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Abstract. Colombia is a country with a huge agricultural potential,
thanks to its size and geography diversity. Unfortunately, it is far from
using it efficiently: 65% of its farmland is either unused or underused
due to political problems. Furthermore, vast of Colombian agriculture is
characterized - when compared with other countries - by low levels of
productivity, due to the lack of good farming practices and technologies.

The new political framework created by the recently signed peace
agreement in this country opens new opportunities to increase its agri-
cultural vocation. However, a lot of work is still required in this country
to improve the synergy between academia, industry, agricultural experts,
and farmers towards improving productivity in this field.

Advances in smart-farming technologies such as Remote Sensing (RS),
Internet of Things (IoT), Big Data/Data Analytics and Geographic Infor-
mation Systems (GIS), bring a great opportunity to contribute to such
synergy. These technologies allow not only to collect and analyze data
directly from the crops in real time, but to extract new knowledge from
it. Furthermore, this new knowledge, combined with the knowledge of
local experts, could become the core of future technical assistance and
decision support systems tools for countries with a great variety of soils
and tropical floors such as Colombia.

Motivated by these issues, this paper proposes an extension to Things-
board, a popular open-source IoT platform. This extended version aims
to be the core of a cloud-based Smart Farming platform that will concen-
trate sensors, a decision support system, and a configuration of remotely
controlled and autonomous devices (e.g. water dispensers, rovers or
drones). The architecture of the platform is described in detail and then
showcased in a scenario with simulated sensors. In such scenario early
warnings of an important plant pathogen in Colombia are generated by
data analytics, and actions on third-party devices are dispatched in con-
sequence.
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1 Introduction

By 2050, a world population of nearly 9.1 billion people has been estimated,
which would require increasing overall food production by at least 70% (com-
pared with 2007 production statistics) [5]. Given this unsettling scenario, it is
not surprising that food security policies are among the main goals in a global
agenda. However, to achieve this Policies, the amount of soil devoted to agri-
culture should be incremented and be more efficient. A higher amount of areas
devoted to agriculture, with bad or outdated farming practices, lead not only to
low productivity rates but to the increase of other problems like water contam-
ination by excessive dosage of pesticides [7].

Colombia is a strategic case study for this problem. Despite of being a large
country of 114 Mha (twice as Spain), with 42 Mha suitable for agriculture, five
thermal floors, and a great diversity in terms of soil, geology, topography and
vegetation, it is increasingly supplying its food needs through imports (by 2016,
30% of the food consumed by its population in one year). These statistics are
explained by the fact that the country is using only an about of a third of
the available agricultural land (14 Mha out of 42 Mha), according to the Rural
Agricultural Planning Unit (UPRA, acronym in Spanish). In addition, most of
such agriculture is characterized by low levels of technology, due to almost 50-
years of internal conflict deterring investment in secluded farms.

However, the new political framework created by the recently signed peace
deals open new opportunities to increase the agriculture vocation of the country.
Indeed, the FAO has defined Colombia as one of the possible agricultural leaders
for the world, and a key actor in the fight against hunger and malnutrition.

This paper describes the initial results of a research project whose final goal
is to create a MaaS (Monitoring as a Service) platform that enables the synergy
between IoT technology, Data-Analytics, and experts in Colombian agricultural
species. This platform, which aims to be the core of future technologies for
Colombian agriculture, is expected to enable a knowledge-feedback process as
the one described below:

1. A set of soil sensors, distributed through several crops, transmits data (envi-
ronment and soil variables) to the MaaS platform.

2. The MaaS platform, based on the rules for pre-known and pre-configured
risks and threats, fires an alarm when the conditions are met.

3. When an alarm is fired, two additional actions could be performed: (1) a
static actuator (e.g. an irrigation sprinkler) is remotely activated, or (2) a
request for a precision-agriculture-task (e.g. applying a pesticide) is sent to
the control center of an autonomous robot fleet [6].

4. When an anomaly (still not a risk) is identified, the system could also request
(through the robot fleets control center) a data-gathering task, such as taking
multi-spectral pictures through a Drone or a Rover.

5. An expert, as a daily basis routine, or motivated by the anomaly detec-
tion, checks all the data (sensor readings, pictures, crop’s relative localization
and history). The expert, based on such information, and further analysis -if
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required- could register a spatial-temporal classification Tag (e.g. the name
of a disease).

6. Once enough spatial-temporal Tags have been registered through the normal
operation of the platform, a classifier (e.g. to identify the disease) is trained.
Such classifier is then included as a component into the MaaS system so that
future readings would allow the automatic detection of the newly identified
disease.

The platform is built upon Thingsboard [19], a popular open-source IoT soft-
ware for device management, data collection, processing and visualization. The
extensions proposed in this paper for the Thingsboard architecture, so far, will
include the functional requirements of the steps 1 through 4 of the scenario
described above. As a study case, a simulated scenario for the early detection
of the Phytophthora infestans [8] pathogen is described, which makes use of the
following features provided by the new architecture:

– Extended data model with sensor/crops/farms detail level, and concepts from
The International Center for Tropical Agriculture guidelines [2].

– API for accessing the extended data model from within the rules, and stor-
ing/accessing intermediate states of it.

– Geo-referenced data indexing and GIS capabilities.
– High-resolution photos storage and indexing.

The rest of the paper is organized as follows. Section 2 reviews related work.
Section 3 describes the proposed architecture built upon the Thingsboard plat-
form. Section 4 describes the problem of the Phytophthora infestans, how its
early detection is addressed with the proposed platform, and the outcome of
preliminary experiments. Section 5 concludes the paper.

2 Related Work

It is not surprising that the vast amount of research related to IoT and BigData
applications in different fields (Ahmed et al. did a general survey in [1]), given
the exponential growth in the data collected around the world (it has been said
that up to 90% of the world’s data has been produced after 2011 [12]). When
it comes to applications in agriculture, and given all the factors that affects its
productivity such as climate, soil, pests, diseases, and weather [15] there are two
main approaches in previous work: (1) how to gather and transmit data from the
crop and (2) how to process data and perform actions based on such processing
outcomes. For the first approach, there is a complete survey of communications-
related topics on wireless sensor network (WSN), such as communication pro-
tocols and energy efficiency in [11]. For the second approach, Lasso et al. [13]
proposed the AgroCloud platform [14], which aims to the prevention of coffee
rust. Although this platform generates early warnings based on data collected by
third-party weather data providers, including air temperature, relative humidity,
wind speed and direction, rain and solar radiation, it is not open for processing
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data transmitted directly from crop sensors. Verdouw et al. [21], proposed an
analysis and decision-making model for a supply chain management in Dutch
floriculture industry. Peisker et al. [17], describes a data-analysis model created
by John Deere Company to keep trace of tractors’ performance using big data
and data collected from devices in the field. Although not specifically intended for
agricultural applications, for this approach there are other works worth mention-
ing given its application of real-time data processing of environmental sensors.
Bashir et al. [3] presented a framework for the analysis of large amounts of data
from smart buildings, including oxygen levels, smoke/hazardous gases, luminos-
ity, among others. Sarangi et al. [18] proposed framework for an agricultural
advisory call center; here the farmer sends images of plants with crop diseases
and the system makes the diagnosis and indicates the appropriate management
of the disease. This framework does not allow real-time data processing, nor the
detection of diseases from the information of the sensors.

One of the closest works to the proposal in this paper, when it comes to long-
term objectives, is FarmBeats [20], a platform that covers both approaches. On
the one hand, FarmBeats addressed the problem of how to transmit efficiently
(in terms of energy and speed) data from sensors in regions with low coverage
of communications infrastructure. In contrast, it proposed an architecture that
aims to local data processing, integration with drones control (to take pictures)
and cloud-based data persistence for centralized data-analytics. There are, how-
ever, two main differences with our proposal:

– FarmBeats is a complete, full-fledged technology, with a fixed set of hardware
and software components. This platform, on the other hand, has a narrower
scope as an extensible software platform, where new devices, new third-party
systems, and, more importantly, new data-analytics strategies for early phe-
nomenon detection (e.g. diseases) could be integrated with ease. Moreover,
this extension for Thingsboard is expected to be accepted (pulled) by the
community, and become the core of advanced smart-farming/IoT solutions
with the integration of custom devices (sensors, actuators, and autonomous
robots).

– FarmBeats processes data at two different places: at local PC, for sensor
monitoring and decision making, and in the cloud, to perform cross-data
analytics with the information provided by all the farms in conjunction. The
architecture of our proposal, on the other hand, aims to be a centralized,
cloud-based smart farming solution that performs data analytics and decision
taking in one place. Thus, the scope of a decision-making tasks in our platform
will not be limited to the local context of the event.

3 Proposed Extension Points

This section presents the main contribution of this paper. The key idea is to
extend the Thingsboard platform from both the functional and architectonic
point of views, in order to make it suitable for the application scenarios described
in Sect. 1.
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3.1 Thingsboard - Base Architecture and Data Model

The base architecture of Thingsboard aims to a high scalability through the dis-
tribution of its workload across multiple processing nodes without a single point
of failure. Such workload distribution is achieved with the actors’ model proposed
by Hewitt et al. [9] and its implementation through the Akka platform [4].

Thingsboard was designed not only with scalability in mind, but also for
front-end customization. On the one hand, its Widgets model enables the inte-
gration of new UI modules (for data visualization, alarms management, etc.). On
the other hand, the Thingsboard Rule Engine allows to process messages from
devices and trigger actions through plugins. One of the most useful plugins is the
one provided to enable interoperability with Apache Spark, an analytics engine
for large-scale data processing. Although a detailed description of Thingsboard
architecture (at actors-level) is described on its official website1, Fig. 1 presents
an schema of the higher level components (and their interactions) which would
be involved in a conventional IoT application case study.

As described in such figure, a conventional Thingsboard configuration is lim-
ited to the analysis of data collected from sensors in real time. This, as mentioned
before, is a big limitation for applications scenarios such as the early detection of
diseases in crops, whose rules might require access not only to real-time sensor
readings, but to crop details and its historical information. Furthermore, if an
advanced action for such rule is expected (e.g. an autonomous drone action),
geo-referenced information would be required as well.

In order to enable adaptability when it comes to scenarios configuration,
Thingsboard defines in its data and widget models the Asset entity. An Asset is
an abstract IoT entity which could be related to other assets and devices (e.g.
sensors) and therefore allowing a hierarchical composition of such devices. For
example, a scenario of a farm with two crops, each one with two sensors, could
be defined (directly through Thingsboard user interface) as a root asset (for the
farm), two child assets (for the crops), each one with two devices. Furthermore,
UI-widgets and dashboards for a hierarchical model as the aforementioned could
be easily configured.

3.2 Proposed Extensions

Extended Data Model and Architecture. Although the Asset abstraction
makes Thingsboard a highly flexible platform for most IoT application scenarios,
it isn’t enough to represent the information which is expected to be captured
and processed (by data analytics techniques) in our scenarios. Our IoT/data-
analytics application goals would require not only a devices hierarchy, but details
such as crop history, application of good agricultural practices, geo-referenced
information and pictures, among others, as described in Fig. 2.

1 https://thingsboard.io/docs/reference/architecture/.

https://thingsboard.io/docs/reference/architecture/
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Fig. 1. (1) Sensors transmit data stream (through an Internet-gateway) using one of
the protocols currently supported: MQTT, CoAP or HTTP. (2) Thingsboard backend
(based on Akka actors, not detailed in the figure), transfer the data stream to all the
relevant rules. (3) In this scenario, the rule is configured to use the Spark-plugin, so
that the stream is transmitted to a Spark Task. (4) As a response, the spark task
re-publishes new types of events, such as alarms, or transformed data, in order to be
presented in the front-end (5).

Based on the data model described above, and the requirements of our study
case (the early detection of Phytophthora infestans), the extended architecture
described in Fig. 3 was proposed. A first version of the architecture was imple-
mented as a fork of the official Thingsboard distribution https://github.com/
LIS-ECI/thingsboard, considering the following elements:

– An extension to the default data model (implemented in Cassandra, a NoSQL
time-series database) that integrates the concepts of Farm, Land Lot, Crop,
and the ‘good practices’ check list proposed by the International Federation
of Organic Agriculture Movements [16].

https://github.com/LIS-ECI/thingsboard
https://github.com/LIS-ECI/thingsboard
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Fig. 2. Extended Thingsboard UI, including new data hierarchy and graphical repre-
sentation of geo-referenced data.

– An integration of complementary database engines, with a distributed trans-
actions mechanism and an access API: MongoDB for geo-referenced indexing
of sensors, crops and farms (Location entity in Fig. 2); MongoDB+GridFS
for geo-referenced pictures; and REDIS for keeping temporary-volatile data,
such as intermediate states of a rule evaluation.

– An API for the registration of third-party platforms the platform is going to
interact with.

– A Framework within Spark for the definition of new rules and actions for a
potential phenomenon/disease in the crops monitored by the platform. Such
framework allows the definition of rules with access to the extended and
complementary data model, and the definition of actions with access to the
third-party platforms API.

Extended User Stories. Given the hierarchies of the proposed extended data
model, and the guidance of potential Stakeholders, new User Stories2 and Wire-
frames3 were defined, including the registration of sensors and the configura-
tion of dashboards. Figures 4 and 5 show screenshots of two of the user stories
developed so far using the Widgets model aforementioned. Figure 4 shows how
geo-referenced details are now used to show elements such as the physical dis-
tribution of the crops within the farm. Figure 5, on the other hand, shows how
the new User Stories allow the farmer to keep tracking of the good practices in a
crop over the time [16]. Such information, as mentioned before, could therefore
be accessed by the rules registered in Spark.

2 https://trello.com/b/V6wD9VEX/thingsboard-extensi%C3%B3n.
3 https://ninjamock.com/s/9W6WWRx.

https://trello.com/b/V6wD9VEX/thingsboard-extensi%C3%B3n
https://ninjamock.com/s/9W6WWRx
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Fig. 3. (1) Sensors transmit data stream (through an Internet-gateway) using one
of the protocols currently supported: MQTT, CoAP or HTTP. (2 & 3) Thingsboard
backend transfer the data stream to all the relevant rules, in this case, a rule with the
Spark-plugin enabled. (3) A Spark Task configured by default to handle all the read-
ings, delegates its evaluation to a series ‘Evaluation/Action’ components (previously
injected to such task). (4) The ‘Evaluation/Action’ component, based on the sensor
readings, crop details, will generate warnings through conventional Thingsboard alarm
mechanism. (6) Such ‘Evaluation/Action’ components would be able to fire actions in
third-party systems (e.g. an autonomous drone) providing them with all the details
required for their mission. In the figure, the platform fires an autonomous drone (7)
that will take multi-spectral pictures of the alarm zone, for further analysis.
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Fig. 4. Extended Thingsboard UI, including new data hierarchy and graphical repre-
sentation of geo-referenced data.

Fig. 5. Extended Thingsboard UI, including new data hierarchy and graphical repre-
sentation of geo-referenced data.

4 Proof of Concept

This section presents a proof of concept of the architecture extension proposed
to the Thingsboard platform in Sect. 3. A simulated scenario for the detection
of Phytophthora infestans conidia pest was chosen for the experiments. The
integration of previous works in control architectures for autonomous robots [6]
is expected for future field tests. However, for the testing purposes of this paper
(with a software architecture scope), a simulated drone fleet controller (which
simply echoes all the received instructions) was integrated as a means to verify
the outcome of the proposed scenario. As an outcome of the early detection
of the Phytophthora infestans, not only the generation of alarms through the
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platform is expected, but the activation, with the right set of instructions, of the
(simulated) drone fleet controller.

4.1 Early Detection of Phytophthora Infestans

There are different models, documented in literature, for the prediction of sporu-
lation of Phytophthora infestans conidia pests. This prediction, as a means of
early detection, allows applying a timely phytosanitary treatment for the crop
in order to mitigate the development of the late blight disease. As the reader
could see in this figure, the consequences of the propagation of this disease is
catastrophic to the crop.

One of the prediction models is the Smith Period Model [10], where the
minimum temperature and relative humidity are data considered. The authors of
this model proposed that a Smith Period occurs when the minimum temperature
is higher than 10 ◦C and the relative humidity is greater than 90% for 11 h, for 2
consecutive days. When two Smith Periods occur it is necessary to perform the
first application of a fungicide to mitigate the sporulation risk before the disease
appears in the crop. If the temperature and humidity criteria are met only on
the first day, and on the second day they reach 10 h of relative humidity greater
than 90%, it indicates that only one Smith Periods has taken place.

As mentioned before, the proposed extension for the Thingsboard platform,
makes possible the integration of a model like the former as a software compo-
nent. For evaluation purposes, the model was implemented as a sliding-window
algorithm, depicted in Fig. 6. Such figure, on one hand, shows the importance
of the session-persistence feature proposed for the architecture. The details pro-
vided in Algorithm1 show, on the other hand, how the framework within the
Spark model enables access to crop’s details, including history and geo-referenced
information. Furthermore, as shown in Algorithm2, the framework also enables
the definition of actions to be performed when there is an alert confirmation,
including the interaction with third-party platforms (in this case, launch a hypo-
thetical drone and notify to tenants of nearby crops).

4.2 Experiment Setup and Results

For our experiments, 25 sensing devices, associated with 5 different crops were
simulated through Gatling tool, an open source Load and Performance profiler
tool. Two of such sensors were fixed to produce data within the range of a series
of Smith Periods. For testing purposes, time was scaled by a factor of 86.400 to
60 s (1 day=1 min). During the execution of the simulation, the Dashboard of
the crop with the fixed sensors started as shown in Fig. 7(a), and few minutes
later, generated an alarm (as expected), as shown in Figure 7(b). Moreover, in
the same simulation scenario, the alarm is sent in real time to the simulated
drone fleet controller with the geographic localization of the field, as shown in
Fig. 8. For this setup, the servers where distributed in three virtual machines
with 4 GB of RAM, running over an Intel (R) Xeon(R) E5620-2.4 GHz server.
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Algorithm 1. Phytophthora-infestans-risk-evaluation
1: procedure risk-evaluation(cropid, humidityData, temperatureData)

Input:
– cropid: crop’s unique identifier.
– humidityData: average humidity since last reading, provided by a sensor.
– temperatureData: average temperature since last reading, provided by a

sensor.

2: cropType ← dataapi.getCropType(cropid)
3: riskDetected ← False
4: conditionsFulfilled ← ” − ”
5: now ← CurrentT ime
6: if cropType is ’potatoe’ and humidityData and temperatureData satisfy the

condition then
7: conditionsFulfilled ← ” + ”

8: if It’s the 1st time receiving data then
9: window ← conditionsFulfilled

10: cacheapi.saveF irstT ime(cropid, now)
11: else if Eleven hours have already elapsed then
12: window ← cacheapi.getWindow(cropid)
13: window.removeF irstElement()
14: window+ = conditionsFulfilled
15: if the amount of ’+’ in window is high then
16: if It’s the 1st day and Not exist a Smith period then
17: cacheapi.saveSmithPeriod(cropid, True)
18: else if It’s the 2nd day then
19: riskDetected ← True
20: window ← ””
21: cacheapi.saveF irstT ime(cropid, now)
22: cacheapi.saveSmithPeriod(cropid, False)

23: else
24: window+ = conditionsFulfilled

25: if 1st day finished then
26: if Not exist a Smith Period then
27: cacheapi.saveF irstT ime(cropid, now)

28: window ← ””
29: cacheapi.cacheSmithPeriod(cropid, False)

30: if 2nd day finished then
31: cacheapi.saveF irstT ime(cropid, now)
32: window ← ””
33: cacheapi.cacheSmithPeriod(cropid, False)

34: cacheapi.saveWindow(icrop, window)
35: return riskDetected



248 H. Cadavid et al.

Algorithm 2. Phytophthora-infestans-actions
1: procedure Phytophthora infestans actions(cropid)

2: cropToken ← dataApi.getThingsboardToken(cropid)

3: commApi.sendAlertToThingsboard(cropToken)

4: cropCoordinates ← geoApi.getParcelCoordinates(cropid)

5: neighborsCrops ← geoApi.getCropsInARadiud(cropCoordinates, radius)

6: for crop in neighborsCrops do

7: apiData.getOwnerData(crop).sendMail(”RiskOfPhytophthorainfestans”)

8: sensorLocation ← geoapi.getSensorLocation(idParcel)

9: commApi.sentToThirdParty(′droneController′,′ applyFungicide′, sensorLocation)

Fig. 6. Sliding Window approach for the evaluation of Phytophthora infestans conidia
pests based on Smith Periods Model. The platform keeps tracking (in a fixed window)
of the positive or negative readings for risk conditions over the last 11 h. When a
Window is full of positive readings (Scenario 1), the count of Smith Periods in the
48-hour interval become one. With this approach, long periods of positive readings,
with intermediate intervals of negative readings (Scenario 2) could be easily discarded
as Smith Periods.

4.3 Performance Evaluation

In order to measure the overhead of the architecture extensions, the same load
test were performed over a basic configuration of Thingsboard, with a conven-
tional set of alarms (based on simple value intervals). The outcomes provided
by Gatling’s dashboard after running the same load test on both configurations,
were nearly identical. However, this could be explained given the asynchronous
nature of the platform’s entry point: an MQTT server. For this reason, all the
execution times of the Algorithm 1 were measured over the experiment. As can
be seen in Fig. 9, the overhead of the data-access API and third-party systems
interaction is in most cases about 0.5 and 1.5 s, with few outlier peaks. Given the
low frequency of the data transmitted in most IoT applications, this overhead
could be considered negligible.
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Fig. 7. Default dashboard for the simulated environment, including temperature and
humidity sensors, before (a) and after (b) the warning generated by the Phytophthora
infestans evaluation rule.

Fig. 8. Screenshot of the simulated Drone-Fleet controller when a message is received
after firing the Phytophthora infestans alarm.

Fig. 9. Differences in milliseconds between the start and end time of each execution of
Algorithm 1
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5 Concluding Remarks

FAO considers Colombia an important player in the security food policy, but
nowadays it does not have enough agricultural technologies in its production
processes. In the last five decades, plowable land in Colombia has been disputed
by internal war participants and recently by criminal organizations to produce
narcotics. Within the framework of the peace agreement signed in 2016, a new
perspective for agricultural production is rising for land owners and farmers in
terms of crop substitution and the increase of land use as crop fields.

One of the most important tasks for agriculture labors is increasing the uses
of modern techniques of production. However, the lack of reliable data about spe-
cific varieties of plants in Colombia is a big gap to be filled. With this panorama,
the incursion in new technologies like IoT and Analytics is mandatory were the
country to want to increase its food exports to the rest of the world.

In this work, the authors have presented an extension of a popular open
source platform called Thingsboard, that is used to collect and manage data pro-
vided by sensors. This extension aims to be the core of a future cloud-based
MaaS (Monitoring as a Service) tailored to the needs of the Colombian farming
industry. The architecture of the proposed extension has been validated and illus-
trated with a real-life scenario, where the risk of an extremely dangerous potato
disease is identified in real time and a simulated controller of autonomous drones
is activated in response. Future work will integrate a module for data exploration
(time series, pictures, etc.) and spatial-temporal tagging by experts. In the long
term, once enough data has been collected and tagged, new classification models
for other diseases would be trained (with such data) and integrated into the
platform.
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12. Poole, J., Rae, B., González, L., Hsu, Y., Rutherford, I.: A world that counts: mobil-
ising the data revolution for sustainable development. Technical report, Indepen-
dent Expert Advisory Group on a Data Revolution for Sustainable Development,
November 2014

13. Lasso, E., Corrales, J.C.: Towards an alert system for coffee diseases and pests in
a smart farming approach based on semi-supervised learning and graph similarity.
In: Angelov, P., Iglesias, J.A., Corrales, J.C. (eds.) AACC’17 2017. AISC, vol. 687,
pp. 111–123. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-70187-5 9

14. Lasso, E., Valencia, O., Corrales, D.C., López, I.D., Figueroa, A., Corrales, J.C.:
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