
An Event Based programming language for
Runtime Monitoring and Dynamic

Instrumentation of Concurrent and Distributed
Programs

Luis Daniel Benavides1, David Durán2, Camilo Pimienta2, and Hugo Arboleda2

1 Escuela Colombiana de Ingenieŕıa Julio Garavito
luis.benavides@escuelaing.edu.co

2 Universidad Icesi, i2T Research Group, Cali, Colombia
{dduran,cfpimienta,hfarboleda}@icesi.edu.co

Abstract. In this paper we introduce EKETAL, an event based pro-
gramming language for runtime monitoring and dynamic instrumenta-
tion of distributed and concurrent applications. We argue that devel-
opment, maintenance and evolution of distributed applications can be
greatly improved by such a language. To support this claim, we first
present the programming model and corresponding compiler implemen-
tation (compiler generates distributed AspectJ’s code), then we present
micro-benchmarks of the runtime infrastructure and a qualitative study
of the usage of the language for debugging and testing liveness and
datarace problems found in BigData middleware.

Keywords: Debugging, testing, event patterns, runtime monitoring, event
based languages, distributed applications, liveness errors, datarace error.

1 Introduction

The advent of new technologies such as multi-core processors, virtualization,
platform as a service clouds, and mobile devices, has changed the requirements
of distributed applications. Multi-tenancy, resiliency, responsiveness, scalability,
and elasticity, are quality properties that must hold on applications deployed over
thousands of servers and millions of devices with disparate middleware stacks.
The development, maintenance and evolution of such applications has forced
the resurgence of simpler programming models for distribution and concurrency.
Patterns for asynchronous remote calls, message driven communications, and
event oriented architectures have emerged as programming paradigms for such
heterogeneous and complex environment.

Consider for example the development of highly scalable and transactional
services with non-blocking operations, in order to attend several millions of users
(e.g., Twitter or Whatsapp). In those cases, it has been documented the usage of
technologies such as Scala and the Java Virtual Machine (JVM), to attend Twit-
ter back-end [8], and the usage of Erlang to implement the WhatsApp messaging

2

infrastructure [11]. These two languages, Scala and erlang, provide constructors
for asynchronous messaging, futures, functional programming, actors and other
abstractions related to patterns of asynchronous messaging and event oriented
architectures. Even tough, the examples mentioned above support simpler pro-
gramming models, there is still a conceptual mismatch between the abstractions
used to implement the distributed applications, and the applications used to
support their development and maintenance.

Contributions. In this paper we present an event based programing model
with distributed and concurrent abstractions that facilitates runtime monitor-
ing of heterogeneous distributed applications. Concretely, we present three con-
tributions. First, we introduce EKETAL, an event based programming model
and language for runtime monitoring and dynamic instrumentation of programs
adopting ideas proposed in [14, 2]. The model use actor-like constructs to mon-
itor and modify the execution of distributed and concurrent programs. It uses
Deterministic Finite automaton constructs combined with a predicate language
to support detection of complex event sequences, it supports causality, order-
ing of messages as well as futures and other mechanisms for synchronization.
Second, we present the implementation of a compiler to support such program-
ming model. The compiler translates the EKETAL code into AspectJ code with
support for distribution using groups communication. Finally, we show perfor-
mance and usage evaluation of these techniques in order to test and debug ac-
tual liveness and datarace problems found in industrial middleware and big data
frameworks.

The paper is organized as follows. First, in Section 2, we present the state
of the art. Second, in Section 3, we introduce an event model and define an
event based programming language for runtime monitoring and instrumenta-
tion. Third, In Section 4, we present the implementation of of a compiler for
the proposed language. In Section 5, we validate our proposal studying con-
crete examples of dataraces and liveness errors in industrial level concurrent
and distributed applications (e.g., Hadoop and JBossCache[21]). In section 6,
we present the conclusions and discuss future work.

2 State-of-the-art

In this section we first discuss the state of the art of event based frameworks
and languages by means of a taxonomy of those approaches. Then, we present
work related to run-time monitoring and runtime verification, particularly those
using aspect oriented techniques.

2.1 Event oriented languages and frameworks

To present the state-of-the-art we start from the classification of event-oriented
programming languages proposed in [12]. This classification considers three char-
acteristics: the amount of allowed repetitions of an event, the amount of events

3

that a pattern can correlate, and the amount of allowed events in predicates. Us-
ing this categorization, at the base we found the observer pattern with one event
repetition, one event in the pattern, and zero event predicates. At the top of the
classification, we found languages such as EventJava [9] and database systems
such as Cayuga [7] with multiple event repetitions, multiple correlated events,
and multiple events in predicates. Although these systems can detect complex
events, they do not directly support the synchronization and causal ordering of
events. We will show that our approach provides a richer predicate language
with explicit constructs to support concepts from distributed and concurrent
programming.

A different set of proposals has used formal methods and formal calculi to
support event models. Languages derived from the join calculus [10], such as
Polyphonic C#, which [3] support one repetition per event, several events in the
pattern, and no predicate. They support asynchronous and synchronous calls
to reactions (chords in Polyphonic C#), and a fair finite state machine can be
encoded. Unlike EKETAL, neither of these approaches offer explicit support for
distribution and pattern matching in a distributed setting, nor support causal
relations between events. EVENT-B [1] proposes a full methodology to develop
software based on formal specification and a formal language based on set theory.
This language offers a very general framework for modeling event-based software
and has been validated by implementations of the language [4] and of code
generators for mainstream languages such as Java [19]. The EVENT-B proposed
methodology provides safety properties for concurrency problems similar to those
discussed here. However, it lacks explicit constructs to model localization and
does not support the explicit ordering of messages.

Other types of frameworks such as Thread-Sanitizer [20] allow the detection
of data races in non-distributed concurrent systems and are of great help to
professional programmers. However, they do not allow the definition of sequences
by a user but instead focus on common problems that cause dataraces in only
one computer.

2.2 Runtime Monitoring and Aspect Oriented Programming

We have also investigated the applicability of concepts found in aspect oriented
languages to create runtime monitoring frameworks. AWED [2] is a language
with explicit support for automata, guards in the transitions of these automata,
predicates for the detection of complex patterns over traces of execution and
synchronization mechanisms. Moreover, AWED addresses the debugging and
testing of deadlock errors. The research presented here extends this study by
analyzing a more complete set of concurrent and distributed errors (liveness
and data race errors) and proposing a more general event model supported by
an event-based language. Other researchers have explored the applicability of
similar techniques to create runtime verification tools, e.g., see [6].

The concept of Monitoring Oriented Programming (MOP) was introduced
in [5] in order to generalize and formalize a set of runtime monitoring tools that
used a formal language to express properties, that a base program must hold,

4

and reactions when those properties where validated or invalidated. This work
has been extended to support multithreaded programs [16]. Our work follows
this general model, extending further these ideas, incorporating event oriented
concepts as programming paradigm, and providing explicit constructs to reason
and predicate about distributed applications. Other works have studied general
models for implementation and expressiveness of this kind of frameworks. In [22],
authors studied ways to implement method slots, a construct that encompasses
the implementation of methods (from the object-oriented paradigm), events, and
advices (a method like construct from the aspect-oriented paradigm). In [15],
the authors address language expressiveness power and discuss ways to achieve
Turing completeness in different components of the language. They divide the
language into three essential components, i.e., pattern language, matching pro-
cess, and advice mechanism (reaction mechanism), and study how to improve
expressiveness. These are more general models than EKETAL, but the actual
implementation of such models using abstractions for distribution and concur-
rency remains a matter of future work.

3 A general event based language for detection and
manipulation of Complex Event Patterns

3.1 Event model

The language was designed to monitor and modify the execution of previously
constructed distributed applications comprising multiple nodes connected by a
network. Each node executes software components, and these components inter-
act through messages. In such applications we are interested in detecting events
and patterns of events. In this section we define the main components of the
event model: atomic events, messages, event patterns, and pattern detection
using DFA.

In this investigation, for simplicity, we will consider only method calls as
atomic events. Here the call does not entail execution, the execution of a method
is other type of event. Atomic events occur in specific machines within distributed
applications, and event detection occurs immediately in that machine. To allow
an event to be detected by remote machines in a network, a message must be
sent by the machine in which the event occurred to the other machines in the
distributed application. The message does not arrive immediately; it may be
delayed owing to network and infrastructure latency. The event model assumes
that all atomic events generate and broadcast a message; however, we will show
that in the implementation only messages concerning events that are of interest
for event constructs are broadcast. Messages will transport context information
about the originating event. Finally, the order of messages is not granted and
depending on network conditions different nodes could see messages in different
orders.

Patterns of events are sequences of atomic events that can be described us-
ing a Deterministic Finite Automaton (DFA). In the simplest version of the

5

automaton that we will consider, each transition corresponds to the detection
of a particular atomic event. Although the only atomic event that we consider
is the call to a method, we can augment the expressive power of the automaton
through guard predicates. A guard predicate is a Boolean expression over the
context information of an event. Once a specific sequence of events is detected,
concrete actions may be executed either in parallel with, before, after, or during
any step of an event pattern. Programs written in our language can therefore
alter the behavior of the base application.

3.2 Event Classes, instantiation, and synchronous/asynchronous
executions of reactions

Before describing the concrete syntax of the language, we introduce the concept
of Event Classes. These are syntactical units where the automaton to detect
event patterns and the reactions to those event patterns are coded. Once an
event class is defined, at runtime, it will generate an unique instance of the class
on each machine participating in the distributed application (i.e., the default
instantiation policy for event classes is Singleton). Such an instance will have
embedded one instance of the automaton and will detect events as they arrive
at the host where the monitor is deployed. By default, reactions occur asyn-
chronously; thus, each time an event occurs, the message containing the event
information will be multicast, and the originating thread will continue to the
next instruction in the program. However, a programmer of event classes may
decide to process events synchronously, thus making the originating thread to
wait for the result of the reaction.

3.3 Syntax and language design

The main abstraction of the language is the denoted event class, which defines
objects that monitor the occurrence of event patterns in a distributed application
and react accordingly. In the following section, we describe our language in the
Extended Backus-Naur Form shown in Figure 1.

3.4 Atomic events

In EKETAL the minimal conceptual units are the events. The events that can be
manipulated with EKETAL are method calls in a Java application. To manipu-
late these events and react to them, the language allows them to be intercepted
using an event definition. The events are defined inside event classes. Each event
definition is started with the keyword event, followed by an identifier EId and a
list of parameters. Next an event predicate is added, to identify events that are
captured by this event definition (see the non-terminal EvDcl).

6

// Event class
Ec ::= eventclass Id ’{’ {Decl} ’}’
Decl ::= JVarD | EvDecl | Aut | Rc | MSig
// Atomic event
EvDcl ::= event EId({Par}):Ep
// Event predicates
Ep ::= call(ESig) | EId({Par})

| host(Group) | on(Group[, Select])
| causal({Ep}) | args({Arg})
| eq(JExp, JExp) | if(JExp)
| Ep ‖ Ep | Ep && Ep | !Ep

Group ::= { Hosts }
Hosts ::= localhost | eventhost | ”Ip:Port”

| GroupId
GroupId ::= String
Select ::= JClass
// Complex events: Automata definition
Aut ::= automaton Id({Par})’{’{Step}’}’
Step ::= [StateType] Id : TDef
TDef ::= Ep [→Id] | TDef ‖ TDef
StateType ::= start | end

// Reactions
Rc ::= [syncex] reaction Id Pos [Id .]Id({Par}) ’{’ {Body} ’}’
Pos ::= before | around | after

Body ::= JStmt | addGroup(Group) | removeGroup(Group)
// Standard rules (intensionally defined)
MSig , FSig , ESig ::= // method, field signatures (AspectJ-style)
Arg ,Par ::= // argument, parameter expressions (AspectJ-style)

Fig. 1: EKETAL language

3.5 Event predicates and causality

This language supports event-oriented programming in a distributed context,
where a predicate can monitor events in different hosts. The grammar shown in
Figure 1 gives the essential elements of the definitions of predicates in the EKE-
TAL language. Predicates can be composed by a terminal call (ESig), which
indicates interest in all events that are a call to the set of methods determined by
the Esig. Esig is a non-terminal that represents the signatures of the methods
using a syntax similar to that proposed in AspectJ [14]. host(Group) is a termi-
nal that defines the group of hosts where an event originated from, i.e, where the
call occurred. on(Group) defines the group of hosts in which reactions are going
to be executed. causal({Ep}) creates a predicate that is true if: Ep is true and
the event that triggers the evaluation of the predicate is causally related with
the last event that caused the atomata to change its state. Note that causality
relation is only valid in the context of an event pattern (sequence of events)
defined by a DFA. If the event is the first to be evaluated in the automaton, the
evaluation of causality is always true. args({Arg}) defines a group of calls to

7

methods with a parameter signature specified by the non-terminal Arg, which is
a parameter expression as those proposed in AspectJ.

eq(JExp, JExp) makes an equivalence comparison using Java expressions.
if(JExp) in the same manner as the conditional if in Java. Group defines a
group of hosts. The language allows the following terms to be used: localhost
(the location that hosts the object that monitors events), eventhost (the host
where an event is executed), Ip:port (a specific host), GroupId, to refers to
groups. Groups can also be referenced by their name, and named groups are
dynamically managed within a reaction by adding and removing hosts. The Ep

predicates can be combined using logical operators such negation, conjunction,
and disjunction.

3.6 Complex sequences of events and reactions

The language models complex sequences of events through representation of a
deterministic finite automaton with guards. The automaton Aut has a name Id

and a list of parameters MSig that follow the same conventions as a method
signature in Java. The automaton comprises a set of states with respective tran-
sitions (Step), and each state has an id tag and may have an event type that
indicates whether it is in the initial or final state (start | end). It, also defines
one or more transitions linked together by the terminal ||. Each transition de-
fines a named atomic event or a predicate of events, as well as the destination
state.

Reactions are activated when a transition’s predicate is satisfied. A reaction
(non-terminal symbol Rc) is defined as follows: the reserved word reaction is
used; followed by an identifier for the reaction Id; a position Pos that indicates
if the reaction will occur before, after or instead of an event; an event indicator
or the state of a machine in which it will react; and a body Body built with
Java declarations. By default, a reaction is executed in a asynchronous manner,
which means that the application does not wait until the reaction is completed
to return to its original behavior or to execute the next reaction. A programmer
can also select a synchronous reaction by marking the reaction with the reserved
word syncex.

4 Compiler implementation

To design and implement the compiler we decided to use AspectJ’s infrastructure
to address the problem of program instrumentation 3. So, our compiler will
generate AspectJ’s code augmented with code to support events, distribution,
concurrency and automata. Then it will use AspectJ’s weaver to weave the event
class definitions with the base application code, generating bytecode that is fully
compatible with the Java Virtual Machine.

3 Note for reviewers: The code of the compiler is available at:
https://github.com/unicesi/eketal.

8

eKetal Virtual Machine

EKETAL Core Library

JGroups extension for KETAL API
(Extended protocol stack to support Causality and Futures)

Automata FacadeAbstract Event Framework Automata
engine

Java Virtual Machine

Instrumented distributed application =
Base applications weaved with eKetal event classes

Abstract distribution and concurrency API

Consumes Uses

Uses

Communication with other EVMs

Fig. 2: Architecture of the kernel event-based library

4.1 Runtime Architecture of EKETAL Virtual Machine

The EKETAL Virtual Machine (EVM) operates by a very simple metaphor.
First, an event is detected in the base application (the application being in-
strumented). Then the event is encapsulated in a message and augmented with
context information. Then, the event is multicast to all nodes in a distributed
application. Finally, the events are consumed and processed by an EVM instance
deployed on each node.

Figure 2 presents a layered architecture for the EVM. The top layer cor-
responds to the application layer and contains the base application weaved
with the event classes that define the monitoring and dynamic instrumenta-
tion intents of the programmer. Te second layer presents the EKETAL core li-
brary. The main components of the library are: the Abstract Event Framework,
Automata Facade, Automata Engine, and Distribution Layer. The Abstract
Event Framework defines interfaces to allow developers to create atomic events
that are consumable by the automata defined. The Automata Facade provides
abstractions to manipulate directly the definition and execution of an automa-
ton. The Automata Engine is in charge of processing actions over the automata,
according to the automata definition. Currently, we are using the automata li-
brary provide by Anders Møller et al. [18] as our automata engine.

The Distribution Layer provides the main abstractions to distribute event
messages and listen to event messages sent by other nodes. The layer provides
abstractions and interfaces for a distributed architecture (i.e., with no centralized
component). The current implementation of the transport layer is based on group
communication using JGroups [13]. To handle the causality predicates and causal
ordering of messages (see the discussion of vector clocks and causality in [17]),
we have developed two protocols that are configurable on the JGroups protocol

9

stack. Finally the Java virtual machine supports the implementation of all the
components of the EVM.

4.2 Compiler Architecture

The EKETAL’s compiler is constructed using the XText framework. From the
grammar, the XText framework generates the parser, the linker, the type checker
and the compiler. The tool also generates an editor for the eclipse platform. The
generated infrastructure was extended with customized code generators in order
to create AspectJ code, and the event, automata, and distribution infrastructure.

In order to generate bytecode compatible with the JVM the compiler of EKE-
TAL generates AspectJ code and then uses the AspectJ’s weaver. The EKETAL’s
compiler reads an EKETAL source code and generates AspectJ code. Then, the
AspectJ weaver takes the generated code and the base application (the aplication
to be instrumented) and weaves them together. The process output is bytecode
for the Java Virtual Machine (JVM). Using AspectJ’s infrastructure to leverage
EKETAL compiler allow us to provide dynamic weaving, thus, avoiding the need
of having the source code of the application to be instrumented.

4.3 Atomic event detection and message broadcasting

When implementing the compiler we need to take care of two problems. The first
problem is how to detect, on the base application, the specific atomic events we
are interested in. The second problem is how to distribute and manipulate the
events in order to match the event patterns we are interested in. To solve the
first problem we decide to use AspectJ’s pointcut like constructs, thus EKETAL’s
inherits part of its syntax for event predicates from AspectJ’s pointcut syntax.
However, we have to take special care with the host, on and causal predicates.
The host construct predicates about the localization of the atomic event, e.g.,
where a method call occurred. Thus, when translating the predicate into AspectJ
we may model the construct as an if pointcut. For example, the following event
predicate:

call(point.SetX(..)) && host("Screens Group")

will translate into the following pointcut:

call(point.SetX(..)) && if(inGroup("Screens Group"))

where inGroup is a function that returns true if the host, where the call
occurs, belongs to the ”Screens Group” group. Then the advice (code that is
executed when the pointcut is matched on AspectJ) attached to this pointcut
creates an event representation and broadcast a message with the event infor-
mation to the other EVMs.

With respect to the second problem and particularly in the context of on

and causal predicates, a more complicated situation arise. These constructs

10

predicate about the context of the event class instance, and the context of the
distributed event message. In the first case, the event detection infrastructure has
to evaluate the arriving event, in order to decide if the event class is deployed in
the group defined by the on construct. In the second case, the causal predicate,
the event detection infrastructure has to evaluate if the arriving event has a
causal relation with the previously matched event. The implementation, in this
case is not a simple translation into AspectJ’s pointcut expressions. Instead you
have to construct first an expression to detect the atomic event and broadcast
the atomic event occurrence, and another expression to match and evaluate the
distributed events.

Consider for example the following predicate:

causal(call(point.SetX(..)) && on("Server Group")),

in order to detect the atomic event it will translate into the following pointcut:

call(point.SetX(..)) && if(true),

this pointcut will then broadcast the corresponding message. However, the
compiler will generate also a boolean expression to detect and match the dis-
tributed event message:

if(atomicEventDefinition.causallyMatches(remoteMessage)

&& onHost("Server Group"),

where atomicEventDefinition is an object representing the definition of
the atomic event; causallyMatches is a boolean method that returns true if
the definition matches the atomic event contained in the remoteMessage and
the event is causally related with the last evaluated event; onHost is a boolean
method that returns true if it is evaluated on a host belonging to the ”Server
Group” group. Once the implementation of distribution and the matching frame-
work is solved, the rest of the compiler is implemented translating the code into
the components of the core library of the EVM.

5 Validation: Debugging and Testing concurrency
problems on distributed middleware

In this section we provide qualitative and quantitative evaluation of EKETAL.
First, we evaluate EKETAL’s runtime performance by means of distributed ex-
periments using Hadoop (Big Data framework implementing map-reduce algo-
rithms). Then, we present a quantitative survey of concurrency and distribution
errors reported on open source projects, and show how EKETAL may help to
unit-test, debug and correct some of those errors.

11

5.1 Performance evaluation of EKETAL

To test the performance of EKETAL we have designed two experiments using
Hadoop4. In the first experiment we instrument the Hadoop framework by means
of a simple eventclass that matches a method that may be called infrequently
in any host of the distributed application (setup method). This experiment will
test the overhead of adding EKETAL’s runtime to a Java Virtual Machine run-
ning Haddop. The second experiment will test the overhead of using EKETAL
on methods that are called very frequently in the distributed application (map
method), generating high network traffic due to event broadcast. Both experi-
ments are run in a cluster of virtual machines on Amazon Web Services (AWS).
We compare each experiment with a regular execution of Hadoop (i.e, no instru-
mentation).

The experiments will run a map-reduce algorithm to count the number of
times a word is found in an unstructured data set, e.g., counting the most used
words in a search engine. The map phase will create on each node a set of pairs
(word, 1), for each time a word appears on the data set. The reduce phase will
create a final result where there is only one pair for each word. The original data
set is a text file that has 15.443 lines, 144.181 words, and 13.000 distinct words.
The map method is the method we intercept as a method that is called with
high frequency. The experiments will be run on two hardware configurations on
Amazon Web Services. First on 2 nodes and then on 3 nodes, each node will
have 1 virtual cpu (Intel Xeon 2.5 GHz) with 2 Gb of memory. Each experiment
is executed 20 times.

Table 1 shows the average time of execution of the map reduce algorithm
over different data sets and the number of events that are broadcast on each
experiment. The first line in the table details the execution time of Hadoop with
no instrumentation, in this case the execution time is 10 sec. on average. The
second line shows the average time of the execution of Hadoop instrumented
with EKETAL on a method that is called rarely, this experiment is designed
to measure the overhead of EKETAL’s distributed infrastructure. The result
shows no significant difference on execution time between the execution with
low frequency and high frequency methods. In fact Hadoop randomly creates
new virtual machines to execute the algorithm, but having only 1 file as input
makes the framework to execute most of the time on one node. Thus, the time
shown in the tables seems to be related to the delay generated by the EKETALs
distribution libraries when they start. When we analyze the results when three
nodes are used to run the application, and a bigger data set, the situation is more
interesting. Here the execution o Hadoop with no instrumentation takes only 14s,
and there is no difference when the experiment is executed with a low frequency
method instrumented. When we instrument a high frequency method the average
time is 56 sec. We can explain this time because now we have 77.215 events
broadcast (from 5 different files as input), and all the machines are detecting
those events. However, if we see figure 3 we can see that not all the events are

4 Hadoop is a Big-Data framework designed for distributed processing of large data
sets across clusters of computers using map-reduce algorithms

12

Experiment: Hadoop with Nodes Processor No. Events Time Ex.

No intrumentation 2 Xeon, 2 Gb 0 10.541,85

EKETAL (low freq.) 2 Xeon, 2 Gb 1 17.267,8

EKETAL (High freq.) 2 Xeon, 2 Gb 15443 17.243,8

No intrumentation 3 Xeon, 2 Gb 0 14.482,85

EKETAL (low freq.) 3 Xeon, 2 Gb 5 14.283,55

EKETAL (High freq.) 3 Xeon, 2 Gb 77215 56.107,00

Table 1: Average execution time for map reduce experiments with 13000 words
using Haddop instrumented with EKETAL.

detected remotely, this is because Hadoop do not start the parallel workers at
the same time. S,o while they are running there is a window of intersection
where workers may detect events originated on each other. The average number
of events detected is 31420, which means that in average there are at least two
workers that run in parallel. In figure 3 we can see also the distribution of the
execution times on three nodes over AWS.

5.2 Debugging and Testing using EKETAL

Application No. Issues Solved Open C&D Open % C&D Open C&D All % C&D All

Active MQ 4947 4390 557 72 12,92% 506 10,22%

Hadoop 5998 3957 2041 229 11,21% 840 14,00%

JBoss Cache 951 833 118 6 5,08% 56 5,88%

Spark 18004 15284 2720 225 8,27% 991 5,06%

Asterix DB 906 348 558 30 5,38% 78 8,61%

Total 30806 24812 5994 562 9,38% 2471 8,02%

Table 2: Characterization of concurrent and distributed (C&D) issues found in
distributed applications.

We have investigated the applicability of EKETAL for testing and debug-
ging real world applications. In this section we first present a characterization
of issues found in several open source distributed applications, quantifying the
number of cases where liveness o data race errors where likely to cause the prob-
lem, and where their reproduction (i.e., test case) and their solution depended
on enforcing a specific order of events. We then study a concrete example and
show how EKETAl may help to unit-test, debug, and correct this type of issues.
Table 2 shows data of reported issues on several open source projects implement-
ing distributed applications. The table includes data for Active MQ (A message
Broker), Hadoop, JBoss Cache (a distributed and replicated cache), Spark (en-
gine for large scale data processing), and Asterix DB (a scalable, open source

13

(a)

(b)

Fig. 3: Data for 20 executions of the experiment on 3 nodes on AWS. a) Number
of remote events detected by the monitors. b) Time of execution of the experi-
ment

Big Data Management System). The table shows the number of reported is-
sues, how many of them still open, and what percentage of them are likely to
be related to concurrent and distribution problems. For example, considering
Hadoop, there are 5998 reported issues, 2041 from those issues are still open,
and from those 11,21% (229) are related to problems of concurrency and distri-
bution, the percentage is even bigger when we consider that 14% from the total
of reported issues are related to concurrency and distribution problems. When
we take together the 5 applications analyzed, around 10% of open issues are re-
lated to problems of distribution and concurrency. This is not an small problem,
considering that the reproduction is, in most of the cases, a non deterministic
task, and then, debugging and correction becomes a complex task.

Dataraces in JBoss Cache. In versions 1.3.0.GA – 1.4.0.SP1 of JBoss
Cache a datarace problem was found between the cache process and eviction

14

process [21]5. This problem persisted for approximately five months before being
solved in versions 2.0.0.BETA2 and 2.0.0.GA. This error exemplifies problems
that are hard to reproduce and correct in distributed applications. The evic-
tion process is in charge of cleaning cache information by removing all stored
data that is not used or referenced within a specific period of time. This policy
gives storage priority to information most frequently accessed in the cache. To
illustrate the datarace problem, we assume the existence of two nodes, the first
node is the main cache, which stores the information most frequently accessed
by nodes in the network, and the second node is a client asking for information.
In the cache there is Eviction thread, handling the eviction policy, and for
each data request the application generates a new Handler thread. The data
race occurs because an eviction request and a read request for the same data X

arrive to the cache node at the same time, and the following sequence of events
happen in this specific order: the EvictionThread wins the race and acquires the
lock on X, then the Handler Thread verifies that X is stored in memory ignoring
that the EvictionThread has placed a lock on X, the EvictionThread removes
X, and after that, the HandlerThread invokes the method get(X) which replies
null due to the fact that X has been removed from the main cache.

In Figure 4, we use the EKETAL language to write an event class that
implements a monitor to detect the error described above. In the implementation,
object x is the value we want to store and the fully qualified name (fqn) is the
location on the cache where the object must be stored or from where the object
reference must be read. Lines 2-13 define the atomic events that lead to the data
race. Lines 2-3 describe the event dataRequest with two parameter types: Fqn
type and Object type. This event captures any call to the get method, which
occurs when X is requested by any node in the network. Note that the values of
the fully qualified name and the object value are bound to the values defined by
this first event. Lines 4-6 describe an event that receives the same parameters
as the previous event and that takes place in the local host. This event captures
any call to the method evict, which is responsible for removing the indicated
object from the main cache under the eviction policy.

Lines 7 and 8 define an event that executes the eviction action: obtains the
lock necessary to modify the cache’s memory structure, and removes the node
name. Lines 9-11 describe the occurrence of the low level method to get the data X

from the main cache. Lines 13-18 define the automaton that detects the data race,
which contains four states and four transitions. In the initial state init, when
the dataRequest event occurs, it advances to the waitForEvict state. Then,
if the event dataRetievalAction occurs, the automaton returns to the initial
state, because the data race can not happen. Alternatively, if the evictRequest

event arrives, it moves to the state denoted as waitForEvictToWinRace. At this
point, two situations can occur. The first can occur when the event evictAction
is executed, which moves automaton to the dataRace state. The second situa-
tion takes the automaton to the init state. When the automaton reaches the
dataRace state, a data race has happened.

5 The id of the error in JBoss Cache’s JIRA repository is: JBCACHE-814.

15

1 eventclass DataraceTest{
2 event dataRequest(Fqn name, Object x):
3 call(∗ TreeCache.get(name, x));
4 event evictRequest(Fqn name, Object x):
5 call(∗ EvictionPolicy.evict(name)) && host(localhost);
6 event evictAction(Fqn name):
7 call(∗ TreeCache. evict(name)) && host(localhost);
8 event dataRetrievalAction(Fqn name, Object x):
9 call(∗ TreeCache. get(name) && host(localhost));

10

11 automaton dataraceDetector(Fqn f1, Object x){
12 start init: dataRequest(f1, x) > waitForEvict;
13 waitForEvict:(evictRequest(f1, x) > waitForEvictToWinRace) ||
14 (dataRetrievalAction(f1, x) > init);
15 waitForEvictToWinRace: (evictAction(f1) > dataRace) ||
16 dataRetrievalAction(f1, x) > init;;
17 end dataRace;
18 }
19

20 reaction beforeDatarace
21 before dataraceDetector.dataRace(Fqn f1, Object x){
22 //Reaction to deadlock}}

Fig. 4: Data race detection with EKETAL

6 Conclusions

This study proposes an event model and the corresponding design for an event-
oriented programming language, its virtual machine, and the compiler to address
debugging and testing in distributed and concurrent applications. The language
allows the declaration, execution, detection, and coordination of complex event
patterns in distributed systems. It also introduces explicit support for the de-
tection of complex sequences of events using finite automata, guard support,
and support for futures and for synchronous and asynchronous coordination of
reactions and the base program.

We evaluate EKETAL’s runtime performance by means of distributed ex-
periments using Hadoop. By applying the language, we demonstrate that the
debugging and maintenance problems of liveness and dataraces found in dis-
tributed applications can be addressed. In particular, we show how breakpoints
can be modeled by complex sequences of events and demonstrate the creation
of deterministic test scenarios for concurrent and distributed applications. How-
ever, the mechanism has several limitations that prevent modeling, for example,
patterns of events that include temporary conditions or patterns that include
parameters reliant on event counts. In future work, we will investigate the adop-
tion of other abstractions such as push-down automata and temporal logic to
extend the functionality and scope of our tool.

16

References

1. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York, NY, USA, 1st edition, 2010.

2. L. D. Benavides Navarro, R. Douence, and M. Südholt. Debugging and testing
middleware with aspect-based control-flow and causal patterns. In In Proc. of the
9th Int. Middleware Conference, Leuven, Belgium, Dec. 2008. Springer-Verlag.

3. N. Benton, L. Cardelli, and C. Fournet. Modern concurrency abstractions for
c#. In Proc. of the 16th European Conference on Object-Oriented Programming,
ECOOP ’02, pages 415–440, London, UK, UK, 2002. Springer-Verlag.

4. M. Butler and S. Hallerstede. The rodin formal modeling tool. In Proc. of the
2007th Int. Conference on Formal Methods in Industry, FACS-FMI’07, pages 2–2,
Swinton, UK, UK, 2007. British Computer Society.

5. F. Chen and G. Roşu. Mop: An efficient and generic runtime verification frame-
work. SIGPLAN Not., 42(10):569–588, Oct. 2007.

6. C. Colombo, G. J. Pace, and G. Schneider. Larva — safer monitoring of real-time
java programs (tool paper). In Seventh IEEE International Conference on Software
Engineering and Formal Methods (SEFM), pages 33–37. IEEE Computer Society,
November 2009.

7. A. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. White. Towards expressive
publish/subscribe systems. In Proc. of the 10th Int. Conf. on Advances in Database
Technology, EDBT’06, pages 627–644, Berlin, Heidelberg, 2006. Springer-Verlag.

8. M. Eriksen. Effective scala, 2012. Available:
http://twitter.github.io/effectivescala/.

9. P. Eugster and K. Jayaram. Eventjava: An extension of java for event correlation.
In S. Drossopoulou, editor, ECOOP 2009 – Object-Oriented Prog., volume 5653 of
Lec. Notes in Computer Science, pages 570–594. Springer Berlin Heidelberg, 2009.

10. C. Fournet and G. Gonthier. The reflexive cham and the join-calculus. In Proc.
of the 23rd ACM SIGPLAN-SIGACT Symp. on Principles of Programming Lan-
guages, POPL ’96, pages 372–385, New York, NY, USA, 1996. ACM.

11. W. Inc. Whatsapp open source, 2016. Available:
https://www.whatsapp.com/opensource/.

12. K. R. Jayaram and P. Eugster. Scalable efficient composite event detection. In
Proc. of the 12th Int. Conf. on Coordination Models and Languages, COORDINA-
TION’10, pages 168–182, Berlin, Heidelberg, 2010. Springer-Verlag.

13. Jgroups home page. latest visit on June 2015, 2011.

14. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.
An overview of aspectj. In Proc. of the 15th European Conf. on Object-Oriented
Prog., ECOOP ’01, pages 327–353, London, UK, 2001. Springer-Verlag.

15. P. Leger, E. Tanter, and H. Fukuda. An expressive stateful aspect language. Sci.
Comput. Program., 102(C):108–141, May 2015.

16. Q. Luo and G. Rosu. EnforceMOP: a runtime property enforcement system for
multithreaded programs. In the 2013 International Symposium, pages 156–166,
New York, New York, USA, 2013. ACM Press.

17. F. Mattern. Virtual time and global states of distributed systems. In Proc. of the
Int. Workshop on Parallel and distributed Algorithms, Chateau de Bonas, France,
October 1988.

18. A. Møller. dk.brics.automaton – finite-state automata and regular expressions for
Java. latest visit on May 2011, 2010.

17

19. V. Rivera and N. Cataño. Translating event-b to jml-specified java programs.
In Proc. of the 29th Annual ACM Symp. on Applied Computing, SAC ’14, pages
1264–1271, New York, NY, USA, 2014. ACM.

20. K. Serebryany and T. Iskhodzhanov. Threadsanitizer: Data race detection in prac-
tice. In Proc. of the Workshop on Binary Instrumentation and Applications, WBIA
’09, pages 62–71, New York, NY, USA, 2009. ACM.

21. J. C. TreeCache. A structured, replicated, transactional cache. user documenta-
tion., 2013. Available: http://docs.jboss.org/jbosscache/1.4.0/TreeCache/.

22. Y. Zhuang and S. Chiba. Method slots: Supporting methods, events, and advices
by a single language construct. In Proc. of the 12th Annual Int. Conf. on Aspect-
oriented Software Development, AOSD ’13, pages 197–208, N.Y., USA, 2013. ACM.

