
Implementation of causal control operators to detect
distributed events

Luis Daniel Benavides Navarro
Escuela Colombiana de Ingeniería

Julio Garavito
luis.benavides@escuelaing.edu.co

Oscar Kiyoshige Garces
Universidad de los Andes

Bogota, Colombia.
ok.garces10@uniandes.edu.co

Hugo Arboleda and David Durán
Universidad Icesi. Cali, Colombia

hfarboleda@icesi.edu.co,
duran.david19@gmail.com

Abstract—This paper discusses the design and implementation
of three operators to control and predicate about causality rela-
tion between events in a distributed system. Concretely, we start
from KETAL, a kernel conceived to detect patterns of distributed
events, and we motivate the need to keep track of causality
relations between events on m-health applications over Wireless
Body Area Networks (WBAN). We then introduce a causal event
model and we present a detailed implementation that allows the
notion of causality in KETAL. This implementation is based on
vectorial clocks, and it supports the detection of concurrent and
causal relationships, plus the dynamic administration of the nodes
involved in the system.

Keywords: Event-driven programming, e-health, m-health,
Wireless Body Area Network, WBAN, Complex Event Detection,
Automata, Distributed Systems, Causality, event ordering.

I. INTRODUCTION

Distributed systems use various communication protocols to
perform message exchange between different devices. Those
protocols grant data processing, computation, and result gath-
ering in distributed algorithms. Exchanged messages contain
information of distributed events occurred on each device, e.g.,
a user input, a file update, a battery depletion, a new device
being connected to the network. A significant challenge con-
cerning the evaluation and manipulation of these distributed
messages is to guarantee a coherent exchange between them
within a system, namely, to ensure that message reception
occurs in the same order that they are generated.

There have been several proposals in previous works, see
[1], [2], [3], [4], [5], [6], about the explicit manipulation
of events in distributed applications by using event models,
in particular, to control the flow of events generated inside
distributed systems. In this paper, we investigate the design
and implementation mechanisms for the explicit manipulation
of message ordering and events. Concretely, we start from the
KETAL [6] library, which presents an event-based solution
that provides mechanisms to manipulate and detect event se-
quences through automata, and we extend it with mechanisms
to allow the orderly manipulation of distributed events, con-
ceiving the following contributions: An event model for causal
manipulation of events and sequences of events, the design of
three operators for the causal manipulation of ordering in event
sequences, and a detailed description of the implementation of
these three new operators.

Fig. 1. Non-determinism affecting messages

This document is structured as follows: In section 2 we
emphasize on the relevance of event ordering in distributed
systems and we introduce two common problems concerning
message exchange in those systems; in section 3 we describe
the event model proposed in KETAL; in section 4 we char-
acterize the causality model that is going to be incorporated
to KETAL library; in section 5 we exhibit strategies used to
implement the causality protocol; in section 6 we present an
evaluation using a case study and, in section 7, we expose the
state of art and related work to finally conclude and suggest
future work.

II. MOTIVATION: MESSAGES AND EVENT ORDERING

Consider for example Fig. 1, the figure depicts a distributed
application that has three nodes (computers). Each computer
has a deployed application that simulates a stack behavior.
This application keeps a copy of the stack in every node,
replicating by means of distributed messages any modification
to the remaining nodes. The simulated stack has the following
protocol: before inserting or extracting any element (push/pop
respectively), this structure must be turned on with a message.

In Fig. 1, Node A generates and processes an on event,
which is replicated to the remaining nodes. Here we can see
in detail the problem of non-determinism caused by the order
of events arrival. In particular, consider that in a distributed
application, the network is a fundamental component and it
doesn’t guarantee the order of the messages. Once Node B
receives the on message, it adds a new element to the stack
through a push event. Meanwhile, events generated by Node
A and Node B are altered by factors that are external to the
distributed replication algorithm but inherent to the network,
i.e. communication delays, that cause reversal in their arriving
order to Node C. This situation generates the invalid sequence
of events push-on.

Fig. 2. Automata to model an stack

Sequence detection problems, as the one described above,
grow exponentially in concurrent and distributed applications
of industrial size. We classify these problems in two groups,
false positives and false negatives. False Positives are event
detection errors where the distributed system (the term dis-
tributed system refers to a set computers and applications
running as a single system) recognizes a sequence of events
that actually never occurred. False negatives are errors that do
not recognize event sequences that actually did occur. Such
issues have been previously documented in literature, showing
how they affect the development and maintenance on big scale
applications (see [2]).

III. EVENT AND PATTERN MODELS IN KETAL

In this section, we briefly introduce the basic concepts of
the KETAL library, which allows detection of event patterns
by using finite deterministic automata. Next, we describe the
adopted event model, the automata model to detect event
sequences, and the guard model presented by KETAL.

A. Event Model

Here we start from an event model that has two essential
elements: events and messages. An event is an atomic action
that occurs within a process, application or system, i.e., execu-
tion of a function or method, action of sending and receiving
messages, mouse clicks captured by a computer, etc. In a
distributed context, the information of the occurrence of these
events is communicated between devices through messages.

B. Automata to detect event sequences

To detect a specific event sequence, KETAL uses finite
deterministic automata. In particular, each automaton will
consume events as elements that belong to a recognizable
language, allowing modeling and detection of event patterns. If
we recall the stack situation, it is possible to model the desired
behavior using four actions: On, Push, Pop, Off, for instance,
allowance of Push and Pop events after the occurrence of an
On event, as shown in Fig. 2. Please notice that this automaton
still allow some invalid sequences, such as the occurrence
of a Pop event without a previous Push event, situation that
will generate an exception. This issue will be addressed in
later sections, taking into account causal relationships between
generated events.

C. Guard model

Besides the automata model, KETAL offers a guard model
that enable developers to predicate over events. In particular,
it allows predicating on the context of an event. For instance,

Fig. 3. Happens-before relationship

using KETAL we can create an automaton that not only
detects an On event, but also recognizes if such event occurred
in a specific node. The expression would be like: Call(*
ReplicatedStack.on(..)) && host(“A”). In this article, we won’t
go into more detail about language syntax, because we only
intend to highlight the existence of a guard model that will
use the operators for causality management that we will build
in later sections.

IV. CAUSAL EVENT MODEL AND CAUSALITY OPERATORS

In this section, we present an extended model of KETAL,
in which we incorporate the causality relationship defined
by Lamport [7] and Mattern [8]. This relationship allows
definition of predicates to detect complex and sophisticated
event sequences in distributed applications.

A. Adding causal relationship to KETAL’s event model

Event model presented in previous sections doesn’t con-
template an order relationship between events occurred in
distributed systems. Thus, those events were consumed in their
arriving order by the automaton. In order to extend KETAL
with a notion of order between events, we start from previous
works about logical time, virtual time and the global state
of distributed systems, particularly, work from [7], [8], where
they design mechanisms and algorithms to establish a partial
order in distributed event sequences. We then introduce the
causality relationship that determines when an event has causal
influence over another. To understand this connection, let’s
take a look at the Happens-before relationship defined in [7],
which states that a causal relationship must meet any of the
following cases. Let a, b and c be events:

• a and b are in the same process and a takes place before
b; then a happens-before b (a is causally related to b).

• a represents an event of sending a message while b is an
event of receiving a message, then a happens-before b.

• If a happens-before b and b happens-before c, hence, a
happens-before c due to relationship’s transitivity.

In any other case, events are considered concurrent ([8]).
To illustrate the happens-before relationship, let’s analyze the
situation described in Fig. 3. Because a and b are in the same
process or node, and a occurs before the b, we declare that a
happens-before b. On the other hand, c is a receiving event
on Node C, of a message sent by Node A, hence, b happens-
before c. The same situation applies between e and f events.
Following the third condition, we can deduce that a happens-
before c. In this scenario we cannot establish a relationship
between b and e in terms of causality, therefore these events

Fig. 4. Causal automata interaction

are concurrent. Thus, the event model states that two events
are causally related if a happens-before relationship can be
found between them.

B. Operators to support causal relationships

In this work, we propose three operators to manipulate
causality between event sequences. The two first operators
apply to events and will be denominated Causal and Conc. For-
mer indicates that a transition in an automaton will occur if and
only if the detected event is causally related to the immediate
prior event. Syntax for this operator is Causal(event), where
event represents an event we are interested in. Later operator
has Conc(event) syntax, which states that an event will be
consumed if and only if it has a concurrent relationship with
the immediate prior event. The third operator applies to the
application and doesn’t establish a concrete syntax; however,
in this article we will denominate it CausalOrder. When this
operator is inactive, events within the system won’t follow a
particular order, thus they will be consumed in their arrival
order. Conversely, if CausalOrder operator is active, system
will take into account causal order and the automaton will
process events according to this criterion. Fig. 4 depicts an
example of the behavior of sequence detection under operators
influence. The automaton shown starts in Q0 state and has to
detect an event A that has to be causally related to the previous
event consumed. If A is the first event being consumed by the
automaton, causal order will be ignored. Later, the automaton
is programed to consume an event B that must be causally
related to the previous event consumed and, finally, in order
to consume event C, it has to satisfy a causal condition with
its predecessor as well. The figure also shows an alternate way
to get to Q1 state through event D, which implies that event
B has to be causally related to D in order to fulfill the next
transition’s constraint. In Fig. 5 we can concretely appreciate
the interaction and dynamics of transitions between states.

Let’s assume that we are in the initial phase of a system and
each node has a copy of an automaton programmed to start
in Q0. Fig. 5 shows that event A occurs in Node A, which
triggers a transition to move from Q0 to Q1. Later, event D is
detected and does not trigger any transition, but it is stored in a
temporary memory. When event B occurs, transition from Q1

Fig. 5. Messages exchange between nodes

to Q2 is triggered, because B and A are causally related. The
next generated event is C, which triggers a transition to get
back to the initial state Q0. Finally, event A does take place in
node A, as shown in the figure. Event A is not causally related
to event C, so when the automaton evaluates A, it won’t change
its state because these events are concurrent. This is how an
automaton will process event sequences that happen within a
distributed system.

V. IMPLEMENTATION

This section discusses causality implementation details in
KETAL [6]. This event-driven library focuses on modeling and
detecting event patterns occurred within a system, enabling
posterior manipulation of detected events, allowing a deeper
analysis of non-deterministic complex systems. As mentioned
before, there is a distinction between events and messages
inside distributed systems. An event is an atomic action
occurred in a specific process, e.g., a Java method invocation,
sending and receiving a message. A message is responsible
for encapsulating and transporting event information through
a distributed system.

A. KETAL’s architecture

Fig. 6 depicts KETAL’s architecture, which has four main
components: Abstract Event Framework, Automata Facade,
Automata Engine and JGroups Extension Layer. Abstract
Event Framework contains a set of interfaces that allow soft-
ware developers to model an entire scenario of interest using
events, plus the use of automata to detect event patterns. The
whole functionality to set up a state machine and to process a
defined automaton lies upon the Automata Facade component.
Automata Engine is based on Anders Møller [9] library,
which contains an implementation of a deterministic finite
automata engine. Last component provides core abstractions
to distribute messages among nodes. The implementation of
this component is an extension of JGroups library [10].

KETAL’s event model is represented in Fig. 7, which in-
cludes the following features: i) The model is not coupled with
the libraries used for automata processing and distribution, i.e.,
it has a well-defined interface, ii) it is scalable and capable
of detecting complex events through event expressions that
are used in the automaton transitions. Current model provides
basic And/Or binary Boolean operators. It also includes the
Unary interface in order to support unary boolean operators

Fig. 6. KETAL’s architecture

like Not. A transition between two states of the automaton will
be executed if the Boolean expression asserts true. The Unary
interface allows building expressions with unary operators. An
expression of this type contains only one event, but it could
take into account additional information, like the location of
the host where a specific event occurred (i.e. ExecutionHost)
or denial of an event (i.e. NotExpression). iii) Its flexibility
allows developers to include any new Boolean operator needed
to manipulate event expressions.

B. Causality Support

Our approach supports causality by adapting the algorithm
designed and implemented by Mattern [8], which uses vecto-
rial clocks to operate. Proposed algorithm defines a partial
order of messages based on causality, and provides guard
support to identify event relationships. The following example
explains its operation. Fig. 8 depicts the interaction of three
nodes. Each black point represents an event and each arrow
represents a message. Each node contains a vectorial clock
where each position references a node, thus positions 1, 2 and
3 correspond to Node A, Node B and Node C, respectively.
Each occurrence of an event implies an update of the value
contained in a position of the clock, depending on the node
where it took place. Take the two first events on Node A
for example, every event adds one to position 1, so, when
they both occur, the vector will have values <2,0,0>. Situation
on Node C is different. The first event is a reception of a
message, so the vector will be <0,0,1> at first. The following
step in Node C consists of comparing the current vector with
the one in the arriving message, so if there is any position that
contains a higher value than the current one, the higher value
is copied and the current vector is updated. In this case, the
arriving vector contains 1 in position 2, so vector on Node
C is updated to <0,1,1>. Same situation happens with second
event on Node C, where before comparing, the vector will be
<0,1,2>, but after comparing with the arriving vector, it will
be updated to <2,1,2>.

In order to enable detection of causal relationships using
Mattern’s algorithm, we follow the architecture illustrated in
Fig. 9. This diagram gathers all components used by JGroups
to enable their causality protocol. Here we can see that
each Message carries in its CausalHeader a vectorial clock
denominated TransportedvectorTime. JGroups defines a stack
of protocols that split application functionality into layers.

Each layer adds its own control information to messages
exchanged to ensure they are treated properly, i.e. Causal
protocol ads a vectorial clock (TransportedVectorTime) to
each message header. Layer division uses labels to separate
processing responsibilities into levels, so each level will only
process corresponding data. This allows developers to add as
many layers as needed to ensure desired behavior. We made
several modifications to base JGroups implementation in order
to extend its functionality and to adapt it to KETAL’s event
model. First alteration focused on allowing the association
between KETAL and vectorial clocks to let the event model
decide about occurrences. Second important change was to
provide services to enable the use of causality operators
described in section 4.2. Resulting implementation is described
below.

Fig. 10 illustrates how vectorial clocks determine causality
between events. Initially, every node has a vector equal to
<0,0,0>. Later, event a occurs when Node A sends msg 1 to
the remaining nodes, so vector in Node A is set to <1,0,0>.
This updated vector is included in msg 1 header. Event b
refers to reception of msg 1 on Node B, so vector in this
node will be <1,1,0>, because it is updated with the arriving
vector considering occurrence of b. Same situation happens on
Node C, resulting in a vector equal to <1,0,1>. To determine if
two events are causally related, a comparison between arriving
vector and local vector must be made. If all values contained
in local vector are greater than or equal to all values in
arriving vector, then events are causally related. According to
the previous condition, a and b are causally related, because
all values in Node B’s vector are greater than or equal to
values in msg 1 vector; this is an example of the first situation
described in section 4.1. The subsequent situation happens
between events e and g, where g takes place after e, and
g’s vector is greater than or equal to e’s vector. Transitivity
of causal relationship can be illustrated between events a
and k, because a happens before c, c happens before f, f
happens before h, and h happens before k. Notice that it is
possible to causally relate a and k with the alternate path a-
b-d-e-g-h-k, depending on event occurrence. Events b and c
depict a concurrent relationship because none of the situations
explained in section 4.1 apply to them, plus their vectors don’t
meet the requirement to be causally related.

C. Dynamic management of nodes

Besides previous modifications, we had to consider certain
functionalities related to dynamic behavior in a distributed
environment, e.g., adding or removing nodes to the system
implies updating vectorial clocks of each remaining node. The
protocol supports this behavior by means of a mechanism that
updates the number of existing nodes that are in the Transport-
edVectorTime vector clock on every host; however, to perform
such operation certain considerations have to be taken into
account, especially in a multithreaded system that cannot be
paused. To address this issue in multithreaded environments,
where availability is a crucial factor, the system instantiates
an independent thread identified as NewViewThread, whose

Fig. 7. KETAL’s class model

Fig. 8. Vectorial clock in a distributed system

Fig. 9. Causal protocol architecture

task is to keep an updated copy of the needed context infor-
mation (e.g. current vectorial clock with updated nodes count
and pending messages to be processed), while main thread
continues receiving and manipulating events. Synchronization
of these two threads ensures updated information to avoid
protocol breakdowns. Fig. 11 contains a sequence diagram of a
three-node scenario that uses KETAL and JGroups to handle
message exchange. In this particular case, we are interested
in how vectorial clock is modified once a node is retired
from the system. Thus, while there is a main thread managing
incoming and outgoing messages, there is one thread of type

Fig. 10. Vectorial clock updates

Fig. 11. Vectorial clock update with causal protocol sequence diagram

NewViewThread that takes a copy of current vectorial clock
and eliminates the index in the position referencing the retired
node. Once the vector is updated, the vectorial clock contains
as many positions as nodes remain in the system.

D. Operators to guarantee detection of event with determin-
istic causal relationships and ordered detection of event

To implement causal relationships, we extended the ex-
pression hierarchy (see Fig. 7). Two expressions were con-
ceived to implement operators: CausalEqualsExpression and
ConcurrentEqualsExpression, to detect causal and concurrent
relationships. Both of them compare an arriving event of type
Event with the event used in the definition of the guard, but
the former asserts true only if arriving event is causally related
to the immediate prior event evaluated in the automaton. Later
operator asserts true if arriving event isn’t causally related to
immediate prior event evaluated in the automaton, i.e., it is
concurrent to the immediate prior event. The main difficulty
during implementation laid on component interaction, espe-
cially message distribution. To address this issue we decided
to use JGroups causality implementation, which establishes an
event causal ordering, but it doesn’t ensures causal relation-
ships detection; so we had to adapt JGroups library in order
to support vectorial clocks and causality management, without
the need to order events exchanged. These modifications allow
developers to use the event model and operators to detect
causal relationships.

VI. EVALUATION

To evaluate the validity of our proposal, we analyze behavior
of a replicated and distributed stack. Assume that the stack is
deployed on two nodes (two computers). The protocol of the
system is quite simple; the stack must be turned on locally
in order to process push and pop messages, each push and
pop message is replicated to every participating stack in the
distributed system. A participating stack deployed on a partic-
ular node may be turned off locally. In that case, such node
is no longer involved in the distributed messaging. Consider
now that a developer wants to debug the correct behavior of
the replicated stack protocol. Thus, the proposed library may
be utilized to implement an automaton that monitors such
behavior. The developer has to define an automaton and deploy
a copy of such automaton on each node. Fig. 12 contains
the definition of a deterministic finite automaton that models
the correct (desired) behavior of the system: in the first step
the automaton expects a local On event, once automaton has
changed to q1 state, push and pop events are accepted by the
automaton, only if they are causally related with the On event.
In the next transition, from q1 to q0, we have the local off
event, which has to be causally related with any other previous
event, especially with the on event. Causal relations in the
automaton definitions grant that false positives are avoided.
False negatives will be avoided only if the system is ordering
messages, using the causal partial order, before consumption
by the automaton.

Figure 13 shows the implementation of the automaton. First,
we define two states using the State object of the library. We
then define the three transitions giving them a name; in this
case the names used are of type Char and have the values A,
B, C. Those names are the alphabet of the automaton, and are
used to reference complex events; they are especially useful

Fig. 12. Automaton to model a replicated stack protocol

to define automaton behavior using regular expressions. The
transitions are grouped in a HashSet. Then we map each tran-
sition with a complex expression over events. Concretely, we
first define an expression that accepts an event and compares
it with the source event On (class DefaultEqualsExpression),
the expression also checks whether the event is local or not.
We then define an Or expression that accepts and event and
compares it with a push or pop event, with the restriction of
having a causal relation with previous events. In order to make
such comparison we use CausalEqualsExpression instead of
a DefaultEqualsExpression. Finally we define and automata
using the set of states, the transitions set, the initial state, and
the mapping of transitions to transition names. At runtime the
automaton detects the correct behavior of the protocol. If any
event arrives in the wrong order the automaton halts. Thus,
the automaton detects a violation of the protocol. The library
is designed to be a part of frameworks and languages that
are based on events and provide syntactic tools (e.g., IDE) to
define concisely automata and event expressions.

VII. STATE OF THE ART

There are different approaches in literature regarding event
paradigm in distributed systems. There are some focused on
event ordering, others deal with creation of distributed middle-
ware, and there is also a community considering event pattern
detection using event-oriented programming as the proper
way to deal with these topics. Solutions like [7], [8] present
theoretical models to cope with causal ordering in distributed
systems. On the other hand, [10] offers an implementation that
enables causal ordered message distribution among nodes of a
distributed system, generating a convergence between message
distribution and message ordering. Proposals like [9] admit
pattern recognition of symbols from a specific language, which
was adapted and improved in [6] as an event detection solution
in distributed systems. Later, solutions like [2] concentrates
on event detection solution in distributed systems, with cer-
tain limitations on operator specification between events and
concrete event-oriented language syntax. Finally, we find that
relevance of causality operators approaches for event detection
in distributed systems makes possible the convergence of
message distribution and message ordering, plus it proposes a
method to declare expressions with an event-oriented language
to capture specific event patterns.

VIII. CONCLUSIONS

This article presented design and implementation of a
causality model with operators conceived to detect causal and

1 /∗ Automaton s t a t e s a r e i n i t i a l i l i z e d ∗ /
2 S t a t e q0 = new S t a t e () ;
3 S t a t e q1 = new S t a t e () ;
4
5 /∗ A −> On , B −> C au sa l (Push) o r Cau sa l (Pop) ∗ /
6 T r a n s i t i o n t 1 = new T r a n s i t i o n (q0 , q1 , A) ;
7 T r a n s i t i o n t 2 = new T r a n s i t i o n (q1 , q1 , B) ;
8 T r a n s i t i o n t 3 = new T r a n s i t i o n (q1 , q0 , C) ;
9 Set < T r a n s i t i o n > t r a n s i t i o n s = new HashSet <

T r a n s i t i o n > () ;
10 t r a n s i t i o n s . add (t 1) ;
11 t r a n s i t i o n s . add (t 2) ;
12 t r a n s i t i o n s . add (t 3) ;
13
14 /∗ E x p r e s s i o n s t o c h a r mapping ; c h a r s a r e used

as l o g i c a l names o f t r a n s i t i o n s ∗ /
15 HashTable < E x p r e s s i o n , C h a r a c t e r > e x p r e s s i o n s =

new H a s h t a b l e < E x p r e s s i o n , C h a r a c t e r > () ;
16 e x p r e s s i o n s . p u t (new And (new

D e f a u l t E q u a l s E x p r e s s i o n (new T r a n s a c t i o n E v e n t
(On)) , new O r i g i n a t i n g H o s t (

localhost)) , A) ;
17 e x p r e s s i o n s . p u t (new Or (new

C a u s a l E q u a l s E x p r e s s i o n (new T r a n s a c t i o n E v e n t (
Push)) , new C a u s a l E q u a l s E x p r e s s i o n (new

T r a n s a t i o n E v e n t (Pop)) , B) ;
18 e x p r e s s i o n s . p u t (new And (new

D e f a u l t E q u a l s E x p r e s s i o n (new T r a n s a c t i o n E v e n t
(Off)) , new O r i g i n a t i n g H o s t (

localhost)) , C) ;
19
20 /∗ Automaton i n i t i a l i z a t i o n wi th t r a n s i t i o n s e t ,

an i n i t i a l s t a t e , an e x p r e s s i o n s e t , n u l l
f o r s e t o f f i n a l s t a t e s ∗ /

21 Automaton t r a n s a c t i o n A u t o m a t o n = new Automaton (
t r a n s i t i o n s , q0 , n u l l , e x p r e s s i o n s) ;

Fig. 13. Replicated stack automaton setup

concurrent relationships between distributed event sequences.
The model uses a library to detect complex event sequences by
using finite deterministic automata. We also expose our mo-
tivation, regarding incorrect event sequences detection caused
by false positives and false negatives, to determine our causal-
ity model based on happens-before relationship defined in [7].
Once our model was defined, we presented an implementation
based on vectorial clocks to support causality in KETAL.
This implementation provides causal and concurrent operators,
besides dynamic management of nodes. Finally, in evaluation
section we exhibit flexibility and simplicity of automata setup
and we illustrate how to manage causality, granting the devel-
oper freedom to model any kind of event sequence in complex
systems. This proposal enables future development of error
detection apps, e.g., debuggers, along with systems designed
to run in distributed environments, just like the cases in section
6.

REFERENCES

[1] Luis Daniel Benavides Navarro, Mario Südholt, Rémi Douence, and
Jean-Marc Menaud. Invasive patterns for distributed programs. In Proc.
of the 9th International Symposium on Distributed Objects, Middleware,
and Applications (DOA’07). Springer Verlag, November 2007.

[2] Luis Daniel Benavides Navarro, Rémi Douence, and Mario Südholt.
Debugging and testing middleware with aspect-based control-flow and
causal patterns. In ACM/IFIP/USENIX International Conference on

Distributed Systems Platforms and Open Distributed Processing, pages
183–202. Springer, 2008.

[3] Patrick Eugster and K R Jayaram. EventJava: An Extension of Java for
Event Correlation. In Proceedings of the 23rd European Conference on
ECOOP 2009 — Object-Oriented Programming, pages 570–594, Berlin,
Heidelberg, 2009. Springer-Verlag.

[4] G Stewart Von Itzstein and David A Kearney. The Expression of
Common Concurrency Patterns in Join Java. In Proceedings of the Inter-
national Conference on Parallel and Distributed Processing Techniques
and Applications, Volume 2, pages 1021–1021, Las Vegas, Nevada, USA,
June 2004.

[5] K R Jayaram and Patrick Eugster. Scalable Efficient Composite Event
Detection. In Dave Clarke and Gul Agha, editors, 12th International
Conference on Coordination Models and Languages (COORDINATION
2010), pages 168–182, Amsterdam, The Netherlands, June 2010.

[6] Luis daniel Benavides Navarro, Andrés Barrera, Kiyoshige Garcés, and
Hugo Arboleda. Detecting and Coordinating Complex Patterns of
Distributed Events with KETAL. Electr. Notes Theor. Comput. Sci.,
281:127–141, 2011.

[7] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, 1978.

[8] Friedman Mattern. Virtual Time and Global states of Distributed
Systems. In Proceedings of the international Workshop on Parallel and
distributed Algorithms, Chateau de Bonas, France, October 1988.

[9] Anders M ller. dk.brics.automaton – Finite-State Automata and Regular
Expressions for Java. Technical report, 2010.

[10] Bela Ban. JGroups, A Toolkit for Reliable Multicast Communication.
2002.

