of D different from zero in Equation (13) implies that all responses are in a desirable range
simultaneously and, consequently, for a value of D close to 1, the combination of the different criteria is
globally optimum, so the response values are near their target values. However, if any of the responses
fall outside their desirability range, the overall function becomes zero. In Equation (13), ri represents the
relative importance assigned to the response i. The relative importance ri is a comparative scale for
weighting of each individual desirability functions (di) in the overall desirability product and it varies
from least important (ri ¼ 1) to most important (ri ¼ 5). It is important to point out that the outcome of
the overall desirability D depends on the ri value that offers users flexibility in the definition of desirabil-
ity functions. In this study, shape constants equal 5 in all cases.

The goals of the criteria optimisation for each response are shown in Table 12. It has been proposed
to select the optimum mix design variables for obtaining a UHPFRC with the proper characteristics to be

Table 13. Optimum fibre combination for seismic retrofitting applications.

Fibre 1 Fibre 2

Total volume (%) g (kJ/m3) epc (%) Cost (�1,000 COP)Notation Volume (%) Notation Volume (%)

S1 0.340 H2 1.360 1.700 50.448 0.424 811.910
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used as seismic retrofitting of existing non-ductile concrete structure, i.e. g� 50 kJ/m3 and epc�0.3%, at
lower costs. At the end of the multi-objective optimisation process, one optimal solution satisfying the
specified constraints was obtained. The optimised mixture is presented in Table 13.

8.2. Validation of the multi-objective optimisation

The efficiency of the designed model was evaluated by carrying out the experiment with the selected
value fibre blending and by comparing experimental measured values obtained with those indicate by
the mathematical model. The mixture of fibres selected by the multi-objective algorithm is presented in
Table 13. The comparison between theoretical and experimental results is shown in Table 14. The percen-
tual deviation was employed as a measure of accuracy for validation. Results confirmed that the experi-
mental values agree with the values predicted by the proposed model.

It is important to note that even the experimental value for g was inferior to the proposed limit, the
value is remarkably close to 50 kJ/m3. Furthermore, several researches have insisted in considering g as
the area under the stress–strain curve up to ru ( 95% of rpc on the descending branch (Pyo et al., 2016;
Abell�an-Garc�ıa et al., 2021). Considering this criterion, the value of g obtained in the experimental value
would be 67.830 kJ/m3, value that satisfies the necessary level of ductility for earthquake resistant appli-
cations (Dogan & Krstulovic-Opara, 2003; Lavorato et al., 2017; Massicotte et al., 2013; Vasconez
et al., 1998).

Figure 16 depicts the multi-cracking phenomenon in the experimental verification.

9. Conclusions

In this paper, two accurate artificial neural network models were developed to predict tensile behaviour
of UHPFRC when using up to two different types of fibres as reinforcement. To avoid overfitting, k-fold
validation with five partitions was employed, thereby leading to higher confidence of the models when
predicting on new data. Focus was made in achieving the ductility for seismic retrofitting applications by
using a multi-objective simultaneous optimisation algorithm. From the obtained results of this research,
the following conclusions are drawn:

1. The proposed models based on a wide range of experimental and previous work data can be very
handy for forecasting the tensile behaviour of UHPFRC promptly. It could be helpful in the develop-
ing of UHFRPC for seismic retrofitting applications. This mathematical tool will considerably decrease
the effort, costs, and time to design an UHPFRC dosage for the necessary ductility (i.e. g�50 kJ/m3

Table 14. Forecasted responses by model versus experimental values.

g (kJ/m3)

Deviation (%)

epc (%)

Deviation (%)Experimental Model Experimental Model

45.177 50.448 11.667 0.458 0.424 7.424

Figure 16. Multi-cracking pattern in the experimental validation specimen gage.
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and epc�0.3% under direct tensile test) when dealing with locally available materials and fibres with-
out performing multiple trials.

2. The selected models for predicting the energy capacity absorption (g) and the strain corresponding
to the maximum post-cracking strength under direct tensile test (epc) were composed by three hid-
den layers each, with architectures of 34-67-54-57-1 and 34-63-24-52-1, respectively.

3. The results of the combined use of the performance metrics, which included RMSE, MAE, AE, E, RSR,
NMBE, R2, supplied an unbiased estimate which proved the adequacy of the proposed artificial
neural networks models for such a complex phenomenon like the tensile behaviour of UHPFRC.

4. The optimal blending of fibres for achieving the necessary properties for seismic retrofitting applica-
tions when using a previously optimised UPHC mixture was 0.34% of high-strength steel straight (lf/
df ¼65) fibres in addition to 1.36% of normal strength hooked end steel fibres (lf/df ¼80). Totalising
a total volume fibre fraction on 1.7%.

Finally, this report demonstrated that it is possible to achieve a UHPFRC with the necessary ductility
for seismic retrofitting applications when using low fibre content and an innovative optimized cementi-
tious matrix under sustainability criteria by incorporating green materials in partial replacement of
cement and silica fume.
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