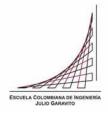
Calibración del sector 1 del acueducto del municipio de Chía

Rodolfo Fajardo Gutiérrez

Bogotá, D.C., 10 de agosto de 2018



Calibración del sector 1 del acueducto del municipio de Chía

Trabajo de grado para optar al título de Especialista en Recursos Hidráulicos y Medio Ambiente

Germán Ricardo Santos Director

Bogotá, D.C., 10 de agosto de 2018

La tesis de especialización titulada "Calibración del sector 1 del acueducto del municipio de Chía", presentada por Rodolfo Fajardo Gutiérrez, cumple con los requisitos establecidos para optar al título de Especialista en Recursos Hidráulicos y Medio Ambiente.

Germán Ricardo Santos

Dedicatoria

A mi esposa Angélica, mis hijos Rafael y María José, quienes son el motor de mi vida y han sacrificado su tiempo para darme espacio en el desarrollo y terminación de este trabajo.

Agradecimientos

A Dios por permitirme culminar este proyecto.

A mi familia por su apoyo incondicional, principalmente a mi hermana Angélica por su valiosa colaboración en el desarrollo de este trabajo.

Al Doctor German Ricardo Santos por su dedicación, orientación y aporte de conocimientos para llevar a buen término este trabajo.

A la Empresa EMSERCHIA ESP, por su confianza y apoyo al brindarme la información necesaria para desarrollo este trabajo

Resumen

Actualmente el sistema de acueducto del municipio de Chía, es abastecido por la Empresa de Acueducto y Alcantarillado de Bogotá EAAB, mediante la suscripción de un contrato de compra de agua en bloque y su distribución se realiza en algunos sectores por gravedad con la presión de la red de suministro y por bombeo para la zona alta occidental.

La población atendida es de aproximadamente 132.000 habitantes y cuenta con un índice de crecimiento muy alto, debido principalmente al desarrollo de nuevas urbanizaciones.

Por tal razón la empresa EMSECHIA ESP que actualmente presta el servicio de acueducto con una cobertura del 90%, enfrenta grandes desafíos y una necesidad para una expansión rápida de su infraestructura y servicios a la comunidad.

En este sentido desde el año 2014 ha realizado la actualización de información referente al catastro de redes y desarrollado una campaña de mediciones de presiones y caudales en diferentes puntos del municipio, durante un periodo de 24 horas.

El presente estudio contempla la evaluación hidráulica del sistema de distribución de un sector (Sector 1), analizando variables como velocidades, rugosidad y presiones en diferentes escenarios de modelación.

Es importante resaltar que se realizara mediante la simulación de un modelo debidamente calibrado utilizando la herramienta de diseño *Water Gems V8*; el uso de esta herramienta nos permite desarrollar las modelaciones en tiempo real de tal forma que obtengamos resultados, confiables y válidos que garantice la representación de la realidad del sistema, al realizar las comparaciones de los resultados con la información de campo registrada.

La investigación aplicada para el desarrollo del proyecto fue evaluativa y descriptiva, de tal manera que permite al lector, conocer la topología de la red, el comportamiento de la demanda y las presiones en el sector de estudio, además de seguir paso a paso el procedimiento de modelación y calibración con ayudas visuales y diagramas de procesos concebidos para tal fin.

El modelo hidráulico calibrado, generado para el sector 1, alcanzo una deferencia porcentual del 11.65% entre los valores simulados y los observados en campo, en este

sentido es necesario de mejorar el modelo y la calibración a partir de realizar una revisión de la calidad de los datos recolectados.

Índice general

Capítulo 2 Objetivos 17 2.1. Objetivo General 17 2.2. Objetivos Específicos 17 Capítulo 3 Caso de Estudio 18 3.1. Generalidades 18 3.2. Sistema de Acueducto 19 3.2.1 Entrada al sistema 19 3.2.2 Sistema de distribución de acueducto 20 3.2.3. Redes de Acueducto 20 3.3.1 Toma de Datos 20 3.3.1 registro de presiones. 20 3.3.2 registro de caudales 27 Capítulo 4 Marco Teórico y Conceptual 20 4.1. Algoritmo Genético Reseña Histórica 20 4.2.1 Individuos 30 4.2.2. Población 30 4.2.3. Selección 30 4.2.4. Cruzamiento. 30 4.2.5. Mutación 30 4.3.1 Metodología de calibración 30 4.3.2 Optimización de Redes Hidráulicas Utilizando un Programa de Algoritmo Genético 40 4.3.1 Metodología de calibración 30 4.3.2 Optimización de algoritmos genéticos 30 4.3.3 Funcionamiento de la Aplicación Water GEMS V8 40 Capítulo 5 Desarrollo del Modelo Hidráulico 41 5.1.1 Configuración básica del modelo 51.2. Importación de archivos de la herramienta Model Buider. 45 5.1.3 Importación de archivos de la herramienta Background Layer 51.4. Asignación automática de elevación nodos a través de Trex Wizard 45 5.1.5. Validación automática de elevación nodos a través de Trex Wizard 45 5.1.5. Validación automática de elevación nodos a través de Trex Wizard 45 5.1.6. Cargar curva de consumo 55	Introduc	cción	14
2.1. Objetivo General 2.2. Objetivos Específicos 17 2.2. Objetivos Específicos 17 2.2. Objetivos Específicos 17 2.3. Capítulo 3 Caso de Estudio 3.1. Generalidades 3.2. Sistema de Acueducto 3.2.1. Entrada al sistema 3.2.2. Sistema de distribución de acueducto 3.2.3. Redes de Acueducto. 22 3.3. Toma de Datos 26 3.3.1. registro de presiones. 27 28 3.3.2. registro de caudales 27 29 20 20 21 21 22 23 23 24 24 25 26 27 27 28 29 20 20 21 21 21 22 24 24 25 26 27 27 28 29 20 20 21 21 21 22 23 24 25 26 27 28 29 20 20 20 21 21 22 23 24 25 26 27 27 28 29 20 20 20 21 21 22 23 24 25 26 27 27 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	Capítulo	o 1. Planteamiento del Problema	16
2.2. Objetivos Específicos Capítulo 3 Caso de Estudio 3.1. Generalidades 3.2. Sistema de Acueducto 3.2.1. Entrada al sistema 3.2.2. Sistema de distribución de acueducto 3.2.3. Redes de Acueducto. 2.3.3. Toma de Datos 3.3.1. registro de presiones. 3.3.2. registro de caudales Capítulo 4 Marco Teórico y Conceptual 4.1. Algoritmo Genético Reseña Histórica 4.2. Terminología y Operadores de los Algoritmos Genéticos 4.2.1. Individuos 4.2.2. Población 4.2.3. Selección 4.2.4. Cruzamiento. 4.2.5. Mutación 3.6 Algoritmo Genético 4.3.1. Metodología de Redes Hidráulicas Utilizando un Programa de 4.3.2. Optimización de Redes Hidráulicas Utilizando un Programa de 4.3.3. Capítulo 5 Desarrollo del Modelo Hidráulico 5.1. Funcionamiento de la Aplicación Water GEMS V8 Capítulo 5 Desarrollo del Modelo Hidráulico 5.1. Funcionamiento de la Aplicación Water Gem V8 5.1.1. Configuración de archivos de la herramienta Model Buider. 5.1.3. Importación de archivos de la herramienta Background Layer 5.1.4. Asignación automática de elevación nodos a través de Trex Wizard 5.1.5. Validación del modelo utilizando la herramienta Validate 5.1.5. Validación del modelo utilizando la herramienta Validate 5.1.6. Cargar curva de consumo	Capítulo	o 2 Objetivos	17
3.1. Generalidades 3.2. Sistema de Acueducto 3.2.1. Entrada al sistema 3.2.2. Sistema de distribución de acueducto 2.3.3. Redes de Acueducto. 2.3.3. Toma de Datos 3.3.1. registro de presiones. 3.3.2. registro de caudales 2.6. Capítulo 4 Marco Teórico y Conceptual 2.7. Algoritmo Genético Reseña Histórica 4.2. Terminología y Operadores de los Algoritmos Genéticos 4.2.1. Individuos 4.2.2. Población 4.2.3. Selección 4.2.4. Cruzamiento. 4.2.5. Mutación 3.3. Calibración de Redes Hidráulicas Utilizando un Programa de Algoritmo Genético 4.3.1. Metodología de calibración 4.3.2. Optimización de algoritmos genéticos 4.4. Capacidad de Calibración Integrada del Water GEMS V8 4.5.1. Funcionamiento de la Aplicación Water Gem V8 5.1.1. Configuración básica del modelo 5.1.2. Importaciones de redes a través de la herramienta Model Buider. 5.1.3. Importación de modelo utilizando la herramienta Background Layer 5.1.4. Asignación automática de elevación nodos a través de Trex Wizard 5.1.5. Validación del modelo utilizando la herramienta Validate 5.1.5. Validación del modelo utilizando la herramienta Validate 5.1.5. Validación del modelo utilizando la herramienta Validate 5.1.6. Cargar curva de consumo		·	17 17
3.2.1. Entrada al sistema 3.2.2. Sistema de distribución de acueducto 3.2.3. Redes de Acueducto. 2.3.3. Toma de Datos 3.3.1. registro de presiones. 3.3.2. registro de caudales Capítulo 4 Marco Teórico y Conceptual 4.1. Algoritmo Genético Reseña Histórica 4.2. Terminología y Operadores de los Algoritmos Genéticos 4.2.1. Individuos 4.2.2. Población 4.2.3. Selección 4.2.4. Cruzamiento. 4.2.5. Mutación Calibración de Redes Hidráulicas Utilizando un Programa de Algoritmo Genético 4.3.1. Metodología de calibración 4.3.2. Optimización de algoritmos genéticos 4.4. Capacidad de Calibración Integrada del Water GEMS V8 Capítulo 5 Desarrollo del Modelo Hidráulico 5.1. Funcionamiento de la Aplicación Water Gem V8 5.1.1. Configuración de redes a través de la herramienta Model Buider. 5.1.3. Importaciones de redes a través de la herramienta Background Layer 5.1.4. Asignación automática de elevación nodos a través de Trex Wizard 5.1.5. Validación del modelo utilizando la herramienta Validate 5.1.6. Cargar curva de consumo	Capítulo	o 3 Caso de Estudio	18
4.1. Algoritmo Genético Reseña Histórica 4.2. Terminología y Operadores de los Algoritmos Genéticos 4.2.1. Individuos 4.2.2. Población 4.2.3. Selección 4.2.4. Cruzamiento. 4.2.5. Mutación 4.3. Calibración de Redes Hidráulicas Utilizando un Programa de 4.3.1. Metodología de calibración 4.3.2. Optimización de algoritmos genéticos 4.3.4. Capacidad de Calibración Integrada del Water GEMS V8 4.6. Capítulo 5 Desarrollo del Modelo Hidráulico 4.7. Funcionamiento de la Aplicación Water Gem V8 5.1.1. Configuración básica del modelo 5.1.2. Importaciones de redes a través de la herramienta Model Buider. 5.1.3. Importación de archivos de la herramienta Background Layer 5.1.4. Asignación automática de elevación nodos a través de Trex Wizard 5.1.5. Validación del modelo utilizando la herramienta Validate 5.1.6. Cargar curva de consumo	3.2. 3.2.1. 3.2.2. 3.2.3. 3.3. 3.3.1.	Sistema de Acueducto Entrada al sistema Sistema de distribución de acueducto Redes de Acueducto. Toma de Datos registro de presiones.	18 19 19 21 21 26 26 27
 4.2. Terminología y Operadores de los Algoritmos Genéticos 4.2.1. Individuos 4.2.2. Población 4.2.3. Selección 4.2.4. Cruzamiento. 4.2.5. Mutación 4.3. Calibración de Redes Hidráulicas Utilizando un Programa de Algoritmo Genético 4.3.1. Metodología de calibración 4.3.2. Optimización de algoritmos genéticos 4.4. Capacidad de Calibración Integrada del Water GEMS V8 4.6. Capitulo 5 Desarrollo del Modelo Hidráulico 5.1. Funcionamiento de la Aplicación Water Gem V8 5.1.1. Configuración básica del modelo 5.1.2. Importaciones de redes a través de la herramienta Model Buider. 5.1.3. Importación de archivos de la herramienta Background Layer 5.1.4. Asignación automática de elevación nodos a través de Trex Wizard 5.1.5. Validación del modelo utilizando la herramienta Validate 5.1.6. Cargar curva de consumo 	Capítulo	o 4 Marco Teórico y Conceptual	29
5.1. Funcionamiento de la Aplicación Water Gem V8 5.1.1. Configuración básica del modelo 5.1.2. Importaciones de redes a través de la herramienta <i>Model Buider</i> . 5.1.3. Importación de archivos de la herramienta <i>Background Layer</i> 5.1.4. Asignación automática de elevación nodos a través de <i>Trex Wizard</i> 5.1.5. Validación del modelo utilizando la herramienta <i>Validate</i> 5.1.6. Cargar curva de consumo	4.2. 4.2.1. 4.2.2. 4.2.3. 4.2.4. 4.2.5. 4.3.1. 4.3.2.	Terminología y Operadores de los Algoritmos Genéticos Individuos Población Selección Cruzamiento. Mutación Calibración de Redes Hidráulicas Utilizando un Programa de Algoritmo Genético Metodología de calibración Optimización de algoritmos genéticos	29 30 31 31 31 32 33 34 40
 5.1.1. Configuración básica del modelo 5.1.2. Importaciones de redes a través de la herramienta Model Buider. 5.1.3. Importación de archivos de la herramienta Background Layer 5.1.4. Asignación automática de elevación nodos a través de Trex Wizard 5.1.5. Validación del modelo utilizando la herramienta Validate 5.1.6. Cargar curva de consumo 	Capítulo	o 5 Desarrollo del Modelo Hidráulico	43
5.1 / Acidnacion de demanda a travec de Demand Control Contor 5.	5.1.1. 5.1.2. 5.1.3. <i>5.1.4.</i> 5.1.5.	Configuración básica del modelo Importaciones de redes a través de la herramienta <i>Model Buider</i> . Importación de archivos de la herramienta <i>Background Layer</i> Asignación automática de elevación nodos a través de <i>Trex Wizard</i> Validación del modelo utilizando la herramienta <i>Validate</i>	43 43 45 48 49 51 52 53

5.1.8.	Corrida del modelo	53
Capítul	o 6 Sector de Calibración	56
6.1. 6.1.1. 6.2. 6.3.1. 6.3.2. 6.3.3.	58 59 66 66 66 67	
Capítul	o 7 Conclusiones	79
Anexos	3	81
Bibliogr	rafia	94

Índice de tablas

Tabla 1 Coberturas de servicios públicos Chía-2012	18
Tabla 2 Redes Instaladas de acueducto en km 2003-2010	25
Tabla 3 Registro de Presiones y Caudales Puntos de Medición	28
Tabla 4 Terminología Algoritmos Genéticos	31
Tabla 5 Consumos promedio por usuario.	53
Tabla 6. Registro presiones para calibración del modelo	58
Tabla 7. Registro presiones para calibración del modelo	66
Tabla 8. Comportamiento de presiones P-5	68
Tabla 9. Comportamiento de presiones P-6	69
Tabla 10. Comportamiento de presiones P-8	70
Tabla 11. Comportamiento de presiones P-12	71
Tabla 12. Comportamiento del flujo tuberías 7870 – 1582 - 5036	73
Tabla 13. Comportamiento del flujo tuberías 4649 – 5264 - 7879 - 2541	75
Tabla 14. Comportamiento del flujo tuberías 2222 – 1542 - 1879 -4855	77

Índice de figuras

Imagen 1. Interconexión línea Tibitoc-Chía. Estación Ferrocarril La Caro	20
Imagen 2 Caja de válvula de cierre de 16" -Estación Ferrocarril-La Caro	20
Imagen 3 Macromedidor Ultrasónico. Estación. Ferrocarril-La Caro	20
Imagen 4 Estación Reguladora de Presión- Estación Ferrocarril-La Caro	21
Imagen 5 Estación de bombeo de Emserchía	22
Imagen 6 Tablero de Control Bomba	22
Imagen 7 Subestación de Fonquetá	23
Imagen 8 Sub Estación Lavaderos	23
Imagen 9 Flujo de distribución sistema de acueducto Municipio de Chía.	24
Imagen 10 Redes de distribución del acueducto de Chía	26
Imagen 11 Características técnicas equipos de medición de presiones	26
Imagen 12 Ubicación Puntos de Registro de Presiones	27
Imagen 13 Operador de Reproducción A.G	32
Imagen 14 Operador de cruzamiento AG	33
Imagen 15 Operador de mutación AG	34
Imagen 16 Paso 1 – Configuración Básica del Modelo	43
Imagen 17 Paso 2 – Configuración Básica del Modelo	44
Imagen 18 Paso 3 – Configuración Básica del Modelo	45
Imagen 19 Paso 4 – Importación de redes a través de la herramienta Model Builder	45
Imagen 20 Paso 5 – Importación de redes a través de la herramienta Model Builder	46
Imagen 21 Paso 6 – Importación de redes a través de la herramienta Model Builder	46
Imagen 22 Resumen - Importación de redes a través de la herramienta Model Builder	47
Imagen 23 Tuberías cargadas en Water GEMS	48
Imagen 24 Paso 7 – Importación de archivo a través de la herramienta Background Layers	49
Imagen 25 Paso 8 – Asignación automática de la elevación de los nodos a través de <i>Trex Wizard</i>	50
Imagen 26 Paso 9 – Asignación automático de elevación a nodos a través de Trex Wizard	50
Imagen 27 Paso 10 – Asignación automático de elevación a nodos a través de Trex Wizard	50
Imagen 28 Paso 11 – Asignación automático de elevación a nodos a través de Trex Wizard	51
Imagen 29 Paso 12 – Asignación automática de elevación a nodos a través de Trex Wizard.	51
Imagen 30 Paso 13 – Carga curva de consumo	52
Imagen 31 Paso 14 – Carga de la curva de consumo	53
Imagen 32 Paso 15 – Asignación de demandas a través de Demand Control Center	54
Imagen 33 Paso 15 – Asignación de demandas a través de Demand Control Center	54
Imagen 34 Paso 16 – Asignación de demandas a través de Demand Control Center	55
Imagen 35 Paso 17 – Asignación de demandas a través de Demand Control Center	55
Imagen 36 Paso 18 – Corrida del modelo	56
Imagen 37 Sector de calibración	57
Imagen 38 Modelo de calibración	58
Imagen 39 Paso 1 – Configuración preliminar	59
Imagen 40 Paso 2 – Configuración preliminar	60

Imagen 41 Paso 3 – Ingreso datos de campo	60
Imagen 42 Paso 4 – Criterios e Calibración	61
Imagen 43 Paso 5 – Criterios e Calibración	61
lmagen 44 Paso 6 – Ingreso datos de campo	62
lmagen 45 Paso 7 – Ingreso datos de campo	62
lmagen 46 Paso 8 – Crear archivo de la calibración	63
lmagen 47 Paso 9 – Crear archivo de la calibración	63
lmagen 48 Paso 10 – Crear archivo de la calibración	64
lmagen 49 Paso 9 – Crear archivo de la calibración	64
lmagen 50 – Resultado de optimización	64
lmagen 51 Paso 10 – Crear nuevo escenario	65
Imagen 52 Paso 11 – Crear nuevo escenario	65
Imagen 53 Comportamiento de presión P-5	68
Imagen 54 Comportamiento de presión P-6	69
Imagen 55 Comportamiento de presión P-8	70
Imagen 56 Comportamiento de presión P-12	71
lmagen 57 Niveles aceptables de calibración	72
Imagen 58 Comportamiento presiones herramienta contorno	72
lmagen 59 Comportamiento del flujo tuberías 7870 – 1582 - 5036	74
lmagen 60 Comportamiento del flujo tuberías 4649 – 5264 - 7879 - 2541	76
Imagen 61 Comportamiento del flujo tuberías 2222 – 1542 - 1879 -4855	78

Índice de anexos

Anexo 1 Tabla Demandas de caudal por nodo	81
Anexo 2 Diagrama de proceso para la creación de un modelo en Water Gems V8	92
Anexo 3 Diagrama de proceso para la calibración de un modelo en Water Gems V8	93

Introducción

Los modelos hidráulicos sirven como una herramienta de apoyo en la selección de diferentes alternativas de planificación y diseño, en la evaluación del funcionamiento del sistema y la determinación de una estrategia operativa para una mejor gestión de la infraestructura del agua. Así mismo, son útiles para realizar estudios de vulnerabilidad para evaluar los riesgos que pueden presentarse y afectar el suministro de agua.

Un aspecto fundamental en el uso y aplicación de los modelos hidráulicos es la necesidad de ajustar sus parámetros para que los modelos se acerquen a los comportamientos en la vida real.

El presente estudio pretende a través del uso del software de modelación hidráulica Water Gems V8i, propiedad de la empresa Emserchia E.S.P, representar de la forma más cercana la operación real de la red en un sector determinado, mediante un modelo calibrado que se constituya en una herramienta de gestión para la empresa operadora del sistema.

Según el informe de caracterización poblacional de Chía desarrollado por el departamento de Planeación en el año 2015, como centro de población migrante de municipios de la sabana, el municipio presenta un aumento de población del 88% con relación al último censo.

En consecuencia, la demanda de consumo de agua potable ha incrementado en la misma proporción, lo que ha llevado a la empresa Emserchia E.S.P. a revisar y recopilar la información referente a los usuarios del sistema de acueducto, el catastro de redes y el comportamiento de las demandas; para determinar y optimizar las estrategias con el fin de suplir las crecientes necesidades.

Para que un modelo de una red de un acueducto sea adecuado, es necesario conocer en forma detallada la topología de la red, el material, la rugosidad, el diámetro, topografía de los nodos y conectividad de cada tubo y luego tener mediciones de presiones y caudales para calibrarlo. En el presente estudio y teniendo en cuenta la dimensión del sistema de acueducto, nos enfocaremos en un sector previamente determinado por la empresa de servicios públicos.

Personalmente, este estudio es una oportunidad en el ámbito profesional, de profundizar en el aprendizaje y la aplicación de un software de modelación hidráulica en la calibración de redes a través del uso de algoritmos genéticos.

Por otra parte, para la Empresa Emserchia E.S.P es importante conocer el resultado de la calibración hidráulica de un sector previamente identificado, dado que, de acuerdo a lo reportado, será posible tomar decisiones relacionadas con la optimización del servicio, planificando con base en la demanda y las presiones del sector, la renovación, ampliación de redes e instalación de instrumentación.

Capítulo I

Planteamiento del Problema

En relación a los modelos hidráulicos, es importante tener en cuenta el siguiente:

"En los últimos 70 años, diferentes métodos numéricos han sido usados (y siguen empleándose) para estimar los caudales y presiones en redes de distribución de agua. Estos métodos van desde aproximaciones gráficas basadas en analogías físicas, métodos numéricos iterativos simples hasta complejas organizaciones matriciales para la resolución numérica de sistemas de ecuaciones no lineales." (Gutiérrez Araújo, 2011)

Actualmente los modelos hidráulicos de redes de abastecimiento de agua son ampliamente utilizados por empresas de abastecimiento y consultores para asistir en tareas de planificación, diseño y evaluación de la operación. (Martínez-Solano, Iglesias-Rey, & Molina Arce, 2015).

En este sentido La Empresa Emserchia E.S.P carece de un modelo hidráulico que le permita conocer las falencias del sistema de distribución de agua potable. (Buitriago, 2014)

Por tal razón está abierta a la propuesta de seleccionar un sector y realizar la calibración y optimización de este. Para tal efecto facilitara los registros de presiones y caudales correspondientes a la zona de estudio y permitirá el uso del programa Water Gems V8i, de su propiedad, para realizar las modelaciones correspondientes, de tal forma que obtengamos resultados, confiables, válidos y que ofrezcan los datos necesarios para tomar decisiones acertadas de operación.

Capítulo II

Objetivos

2.1. Objetivo General

Realizar la calibración hidráulica del sector 1 del sistema de distribución de agua potable del municipio de Chía – Cundinamarca; a través de la utilización del programa *Water Gems V8*, con el fin de obtener un modelo confiable que represente el comportamiento real de la red.

Establecer un diagrama de procesos que permita a los interesados en la modelación hidráulica, crear, desarrollar, ejecutar y calibrar un modelo de abastecimiento de agua a través del programa *Water Gem V8*

2.2. Objetivos Específicos

- Construir la topología del modelo hidráulico para el sector 1, basados en los planos y la información de campo entregada por la empresa Emserchia ESP.
- Recopilar la información de registros de caudal y presión del sector 1, obtenida de la campaña de mediciones realizada por la empresa Emserchia ESP.
- Recopilar la información de registro de consumos de los usuarios correspondientes al sector 1 para la asignación de demandas al modelo hidráulico.
- Desarrollo del modelo hidráulico, aplicando el programa Water Gems V8
- Desarrollar la calibración del modelo hidráulico del sector 1, utilizando la herramienta *Darwin Calibrator* del programa *Water Gems V8*.
- A partir de los resultados obtenidos determinar la versatilidad, precisión y ventajas o desventajas del programa *Water Gems V8*. y concluir sobre el tema.

Capítulo III

Caso de Estudio

La empresa Emserchia ESP, tiene identificado cuidadosamente las condiciones operativas del sistema de acueducto, tiene el diagnóstico y la ubicación de sus componentes, desde la fuente hasta las redes de distribución, pasando por conducciones, tanques y sistemas de bombeo. Asimismo, lleva un registro cuidadoso de los consumos de los usuarios y ha realizado campañas de medición de presión y caudal. (Buitriago, 2014)

3.1. Generalidades

El municipio de Chía geográficamente se ubica en 4° 51' 49" latitud norte y 74° 403' 4484" longitud Oeste. El casco urbano se encuentra a una altura de 2.562 metros sobre el nivel del mar; tiene una extensión de 8.044,91 hectáreas, que en su mayoría corresponden al sector rural, siendo el área urbana 630.17 hectáreas. (Contreras Ortiz, 2017, pág. 17)

De acuerdo con las proyecciones del Censo realizado por el DANE en el año 2005 la población urbana y el número de viviendas del municipio de Chía cuenta para el año 2017 con una población aproximada de 132.700 habitantes. (Chía-Población, 2018)

Las coberturas de servicios públicos:

Tabla 1 Coberturas de servicios públicos Chía-2012

Servicio Público	Cobertura
Acueducto	90%
Alcantarillados	79%
Aseo	89%
Energía Eléctrica	96%
Gas	63%

Fuente: Secretaría de Planeación – División de Infraestructura

3.2. Sistema de Acueducto

3.2.1. Entrada al sistema.

El sistema de Acueducto del municipio de Chía es abastecido por la Empresa de Acueducto y Alcantarillado de Bogotá EAAB, mediante la suscripción de un contrato de compra de agua en Bloque con Emserchia E.S.P como actual operador del sistema, con un caudal operativo promedio de 305.1 l/s. (Buitriago, 2014).

La entrega al acueducto del municipio, se realiza en el punto identificado como Estación Ferrocarril - La Caro (Costado derecho de la tubería de conducción Tibitoc-Bogotá), donde existe una derivación de 12" de la tubería 60" de concreto para presión (CCP) y una de 24" de la tubería de 78" de presión de hormigón (PCCP). (Buitriago, 2014)

La tubería de 24" que se deriva de la red matriz de 78" se reduce posteriormente cerca de su punto de conexión a 16", donde se encuentra instalada una válvula de control de igual diámetro. Posterior a esta válvula la tubería se amplía nuevamente en diámetro de 20" en cuyo tramo se interconecta la tubería de 12" con su respectiva válvula de cierre de 12". (Buitriago, 2014).

Cerca del punto de conexión de las redes citadas y sobre la tubería de 20", se ubica la caja para el macromedidor ultrasónico y a una distancia de 50 m después de ésta, se localiza la caja reguladora de presiones que cuenta con una ramificación de tres tubos de 6", 8" y 10" con sus respectivas válvulas de cierre en su diámetro correspondiente. A excepción del ramal central de 8", los restantes tramos disponen de su respectiva válvula de control de presión.

La red principal de distribución se encuentra construida en diámetros de 20" a 2", con presión variable de 15 a 64 m.c.a. (21 a 90 psi). (Buitriago, 2014) La red de distribución cuenta con 4 sectores, 2 subsectores y 3 subestaciones de bombeo para atención de zonas altas. No se cuenta con tanques de compensación urbanos para variaciones de demanda. (Buitriago, 2014).

A continuación, se presentan las imágenes de interconexión línea Tibitoc-Chía, caja de válvulas de cierre, macromedidor y reguladora de presión.

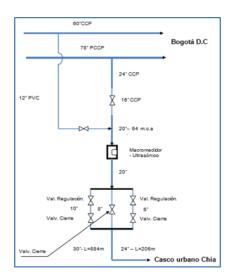


Imagen 1. Interconexión línea Tibitoc-Chía. Estación Ferrocarril La Caro. Fuente: Gestión y Resultados S.A.S

Imagen 2 Caja de válvula de cierre de 16" -Estación Ferrocarril-La Caro. Fuente: Propia autoría

Imagen 3 Macromedidor Ultrasónico. Estación. Ferrocarril-La Caro. Fuente: Propia autoría

Imagen 4 Estación Reguladora de Presión- Estación Ferrocarril-La Caro.
Fuente: Propia autoría

La tubería de salida de la estación reguladora de presión hacia el casco urbano del municipio de Chía es de 30" que se reduce posteriormente a 24" y de la cual se inicia la ramificación de las redes de distribución a las nueve veredas y al área urbana del municipio de Chía. (Buitriago, 2014).

3.2.2. Sistema de distribución de acueducto.

La distribución del sistema de acueducto del Municipio de Chía se realiza en algunos sectores por gravedad con la presión de la red de suministro y por bombeo para la zona alta occidental (sectores Fonquetá, Valvanera) y los sectores Cerca de Piedra, Lavaderos (bajo) y Resguardo Indígena (alto), a partir de la estación de bombeo localizada en el semisótano de las instalaciones principales de EMSERCHÍA E.S.P. (Buitriago, 2014)

La distribución por bombeo se realiza mediante tres subestaciones de bombeo así:

3.2.2.1 Estación 1 - Emserchía.

Cuenta con un tanque de almacenamiento de 83 m3 y una bomba de impulsión de 48HP. Esta estación abastece las subestaciones de bombeo de Fonquetá y Lavaderos mediante una red de 8". En el recorrido intermedio suministra el caudal a algunos sectores altos de la población en las horas de la noche con la presión de la red de suministro (5:30 p.m a 4:30 a.m.) y en las horas del día (4:30 a.m. a 5:30 p.m.), mediante la impulsión a partir del sistema de bombeo de Emserchía. (Buitriago, 2014)

Imagen 5 Estación de bombeo de Emserchía. Fuente: Propia autoría.

Imagen 6 Tablero de Control Bomba. Fuente: Propia autoría.

3.2.2.2 Sub estación 2 - Fonquetá.

Cuenta con un tanque de capacidad 15m3, con una bomba sumergible de 3" en buen estado y una red de impulsión de 2" que suministra el caudal al tanque alto de la Valvanera de capacidad 15 m3 (en buen estado). De este tanque se distribuye por gravedad el servicio aproximadamente a 120 usuarios. (Buitriago, 2014)

Imagen 7 Subestación de Fonquetá. Fuente: Propia autoría.

3.2.2.3 Sub estación 3 – Lavaderos (cerca de piedra).

Cuenta con un tanque de almacenamiento de 15 m3, con una bomba eléctrica de 2" para suministrar el caudal al tanque Resguardo Alto, para abastecer por gravedad dicho sector. A su vez simultáneamente abastece por gravedad algunos usuarios de la parte baja, aproximadamente 80 usuarios. (Buitriago, 2014)

Imagen 8 Sub Estación Lavaderos. Fuente: Propia autoría.

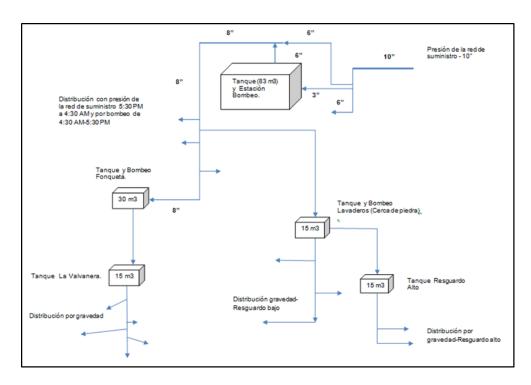


Imagen 9 Flujo de distribución sistema de acueducto Municipio de Chía. Fuente: Gestión y Resultados S.A.S

3.2.3. Redes de Acueducto.

En la siguiente tabla se presenta el comportamiento año a año de las redes instaladas de acueducto entre el 2003 a 2010, tomando como base información del estudio de actualización de la valoración económica de los activos (redes) afectos a la prestación de los servicios de acueducto y alcantarillado del Municipio de Chía-Cundinamarca, dic. 2011, el cual incluye las inversiones realizadas por Emserchía E.S.P.

Tabla 2 Redes Instaladas de acueducto en km 2003-2010

D1		Año 2003 Año 2004 Año 2005 Año 2006		Año 2007	Año 2008	Año 2009	Año 2010		
Descripción	Unidad	Cantid	Cantid	Cantid	Cantid	Cantid	Cantid	Cantid	Cantid
D = 30" CCP	km	0,948	0,948	0,835	0,835	0,835	0,835	0,835	0,835
D = 24" CCP	km	0,443	0,443	0,376	0,376	0,376	0,376	0,376	0,376
D = 20" CCP	km	1,942	1,942	2,093	2,093	2,093	2,093	2,093	2,091
D = 20" PVC	km		0	0	0	0	0	0	0,002
Total 20"		1,942	1,942	2,093	2,093	2,093	2,093	2,093	2,093
D = 16" CCP	km	1,758	1,758	1,754	1,754	1,754	1,754	1,754	1,754
D = 16" PVC	km	1,750	0	0,018	0,018	0,018	0,018	0,018	0,018
Total 16"	Kill	1,758	1,758	1,772	1,772	1,772	1,772	1,772	1,772
D = 12" CCP	km	0.477	0.477	0.477	0.477	0.477	0.477	0,477	0.477
D = 12" PVC	km	1,176	1,176	1,159	1,159	1,159	1,159	1,159	1,159
D = 12" AC	km	1,813	1,813	1,854	1,854	1,854	1,854	1,854	1,854
Total 12"		3,466	3,466	3,490	3,490	3,490	3,490	3,490	3,490
D = 10" PVC	km	6,480	6,480	6,377	6,377	6,377	6,377	6,377	6,377
D = 10" AC	km		0	0,241	0,241	0,241	0,241	0,241	0,241
Total 10"		6,480	6,480	6,618	6,618	6,618	6,618	6,618	6,618
D = 8" PVC	km	10,184	10,184	10,181	10,181	10,181	10,181	10,181	10,181
D = 8" AC	km	0,846	0,846	0,611	0,611	0,611	0,611	0,611	0,611
D = 8" HF	km	0,005	0,005	0,009	0,009	0,009	0,009	0,009	0,009
Total 8"		11,035	11,035	10,801	10,801	10,801	10,801	10,801	10,801
D = 6" PVC	km	36,656	36,656	36,438	37,062	37,062	37,062	37,062	37,152
D = 6" AC	km		0	0,353	0,353	0,353	0,353	0,353	0,353
D = 6" HF	km	0,040	0,040	0,040	0,040	0,040	0,040	0,040	0,040
Total 6"		36,696	36,696	36,831	37,455	37,455	37,455	37,455	37,545
D = 4" PVC	km	43,084	43,084	42,566	42,566	42,566	42,740	42,892	42,622
D = 4" AC	km	0,993	0,993	1,007	1,007	1,007	0,887	0,887	1,007
Total 4"		44,077	44,077	43,573	43,573	43,573	43,627	43,779	43,629
D = 3" PVC	km	68,266	70,340	72,103	72,103	72,103	72,323	72,415	72,628
D = 3" AC	km	2,515	2,515	2,671	2,671	2,671	2,493	2,493	2,671
D = 3" HF	km		0	0,312	0,312	0,312	0,312	0,312	0,312
D = 3" PEAD	km				0,368	0,452	0,452	0,450	0,353
Total 3"		70,781	72,855	75,086	75,454	75,538	75,580	75,670	75,964
D = 2-1/2 PVC	km		0	0,102	0,102	0,102	0,186	0,186	0,102
D = 2" PVC	km	52,385	52,880	61,777	61,777	62,312	62,908	63,683	62,725
D = 2" AC	km		0	0,202	0,202	0,202	0,202	0,202	0,202
D = 2" PEAD	km				0,257	0,257	0,257	0,260	0,440
Total 2"		52,385	52,880	61,979	62,236	62,771	63,367	64,145	63,367
D-1-1/2" PVC	km		0	0,433	0,433	0,433	0,433	0,433	0,433
Diam - 1" PVC	km		0	3,816	3,816	3,816	3,816	3,816	3,782
Total	km	230,011	232,580	247,805	249,054	249,673	250,449	251,469	250,807

Fuente: Actuación de la valoración económica de los activos (redes) afectos a la prestación de los servicios de acueducto y alcantarillado del Municipio de Chía-Cundinamarca, dic. 2011.

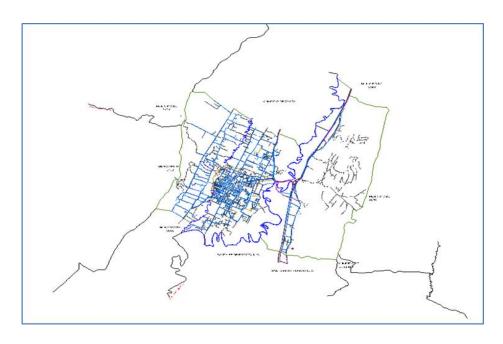


Imagen 10 Redes de distribución del acueducto de Chía. Fuente: Propia autoría.

3.3. Toma de Datos

3.3.1. Registro de presiones.

La empresa Emserchía E.S.P cuenta con un registro de mediciones de presión en diferentes puntos de la ciudad, para los cuales se emplearon (12) loggers con sensores de presión con las siguientes características técnicas:

Rango de Medición:	Presión manométrica = 0 a 100 ó 200 m_H ₂ O					
	Caudal: Señal de pulsos. Máximo 15 por segundo.					
Temperatura del agua:	1 – 30°C					
Precisión:	± 0.5 del rango.					
Resolución:	± 0.5 del rango.					
Display:	Digital con ocho (8) caracteres.					
Memoria:	32 Kb para 93 días con medidas de presión y caudal simultáneas					
	cada 15 minutos. La memoria es de tipo rotativa, y puede almacenar					
	hasta 32,000 lecturas.					
Intervalo de medición:	Programable entre 1 segundo y 24 horas.					
Fuente de Poder:	Batería interna para 5 años de duración.					
Protección:	IP68					
Peso:	600 g					

Imagen 11 Características técnicas equipos de medición de presiones. Fuente: Emserchia E.S.P.

Mediante este equipo se registraron para cada hora, los diferentes datos de presión de cada loggers durante un periodo de 24 horas.

3.3.2. Registro de caudales.

El sistema de acueducto de la cuidad de chía cuenta con una estación reguladora de presión que realiza una regulación de la presión de entrada al sistema, la cual depende del caudal circundante.

La información se recopilo de igual forma cada hora, al mismo tiempo de las mediciones de presión, lo que permitió realizar una compilación de caudales y presiones en un mismo tiempo.

En la siguiente imagen se relaciona la ubicación de los loggers y los registros correspondientes.

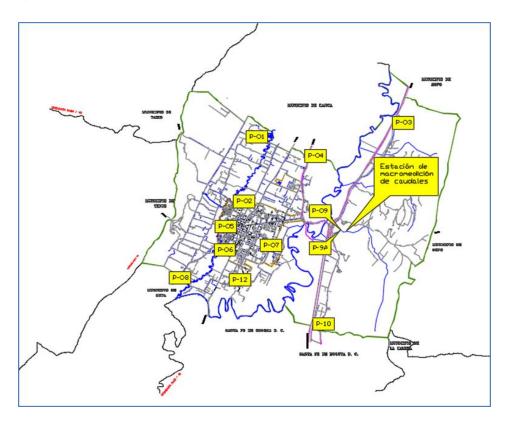


Imagen 12 Ubicación Puntos de Registro de Presiones. Fuente: Propia autoría.

Tabla 3 Registro de Presiones y Caudales Puntos de Medición

Hora	CAUDAL (Lps)	P # 1 - Capilla Fagua	P # 2 - Cl.21xCr.9	P#3-Ladrillera Norte	P # 4 - Dulcinea 2	P # 5 - Carrera 8 - Diagonal 13	P # 6 Diagonal 13 - Carrera 6A	P#7 Valvanera	P # 8 Conjunto Santa Lucia	P # 9 - Caro Aguas Abajo	P # 10 - Endulza Tu Paseo	P # 12 Santa Cruz
0	74.03	31.75	33.50	34.83	37.17	34.04	42.00	34.29	29.79	38.00	15.88	33.42
1	69.22	31.54	33.46	34.50	37.00	33.96	41.92	34.00	29.50	37.58	15.58	33.13
2	68.75	31.46	33.50	34.50	36.96	33.71	41.79	34.00	29.50	37.50	15.58	33.00
3	70.42	31.50	33.50	34.04	36.75	33.58	41.63	34.00	29.46	37.50	15.46	32.96
4	85.28	30.88	33.17	33.67	36.50	33.38	41.33	33.58	29.00	37.46	15.29	32.58
5	161.28	29.21	32.79	34.63	36.96	33.50	41.17	34.29	38.67	38.46	16.21	32.50
6	291.11	29.75	34.96	40.46	41.92	36.83	43.71	39.33	29.83	45.25	21.42	34.79
7	294.17	34.67	39.63	45.58	47.50	41.75	48.38	44.71	34.83	50.75	26.13	39.42
8	291.28	31.25	37.42	43.08	45.04	39.75	46.04	42.46	32.42	48.25	23.25	37.54
9	303.03	30.75	37.83	43.75	45.71	40.38	46.54	43.25	32.67	49.25	23.46	38.29
10	303.92	31.92	38.88	44.58	46.88	41.46	47.42	44.33	33.46	50.21	24.04	38.96
11	303.67	33.50	38.79	44.79	47.13	41.38	48.04	44.42	34.38	50.46	18.88	39.46
12	275.56	34.00	37.71	45.33	46.83	41.75	48.33	44.13	35.33	49.63	19.83	39.92
13	237.28	32.00	34.33	40.92	42.50	38.13	45.08	39.75	32.00	44.75	13.21	36.46
14	237.28	31.50	34.21	39.42	42.21	37.63	44.75	39.29	31.42	44.42	15.17	36.00
15	227.06	32.08	33.63	38.63	42.46	38.21	45.00	39.50	32.13	44.42	14.88	36.39
16	226.81	32.50	33.17	38.83	42.63	37.88	44.92	39.29	31.71	44.21	19.04	36.04
17	218.78	33.17	33.67	38.46	42.38	37.79	44.88	39.29	31.54	44.38	19.04	36.17
18	190.67	32.67	34.00	38.96	41.63	37.92	45.08	38.88	32.04	43.46	19.58	36.25
19	174.75	31.96	33.96	38.42	40.83	37.04	44.46	37.96	31.71	42.42	19.54	35.88
20	169.47	32.63	34.38	38.38	40.46	36.71	44.25	37.63	31.50	42.17	19.38	35.63
21	135.33	33.42	34.58	38.00	39.92	36.50	44.21	37.04	31.54	41.29	18.71	35.71
22	109.17	32.79	33.79	36.25	38.63	35.21	43.04	35.54	30.79	39.54	17.21	34.54
23	88.89	32.25	33.88	35.42	37.96	34.71	42.63	35.00	30.29	38.88	16.33	34.04

Fuente: Propia Autoría

Capítulo IV

Marco Teórico y Conceptual

El conocer los componentes principales del sistema de acueducto y la información más relevante, referente a los diámetros, consumos, presiones y caudales, nos admite desarrollar un modelo hidráulico, para lo cual se utilizará el programa Water Gems V8.

Este software "nos permite asignar demandas y elevaciones en los nodos basados en datos externos evitando errores en el ingreso de datos y agilizando el proceso de construcción del modelo. Water GEMS también provee herramientas de revisión de conectividad para garantizar un modelo hidráulico topológicamente coherente." (Bentley, 2008)

Para la calibración del modelo, de igual forma contamos con la información de campo, que nos permitirá realizar la comparación de resultados. En este sentido "Water GEMS incluye una robusta implementación de algoritmos genéticos para procesos automatizados de calibración, diseño y rehabilitación. Darwin Calibrator evalúa en minutos millones de posibles soluciones para obtener un modelo calibrado que coincida con las mediciones hechas en campo". (Bentley, 2008).

4.1. Algoritmo Genético Reseña Histórica

El investigador John H. Holland, de la Universidad de Michigan siendo consciente de la importancia de la selección natural, a finales de los años 60, desarrolló una técnica que permitió incorporar la selección natural, en un programa de computadora. Su objetivo era lograr que las computadoras aprendieran por sí mismas. La técnica que inventó Holland se llamó originalmente "planes reproductivos", pero se hizo popular bajo el nombre "Algoritmo Genético", AG tras la publicación de su libro. (Holland, 1992). (Marczyk, 2018).

De acuerdo con el paradigma Darwiniano de la evolución, toda la vida en nuestro planeta puede ser explicada a través de una gran cantidad de procesos estadísticos que actúan en las poblaciones y especies como son: reproducción, mutación, competencia y selección. Holland se interesó en estudiar los procesos lógicos

involucrados en la adaptación. Se percató de que el uso de reglas simples podría generar comportamientos flexibles, y visualizó la posibilidad de estudiar la evolución de comportamientos en un sistema complejo. (Marczyk, 2018).

Holland impartía un curso titulado "Teoría de sistemas adaptativos". Dentro de este curso, y con una participación activa por parte de sus estudiantes, fue donde se crearon las ideas que más tarde se convertirían en los AG. Por tanto, cuando Holland desarrolló los AG, los objetivos de su investigación fueron dos:

- Imitar los procesos adaptativos de los sistemas naturales
- Diseñar sistemas artificiales (normalmente programas) que retengan los mecanismos importantes de los sistemas naturales.

Unos 15 años más adelante, David Goldberg, actual delfín de los AG, conoció a Holland, y se convirtió en su estudiante. Goldberg era un ingeniero industrial trabajando en diseño de tuberías, y fue uno de los primeros que trató de aplicar los AG a problemas industriales. Aunque Holland trató de disuadirle, porque pensaba que el problema era excesivamente complicado como para aplicarle AG. Goldberg consiguió lo que quería, escribiendo un AG en un ordenador personal Apple II y publicó sus avances en este tema. (Marczyk, 2018).

Estas y otras aplicaciones creadas por estudiantes de Holland, convirtieron a los AG en un campo con bases suficientes, para celebrar la primera conferencia en 1985, ICGA'85. Tal conferencia se sigue celebrando bianualmente. (Marczyk, 2018).

4.2. Terminología y Operadores de los Algoritmos Genéticos

Los AG, desarrollan una terminología basada principalmente, en el vocabulario utilizado por la genética natural. A continuación, se presentan algunos de ellos. (Gonzàles, 2013, pág. 11)

Tabla 4 Terminología Algoritmos Genéticos

NATURALEZA	SISTEMA ARTIFICIAL
Cromosoma	Cadena de Caracteres
Gen	Características, Carácter
Alelo	Valor de la característica
Locus	Posición en la cadena
Genotipo	Estructura
Fenotipo	Conjunto de Parámetros
Población	Conjunto de Individuos, Fenotipos

Fuente: Gomes Pimentel Heber; Pérez García Rafael (2007); Abastecimiento de agua o estado da arte y técnicas avanzadas, editorial Universit UFPB.Pág.243

4.2.1. Individuos.

Son aquellos que organizados en grupos forman una población, también denominados genotipos, estructuras, cadenas o cromosomas. Están compuestos de unidades conocidas como genes, ordenados sucesivamente; cada gen controla la herencia de uno o varios caracteres. Cada estado del gen se denomina alelo (valor característico), y se representan en código binario. Cada individuo representará una posible solución del problema. (Gonzàles, 2013, pág. 11)

4.2.2. Población.

La población es un conjunto finito de individuos. Para conseguir una evolución de la población inicial, hacia nuevas poblaciones cuya aptitud sea cada vez mayor, el AG utiliza tres operadores básicos: reproducción, cruzamiento y mutación. (Gonzàles, 2013, pág. 11).

4.2.3. Selección.

Tiene como función principal la de escoger los individuos de una población que poseen una mayor aptitud. (Gonzàles, 2013, pág. 12)

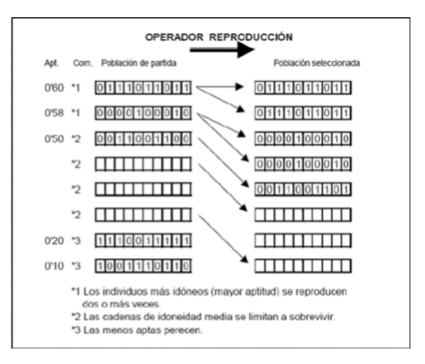


Imagen 13 Operador de Reproducción A.G. Fuente: Agustín Matías Sánchez (2003); Diseño de redes de distribución de agua contemplando la fiabilidad, mediante Algoritmos Genéticos, Tesis Doctoral, Universidad Politécnica de Valencia. Pág.132

4.2.4. Cruzamiento.

Después de haber seleccionado los individuos de una población de acuerdo a su aptitud, se emparejan aleatoriamente estos individuos, combinando los genes de cada pareja para obtener dos nuevos individuos hijos. Generalmente se eligen los individuos a cruzar, mediante una probabilidad de cruzamiento PC. También la posición del intercambio de genes se puede elegir de forma aleatoria. (Gonzàles, 2013, pág. 12)

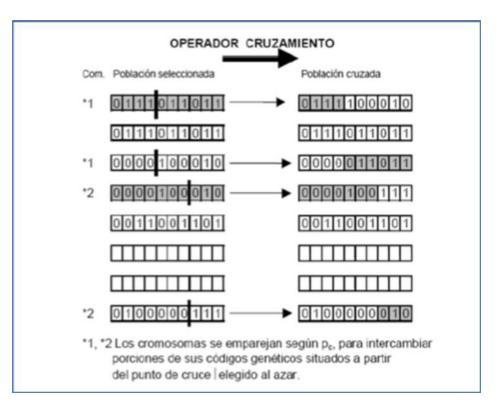


Imagen 14 Operador de cruzamiento AG. Fuente: Agustín Matías Sánchez (2003); Diseño de redes de distribución de agua contemplando la fiabilidad, mediante Algoritmos Genéticos, Tesis Doctoral, Universidad Politécnica de Valencia.Pág.133

4.2.5. Mutación.

Consiste en elegir aleatoriamente un gen mediante la probabilidad de mutación PM de un individuo y cambiar su valor. La elección del gen se realiza aleatoriamente. El objetivo de la mutación es producir diversidad en la población, de tal manera que éste alcance una solución óptima. La probabilidad de mutación no debe ser grande para evitar oscilaciones en el promedio de los valores objetivo de la población (Gonzàles, 2013, pág. 13).

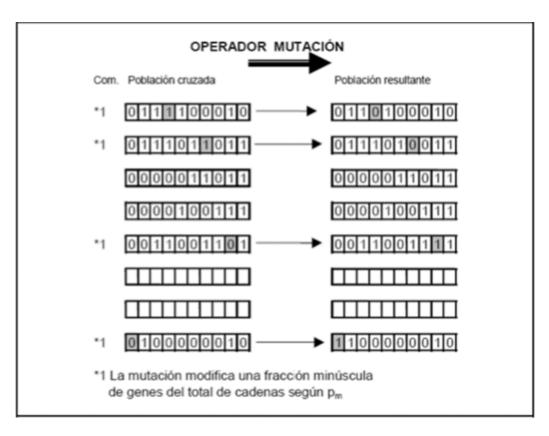


Imagen 15 Operador de mutación AG. Fuente: Agustín Matías Sánchez (2003); Diseño de redes de distribución de agua contemplando la fiabilidad, mediante Algoritmos Genéticos, Tesis Doctoral, Universidad Politécnica de Valencia.Pág.134

4.3. Calibración de Redes Hidráulicas Utilizando un Programa de Algoritmo Genético

Los modelos informáticos se han convertido en una herramienta esencial para la gestión de los sistemas de distribución de agua en todo el mundo. Existen numerosos propósitos para el uso de un modelo de computadora para simular las condiciones de flujo dentro de un sistema. Se puede emplear un modelo para garantizar la cantidad y la calidad adecuada del servicio de agua potable a la comunidad, evaluar las alternativas de planificación y diseño, evaluar el funcionamiento del sistema y verificar una estrategia operativa para una mejor gestión del sistema de infraestructura del agua. Así como para poder realizar estudios de vulnerabilidad para evaluar los riesgos que pueden presentarse y afectar

el suministro de agua. Se construye un modelo para estos propósitos en el que los datos que describen los elementos de red de tuberías, uniones, válvulas, bombas, tanques y depósitos se ensamblan de manera sistemática para predecir el flujo de tuberías, gradiente hidráulico (HGL) y presiones dentro de un sistema de distribución de agua.

Los modelos de computadora que se han establecido en los últimos veinte años y que se construirán en el futuro, son inversiones significativas para las compañías de agua. Para garantizar un buen retorno de la inversión o corregir los usos de los modelos, el modelo debe ser capaz de simular correctamente las condiciones de flujo encontradas en el sitio. Esto se logra calibrando los modelos. Una calibración implica el proceso de ajustar las características y los parámetros del modelo para que los flujos y presiones pronosticados del modelo coincidan con los datos de campo reales observados hasta un nivel aceptable y se describe con más detalle en Walski, Chase y Savic (2001).

La calibración de un modelo de distribución de agua es una tarea complicada. Hay muchos parámetros inciertos que deben ajustarse para reducir las diferencias, entre las predicciones del modelo y las observaciones en campo de presión y caudal. Los coeficientes de rugosidad, generalmente son los que se consideran para la calibración. Sin embargo, hay muchos otros parámetros que son inciertos y que afectan la línea piezométrica y la velocidad de flujo en la tubería. Para minimizar los errores en los parámetros del modelo y eliminar el error de compensación de los parámetros de calibración (Walski 2001), todos los parámetros del modelo como la demanda, la presión, forma de operación de tuberías y válvulas, junto con los coeficientes de rugosidad de la tubería, deben considerarse para la calibración. (Zeng, Walski, Mankowski, Herrin, & Gurrieri, 2002)

La calibración de los modelos de red de distribución de agua, depende de datos de medición de campo, como presiones, flujos de tubería y niveles de agua en tanques de almacenamiento, ajustes de válvula y estado de funcionamiento de la bomba (encendido / apagado) y velocidades. Entre todos los posibles datos de observación de campo, la línea piezométrica (HGL) y el caudal, a menudo se utilizan para evaluar

la bondad de ajuste de la calibración del modelo. Los otros parámetros de niveles de tanque, ajustes de válvula y estado / velocidad de operación de la bomba, se usan como condiciones de contorno, que se registran al recopilar un conjunto de observaciones de calibración de presiones y tasas de flujo de tubería.

Los datos de observación de campo se miden y se recopilan en diferentes momentos del día y también en varios lugares, que pueden corresponder a diferentes cargas de demanda y condiciones de contorno. Para que los resultados de la simulación del modelo representen más estrechamente los datos observados, los resultados de la simulación deben ser el resultado de la misma carga de la demanda y las mismas condiciones de contorno, a medida que se recopilan los datos observados. Por lo tanto, el proceso de calibración debe realizarse bajo condiciones de carga de demanda múltiple y condiciones de frontera de operación.

La calibración del modelo tradicional, de un modelo de distribución de agua, se basa en un procedimiento de prueba y error, mediante el cual un ingeniero, estima primero los valores de los parámetros del modelo, luego ejecuta el modelo para obtener una presión y flujo pronosticados y finalmente compara los valores simulados con los datos observados. Si la predicción no se compara estrechamente con los datos observados, el ingeniero regresa al modelo, realiza algunos ajustes a los parámetros del modelo y lo vuelve a ejecutar para producir un nuevo conjunto de resultados de simulación. Esto puede tener que repetirse muchas veces para asegurarse de que el modelo produce una predicción lo suficientemente cercana de la red de distribución de agua en el mundo real. Por lo tanto, la técnica de calibración tradicional es, entre otras cosas, bastante lenta (Zheng & Walski, 2005).

Además, una representación típica de una red de agua, puede incluir cientos (Bentley, 2008)o miles de enlaces y nodos. Idealmente, durante un proceso de calibración del modelo de distribución de agua, el coeficiente de rugosidad se ajusta para cada tubería y la demanda se ajusta para cada nodo. Sin embargo, solo un pequeño porcentaje de las mediciones representativas de la muestra, pueden estar disponibles para el uso de la calibración del modelo, debido a los recursos financieros y laborales limitados para la recopilación de datos. Por lo tanto, es de

suma importancia contar con una metodología integral y una herramienta eficiente que pueda ayudar al ingeniero a lograr un modelo altamente preciso, en condiciones prácticas que incluya varios parámetros del modelo, como la rugosidad de la tubería, la demanda y la presión.

4.3.1. Metodología de calibración.

Se desarrolla un modelo de optimización, para facilitar el proceso de calibración de un modelo de distribución de agua. Los parámetros se obtienen minimizando la diferencia entre los valores de presiones y flujos de tubería, predichos por el modelo y los observados en el campo, para unas condiciones de contorno dadas, tales como niveles de tanque, configuración de válvula de control y descargas de la bomba. La calibración optimizada se define entonces como un problema de optimización no lineal con tres objetivos de calibración diferentes. (Zeng, Walski, Mankowski, Herrin, & Gurrieri, 2002)

4.3.1.1 Objetivos de la calibración.

La bondad del ajuste de la calibración del modelo se evalúa mediante la diferencia, entre el modelo simulado y los datos de campo, que pueden ser de presión, caudal o la línea piezométrica (o de gradiente hidráulico). (Zheng & Walski, 2005)

La bondad de ajuste, se calcula utilizando valores medidos de presión, línea piezométrica o demandas en un punto especificado por el usuario. (Zheng & Walski, 2005)

Tres funciones de acondicionamiento físico se definen de la siguiente manera:

• Objetivo tipo uno: Minimizar la suma de la diferencia de cuadrados

minimize
$$\sum_{np=1}^{NH} w_{nh} \left(\frac{Hsim_{nh} - Hobs_{nh}}{Hpnt} \right)^{2} + \sum_{nf=1}^{NF} w_{nf} \left(\frac{Fsim_{nf} - Fobs_{nf}}{Fpnt} \right)^{2}$$

$$NH + NF$$
(1)

• Objetivo tipo dos: Minimizar la suma de las diferencias absolutas

minimize
$$\frac{\sum_{np=1}^{NH} w_{nh} \left| \frac{Hsim_{nh} - Hobs_{nh}}{Hpnt} \right| + \sum_{nl=1}^{NF} w_{nl} \left| \frac{Fsim_{nl} - Fobs_{nl}}{Fpnt} \right|}{NH + NF}$$
 (2)

Objetivo tipo tres: Minimizar la diferencia absoluta máxima

minimize
$$\max \left\{ \frac{\sum_{nh=1}^{NH} w_{nh}}{\max_{nh=1}^{NH} w_{nh}} \frac{\left| Hsim_{nh} - Hobs_{nh}}{Hpnt} \right|, \max_{nf=1}^{NF} w_{nf} \frac{\left| Fsim_{nf} - Fobs_{nf}}{Fpnt} \right| \right\}$$
(3)

Dónde:

Hobs_{nh}: Designa la línea piezométrica observado en el punto nh-th

Hsim_{nh}: Es la línea piezométrica simulado del modelo en el punto nh-th,

Hloss_{nh}: Es la pérdida de energía en el punto de datos de observación nh,

Fobs_{nf}: Es el caudal o flujo observado

Fsim_{nf}: Es caudal o flujo simulado del modelo

Hpnt: Observa la energía total en la función objetivo

Fpnt: Es el caudal o flujo en la función objetivo

NH: Es el número de puntos observados

NF: Es el número de descargas de tubería observadas

 W_{nh} y W_{nf} : Representan un factor de ponderación normalizado para los puntos y caudal o flujos hidráulicos observados, respectivamente. Se dan como:

$$W_{nh} = f(Hloss_{nh} / \sum Hloss_{nh})$$
 (4)

$$W_{nf} = f(Fobs_{nf} / \sum Fobs_{nf})$$
 (5)

Donde f () es una función que puede ser lineal, cuadrática, raíz cuadrada, log o constante.

Se puede realizar una calibración optimizada seleccionando uno de los tres objetivos anteriores y los factores de ponderación entre la energía y el flujo. Los parámetros del modelo se calculan utilizando un algoritmo genético mientras se minimiza la función objetivo seleccionado. (Zheng & Walski, 2005)

4.3.2. Optimización de algoritmos genéticos.

El algoritmo genético (AG) es un paradigma de búsqueda robusto basado en los principios de la evolución natural y la reproducción biológica (Goldberg, 1989). Para optimizar la calibración de un modelo de distribución de agua, un programa de AG primero genera una población de soluciones de prueba de los parámetros del modelo. Un programa de solución de red hidráulica luego simula cada solución de prueba. La simulación hidráulica resultante predice el HGL (Línea piezométrica) y los flujos de tubería en un número predeterminado de nodos (o puntos de datos) en la red. Esta información luego se devuelve al módulo de calibración asociado. El módulo de calibración evalúa qué tan cerca está la simulación del modelo de los datos observados, la evaluación de calibración calcula un valor de "bondad de ajuste", que es la diferencia entre los datos observados y los flujos de tubería pronosticados del modelo y las presiones en los nodos y/ o HGL, para cada solución. Este valor de bondad de ajuste se asigna entonces como la "idoneidad" para esa solución en el AG. (Zeng, Walski, Mankowski, Herrin, & Gurrieri, 2002)

Una generación producida por el AG se completa. La medida de aptitud o *fitnest*, se tiene en cuenta al realizar la próxima generación de operaciones de AG. Para encontrar las soluciones de calibración óptimas, las soluciones más adecuadas se seleccionarán imitando el principio de selección natural de Darwin de "supervivencia del más apto". Las soluciones seleccionadas se utilizan para reproducir una próxima generación de soluciones de calibración mediante la realización de operaciones genéticas. Durante muchas generaciones, las soluciones evolucionan y finalmente

surgen las soluciones óptimas o casi óptimas. Se han llevado a cabo muchas aplicaciones exitosas de AG, para resolver la calibración del modelo para una calibración optimizada de los sistemas de recursos hídricos (Wang 1991, Wu 1994, Babovic, etc. 1994, Wu y Larsen 1996).

En la última década, existen numerosas variaciones de algoritmos genéticos. Se ha utilizado un AG competente (también llamado AG rápida y desordenada de *Goldberg* et al., 1989 y 1993), que se ha demostrado que es el AG más eficiente para la optimización de un sistema de distribución de agua (Wu y Simpson 2001) para la calibración optimizada. (Zeng, Walski, Mankowski, Herrin, & Gurrieri, 2002) (Zeng, Walski, Mankowski, Herrin, & Gurrieri, 2002).

4.4. Capacidad de Calibración Integrada del Water GEMS V8

La herramienta *Darwin Calibrator*, que encontramos integrado en el programa de modelación hidráulica Wáter GEMS V8, está basada principalmente en algoritmos genéticos. (Zeng, Walski, Mankowski, Herrin, & Gurrieri, 2002)

Con *Darwin Calibrator*, el ingeniero puede calibrar un modelo de distribución de agua en un contexto real. Puede agregar y combinar parámetros de la red, en diferentes condiciones de solicitud de presión, caudal y coeficientes de rugosidad. El ajuste puede hacerse de forma manual o por medio de un análisis de sensibilidad de soluciones optimas de calibración. (Zeng, Walski, Mankowski, Herrin, & Gurrieri, 2002)

Debido a la gran cantidad de tuberías y nodos en un modelo, la herramienta nos permite, que las tuberías que tienen las mismas características físicas e hidráulicas, puedan agruparse como un solo elemento de calibración, y se les asigne un coeficiente de rugosidad a todas, en el mismo grupo. (Zeng, Walski, Mankowski, Herrin, & Gurrieri, 2002)

Los nodos que tienen los mismos patrones de demanda y se encuentran dentro de una misma área topológica, pueden ser agrupados de la misma manera que las tuberías y convertirse en un elemento de calibración, al cual, se les puede asignar el mismo multiplicador de demanda. (Zeng, Walski, Mankowski, Herrin, & Gurrieri, 2002)

Los parámetros de calibración, pueden ser ajustados con un valor incremental, prescrito por el ingeniero, dentro de límites superiores e inferiores; por ejemplo, un valor *Hazen William* (C) para una tubería o un grupo de tuberías se computará dentro de un rango de un mínimo de 40 y máximo de 140 con un incremento de 5. (Zeng, Walski, Mankowski, Herrin, & Gurrieri, 2002)

De igual forma el multiplicador de demanda puede variar de 0.8 a 1.2 y aumenta en 0.1. La agregación de parámetros es útil para reducir la dimensión de calibración; sin embargo, es necesario eliminar los errores que puedan presentarse, en la agrupación de tuberías y nodos; ya que esto puede afectar la precisión de la calibración del modelo. (Zeng, Walski, Mankowski, Herrin, & Gurrieri, 2002)

Darwin Calibrator permite al ingeniero, seleccionar cualquier combinación de tres tipos de parámetros del modelo: rugosidad de la tubería (basada en las ecuaciones de pérdida de energía de HW, DW y CM), demanda del nodo y estado del enlace (tubería y / o válvulas). Los valores de rugosidad pueden calcularse como un nuevo valor para un grupo de tuberías o modificarse mediante un factor de multiplicación. Los multiplicadores de demanda en los nodos, se ajustan para la variación de demanda espacial y temporal, es decir en condiciones estáticas o en periodo extendido. (Zeng, Walski, Mankowski, Herrin, & Gurrieri, 2002)

El comportamiento de la válvula y de la tubería se tratan como variables binarias que toman un valor de 1 (OPEN) o 0 (CLOSE). (Zeng, Walski, Mankowski, Herrin, & Gurrieri, 2002)

Durante el proceso de calibración del modelo, podemos solicitar al programa, una serie de soluciones que pueden producir el mismo o un mejor ajuste de los datos observados. Esto debido a que el programa utiliza un mayor número de parámetros de calibración, que el conjunto de datos observados independiente. Se guardan e informan varias soluciones principales al final de una ejecución de calibración. Las mejores soluciones se pueden utilizar para muchos fines, como el estudio de

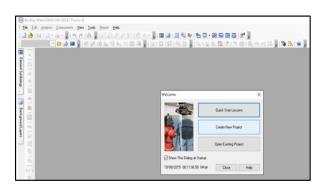
sensibilidad y diferentes escenarios de modelado, para verificar el resultado final de la calibración, junto con juicios de ingeniería sólidos. (Zeng, Walski, Mankowski, Herrin, & Gurrieri, 2002)

Los estudios de sensibilidad y verificación, pueden realizarse fácilmente utilizando la función de calibración manual. La función de calibración manual permite que los parámetros del modelo de calibración, se ajusten manualmente a los valores deseables y la ejecución de calibración se realiza sin ejecutar la optimización GA, para evaluar qué tan cerca está la simulación del modelo, de los valores de observación de campo. (Zeng, Walski, Mankowski, Herrin, & Gurrieri, 2002)

Capítulo v

Desarrollo del Modelo Hidráulico

Con el fin de desarrollar el objeto del presente estudio, es necesario realizar el montaje de redes y la modelación hidráulica del acueducto del municipio de Chía, empleando el programa WaterGEMS V8. La licencia que se utilizó en el presente trabajo es propiedad de la empresa Emserchia ESP.


Con ayuda del programa podemos analizar el comportamiento de las tuberías y proyectar el ejercicio de calibración, para tal efecto se debe de seguir una serie de pasos, según se describe en el siguiente diagrama de procesos.

5.1. Funcionamiento de la Aplicación Water Gem V8

Esta sección está basada en los anexos # 1 y 2 del manual de *Water Gem* (Bentley, 2008)

5.1.1. Configuración básica del modelo.

Al ingresar al software, se nos presenta una ventana de bienvenida que nos ofrece tres opciones, de la que elegimos la numero dos: *Create New Project*.

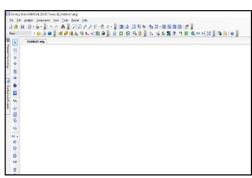


Imagen 16 Paso 1 – Configuración Básica del Modelo. Fuente: Propia autoría

Al crear un nuevo modelo, es necesario definir la configuración básica del proyecto, dado que Water Gems V8 nos permite trabajar con diferentes fluidos y métodos de fricción. Para tal efecto elegimos la opción *Calculation Options*, que encontramos en

el menú *Analysis*. En esta ventana puede ser personalizada por el usuario específicamente al definir el tipo de análisis: Flujo Permanente (*Steady State*) o Simulación de periodo extendido (EEPS. Para el desarrollo de este trabajo, utilizaremos las configuraciones por defecto: la ecuación de *Hazen – William* para el cálculo de las pérdidas de energía por fricción y las propiedades del agua, densidad y viscosidad para agua a 20°grados C.

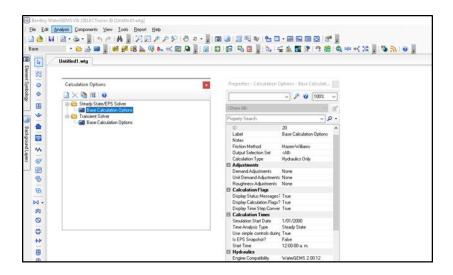


Imagen 17 Paso 2 – Configuración Básica del Modelo. Fuente: Propia autoría

Para las opciones generales del proyecto empezamos por seleccionar en primera instancia el sistema de unidades, que en este caso es el Sistema internacional de unidades (SI), los colores de fondo, el tamaño de los textos y los símbolos. Para configurar lo anterior, vamos a Option en el menú *Tools*. Para el ejercicio propuesto se trabajará en *Scaled*, lo que nos indica que el dibujo manejará las longitudes reales a escala.

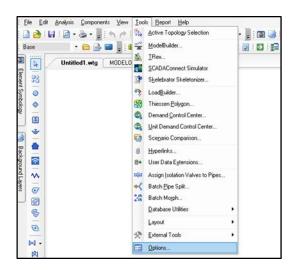


Imagen 18 Paso 3 – Configuración Básica del Modelo. Fuente: Propia autoría

5.1.2. Importaciones de redes a través de la herramienta *Model Buider*.

Dentro de la información suministrada por la empresa Emserchia ESP encontramos un archivo *shapefiles* de *Argis*, que nos presenta la distribución de agua potable del municipio de Chía con todos sus componentes. Además, se relacionan los diámetros y cotas de elevación de cada una de sus nodos. Para cargar el archivo al programa seleccionamos el icono *ModelBuilder*, desplegándose una ventana que nos permite importar el archivo *shapefile* previamente creado.

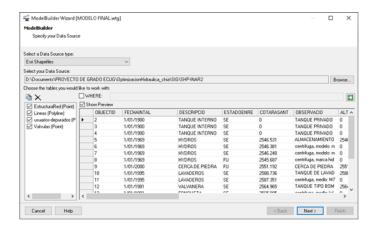


Imagen 19 Paso 4 – Importación de redes a través de la herramienta *Model Builder*. Fuente: Propia autoría

Seguimos el proceso haciendo seleccionando *Next*, desplegando otra ventana que nos permite cambiar las unidades de las coordenadas y determinar el valor de tolerancia entre las conexiones de la red, esto es importante ya que nos garantiza que no tengamos problemas de conectividad.

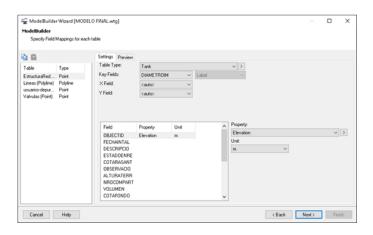


Imagen 20 Paso 5 – Importación de redes a través de la herramienta *Model Builder*. Fuente: Propia autoría

Nuevamente seleccionamos *Next*, en las siguientes dos ventanas, dejando las configuraciones por defecto, hasta que se despliega la ventana que nos permite activar las especificaciones de cada elemento, como son el diámetro y la elevación.

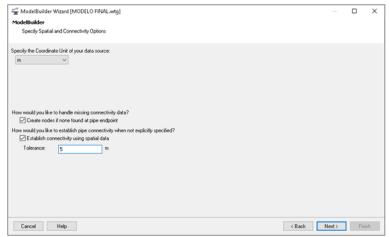


Imagen 21 Paso 6 – Importación de redes a través de la herramienta *Model Builder*. Fuente: Propia autoría

Seguimos la secuencia que nos muestra la herramienta hasta llegar a la última ventana donde podemos observar el resumen de los elementos, como son la estructura de la red, los tipos de tubería, la cantidad de usuarios y el número de válvulas.

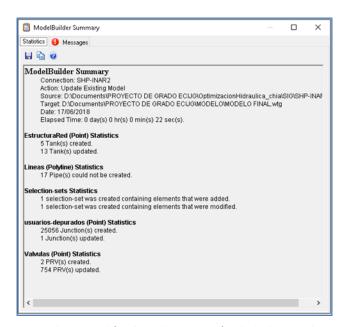


Imagen 22 Resumen - Importación de redes a través de la herramienta *Model Builder*. Fuente: Propia autoría

Por último, nos aparece un mensaje que nos pregunta si realizamos la sincronización del modelo por medio de la herramienta *Model Builder*, que al responder afirmativamente obtenemos la siguiente imagen.

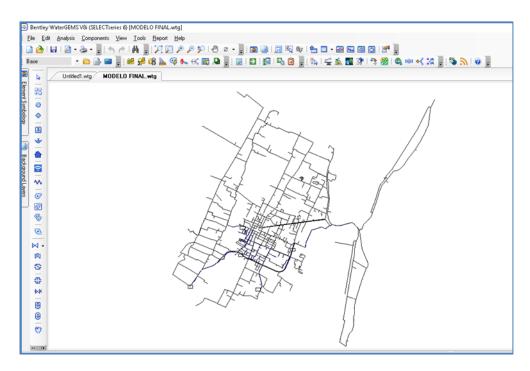


Imagen 23 Tuberías cargadas en *Water GEMS*. Fuente: Propia autoría

5.1.3. Importación de archivos de la herramienta Background Layer

Esta herramienta nos permite importar un archivo base de referenciación y ubicación de la red y sus componentes. En la información recibida de la empresa Emserchia ESP cuenta con un plano urbanístico en formato *AutoCAD* extensión dwg, el cual podemos depurar según el nivel de detalle que consideremos y guardarlo con extensión dxf.

Este paso no es necesario en el proceso de modelación, pero si nos permite la ubicación real de los elementos y por defecto poder generar los planos de esquinas.

Es importante tener en cuenta que los planos con redes y urbanismo, se deben de implantar para verificar que tengan las mismas coordenadas de referencia, y garantizar consistencia de la información.

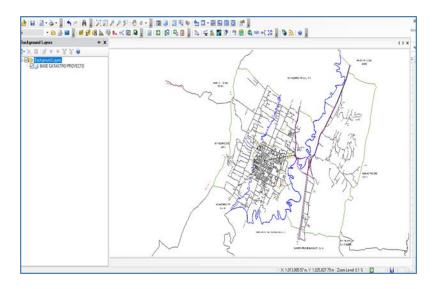


Imagen 24 Paso 7 – Importación de archivo a través de la herramienta *Background Layers*. Fuente: Propia autoría

5.1.4. Asignación automática de elevación nodos a través de *Trex Wizard* Water Gems V8 nos permite realizar de manera automática la asignación de elevaciones a los nodos del modelo mediante el uso de la herramienta Trex Wizard, si se cuenta con un archivo en extensión dxf o shapefiles con las curvas de nivel del sector del proyecto. Dentro de los archivos entregados por la empresa Emserchia ESP, contamos con las curvas de nivel en dxf.

Inicialmente activamos la herramienta y seleccionamos el tipo de archivo a cargar.

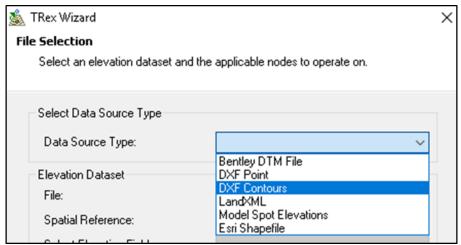


Imagen 25 Paso 8 – Asignación automática de la elevación de los nodos a través de *Trex Wizard*. Fuente: Propia autoría

Luego activando "file" se selecciona el archivo para cargar al modelo:

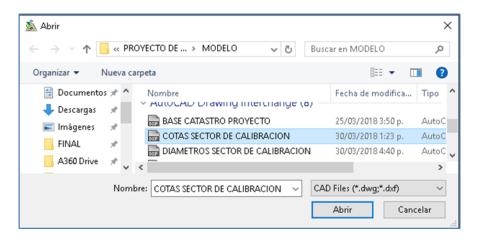


Imagen 26 Paso 9 – Asignación automático de elevación a nodos a través de Trex Wizard. Fuente: Propia autoría

El siguiente paso es seleccionar la característica relacionada con el archivo cargado, y las unidades que este caso son en m.

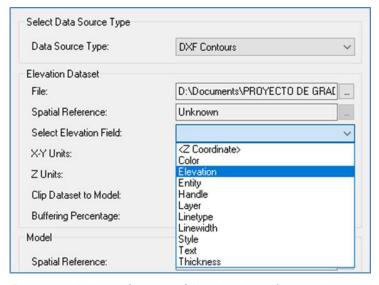


Imagen 27 Paso 10 – Asignación automático de elevación a nodos a través de Trex Wizard. Fuente: Propia autoría

Siguiendo la secuencia que nos indica la ventana seleccionamos Next y esperamos unos segundos mientras que se realiza la asignación de cotas a los nodos dando por terminado este proceso.

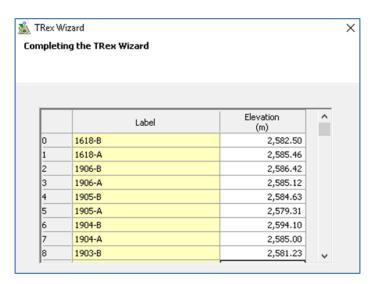


Imagen 28 Paso 11 – Asignación automático de elevación a nodos a través de Trex Wizard. Fuente: Propia autoría

5.1.5. Validación del modelo utilizando la herramienta Validate

Esta herramienta nos permite realizar una revisión de la topología del modelo. En caso de no presentar inconsistencias nos arroja un mensaje indicando que no se han encontrado problemas, lo validamos y continuamos con la modelación. En caso contrario el mensaje nos muestra problemas que se deben de solucionar antes de correrlo en una ventana con los códigos y la descripción del inconveniente.

Imagen 29 Paso 12 – Asignación automática de elevación a nodos a través de Trex Wizard. Fuente: Propia autoría

5.1.6. Cargar curva de consumo

Los valores de la curva de consumo están dentro de la información entregada por la empresa Emserchia ESP en formato Excel que se carga seleccionando la pestaña *Component* y activando *patterns*

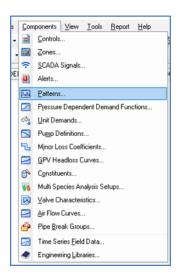


Imagen 30 Paso 13 – Carga curva de consumo. Fuente: Propia autoría

Al activar el *patterns*, creamos un nuevo patrón de consumo en la carpeta hidráulica, con el nombre de nuestra preferencia. Luego del archivo de Excel, copiamos y pegamos los factores de mayoración para cada la hora

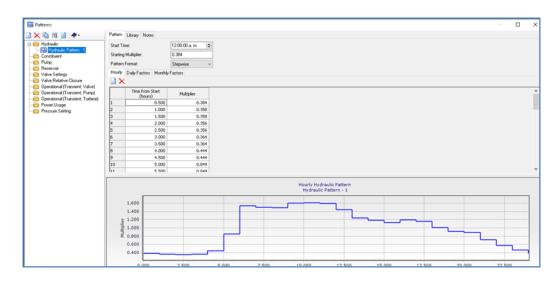


Imagen 31 Paso 14 – Carga de la curva de consumo. Fuente: Propia autoría

5.1.7. Asignación de demanda a través de Demand Control Center

La empresa Emserchia E.S.P. proporcionó información relativa a los consumos promedios del último año, por concepto del servicio de acueducto. Esta información está discriminada por periodo de facturación y el consumo por usuario, como se presenta en la siguiente tabla.

Tabla 5 Consumos promedio por usuario.

Período de Facturación	Número de Suscriptores	Consumo Total (M3)	Promedio por suscriptor (M3)	Consumo en Lps	Cons x Usuario (Lps)
Enero - Febrero	18,944	660,754	35	127	0.0067
Marzo - Abril	19,094	681,864	35.71	132	0.0069
Mayo - Junio	19,312	672,750	34.84	130	0.0067
Julio - Agosto	19,546	666,352	34.09	129	0.0066
Septiembre - Octubre	19,451	538,233	27.67	104	0.0053
Noviembre - Diciembre	19,600	707,338	36.09	136	0.0070

Fuente: Emserchia E.S.P

Para efectos del presente trabajo se tomará el máximo valor de consumo por usuario, según las mediciones registradas en la tabla anterior

Esta herramienta *Demand Control Center*, permite asignar las demandas por nodo, según sea nuestro modelo, para tal fin se selecciona el icono que nos lleva a una ventana donde escogemos la opción *Add Demands*

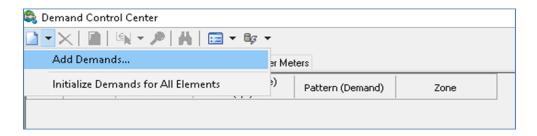


Imagen 32 Paso 15 – Asignación de demandas a través de *Demand Control Center*.

Fuente: Propia autoría

La acción anterior nos despliega la red del modelo y nos permite a su vez seleccionar los nodos con el fin de asignar la demanda previamente establecida.

Imagen 33 Paso 15 – Asignación de demandas a través de *Demand Control Center*.

Fuente: Propia autoría

Al validar el paso anterior con el icono verde de la pestaña *select*, retornamos a la ventana de *Demand Control Center*, donde se nos permite colocar el valor de la demanda y seleccionar la curva de consumo previamente asignada.

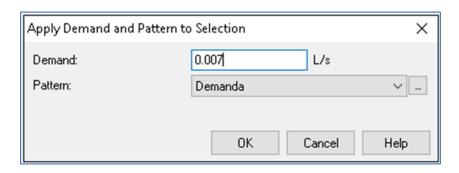


Imagen 34 Paso 16 – Asignación de demandas a través de Demand Control Center.

Fuente: Propia autoría

Al seleccionar ok se despliega una ventana con los valores de la demanda para cada nodo. Este valor ya se encuentra multiplicado por un factor, de acuerdo con la curva de consumo previamente cargada

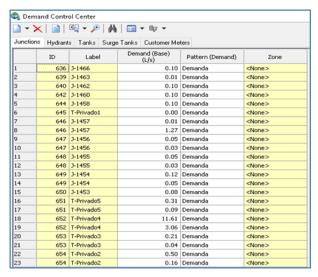


Imagen 35 Paso 17 – Asignación de demandas a través de Demand Control Center.

5.1.8. Corrida del modelo

Realizado los pasos anteriores, podemos correr el modelo al seleccionar el icono Compute. Pasados unos segundos se despliega una ventana que relaciona varias características. Es posible que se presente mensajes de error, ya que pueden generarse presiones negativas independientes de la validación anterior.

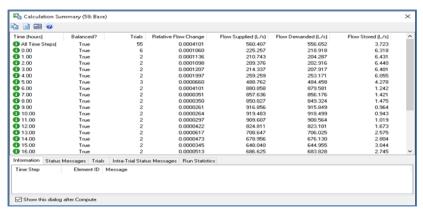


Imagen 36 Paso 18 – Corrida del modelo. Fuente: Propia autoría

Capítulo VI

Sector de Calibración

Como se describió anteriormente, ya tenemos implementado el modelo general del sistema de acueducto del municipio de Chía; se realizó la validación correspondiente y se revisó que no se presentaran presiones negativas en ninguno de los nodos.

El sector de calibración, que llamaremos Sector 1, se determinó teniendo en cuenta que contamos en la zona con varios puntos de toma de registros de presión.

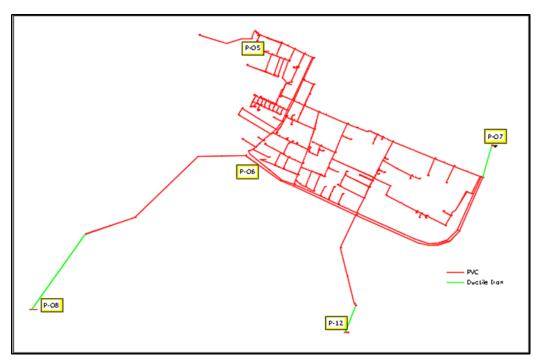


Imagen 37 Sector de calibración. Fuente: Propia autoría

Simplificamos la red general, por medio de la eliminación manual, de nodos, tuberías y válvulas, obteniendo un modelo que corresponda al sector de calibración establecido. Debemos de garantizar durante este ejercicio, que el nuevo modelo conserve la topología, la curva de demanda y las opciones de cálculo, previamente definidas en el modelo general. Para efectos de la modelación, se proyectará un embalse en la ubicación del punto número 7 que alimentará el sector 1, con una cota piezométrica cuyo valor estar determinado por la cota de terreno más la máxima presión en m.c.a, registrada en la medición de campo.

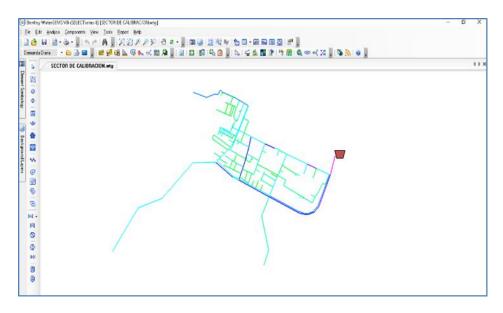


Imagen 38 Modelo de calibración. Fuente: Propia autoría

6.1. Datos de Campo

Como mencionamos, la calibración de una red de distribución de agua, depende de los datos de medición de campo. Para tal efecto, se pueden tomar los datos de la línea piezométrica o los de presión. Para el caso de estudio se tomaron registros de presión correspondientes a nueve horas, de las 23 registradas en la Tabla 3.

Tabla 6. Registro presiones para calibración del modelo

Hora	P # 5 - Carrera 8 - Diagonal 13	P # 6 Diagonal 13 - Carrera 6A	P # 7 Valvanera	P # 8 Conjunto Santa Lucia	P # 12 Santa Cruz
0	34.04	42.00	34.29	29.79	33.42
1	33.96	41.92	34.00	29.50	33.13
4	33.38	41.33	33.58	29.00	32.58
5	33.50	41.17	34.29	38.67	32.50
8	39.75	46.04	42.46	32.42	37.54
13	38.13	45.08	39.75	32.00	36.46
17	37.79	44.88	39.29	31.54	36.17
20	36.71	44.25	37.63	31.50	35.63
21	36.50	44.21	37.04	31.54	35.71

6.1.1. Proceso de calibración.

Ver Anexo No. 2

6.1.1.1 configuración preliminar.

Antes de iniciar el proceso de calibración, nos dirigimos a la etiqueta *Analysis* opción *Scenarios* y cambiamos el nombre de la carpeta Base a Datos de Calibración.

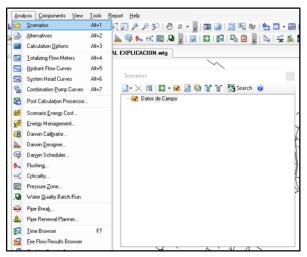


Imagen 39 Paso 1 – Configuración preliminar. Fuente: Propia autoría

Se debe de verificar antes de dar inicio al proceso de calibración, las unidades de presión que sean metros de columna de agua (m H2O) y de caudal en l/s. En la etiqueta *Tool/Option*

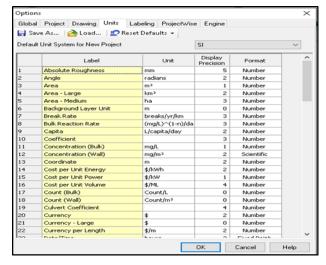


Imagen 40 Paso 2 – Configuración preliminar. Fuente: Propia autoría

6.1.1.2 ingreso datos de campo.

Mediante el botón *Darwin Calibrador*, en la barra de herramientas, se nos despliega una ventana donde seleccionamos *New* y escogemos la opción *New Calibration Study*, de esta manera damos inicio al análisis de calibración

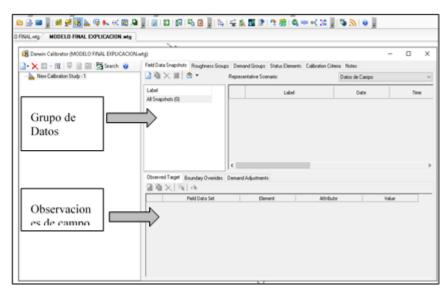


Imagen 41 Paso 3 – Ingreso datos de campo. Fuente: Propia autoría

6.1.1.3 criterios de calibración.

En esta misma ventana seleccionamos la etiqueta *Calibration Criteria* y establecemos la función objetivo y sus parámetros de calibración.

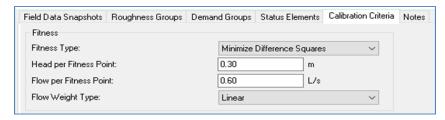


Imagen 42 Paso 4 – Criterios e Calibración. Fuente: Propia autoría

6.1.1.4 grupo de ajustes.

El *Darwin Calibrador* permite realizar ajustes variando tres tipos de parámetros:

- Rugosidades
- Demandas
- Estado de elementos (open/close)

El grupo de ajuste que generaremos para este estudio, es el de rugosidades, para lo cual, agrupamos las tuberías por tipo de material, de esta manera se involucra directamente el coeficiente de rugosidad

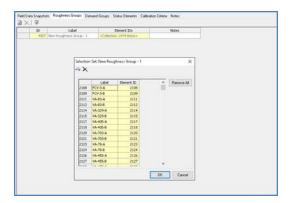


Imagen 43 Paso 5 - Criterios e Calibración. Fuente: Propia autoría

6.1.1.5 Cargar datos registrados.

Ahora seleccionamos la pestaña *Field Data Snapshots*. Al seleccionar *New*, podemos empezar a crear nuestro grupo de datos y nombrarlos de acuerdo al proyecto. En este campo podemos definir características de la información, como son fecha, tiempo y el factor multiplicativo de la demanda, que generalmente es 1.

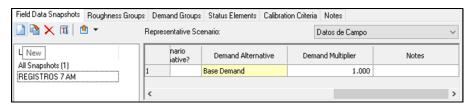


Imagen 44 Paso 6 – Ingreso datos de campo. Fuente: Propia autoría

Seguidamente seleccionamos la pestaña *Observed Target*, que nos habilita para cargar los datos registrados en campo. Como ya se conoce la ubicación de los puntos de toma de datos en el área de dibujo, ver imagen 37, los seleccionamos haciendo uso de la herramienta *Select*, que se activa sobre el icono *Select from* Darwin. Para cada punto se define como Atributo la presión y colocamos el valor medido.

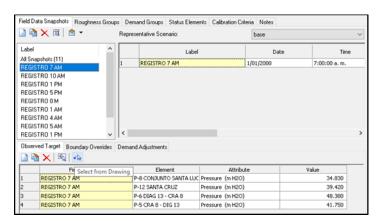


Imagen 45 Paso 7 – Ingreso datos de campo. Fuente: Propia autoría

Realizando las validaciones del modelo, seleccionamos la herramienta *Darwin Calibrator*, a continuación, se selecciona *New* y la opción nueva calibración, para iniciar la configuración de un análisis de calibración. Como se presenta en la siguiente imagen

6.1.1.6 crear archivos de optimización.

Darwin *calibrator* permite al modelador, generar dos opciones de optimización, según la complejidad del modelo, para esto seleccionamos New y New Manual Run, si queremos realizar una calibración manual o *New Optimized Run*, si lo que deseamos es que el programa optimice la calibración del modelo.

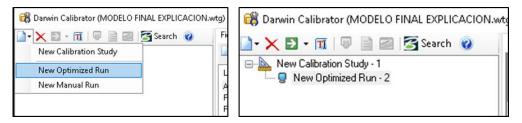


Imagen 46 Paso 8 – Crear archivo de la calibración. Fuente: Propia autoría

Proseguimos el ajuste de los parámetros, para lo cual seleccionamos la pestaña Option en la parte superior, se despliegan una serie de opciones avanzadas con diferentes valores que dejaremos para este modelo, las que asigne el programa por defecto.

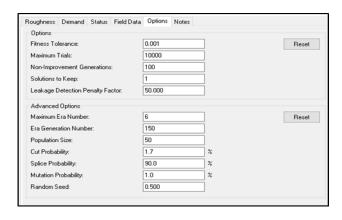


Imagen 47 Paso 9 – Crear archivo de la calibración. Fuente: Propia autoría

Para terminar el chequeo se revisa que la información de las pestañas Roughness y Field Data se encuentren activadas.

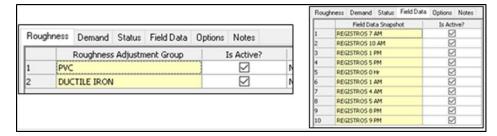


Imagen 48 Paso 10 - Crear archivo de la calibración. Fuente: Propia autoría

Por último, corremos el programa para realizar la calibración.

Imagen 49 Paso 9 - Crear archivo de la calibración. Fuente: Propia autoría

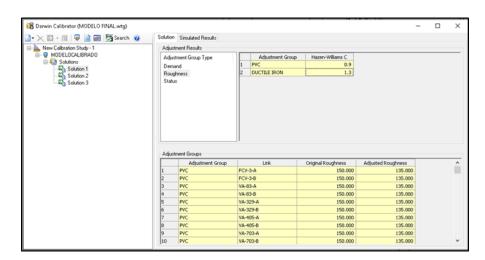


Imagen 50 - Resultado de optimización. Fuente: Propia autoría

6.1.1.7 crear nuevos escenarios.

La herramienta *Darwin Calibrator* nos permite exportar cualquiera de las soluciones como un nuevo escenario, de manera que podamos utilizarlo como punto de partida para comparar los resultados obtenidos con los del modelo inicial. Seleccionamos la solución aceptada y en la parte superior de la ventana, seleccionamos *Export to Scenario*, asignamos el nombre del archivo calibrado y activamos las opciones.

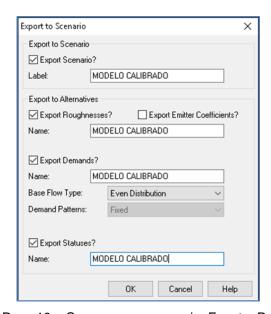


Imagen 51 Paso 10 - Crear nuevo escenario. Fuente: Propia autoría

6.1.1.8 verificar archivo generado.

Seguidamente nos dirigimos a la pestaña *Analysis*, ubicada en la parte superior del área de trabajo y seleccionamos *Scenario* que al desplegare nos muestra una carpeta con el nombre del archivo de calibración creado.

Imagen 52 Paso 11 - Crear nuevo escenario. Fuente: Propia autoría

6.2. Análisis de Resultados

En este capítulo se muestran los resultados de forma ordenada y relacionada, de los registros de datos tomados en las mediciones de campo y los arrojados por el modelo calibrado. De igual manera se analizará el comportamiento de la rugosidad, la presión y el caudal.

6.3.1. Coeficiente de rugosidad.

La calibración del modelo se basa principalmente en el ajuste de la rugosidad, seleccionamos la Solución # 1, por ser la que afecta este coeficiente, en menor porcentaje.

Tabla 7. Registro presiones para calibración del modelo

Adjustment Group	Factor de Ajuste	Hazen-Williams C		
		Modelo Base	Modelo Calibrado	
PVC	0.9	150	135	
DUCTILE IRON	1.3	130	169	

Fuente: Propia autoría

No se puede interpretar el ajuste de las rugosidades como una característica física de las tuberías del modelo, teniendo en cuenta lo enunciado en el subcapítulo 9.1.1.4 Grupo de Ajustes. El calibrador solo ajusta las rugosidades en un intento de aproximarse a las condiciones de operación de la red, sin modificar otras características de las tuberías o de ajustar las demandas, que en realidad también influencian la operación.

6.3.2. Comportamiento de las presiones.

Al correr la calibración del modelo, podemos generar un archivo hijo, dentro del mismo programa, el cual guarda las características topológicas del archivo inicial, como se aprecia en la imagen 51. De forma que se generan curvas de comparación del comportamiento de las presiones en los puntos de interés entre el modelo inicial y el calibrado, ver tablas de la 9 a la 12 e imágenes de la 52 a la 55.

Los resultados observados nos arrojan que la mayor diferencia de presión se presenta en el P-5, ver Tabla 9, con un valor de 6.866 m.c.a y un nivel porcentual del 20.82%, con relación a los registros tomados.

El punto que presenta menor diferencia de presión es el P-12, Tabla 9, con un valor de 4.325 m.c.a y un nivel porcentual del 14.68%, con relación a los registros tomados.

Los otros puntos analizados, P-6 y P-8, muestran diferencias de presiones porcentual del 13.94% el 18.47% respectivamente, con relación a los registros tomados.

Al promediar los valores obtenidos de las diferencias de presión en los puntos de análisis, se llega a que el valor en el sector de calibración es del 16.98%.

Al comparar los resultados obtenidos del modelo con los niveles aceptables de calibración, con relación a los criterios de presión que recomienda el creador del programa, ver imagen 55, podemos concluir que el modelo presenta un 11.65 % de error.

Lo anterior podemos validarlo, utilizando la herramienta de contornos del *Water Gems V8*, que nos permite generar un plano de presiones a color, de acuerdo a los parámetros previamente establecidos, ver imagen 56, donde se puede observar que, el comportamiento de las presiones a la hora de mayor consumo en los dos modelos, presentan una leve diferencia.

6.3.3. Comportamiento de otros parámetros

Se seleccionaron 11 tramos de tuberías, ubicados en la zona de mayor demanda y se evaluó el comportamiento de las velocidades y el caudal, encontrando que la mayor diferencia entre el modelo base y el calibrado no supera el 0.8%, ver tabla 12 e imagen 56.

Tabla 8. Comportamiento de presiones P-5

Time (hours)	P-5 CRA 8 - DIG 13 - base - Pressure (m H2O)	P-5 CRA 8 - DIG 13 - CALIBRACION - Pressure (m H2O)	DIFERENCI A	Nivel Aceptable de Calibración
0	63.159	62.618	0.541	0.8566%
1	63.444	62.963	0.481	0.7581%
2	63.471	62.994	0.477	0.7515%
3	63.376	62.879	0.497	0.7842%
4	62.432	61.738	0.694	1.1116%
5	55.405	53.236	2.169	3.9148%
6	35.459	29.11	6.349	17.9052%
7	36.906	30.862	6.044	16.3767%
8	37.324	31.367	5.957	15.9602%
9	33.15	26.321	6.829	20.6003%
10	32.979	26.113	6.866	20.8193%
11	33.621	26.888	6.733	20.0262%
12	38.896	33.267	5.629	14.4719%
13	45.406	41.143	4.263	9.3886%
14	46.936	42.991	3.945	8.4051%
15	48.469	44.848	3.621	7.4708%
16	46.546	42.521	4.025	8.6474%
17	47.763	43.992	3.771	7.8952%
18	51.74	48.803	2.937	5.6765%
19	53.792	51.285	2.507	4.6605%
20	54.434	52.062	2.372	4.3576%
21	58.208	56.627	1.581	2.7161%
22	60.614	59.538	1.076	1.7752%
23	62.181	61.434	0.747	1.2013%
24	63.16	62.618	0.542	0.8581%
		MAX.	6.866	20.82%

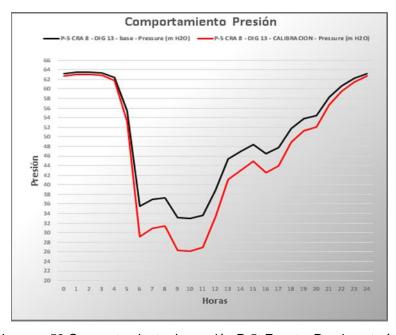


Imagen 53 Comportamiento de presión P-5. Fuente: Propia autoría

Tabla 9. Comportamiento de presiones P-6

Time (hours)	P-6 DIAG 13 - CRA 8 - base - Pressure (m H2O)	P-6 DIAG 13 - CRA 8 - CALIBRACION - Pressure (m H2O)	DIFERENCIA	Nivel Aceptable de Calibración
0	55.930	55.582	0.348	0.6222%
1	56.124	55.818	0.306	0.5452%
2	56.142	55.839	0.303	0.5397%
3	56.077	55.761	0.316	0.5635%
4	55.431	54.978	0.453	0.8172%
5	50.533	49.044	1.489	2.9466%
6	36.428	31.966	4.462	12.2488%
7	37.455	33.208	4.247	11.3389%
8	37.752	33.567	4.185	11.0855%
9	34.789	29.981	4.808	13.8205%
10	34.667	29.835	4.832	13.9383%
11	35.124	30.384	4.74	13.4950%
12	38.867	34.918	3.949	10.1603%
13	43.479	40.503	2.976	6.8447%
14	44.561	41.813	2.748	6.1668%
15	45.646	43.127	2.519	5.5186%
16	44.286	41.48	2.806	6.3361%
17	45.147	42.521	2.626	5.8166%
18	47.955	45.921	2.034	4.2415%
19	49.399	47.671	1.728	3.4980%
20	49.851	48.218	1.633	3.2758%
21	52.497	51.424	1.073	2.0439%
22	54.174	53.456	0.718	1.3254%
23	55.258	54.769	0.489	0.8849%
24	55.930	55.582	0.348	0.6222%
		MAX.	4.832	13.94%

Comportamiento Presión P-6 DIAG 13 - CRA 8 - base - Pressure (m H2O) - P-6 DIAG 13 - CRA 8 - CALIBRACION - Pressure (m H2O) 56.000 52.000 50.000 46.000 44.000 40.000 38.000 36,000 34.000 32.000 30.000 26.000 24.000 22.000 20.000 Horas

Imagen 54 Comportamiento de presión P-6. Fuente: Propia autoría

Tabla 10. Comportamiento de presiones P-8

Time (hours)	P-8 CONJUNTO SANTA LUCIA - base - Pressure (m H2O)	P-8 CONJUNTO SANTA LUCIA - CALIBRACION - Pressure (m H2O)	DIFERENCIA	Nivel Aceptable de Calibración
0	53.510	53.147	0.363	0.6784%
1	53.749	53.429	0.32	0.5954%
2	53.770	53.454	0.316	0.5877%
3	53.691	53.361	0.33	0.6146%
4	52.896	52.424	0.472	0.8923%
5	46.869	45.314	1.555	3.3178%
6	29.505	24.844	4.661	15.7973%
7	30.770	26.333	4.437	14.4199%
8	31.136	26.763	4.373	14.0448%
9	27.488	22.465	5.023	18.2734%
10	27.338	22.289	5.049	18.4688%
11	27.900	22.947	4.953	17.7527%
12	32.509	28.382	4.127	12.6949%
13	38.187	35.078	3.109	8.1415%
14	39.519	36.648	2.871	7.2649%
15	40.854	38.222	2.632	6.4425%
16	39.180	36.249	2.931	7.4809%
17	40.240	37.497	2.743	6.8166%
18	43.697	41.572	2.125	4.8630%
19	45.474	43.669	1.805	3.9693%
20	46.031	44.325	1.706	3.7062%
21	49.287	48.166	1.121	2.2744%
22	51.350	50.601	0.749	1.4586%
23	52.684	52.173	0.511	0.9699%
24	53.510	53.147	0.363	0.6784%
		MAX.	5.049	18.47%

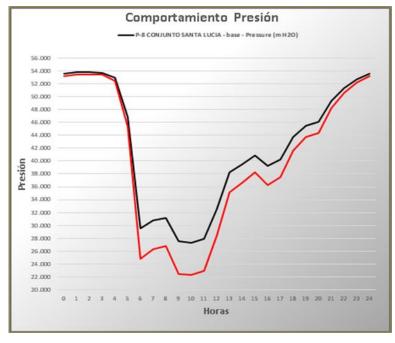
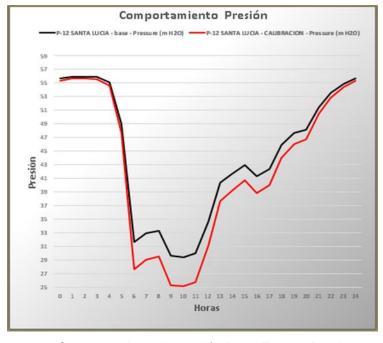
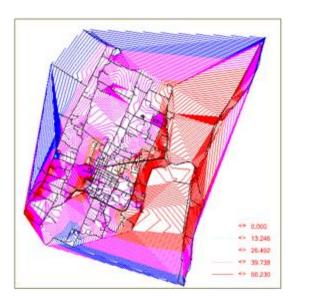
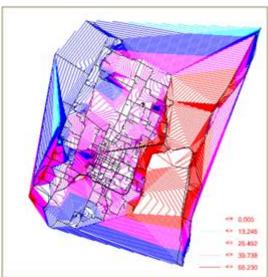


Imagen 55 Comportamiento de presión P-8. Fuente: Propia autoría

Tabla 11. Comportamiento de presiones P-12

Time (hours)	P-12 SANTA LUCIA - base - Pressure (m H2O)	P-12 SANTA LUCIA - CALIBRACION - Pressure (m H2O)	DIFERENCIA	Nivel Aceptable de Calibración
0	55.692	55.380	0.312	0.5602%
1	55.931	55.656	0.275	0.4917%
2	55.953	55.681	0.272	0.4861%
3	55.873	55.589	0.284	0.5083%
4	55.077	54.671	0.406	0.7371%
5	49.036	47.703	1.333	2.7184%
6	31.63	27.635	3.995	12.6304%
7	32.897	29.096	3.801	11.5542%
8	33.264	29.516	3.748	11.2674%
9	29.606	25.303	4.303	14.5342%
10	29.455	25.130	4.325	14.6834%
11	30.02	25.777	4.243	14.1339%
12	34.64	31.104	3.536	10.2079%
13	40.332	37.669	2.663	6.6027%
14	41.668	39.208	2.46	5.9038%
15	43.007	40.751	2.256	5.2457%
16	41.328	38.816	2.512	6.0782%
17	42.39	40.040	2.35	5.5438%
18	45.855	44.035	1.82	3.9690%
19	47.637	46.090	1.547	3.2475%
20	48.195	46.733	1.462	3.0335%
21	51.459	50.498	0.961	1.8675%
22	53.527	52.884	0.643	1.2013%
23	54.864	54.426	0.438	0.7983%
24	55.692	55.380	0.312	0.5602%
		MAX.	4.325	14.68%


Imagen 56 Comportamiento de presión P-12. Fuente: Propia autoría

Niveles aceptables de Calibración Criterios de Caudal • Para Líneas Primarias (Caudal >10% de la Demanda Total del Sistema o Sector) el valor simulado debe tener una diferencia de ± 5% con los valores de caudal medidos • Para Líneas Secundarias (Caudal ≤10% de la Demanda Total del Sistema o Sector) el valor simulado debe tener una diferencia de ± 10% con los valores de caudal medidos Criterios de Presión • 85% de las medidas de campo deben estar entre ± 0.5m o ± 5% de la máxima pérdida de carga a través del sistema (el criterio que sea mas grande). • 95% de las medidas de campo deben estar entre ± 0.75m o ± 7.5% de la máxima pérdida de carga a través del sistema (el criterio que sea mas grande). • 100% de las medidas de campo deben estar entre ± 2.0m o ± 15.0% de la máxima pérdida de carga a través del sistema (la que sea mas grande).

Imagen 57 Niveles aceptables de calibración. Fuente: Bently – Calibración hidráulica de modelos

Comportamiento de presiones modelo

Imagen 58 Comportamiento presiones herramienta contorno. Fuente: Propia autoría

Tabla 12. Comportamiento del flujo tuberías 7870 – 1582 - 5036

Time (hours)	7870 Base - Flow (L/s)	7870 - CALIBRACION - Flow (L/s)	Porcentaje Error	P-1582 Base - Flow (L/s)	P-1582 - CALIBRACION - Flow (L/s)	Porcentaje Error	5036 - Base - Flow (L/s)	5036 - CALIBRACION - Flow (L/s)	Porcentaje Error
0	0,35	0,35	0,000%	0,437	0,437	0,000%	0,284	0,284	0,000%
1	0,326	0,326	0,000%	0,408	0,408	0,000%	0,265	0,265	0,000%
2	0,324	0,324	0,000%	0,405	0,405	0,000%	0,263	0,263	0,000%
3	0,332	0,332	0,000%	0,415	0,415	0,000%	0,27	0,27	0,000%
4	0,405	0,405	0,000%	0,506	0,505	0,198%	0,329	0,329	0,000%
5	0,774	0,774	0,000%	0,968	0,967	0,103%	0,629	0,629	0,000%
6	1,406	1,406	0,000%	1,759	1,757	0,114%	1,141	1,142	0,088%
7	1,368	1,368	0,000%	1,712	1,71	0,117%	1,111	1,111	0,000%
8	1,357	1,357	0,000%	1,698	1,696	0,118%	1,102	1,102	0,000%
9	1,464	1,464	0,000%	1,831	1,829	0,109%	1,189	1,189	0,000%
10	1,468	1,468	0,000%	1,837	1,834	0,164%	1,192	1,192	0,000%
11	1,452	1,452	0,000%	1,817	1,815	0,110%	1,179	1,179	0,000%
12	1,316	1,316	0,000%	1,646	1,644	0,122%	1,068	1,068	0,000%
13	1,128	1,128	0,000%	1,411	1,41	0,071%	0,916	0,916	0,000%
14	1,081	1,081	0,000%	1,352	1,35	0,148%	0,877	0,878	0,114%
15	1,031	1,031	0,000%	1,289	1,288	0,078%	0,837	0,837	0,000%
16	1,093	1,093	0,000%	1,367	1,365	0,147%	0,887	0,888	0,113%
17	1,054	1,054	0,000%	1,318	1,317	0,076%	0,856	0,856	0,000%
18	0,917	0,917	0,000%	1,147	1,146	0,087%	0,745	0,745	0,000%
19	0,84	0,84	0,000%	1,05	1,049	0,095%	0,682	0,682	0,000%
20	0,814	0,814	0,000%	1,018	1,017	0,098%	0,661	0,661	0,000%
21	0,648	0,648	0,000%	0,81	0,809	0,124%	0,526	0,526	0,000%
22	0,521	0,521	0,000%	0,651	0,65	0,154%	0,423	0,423	0,000%
23	0,422	0,422	0,000%	0,528	0,527	0,190%	0,343	0,343	0,000%
24	0,35	0,35	0,000%	0,437	0,437	0,000%	0,284	0,284	0,000%

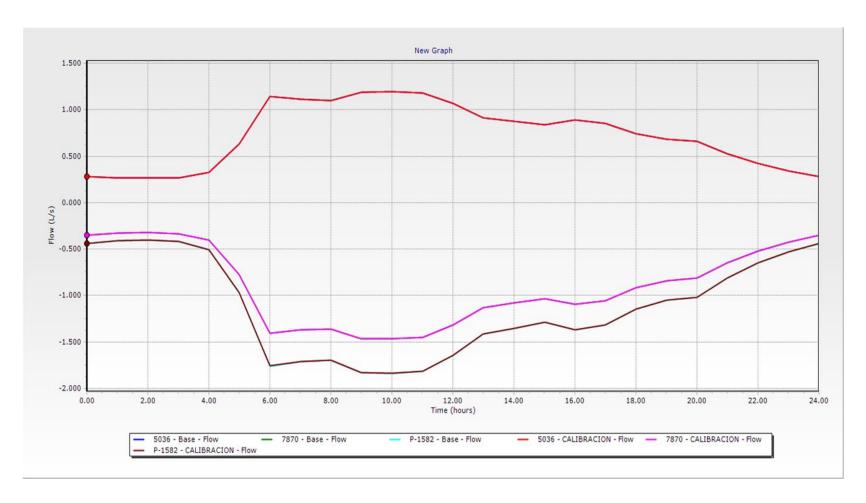


Imagen 59 Comportamiento del flujo tuberías 7870 – 1582 - 5036. Fuente: Water Gem V8

Tabla 13. Comportamiento del flujo tuberías 4649 – 5264 - 7879 - 2541

Time (hours)	4649 Base - Flow (L/s)	4649 - CALIBRACION - Flow (L/s)	Porcentaje Error	5264 Base - Flow (L/s)	5264 - CALIBRACION - Flow (L/s)	Porcentaje Error	7879 - Base - Flow (L/s)	7879 - CALIBRACION - Flow (L/s)	Porcentaje Error	P-2541 Base - Flow (L/s)	P-2541 - CALIBRACION - Flow (L/s)	Porcentaje Error
0	0,079	0,08	1,250%	0,184	0,184	0,000%	0,935	0,935	0,000%	0,124	0,126	1,587%
1	0,074	0,075	1,333%	0,172	0,172	0,000%	0,872	0,872	0,000%	0,116	0,117	0,855%
2	0,074	0,074	0,000%	0,171	0,171	0,000%	0,866	0,867	0,115%	0,115	0,117	1,709%
3	0,075	0,076	1,316%	0,175	0,175	0,000%	0,888	0,888	0,000%	0,118	0,12	1,667%
4	0,092	0,092	0,000%	0,213	0,213	0,000%	1,081	1,081	0,000%	0,143	0,145	1,379%
5	0,174	0,176	1,136%	0,407	0,407	0,000%	2,068	2,069	0,048%	0,271	0,275	1,455%
6	0,315	0,318	0,943%	0,739	0,739	0,000%	3,753	3,755	0,053%	0,489	0,496	1,411%
7	0,307	0,309	0,647%	0,72	0,72	0,000%	3,653	3,655	0,055%	0,476	0,483	1,449%
8	0,304	0,307	0,977%	0,714	0,714	0,000%	3,624	3,626	0,055%	0,472	0,479	1,461%
9	0,328	0,331	0,906%	0,77	0,77	0,000%	3,907	3,91	0,077%	0,509	0,516	1,357%
10	0,329	0,332	0,904%	0,772	0,772	0,000%	3,919	3,921	0,051%	0,51	0,518	1,544%
11	0,325	0,328	0,915%	0,764	0,764	0,000%	3,876	3,878	0,052%	0,505	0,512	1,367%
12	0,295	0,297	0,673%	0,692	0,692	0,000%	3,512	3,514	0,057%	0,458	0,464	1,293%
13	0,253	0,255	0,784%	0,594	0,593	0,169%	3,013	3,014	0,033%	0,393	0,399	1,504%
14	0,243	0,245	0,816%	0,568	0,568	0,000%	2,885	2,887	0,069%	0,377	0,382	1,309%
15	0,232	0,233	0,429%	0,542	0,542	0,000%	2,752	2,754	0,073%	0,36	0,365	1,370%
16	0,245	0,247	0,810%	0,575	0,575	0,000%	2,918	2,919	0,034%	0,381	0,386	1,295%
17	0,237	0,239	0,837%	0,554	0,554	0,000%	2,814	2,815	0,036%	0,367	0,373	1,609%
18	0,206	0,208	0,962%	0,482	0,482	0,000%	2,449	2,45	0,041%	0,32	0,325	1,538%
19	0,189	0,19	0,526%	0,442	0,442	0,000%	2,242	2,243	0,045%	0,294	0,298	1,342%
20	0,183	0,185	1,081%	0,428	0,428	0,000%	2,174	2,175	0,046%	0,285	0,289	1,384%
21	0,146	0,147	0,680%	0,341	0,341	0,000%	1,731	1,731	0,000%	0,227	0,231	1,732%
22	0,118	0,118	0,000%	0,274	0,274	0,000%	1,391	1,392	0,072%	0,183	0,186	1,613%
23	0,095	0,096	1,042%	0,222	0,222	0,000%	1,128	1,128	0,000%	0,149	0,151	1,325%
24	0,079	0,08	1,250%	0,184	0,184	0,000%	0,935	0,935	0,000%	0,124	0,126	1,587%

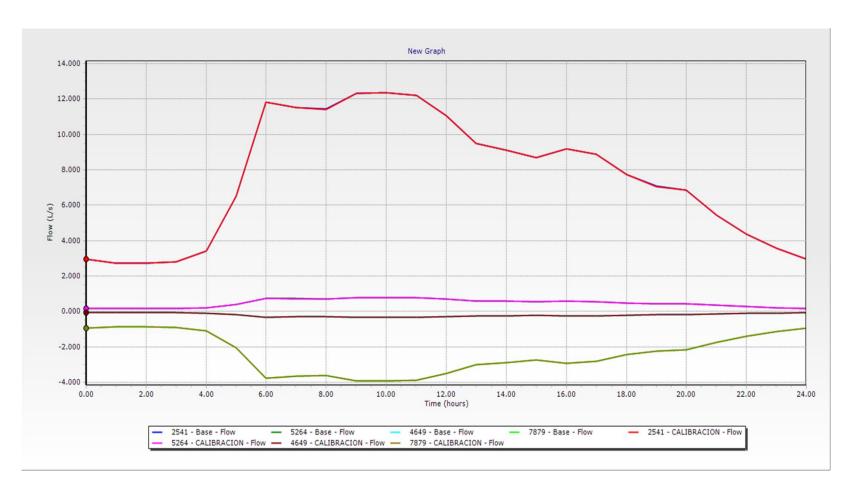


Imagen 60 Comportamiento del flujo tuberías 4649 – 5264 - 7879 - 2541. Fuente: Water Gem V8.

Tabla 14. Comportamiento del flujo tuberías 2222 – 1542 - 1879 -4855

Time (hours)	P-2222 Base - Flow (L/s)	P-2222 - CALIBRACION - Flow (L/s)	Porcentaje Error	P-1542 Base - Flow (L/s)	P-1542 - CALIBRACION - Flow (L/s)	Porcentaje Error	P-1879 Base - Flow (L/s)	P-1879 - CALIBRACION - Flow (L/s)	Porcentaje Error	4855 Base - Flow (L/s)	4855 - CALIBRACION - Flow (L/s)	Porcentaje Error
0	0,361	0,364	0,824%	0,058	0,058	0,000%	0,01	0,01	0,000%	0,054	0,054	0,000%
1	0,337	0,34	0,882%	0,054	0,054	0,000%	0,009	0,009	0,000%	0,05	0,05	0,000%
2	0,335	0,338	0,888%	0,054	0,054	0,000%	0,009	0,009	0,000%	0,05	0,05	0,000%
3	0,343	0,346	0,867%	0,055	0,055	0,000%	0,009	0,009	0,000%	0,051	0,051	0,000%
4	0,417	0,42	0,714%	0,067	0,067	0,000%	0,011	0,011	0,000%	0,062	0,062	0,000%
5	0,795	0,8	0,625%	0,129	0,129	0,000%	0,021	0,021	0,000%	0,118	0,119	0,840%
6	1,437	1,448	0,760%	0,235	0,234	0,427%	0,039	0,039	0,000%	0,214	0,216	0,926%
7	1,4	1,41	0,709%	0,229	0,228	0,439%	0,038	0,038	0,000%	0,208	0,21	0,952%
8	1,388	1,398	0,715%	0,227	0,226	0,442%	0,038	0,038	0,000%	0,207	0,208	0,481%
9	1,497	1,507	0,664%	0,244	0,244	0,000%	0,04	0,04	0,000%	0,223	0,224	0,446%
10	1,501	1,512	0,728%	0,245	0,245	0,000%	0,041	0,041	0,000%	0,223	0,225	0,889%
11	1,485	1,495	0,669%	0,243	0,242	0,413%	0,04	0,04	0,000%	0,221	0,223	0,897%
12	1,346	1,355	0,664%	0,22	0,219	0,457%	0,036	0,036	0,000%	0,2	0,202	0,990%
13	1,155	1,163	0,688%	0,188	0,188	0,000%	0,031	0,031	0,000%	0,172	0,173	0,578%
14	1,106	1,114	0,718%	0,18	0,18	0,000%	0,03	0,03	0,000%	0,165	0,166	0,602%
15	1,056	1,063	0,659%	0,172	0,172	0,000%	0,029	0,029	0,000%	0,157	0,158	0,633%
16	1,119	1,127	0,710%	0,182	0,182	0,000%	0,03	0,03	0,000%	0,167	0,168	0,595%
17	1,079	1,087	0,736%	0,176	0,176	0,000%	0,029	0,029	0,000%	0,161	0,162	0,617%
18	0,94	0,947	0,739%	0,153	0,153	0,000%	0,025	0,025	0,000%	0,14	0,141	0,709%
19	0,861	0,867	0,692%	0,14	0,14	0,000%	0,023	0,023	0,000%	0,128	0,129	0,775%
20	0,835	0,841	0,713%	0,136	0,136	0,000%	0,023	0,023	0,000%	0,124	0,125	0,800%
21	0,666	0,67	0,597%	0,108	0,108	0,000%	0,018	0,018	0,000%	0,099	0,1	1,000%
22	0,536	0,539	0,557%	0,087	0,087	0,000%	0,014	0,014	0,000%	0,08	0,08	0,000%
23	0,435	0,438	0,685%	0,07	0,07	0,000%	0,012	0,012	0,000%	0,065	0,065	0,000%
24	0,362	0,364	0,549%	0,058	0,058	0,000%	0,01	0,01	0,000%	0,054	0,054	0,000%

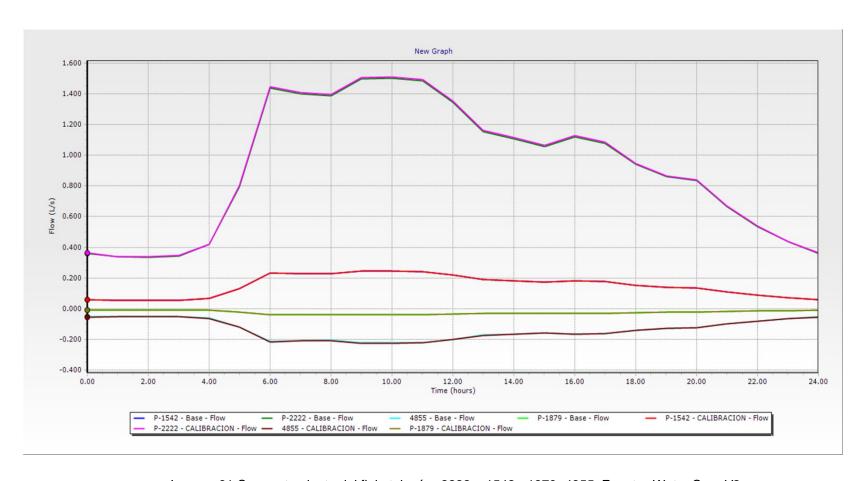


Imagen 61 Comportamiento del flujo tuberías 2222 – 1542 - 1879 -4855. Fuente: Water Gem V8.

Capítulo VII

Conclusiones

En relación a lo expuesto, el programa *Water Gems V8* por medio de la herramienta de calibración *Darwin Calibrator*, puede agilizar enormemente el proceso de calibración, al aprovechar el poder de los algoritmos genéticos, para automatizar la demorada y compleja tarea de los ajustes de modelo de prueba y error. Esto permite calibrar un modelo de forma rápida y sencilla a un nivel de precisión previamente inalcanzable, sin embargo, es importante resaltar que el nivel de confianza de los resultados, depende directamente de calidad de los datos registrados.

De igual forma, a pesar de no tener un registro detallado sobre de las demandas de los usuarios, el programa *Water Gems V8* por medio de la herramienta Polígonos de *Thiessen*, nos permitió definir, la concentración espacial de la demanda, a partir de la información sobre el catastro de redes entregada, por la empresa EMSECHIA ESP. Por tanto, los cambios que pueda sufrir la distribución y número de usuarios, no inciden fuertemente en los caudales asignados a los nodos del modelo, ni en la proyección de la demanda.

Dentro del análisis expuesto, las curvas de presión de las mediciones registradas en campo, presentan un comportamiento similar, al del modelo calibrado, sin embargo, las diferencias obtenidas, nos enseña que en la calibración de un modelo, es necesario contar con los registros de los parámetros básicos, como son la rugosidad, el ajuste de la demanda y el estado de los elementos.

En este sentido le empresa Emserchia ESP, puede contar con un modelo hidráulico calibrado, con todos los componentes correspondientes al sistema de acueducto del Sector 1, que le permitirá, al realizar los ajustes, obtener un modelo valioso como herramienta de planificación y soporte de decisiones, para la renovación o ampliación de redes, respondiendo al objetivo principal del presente estudio.

En virtud de los resultados al presentarse un error del 11.65% en el ejercicio de la calibración, nos indica la necesidad de continuar mejorarando el modelo y la calibración a partir de realizar una revisión de la calidad de los datos recolectados por ejemplo al realiza nuevamente la medición en campo de las presiones en los puntos que mayor diferencia

presentaron con relación al modelo, como son el P- 5 a la altura de la carrera 8 con diagonal 13 y el P – 8 en el conjunto Santa Lucia.

En relación a uso del programa, *WaterGEMS V8*, nos presenta una serie de herramientas que de forma intuitiva nos permiten analizar, diseñar y optimizar sistemas de distribución de agua, visualizando los resultados de la modelación en diferentes programas como son *Excel, AutoCAD* y *ArcGIS*. De esta manera podemos desarrollar las simulaciones con mediciones registradas en tiempo real de tal forma que obtengamos resultados, confiables, válidos y que ofrezcan los datos necesarios para tomar decisiones acertadas de operación e inversión.

Como se puede inferir el desarrollo del presente estudio, permitió profundizar los conocimientos sobre el manejo del programa de modelación hidráulica *Water Gesm V8*; no obstante, en la curva de aprendizaje se observó que para el éxito de un buen modelo, es necesario ejecutar paso a paso los procedimientos que se establecen en el Anexo 2 Diagrama de proceso para la creación de un modelo en *Water Gems V8* y el Anexo 3 Diagrama de proceso para la calibración de un modelo en *Water Gems V8*.

Anexo 1 Tabla Demandas de caudal por nodo

DEM	ANDA BAS	SE .	Ì											
0.007														
Nodo	Usu ario	Consumo	Nodo	Usuario	Consumo									
J-1466	14	0.1	J-3284	29	0.2	AC-2387	11	0.08	AC-3025	3	0.02	AC-2459	129	0.9
J-1463	1	0.01	J-3284	10	0.07	AC-199	190	1.33	AC-1769	36	0.25	AC-2459	36	0.25
J-1462	14	0.1	J-3283	53	0.37	AC-199	64	0.45	AC-1769	11	80.0	AC-2645	21	0.15
J-1460	14	0.1	J-3283	16	0.11	AC-2912	43	0.3	AC-1627	14	0.1	AC-2645	6	0.04
J-1458	14	0.1	J-3282	83	0.58	AC-2912	13	0.09	AC-1627	4	0.03	AC-2808	6	0.04
T-Privado1	0	0	J-3282	23	0.16	AC-2093	13	0.09	AC-608	41	0.29	AC-2808	11	80.0
J-1457	1	0.01	J-3281	14	0.1	AC-2093	3	0.02	AC-608	13	0.09	AC-2143	120	0.84
J-1457	181	1.27	J-3281	9	0.06	AC-2699	60	0.42	AC-2417	13	0.09	AC-2143	27	0.19
J-1456	7	0.05	J-3280	31	0.22	AC-2699	17	0.12	AC-2039	76	0.53	AC-451	30	0.21
J-1456	4	0.03	J-3280	10	0.07	AC-2228	81	0.57	AC-2039	21	0.15	AC-451	6	0.04
J-1455	7	0.05	J-3279	40	0.28	AC-2228	23	0.16	AC-1475	49	0.34	AC-148	30	0.21
J-1455	4	0.03	J-3279	13	0.09	AC-2097	41	0.29	AC-1475	17	0.12	AC-148	10	0.07
J-1454	17	0.12	J-3278	80	0.56	AC-2097	27	0.19	AC-1009	17	0.12	AC-1880	41	0.29
J-1454	7	0.05	J-3278	26	0.18	AC-589	44	0.31	AC-1009	6	0.04	AC-1880	19	0.13
J-1453	11	0.08	J-3275	19	0.13	AC-589	13	0.09	AC-2803	27	0.19	AC-2030	19	0.13
T-Privado5	44	0.31	J-3275	10	0.07	AC-1148	19	0.13	AC-2803	7	0.05	AC-2030	7	0.05
T-Privado5	13	0.09	J-3274	10	0.07	AC-1148	7	0.05	AC-2787	11	80.0	AC-371	11	80.0
T-Privado4	1659	11.61	J-3274	6	0.04	AC-1544	4	0.03	AC-2787	3	0.02	AC-371	4	0.03
T-Privado4	437	3.06	J-3277	19	0.13	AC-1544	3	0.02	AC-2524	0	0	AC-507	41	0.29
T-Privado3	30	0.21	J-3277	16	0.11	AC-654	37	0.26	AC-548	3	0.02	AC-507	14	0.1
T-Privado3	6	0.04	AC-2700	9	0.06	AC-654	13	0.09	AC-548	9	0.06	AC-2793	41	0.29
T-Privado2	71	0.5	AC-2700	6	0.04	AC-143	37	0.26	AC-522	97	0.68	AC-2793	14	0.1
T-Privado2	23	0.16	AC-156	134	0.94	AC-143	19	0.13	AC-522	21	0.15	AC-2352	24	0.17
T-CercadePie	3	0.02	AC-156	37	0.26	AC-1518	20	0.14	AC-773	54	0.38	AC-2352	7	0.05
T-CercadePie	0	0	AC-2387	39	0.27	AC-1518	7	0.05	AC-773	17	0.12	AC-1000	29	0.2

Nodo	Usuario	Consumo												
AC-1000	9	0.06	AC-2734	77	0.54	AC-824	9	0.06	AC-813	54	0.38	AC-1442	77	0.54
AC-1086	10	0.07	AC-650	6	0.04	AC-824	4	0.03	AC-813	17	0.12	AC-1442	23	0.16
AC-1086	3	0.02	AC-650	1	0.01	AC-1480	51	0.36	AC-2437	20	0.14	AC-260	19	0.13
AC-136	0	0	AC-1261	10	0.07	AC-1480	19	0.13	AC-2437	6	0.04	AC-260	7	0.05
AC-1151	34	0.24	AC-1261	9	0.06	AC-2454	14	0.1	AC-2440	16	0.11	AC-2402	30	0.21
AC-1151	10	0.07	AC-1603	24	0.17	AC-2454	4	0.03	AC-2440	9	0.06	AC-2402	13	0.09
AC-2404	11	0.08	AC-1603	10	0.07	AC-1690	14	0.1	AC-2483	14	0.1	AC-2434	21	0.15
AC-2404	4	0.03	AC-1509	44	0.31	AC-1690	6	0.04	AC-2483	9	0.06	AC-2434	7	0.05
AC-2775	41	0.29	AC-1509	16	0.11	EC-1	4	0.03	AC-3014	21	0.15	AC-432	34	0.24
AC-2775	13	0.09	AC-2383	9	0.06	EC-1	6	0.04	AC-3014	17	0.12	AC-432	11	0.08
AC-2779	30	0.21	AC-2383	3	0.02	AC-2972	0	0	AC-1541	14	0.1	AC-704	1	0.01
AC-2779	16	0.11	AC-281	14	0.1	AC-959	44	0.31	AC-1541	6	0.04	AC-3007	1	0.01
AC-64	64	0.45	AC-281	4	0.03	AC-959	17	0.12	AC-1636	44	0.31	AC-1464	6	0.04
AC-64	13	0.09	AC-2797	111	0.78	AC-1258	29	0.2	AC-1636	14	0.1	AC-1464	1	0.01
AC-64	2857	20	AC-2797	31	0.22	AC-1258	11	0.08	AC-2795	111	0.78	AC-1635	64	0.45
AC-776	1	0.01	AC-1463	11	0.08	AC-2512	6	0.04	AC-2795	39	0.27	AC-1635	20	0.14
AC-2762	14	0.1	AC-1463	4	0.03	AC-2512	3	0.02	AC-2384	9	0.06	AC-1006	139	0.97
AC-2762	4	0.03	AC-506	31	0.22	AC-401	63	0.44	AC-2384	4	0.03	AC-1006	46	0.32
AC-1574	14	0.1	AC-506	11	0.08	AC-401	16	0.11	AC-30	14	0.1	AC-2398	26	0.18
AC-1574	6	0.04	AC-2366	33	0.23	AC-2961	144	1.01	AC-30	3	0.02	AC-2398	13	0.09
AC-656	1	0.01	AC-2366	16	0.11	AC-2961	41	0.29	AC-1691	17	0.12	AC-1166	1	0.01
AC-656	1	0.01	AC-2024	59	0.41	AC-1159	29	0.2	AC-1691	7	0.05	AC-1166	1	0.01
AC-971	3	0.02	AC-2024	20	0.14	AC-1159	11	0.08	AC-686	29	0.2	AC-515	139	0.97
AC-971	3	0.02	AC-958	29	0.2	AC-157	60	0.42	AC-686	11	0.08	AC-515	47	0.33
AC-2734	247	1.73	AC-958	9	0.06	AC-157	21	0.15	AC-2711	17	0.12	AC-2730	27	0.19

Nodo	Usuario	Consumo												
AC-2730	9	0.06	AC-2835	0	0	AC-670	19	0.13	AC-2879	1	0.01	AC-2593	19	0.13
AC-2868	9	0.06	AC-1136	11	0.08	AC-708	11	0.08	AC-2698	24	0.17	AC-2593	7	0.05
AC-2868	3	0.02	AC-1136	4	0.03	AC-708	4	0.03	AC-2698	11	0.08	AC-2480	10	0.07
AC-2518	270	1.89	AC-2789	59	0.41	AC-2017	17	0.12	AC-2732	26	0.18	AC-2480	3	0.02
AC-2518	57	0.4	AC-2789	16	0.11	AC-2017	6	0.04	AC-2732	6	0.04	AC-1461	10	0.07
AC-22	60	0.42	AC-568	59	0.41	AC-1485	7	0.05	AC-1522	17	0.12	AC-1461	4	0.03
AC-22	10	0.07	AC-568	23	0.16	AC-1485	6	0.04	AC-1522	6	0.04	AC-232	33	0.23
AC-733	81	0.57	AC-993	3	0.02	AC-2069	7	0.05	AC-2707	24	0.17	AC-232	11	0.08
AC-733	24	0.17	AC-1244	10	0.07	AC-2069	4	0.03	AC-2707	9	0.06	AC-2048	13	0.09
AC-774	61	0.43	AC-1244	3	0.02	AC-651	27	0.19	AC-2368	90	0.63	AC-2048	4	0.03
AC-774	19	0.13	AC-1451	0	0	AC-651	10	0.07	AC-2368	26	0.18	AC-304	6	0.04
AC-969	11	0.08	AC-2059	31	0.22	AC-1533	24	0.17	AC-820	76	0.53	AC-304	6	0.04
AC-969	4	0.03	AC-2059	29	0.2	AC-1533	9	0.06	AC-820	26	0.18	AC-2350	4	0.03
AC-328	1	0.01	AC-901	24	0.17	AC-2928	40	0.28	AC-1553	49	0.34	AC-2350	3	0.02
AC-328	1	0.01	AC-901	7	0.05	AC-2928	10	0.07	AC-1553	19	0.13	AC-1556	1	0.01
AC-1315	26	0.18	AC-2841	1	0.01	AC-2729	29	0.2	AC-1191	21	0.15	AC-1556	0	0
AC-1315	7	0.05	AC-2841	0	0	AC-2729	11	80.0	AC-1191	7	0.05	AC-192	1	0.01
AC-2475	21	0.15	AC-2717	21	0.15	AC-1823	17	0.12	AC-3018	126	0.88	AC-2911	33	0.23
AC-2475	9	0.06	AC-2717	7	0.05	AC-1823	9	0.06	AC-3018	37	0.26	AC-2911	10	0.07
AC-2586	17	0.12	AC-2908	51	0.36	AC-963	14	0.1	AC-2481	1	0.01	ME-15	6	0.04
AC-2586	6	0.04	AC-2908	14	0.1	AC-963	6	0.04	AC-2481	0	0	ME-15	1	0.01
AC-2979	44	0.31	AC-844	1	0.01	AC-1024	27	0.19	AC-2906	246	1.72	AC-2088	3	0.02
AC-2979	11	0.08	AC-272	209	1.46	AC-1024	9	0.06	AC-2906	40	0.28	AC-2088	4	0.03
AC-1651	49	0.34	AC-272	36	0.25	AC-1761	1	0.01	AC-2319	16	0.11	AC-1609	104	0.73
AC-1651	14	0.1	AC-670	60	0.42	AC-1761	0	0	AC-2319	3	0.02	AC-1609	31	0.22

Nodo	Usuario	Consumo												
AC-2989	27	0.19	AC-873	0	0	AC-1562	10	0.07	AC-1750	0	0	AC-2493	6	0.04
AC-2989	9	0.06	AC-1180	3	0.02	AC-2379	69	0.48	AC-387	37	0.26	AC-2493	6	0.04
AC-2400	19	0.13	AC-1180	3	0.02	AC-2379	21	0.15	AC-387	13	0.09	AC-1248	3	0.02
AC-2400	6	0.04	AC-2120	117	0.82	AC-1619	10	0.07	AC-403	3	0.02	AC-1248	1	0.01
AC-1222	54	0.38	AC-2120	43	0.3	AC-1619	4	0.03	AC-403	3	0.02	AC-1732	111	0.78
AC-1222	17	0.12	AC-1839	1	0.01	AC-2041	7	0.05	AC-297	14	0.1	AC-1732	41	0.29
ME-14	0	0	AC-1839	1	0.01	AC-2041	3	0.02	AC-297	4	0.03	AC-2719	7	0.05
AC-1517	33	0.23	AC-1631	109	0.76	EC-11	3	0.02	AC-1546	40	0.28	AC-2719	4	0.03
AC-1517	13	0.09	AC-1631	30	0.21	EC-11	4	0.03	AC-1546	13	0.09	AC-587	36	0.25
AC-2421	16	0.11	AC-2776	117	0.82	AC-1843	7	0.05	AC-1641	23	0.16	AC-587	11	0.08
AC-2421	4	0.03	AC-2776	33	0.23	AC-1843	3	0.02	AC-1641	7	0.05	AC-1611	51	0.36
AC-2436	11	0.08	AC-151	451	3.16	AC-1145	33	0.23	AC-46	60	0.42	AC-1611	16	0.11
AC-2436	3	0.02	AC-151	121	0.85	AC-1145	10	0.07	AC-46	20	0.14	AC-1617	0	0
AC-344	26	0.18	AC-1558	1	0.01	AC-1698	49	0.34	AC-2403	14	0.1	AC-42	14	0.1
AC-344	9	0.06	AC-1558	3	0.02	AC-1698	14	0.1	AC-2403	4	0.03	AC-42	4	0.03
AC-1626	19	0.13	AC-1507	26	0.18	AC-1103	14	0.1	AC-159	30	0.21	AC-296	7	0.05
AC-1626	6	0.04	AC-1507	9	0.06	AC-1103	6	0.04	AC-159	11	0.08	AC-296	3	0.02
AC-166	9	0.06	AC-2399	43	0.3	AC-1557	21	0.15	AC-2128	120	0.84	AC-2962	37	0.26
AC-166	3	0.02	AC-2399	16	0.11	AC-1557	7	0.05	AC-2128	36	0.25	AC-2962	10	0.07
AC-2046	13	0.09	AC-2753	11	0.08	AC-301	36	0.25	AC-440	74	0.52	AC-1380	26	0.18
AC-2046	4	0.03	AC-2753	4	0.03	AC-301	11	0.08	AC-440	23	0.16	AC-1380	9	0.06
AC-1182	116	0.81	AC-349	6	0.04	AC-1570	14	0.1	AC-2765	13	0.09	AC-2932	44	0.31
AC-1182	33	0.23	AC-349	1	0.01	AC-1570	6	0.04	AC-2765	4	0.03	AC-2932	13	0.09
AC-965	29	0.2	AC-948	1	0.01	AC-659	69	0.48	AC-1203	34	0.24	AC-682	37	0.26
AC-965	10	0.07	AC-1562	29	0.2	AC-659	21	0.15	AC-1203	10	0.07	AC-682	11	80.0

Nodo	Usuario	Consumo												
AC-211	159	1.11	AC-1520	36	0.25	AC-702	4	0.03	AC-82	37	0.26	EC-7	4	0.03
AC-211	41	0.29	AC-1520	13	0.09	AC-1791	10	0.07	AC-82	9	0.06	AC-1056	14	0.1
AC-988	1	0.01	AC-1543	1	0.01	AC-919	6	0.04	AC-736	20	0.14	AC-1056	4	0.03
AC-1703	20	0.14	AC-1543	1	0.01	AC-919	3	0.02	AC-736	9	0.06	AC-579	3	0.02
AC-1703	7	0.05	AC-1600	3	0.02	AC-1686	53	0.37	AC-2376	73	0.51	AC-579	3	0.02
AC-1160	31	0.22	AC-1600	1	0.01	AC-1686	16	0.11	AC-2376	23	0.16	AC-1606	71	0.5
AC-1160	11	0.08	AC-2958	6	0.04	AC-1217	1	0.01	AC-1236	24	0.17	AC-1606	23	0.16
AC-144	146	1.02	AC-2958	1	0.01	AC-1217	1	0.01	AC-1236	9	0.06	AC-1679	10	0.07
AC-144	36	0.25	AC-1427	29	0.2	AC-2854	67	0.47	AC-1857	54	0.38	AC-1679	4	0.03
AC-289	10	0.07	AC-1427	10	0.07	AC-2854	23	0.16	AC-1857	43	0.3	AC-2078	79	0.55
AC-289	4	0.03	AC-2159	0	0	AC-1807	54	0.38	AC-2101	23	0.16	AC-2078	27	0.19
AC-707	36	0.25	AC-945	159	1.11	AC-1807	19	0.13	AC-2101	9	0.06	AC-838	34	0.24
AC-707	13	0.09	AC-945	46	0.32	AC-1453	3	0.02	AC-293	20	0.14	AC-838	13	0.09
AC-2357	41	0.29	AC-1655	30	0.21	AC-1453	1	0.01	AC-293	7	0.05	AC-2332	4	0.03
AC-2357	13	0.09	AC-1655	11	0.08	AC-1711	101	0.71	AC-225	14	0.1	AC-1154	83	0.58
AC-974	23	0.16	AC-292	20	0.14	AC-1711	34	0.24	AC-225	6	0.04	AC-1154	24	0.17
AC-974	9	0.06	AC-292	7	0.05	AC-1659	16	0.11	AC-318	3	0.02	AC-2032	23	0.16
AC-826	9	0.06	AC-331	1	0.01	AC-1659	6	0.04	AC-318	1	0.01	AC-2032	6	0.04
AC-826	3	0.02	AC-1098	21	0.15	AC-1596	9	0.06	AC-2837	26	0.18	AC-850	10	0.07
AC-533	50	0.35	AC-1098	7	0.05	ME-9	91	0.64	AC-2837	7	0.05	AC-850	4	0.03
AC-533	16	0.11	AC-290	37	0.26	ME-9	26	0.18	AC-723	7	0.05	AC-2477	16	0.11
AC-1637	53	0.37	AC-290	13	0.09	AC-764	51	0.36	AC-723	7	0.05	AC-2477	9	0.06
AC-1637	16	0.11	AC-2530	16	0.11	AC-764	16	0.11	AC-2918	124	0.87	AC-1322	13	0.09
AC-139	30	0.21	AC-2530	7	0.05	AC-1044	1	0.01	AC-2918	37	0.26	AC-1322	4	0.03
AC-139	37	0.26	AC-702	10	0.07	AC-1044	0	0	EC-7	23	0.16	AC-1718	70	0.49

Nodo	Usuario	Consumo												
AC-2479	6	0.04	AC-45	4	0.03	AC-966	3	0.02	AC-2708	13	0.09	AC-2852	209	1.46
AC-2555	54	0.38	AC-2482	47	0.33	AC-966	1	0.01	AC-2708	6	0.04	AC-2852	50	0.35
AC-2555	13	0.09	AC-2482	13	0.09	AC-678	1	0.01	AC-2527	46	0.32	AC-171	11	0.08
AC-524	14	0.1	AC-1864	41	0.29	AC-678	1	0.01	AC-2527	14	0.1	AC-171	16	0.11
AC-524	4	0.03	AC-1864	14	0.1	AC-1434	33	0.23	AC-152	237	1.66	AC-1347	61	0.43
AC-2381	43	0.3	AC-1633	63	0.44	AC-1434	11	0.08	AC-152	137	0.96	AC-1347	17	0.12
AC-2381	17	0.12	AC-1633	19	0.13	AC-1684	10	0.07	AC-1466	6	0.04	AC-167	69	0.48
AC-2984	66	0.46	AC-2091	4	0.03	AC-1684	4	0.03	AC-1466	1	0.01	AC-167	17	0.12
AC-2984	19	0.13	AC-2091	3	0.02	AC-2009	16	0.11	AC-935	11	0.08	AC-312	60	0.42
AC-2874	17	0.12	AC-1491	1	0.01	AC-2009	7	0.05	AC-935	7	0.05	AC-312	16	0.11
AC-2874	4	0.03	AC-291	0	0	AC-720	10	0.07	AC-262	21	0.15	AC-1445	20	0.14
AC-2921	0	0	AC-2691	59	0.41	AC-720	4	0.03	AC-262	6	0.04	AC-1445	7	0.05
AC-2968	17	0.12	AC-2691	21	0.15	AC-1102	3	0.02	AC-2008	57	0.4	AC-2759	4	0.03
AC-2968	4	0.03	AC-1035	90	0.63	AC-1102	3	0.02	AC-2008	21	0.15	AC-2759	1	0.01
AC-575	41	0.29	AC-1035	27	0.19	AC-1523	31	0.22	AC-709	40	0.28	AC-705	3	0.02
AC-575	11	0.08	AC-287	14	0.1	AC-1523	11	0.08	AC-709	13	0.09	AC-1950	27	0.19
AC-483	24	0.17	AC-287	6	0.04	AC-3026	0	0	AC-2068	23	0.16	AC-1950	7	0.05
AC-483	7	0.05	AC-556	3	0.02	AC-936	11	0.08	AC-2068	11	0.08	AC-719	54	0.38
AC-314	9	0.06	AC-556	4	0.03	AC-936	9	0.06	AC-1017	21	0.15	AC-719	19	0.13
AC-314	6	0.04	AC-1184	1	0.01	AC-2057	20	0.14	AC-1017	7	0.05	EC-10	0	0
AC-25	30	0.21	AC-1184	1	0.01	AC-2057	6	0.04	AC-2100	6	0.04	AC-299	60	0.42
AC-25	6	0.04	AC-341	1	0.01	AC-339	1	0.01	AC-2100	1	0.01	AC-299	23	0.16
EC-23	9	0.06	AC-341	1	0.01	AC-339	0	0	AC-1198	0	0	AC-767	9	0.06
EC-23	20	0.14	AC-2927	30	0.21	AC-1580	36	0.25	AC-2683	37	0.26	AC-767	3	0.02
AC-45	14	0.1	AC-2927	9	0.06	AC-1580	11	0.08	AC-2683	10	0.07	AC-1019	6	0.04

Nodo	Usuario	Consumo												
AC-717	81	0.57	AC-1	74	0.52	AC-1389	20	0.14	AC-612	9	0.06	AC-1137	24	0.17
AC-717	24	0.17	AC-1	61	0.43	AC-1849	17	0.12	AC-2590	69	0.48	AC-1137	10	0.07
AC-783	1	0.01	AC-193	101	0.71	AC-1849	11	0.08	AC-2590	21	0.15	AC-1567	46	0.32
AC-1516	26	0.18	AC-193	23	0.16	AC-1743	51	0.36	AC-1599	29	0.2	AC-1567	16	0.11
AC-1516	10	0.07	AC-2833	189	1.32	AC-1743	16	0.11	AC-1599	9	0.06	AC-1585	34	0.24
AC-1018	30	0.21	AC-2833	53	0.37	AC-81	7	0.05	AC-789	1	0.01	AC-1585	10	0.07
AC-1018	9	0.06	AC-2496	1	0.01	AC-81	3	0.02	AC-2056	31	0.22	AC-2485	29	0.2
AC-750	81	0.57	AC-2496	0	0	AC-940	16	0.11	AC-2056	6	0.04	AC-2485	10	0.07
AC-750	29	0.2	AC-532	26	0.18	AC-940	4	0.03	AC-1634	34	0.24	AC-937	6	0.04
AC-1569	37	0.26	AC-532	9	0.06	AC-806	1	0.01	AC-1634	10	0.07	AC-937	1	0.01
AC-1569	13	0.09	AC-1141	73	0.51	AC-806	1	0.01	AC-1694	17	0.12	AC-2794	11	0.08
AC-2895	27	0.19	AC-1141	23	0.16	AC-999	16	0.11	AC-1694	6	0.04	AC-977	11	0.08
AC-2895	10	0.07	AC-1179	39	0.27	AC-999	7	0.05	AC-2388	13	0.09	AC-977	7	0.05
AC-590	14	0.1	AC-1179	11	0.08	AC-2951	141	0.99	AC-2388	4	0.03	AC-786	0	0
AC-590	4	0.03	AC-2987	0	0	AC-2951	41	0.29	AC-713	10	0.07	AC-2018	74	0.52
AC-995	1	0.01	AC-340	0	0	AC-2375	60	0.42	AC-713	4	0.03	AC-2018	17	0.12
AC-421	11	0.08	AC-2665	7	0.05	AC-2375	19	0.13	AC-2084	0	0	AC-1372	29	0.2
AC-421	4	0.03	AC-2665	9	0.06	AC-1912	11	0.08	AC-1328	30	0.21	AC-1372	9	0.06
AC-737	33	0.23	AC-381	7	0.05	AC-1912	3	0.02	AC-1328	9	0.06	AC-794	43	0.3
AC-737	13	0.09	AC-381	9	0.06	AC-1450	23	0.16	AC-1739	106	0.74	AC-794	19	0.13
AC-2910	19	0.13	AC-890	37	0.26	AC-1450	7	0.05	AC-1739	37	0.26	AC-758	0	0
AC-2910	6	0.04	AC-890	11	0.08	AC-846	0	0	AC-226	94	0.66	AC-1143	54	0.38
AC-967	0	0	AC-1598	3	0.02	AC-2392	77	0.54	AC-226	21	0.15	AC-1143	20	0.14
AC-310	211	1.48	AC-1598	1	0.01	AC-2392	26	0.18	AC-155	44	0.31	AC-655	7	0.05
AC-310	54	0.38	AC-1389	70	0.49	AC-612	26	0.18	AC-155	36	0.25	AC-655	4	0.03

Nodo	Usuario	Consumo												
AC-2295	6	0.04	AC-576	11	0.08	AC-442	7	0.05	AC-658	7	0.05	AC-839	4	0.03
AC-2295	1	0.01	AC-1664	24	0.17	AC-1744	3	0.02	AC-658	3	0.02	AC-198	127	0.89
AC-1307	49	0.34	AC-1664	9	0.06	AC-1744	1	0.01	AC-2925	87	0.61	AC-198	40	0.28
AC-1307	16	0.11	AC-4	90	0.63	AC-362	40	0.28	AC-2925	23	0.16	AC-1134	3	0.02
AC-795	1	0.01	AC-4	27	0.19	AC-362	13	0.09	AC-249	44	0.31	AC-1134	1	0.01
AC-1015	73	0.51	AC-317	3	0.02	AC-697	16	0.11	AC-249	23	0.16	AC-695	9	0.06
AC-1015	21	0.15	AC-317	1	0.01	AC-697	7	0.05	AC-249	1913	13.39	AC-695	7	0.05
AC-3030	0	0	AC-922	1	0.01	AC-2816	17	0.12	AC-2724	36	0.25	AC-302	49	0.34
AC-716	13	0.09	AC-922	3	0.02	AC-2816	9	0.06	AC-2724	10	0.07	AC-302	14	0.1
AC-716	6	0.04	AC-2117	60	0.42	AC-600	99	0.69	AC-944	90	0.63	AC-728	46	0.32
AC-2855	11	0.08	AC-2117	19	0.13	AC-600	27	0.19	AC-944	29	0.2	AC-728	11	0.08
AC-2855	4	0.03	AC-512	54	0.38	AC-361	213	1.49	AC-161	164	1.15	AC-1027	23	0.16
AC-2944	40	0.28	AC-512	13	0.09	AC-361	56	0.39	AC-161	34	0.24	AC-1027	10	0.07
AC-2944	11	0.08	AC-1238	29	0.2	AC-303	13	0.09	AC-1104	9	0.06	AC-1140	69	0.48
AC-1612	44	0.31	AC-1238	9	0.06	AC-303	6	0.04	AC-1104	3	0.02	AC-1140	21	0.15
AC-1612	14	0.1	AC-2472	10	0.07	AC-763	29	0.2	AC-2960	17	0.12	AC-2788	81	0.57
AC-1530	31	0.22	AC-2472	3	0.02	AC-763	10	0.07	AC-2960	4	0.03	AC-2788	20	0.14
AC-1530	11	0.08	AC-1692	26	0.18	AC-1774	14	0.1	EC-13	17	0.12	AC-545	27	0.19
AC-2702	13	0.09	AC-1692	7	0.05	AC-1774	4	0.03	AC-768	16	0.11	AC-545	10	0.07
AC-2702	7	0.05	AC-827	0	0	AC-2334	66	0.46	AC-768	4	0.03	AC-3027	1	0.01
AC-365	74	0.52	AC-2471	13	0.09	AC-2334	23	0.16	AC-2825	44	0.31	AC-957	7	0.05
AC-365	21	0.15	AC-2471	4	0.03	AC-1481	46	0.32	AC-2825	11	0.08	AC-957	1	0.01
AC-1561	19	0.13	AC-2062	86	0.6	AC-1481	16	0.11	AC-2764	11	0.08	AC-1572	20	0.14
AC-1561	7	0.05	AC-2062	19	0.13	AC-1643	43	0.3	AC-2764	3	0.02	AC-1572	7	0.05
AC-576	44	0.31	AC-442	14	0.1	AC-1643	19	0.13	AC-839	6	0.04	AC-2236	0	0

Nodo	Usuario	Consumo												
AC-2891	39	0.27	AC-1449	3	0.02	AC-1762	29	0.2	AC-679	77	0.54	AC-525	3	0.02
AC-2891	11	0.08	AC-2096	56	0.39	AC-1762	9	0.06	AC-679	20	0.14	AC-2073	14	0.1
AC-1406	66	0.46	AC-2096	26	0.18	AC-1447	30	0.21	AC-2550	36	0.25	AC-2073	4	0.03
AC-1406	20	0.14	AC-1665	50	0.35	AC-1447	10	0.07	AC-2550	10	0.07	AC-2070	6	0.04
AC-428	51	0.36	AC-1665	17	0.12	AC-1881	36	0.25	AC-2643	57	0.4	AC-92	51	0.36
AC-428	13	0.09	AC-1758	6	0.04	AC-1881	11	0.08	AC-2643	20	0.14	AC-92	14	0.1
AC-1099	10	0.07	AC-1758	1	0.01	AC-273	31	0.22	AC-521	33	0.23	AC-2916	27	0.19
AC-1099	4	0.03	AC-1218	10	0.07	AC-273	9	0.06	AC-521	17	0.12	AC-2916	9	0.06
AC-1276	6	0.04	AC-1218	3	0.02	AC-129	96	0.67	AC-1680	33	0.23	AC-2075	41	0.29
AC-1276	3	0.02	AC-2364	23	0.16	AC-129	17	0.12	AC-1680	10	0.07	AC-2075	16	0.11
AC-298	29	0.2	AC-2364	21	0.15	AC-129	309	2.16	AC-769	46	0.32	AC-978	24	0.17
AC-298	9	0.06	AC-1285	23	0.16	AC-2393	27	0.19	AC-769	13	0.09	AC-978	11	0.08
AC-674	16	0.11	AC-1285	7	0.05	AC-2393	6	0.04	AC-2998	13	0.09	AC-1499	19	0.13
AC-674	6	0.04	AC-2386	49	0.34	AC-603	143	1	AC-2998	4	0.03	AC-1499	10	0.07
AC-76	33	0.23	AC-2386	16	0.11	AC-603	41	0.29	AC-2199	77	0.54	AC-2043	36	0.25
AC-76	10	0.07	AC-968	67	0.47	AC-327	17	0.12	AC-2199	27	0.19	AC-2043	11	0.08
AC-1462	3	0.02	AC-968	19	0.13	AC-327	6	0.04	AC-261	53	0.37	AC-825	50	0.35
AC-1462	1	0.01	AC-725	53	0.37	AC-2945	0	0	AC-261	24	0.17	AC-825	17	0.12
AC-2026	51	0.36	AC-725	14	0.1	AC-2123	54	0.38	AC-1568	57	0.4	AC-1802	131	0.92
AC-2026	14	0.1	AC-951	139	0.97	AC-2123	14	0.1	AC-1568	19	0.13	AC-1802	43	0.3
AC-1426	24	0.17	AC-951	36	0.25	AC-899	0	0	AC-1478	53	0.37	AC-962	43	0.3
AC-1426	9	0.06	AC-3028	0	0	AC-1726	33	0.23	AC-1478	16	0.11	AC-962	13	0.09
AC-1220	7	0.05	AC-1685	67	0.47	AC-1726	14	0.1	AC-2956	67	0.47	AC-2447	11	0.08
AC-1220	1	0.01	AC-1685	20	0.14	AC-271	0	0	AC-2956	19	0.13	AC-2447	3	0.02
AC-1449	6	0.04	AC-1767	0	0	AC-2523	0	0	AC-525	6	0.04	AC-66	101	0.71

Nodo	Usuario	Consumo												
AC-66	33	0.23	AC-372	9	0.06	AC-1614	50	0.35	AC-200	153	1.07	AC-668	1	0.01
AC-433	34	0.24	AC-2111	56	0.39	AC-1614	16	0.11	AC-200	49	0.34	AC-1493	59	0.41
AC-433	13	0.09	AC-2111	17	0.12	AC-1142	74	0.52	AC-326	24	0.17	AC-1493	21	0.15
AC-2824	74	0.52	AC-2065	17	0.12	AC-1142	23	0.16	AC-326	6	0.04	AC-2349	31	0.22
AC-2824	21	0.15	AC-2065	6	0.04	AC-1682	6	0.04	AC-1584	19	0.13	AC-2349	11	0.08
AC-2453	39	0.27	AC-2385	24	0.17	AC-1682	3	0.02	AC-1584	9	0.06	AC-2544	19	0.13
AC-2453	13	0.09	AC-2385	10	0.07	AC-992	7	0.05	AC-2565	53	0.37	AC-2544	7	0.05
AC-1201	69	0.48	AC-2796	53	0.37	AC-2957	24	0.17	AC-2565	13	0.09	AC-819	14	0.1
AC-1201	20	0.14	AC-2796	14	0.1	AC-2957	7	0.05	AC-43	6	0.04	AC-819	6	0.04
AC-3010	74	0.52	AC-843	7	0.05	AC-2528	83	0.58	AC-43	11	0.08	AC-804	33	0.23
AC-3010	14	0.1	AC-843	7	0.05	AC-2528	24	0.17	AC-2445	10	0.07	AC-804	10	0.07
AC-1535	1	0.01	AC-2751	16	0.11	AC-2836	1	0.01	AC-2445	3	0.02	AC-300	114	0.8
AC-1759	20	0.14	AC-2751	4	0.03	AC-2492	36	0.25	AC-1826	21	0.15	AC-300	33	0.23
AC-1759	7	0.05	AC-727	60	0.42	AC-2492	13	0.09	AC-1826	9	0.06	AC-1639	11	0.08
AC-2006	7	0.05	AC-727	19	0.13	AC-34	14	0.1	AC-536	40	0.28	AC-1639	4	0.03
AC-2006	4	0.03	AC-2365	23	0.16	AC-34	4	0.03	AC-536	20	0.14	AC-2010	43	0.3
AC-2994	31	0.22	AC-2365	7	0.05	AC-423	63	0.44	AC-1170	169	1.18	AC-2010	17	0.12
AC-2994	9	0.06	AC-1205	0	0	AC-423	20	0.14	AC-1170	49	0.34	AC-1788	180	1.26
AC-1011	17	0.12	AC-2	6	0.04	AC-2812	23	0.16	AC-1624	10	0.07	AC-1788	59	0.41
AC-1011	6	0.04	AC-2378	49	0.34	AC-2812	9	0.06	AC-1624	3	0.02	AC-1448	9	0.06
AC-796	109	0.76	AC-2378	14	0.1	AC-2786	94	0.66	AC-1755	187	1.31	AC-1448	3	0.02
AC-796	34	0.24	AC-2063	23	0.16	AC-2786	20	0.14	AC-1755	54	0.38	AC-1452	29	0.2
AC-263	151	1.06	AC-2063	7	0.05	AC-1167	3	0.02	AC-1511	21	0.15	AC-1452	11	0.08
AC-263	49	0.34	AC-1525	14	0.1	AC-1167	1	0.01	AC-1511	14	0.1	AC-1207	0	0
AC-372	4	0.03	AC-1525	6	0.04	EC-12	10	0.07	AC-668	1	0.01	AC-1105	24	0.17

Nodo	Usuario	Consumo												
AC-1105	7	0.05	AC-1062	9	0.06	AC-1934	11	0.08	AC-2766	3	0.02	AC-747	50	0.35
AC-2336	191	1.34	AC-1488	19	0.13	AC-172	16	0.11	AC-2373	81	0.57	AC-2538	13	0.09
AC-2336	63	0.44	AC-1488	9	0.06	AC-172	11	0.08	AC-2373	23	0.16	AC-2538	7	0.05
AC-592	77	0.54	AC-2733	31	0.22	AC-2930	139	0.97	AC-446	33	0.23	AC-234	9	0.06
AC-592	23	0.16	AC-2733	9	0.06	AC-2930	41	0.29	AC-446	10	0.07	AC-234	9	0.06
AC-2947	77	0.54	AC-2722	17	0.12	AC-1472	10	0.07	AC-2087	30	0.21	AC-1373	49	0.34
AC-2947	24	0.17	AC-2722	7	0.05	AC-1472	4	0.03	AC-2087	14	0.1	AC-1373	14	0.1
AC-379	23	0.16	AC-419	13	0.09	AC-258	60	0.42	AC-1749	0	0	AC-1457	1	0.01
AC-379	6	0.04	AC-419	6	0.04	AC-258	86	0.6	AC-721	10	0.07	AC-1457	1	0.01
AC-2843	91	0.64	AC-2064	54	0.38	AC-1195	0	0	AC-721	4	0.03	AC-1668	11	0.08
AC-2843	36	0.25	AC-2064	14	0.1	AC-1559	33	0.23	AC-673	10	0.07	AC-1668	4	0.03
AC-32	90	0.63	AC-138	120	0.84	AC-1559	11	0.08	AC-673	4	0.03	AC-2600	0	0
AC-32	33	0.23	AC-138	86	0.6	AC-1648	91	0.64	AC-938	6	0.04	AC-874	40	0.28
AC-2716	33	0.23	AC-2416	170	1.19	AC-1648	30	0.21	AC-938	6	0.04	AC-874	13	0.09
AC-2716	23	0.16	AC-2416	30	0.21	AC-3006	16	0.11	AC-663	33	0.23	AC-295	1	0.01
AC-2029	41	0.29	AC-2954	91	0.64	AC-3006	4	0.03	AC-663	11	0.08	AC-295	1	0.01
AC-2029	16	0.11	AC-2954	26	0.18	AC-1446	26	0.18	AC-1615	41	0.29	AC-555	31	0.22
AC-740	46	0.32	AC-805	3	0.02	AC-1446	9	0.06	AC-1615	13	0.09	AC-555	9	0.06
AC-740	19	0.13	AC-1763	6	0.04	AC-1607	16	0.11	AC-2545	3	0.02	AC-2156	16	0.11
AC-1114	161	1.13	AC-1763	3	0.02	AC-1607	6	0.04	AC-2545	0	0	AC-2156	4	0.03
AC-1114	49	0.34	AC-1438	76	0.53	AC-1860	36	0.25	AC-2804	71	0.5	AC-2978	111	0.78
AC-48	0	0	AC-1438	24	0.17	AC-1860	11	0.08	AC-2804	21	0.15	AC-2978	29	0.2
AC-2882	80	0.56	AC-2894	34	0.24	AC-566	294	2.06	AC-508	26	0.18	AC-2840	6	0.04
AC-2882	24	0.17	AC-2894	13	0.09	AC-566	91	0.64	AC-508	11	0.08	AC-2840	3	0.02
AC-1062	29	0.2	AC-1934	49	0.34	AC-2766	11	0.08	AC-747	171	1.2	AC-2456	1	0.01

Nodo	Usuario	Consumo												
AC-2456	1	0.01	AC-2644	47	0.33	AC-803	24	0.17	AC-765	11	0.08	AC-1300	33	0.23
AC-1988	116	0.81	AC-2644	11	0.08	AC-405	6	0.04	AC-248	10	0.07	AC-1300	9	0.06
AC-1988	30	0.21	AC-2992	17	0.12	AC-405	1	0.01	AC-1842	46	0.32	AC-2435	16	0.11
AC-1628	26	0.18	AC-2992	4	0.03	AC-2060	70	0.49	AC-1842	9	0.06	AC-2435	4	0.03
AC-1628	10	0.07	AC-718	61	0.43	AC-2060	30	0.21	AC-1845	0	0	AC-120	164	1.15
AC-557	10	0.07	AC-718	20	0.14	AC-149	19	0.13	AC-1186	31	0.22	AC-120	50	0.35
AC-557	3	0.02	AC-1560	43	0.3	AC-149	13	0.09	AC-1186	13	0.09	AC-1678	23	0.16
AC-1719	24	0.17	AC-1560	16	0.11	AC-1746	0	0	AC-85	6	0.04	AC-1678	6	0.04
AC-1719	7	0.05	AC-2589	29	0.2	AC-80	7	0.05	AC-85	4	0.03	AC-1563	17	0.12
AC-1709	6	0.04	AC-2589	9	0.06	AC-80	3	0.02	AC-529	26	0.18	AC-1563	7	0.05
AC-1709	3	0.02	AC-554	17	0.12	AC-2887	31	0.22	AC-529	11	0.08	AC-1858	11	0.08
AC-40	144	1.01	AC-554	4	0.03	AC-2887	11	0.08	AC-1305	10	0.07	AC-1858	3	0.02
AC-40	47	0.33	AC-1206	1	0.01	AC-1581	40	0.28	AC-1305	4	0.03	AC-2772	1	0.01
AC-2494	51	0.36	AC-1206	0	0	AC-1581	9	0.06	AC-169	3	0.02	AC-2772	1	0.01
AC-2494	17	0.12	AC-1506	11	0.08	AC-2405	14	0.1	AC-169	1	0.01	AC-692	19	0.13
AC-3029	6	0.04	AC-1506	3	0.02	AC-2405	10	0.07	AC-2408	27	0.19	AC-692	7	0.05
AC-3029	1	0.01	AC-1688	13	0.09	AC-917	10	0.07	AC-2408	10	0.07	AC-1208	9	0.06
AC-2611	17	0.12	AC-1688	4	0.03	AC-917	6	0.04	AC-2573	41	0.29	AC-1208	3	0.02
AC-2611	6	0.04	AC-778	14	0.1	AC-1433	19	0.13	AC-2573	14	0.1	AC-2049	26	0.18
AC-1483	79	0.55	AC-778	4	0.03	AC-1433	6	0.04	AC-369	33	0.23	AC-2049	9	0.06
AC-1483	24	0.17	AC-1302	40	0.28	AC-1246	171	1.2	AC-369	9	0.06	AC-150	103	0.72
AC-1500	40	0.28	AC-1302	13	0.09	AC-1246	23	0.16	AC-252	493	3.45	AC-150	34	0.24
AC-1500	13	0.09	AC-2974	40	0.28	AC-1727	141	0.99	AC-252	79	0.55	AC-2380	39	0.27
AC-165	33	0.23	AC-2974	11	0.08	AC-1727	81	0.57	AC-1552	23	0.16	AC-2380	11	0.08
AC-165	16	0.11	AC-803	77	0.54	AC-765	40	0.28	AC-1552	11	0.08	AC-181	40	0.28

Nodo	Usuario	Consumo												
AC-2924	46	0.32	AC-2880	23	0.16	AC-2995	6	0.04	AC-2899	31	0.22	AC-2742	101	0.71
AC-2924	11	0.08	AC-2709	19	0.13	AC-1210	1	0.01	AC-530	3	0.02	AC-2742	31	0.22
AC-1189	20	0.14	AC-2709	7	0.05	AC-1210	1	0.01	AC-530	13	0.09	AC-1033	91	0.64
AC-1189	7	0.05	AC-142	224	1.57	EC-15	20	0.14	AC-691	20	0.14	AC-1033	27	0.19
AC-1745	100	0.7	AC-142	64	0.45	EC-15	4	0.03	AC-691	9	0.06	AC-1589	71	0.5
AC-1745	31	0.22	AC-2432	39	0.27	AC-2757	14	0.1	AC-1431	51	0.36	AC-1589	23	0.16
AC-1055	7	0.05	AC-2432	46	0.32	AC-2757	4	0.03	AC-1431	16	0.11	AC-1458	6	0.04
AC-1055	1	0.01	AC-2594	34	0.24	AC-876	16	0.11	AC-1022	69	0.48	AC-1458	4	0.03
AC-1508	16	0.11	AC-2594	9	0.06	AC-876	7	0.05	AC-1022	23	0.16	AC-732	29	0.2
AC-1508	6	0.04	AC-2294	3	0.02	AC-2042	1	0.01	AC-1524	17	0.12	AC-732	9	0.06
AC-2351	4	0.03	AC-2294	1	0.01	AC-2541	1	0.01	AC-1524	9	0.06	AC-1101	23	0.16
AC-2351	1	0.01	AC-2325	23	0.16	AC-2507	14	0.1	AC-1502	4	0.03	AC-1101	9	0.06
AC-244	67	0.47	AC-2325	6	0.04	AC-2507	3	0.02	ME-10	0	0	AC-2982	24	0.17
AC-244	20	0.14	AC-44	1	0.01	AC-1012	71	0.5	AC-2718	33	0.23	AC-2982	9	0.06
AC-2827	11	0.08	AC-2180	13	0.09	AC-1012	21	0.15	AC-2718	10	0.07	AC-2112	17	0.12
AC-2827	4	0.03	AC-2180	3	0.02	AC-591	20	0.14	AC-2966	21	0.15	AC-2112	11	0.08
AC-828	10	0.07	AC-222	153	1.07	AC-591	6	0.04	AC-2966	6	0.04	AC-418	20	0.14
AC-828	4	0.03	AC-222	51	0.36	AC-531	3	0.02	AC-2061	77	0.54	AC-418	7	0.05
AC-543	44	0.31	AC-757	31	0.22	AC-531	1	0.01	AC-2061	50	0.35	AC-1840	14	0.1
AC-543	16	0.11	AC-757	10	0.07	AC-662	9	0.06	AC-1545	31	0.22	AC-1840	4	0.03
AC-185	163	1.14	AC-2747	37	0.26	AC-662	3	0.02	AC-1545	9	0.06	AC-392	3	0.02
AC-185	43	0.3	AC-2747	10	0.07	AC-2950	83	0.58	AC-930	31	0.22	AC-392	1	0.01
AC-3004	3	0.02	AC-473	33	0.23	AC-2950	21	0.15	AC-930	11	0.08	AC-759	51	0.36
AC-3004	3	0.02	AC-473	11	0.08	AC-2047	14	0.1	AC-614	37	0.26	AC-759	16	0.11
AC-2880	71	0.5	AC-2995	19	0.13	AC-2899	147	1.03	AC-614	11	80.0	AC-1194	0	0

Nodo	Usuario	Consumo												
AC-961	23	0.16	AC-561	7	0.05	AC-2337	91	0.64	AC-1666	53	0.37	AC-852	9	0.06
AC-961	9	0.06	AC-561	4	0.03	AC-2337	30	0.21	AC-1666	17	0.12	AC-2526	41	0.29
AC-1996	10	0.07	AC-2919	134	0.94	AC-2817	27	0.19	AC-91	56	0.39	AC-2526	13	0.09
AC-1676	23	0.16	AC-2919	39	0.27	AC-2817	19	0.13	AC-91	14	0.1	AC-527	17	0.12
AC-1676	7	0.05	AC-559	0	0	EC-2	11	0.08	AC-1621	30	0.21	AC-527	6	0.04
AC-2920	10	0.07	AC-2922	103	0.72	EC-2	20	0.14	AC-1621	10	0.07	AC-553	23	0.16
AC-2920	3	0.02	AC-2922	27	0.19	AC-2777	6	0.04	AC-729	46	0.32	AC-553	6	0.04
AC-2122	39	0.27	AC-1108	9	0.06	AC-2777	16	0.11	AC-729	20	0.14	AC-2419	16	0.11
AC-2122	7	0.05	AC-1108	3	0.02	AC-724	7	0.05	AC-1764	1	0.01	AC-2419	4	0.03
AC-1642	36	0.25	AC-1196	0	0	AC-724	7	0.05	AC-1764	0	0	AC-1816	27	0.19
AC-1642	13	0.09	AC-2525	16	0.11	AC-664	3	0.02	AC-3023	0	0	AC-1816	9	0.06
AC-2953	0	0	AC-2525	4	0.03	AC-664	3	0.02	AC-1144	44	0.31	AC-1707	43	0.3
AC-2981	94	0.66	AC-1034	0	0	AC-2367	41	0.29	AC-1144	13	0.09	AC-1707	29	0.2
AC-2981	29	0.2	AC-59	44	0.31	AC-2367	13	0.09	AC-1748	3	0.02	AC-1862	11	0.08
AC-1602	73	0.51	AC-59	10	0.07	AC-1810	9	0.06	AC-560	1	0.01	AC-1862	4	0.03
AC-1602	23	0.16	AC-1132	37	0.26	AC-1810	10	0.07	AC-560	1	0.01	AC-2710	7	0.05
AC-2451	3	0.02	AC-1132	11	0.08	AC-1753	49	0.34	ME-8	19	0.13	AC-2407	20	0.14
AC-2451	1	0.01	AC-2178	270	1.89	AC-1753	14	0.1	ME-8	4	0.03	AC-2407	7	0.05
AC-1323	46	0.32	AC-2178	56	0.39	AC-153	224	1.57	AC-1051	16	0.11	AC-2470	16	0.11
AC-1323	13	0.09	AC-2811	11	0.08	AC-153	63	0.44	AC-1051	4	0.03	AC-2470	6	0.04
AC-2774	6	0.04	AC-2811	11	0.08	AC-153	2073	14.51	AC-1594	1	0.01	AC-1966	14	0.1
AC-2774	7	0.05	AC-1095	130	0.91	AC-534	17	0.12	AC-1594	1	0.01	AC-1966	4	0.03
AC-2696	0	0	AC-1095	34	0.24	AC-534	9	0.06	AC-1693	9	0.06	AC-1677	3	0.02
AC-242	79	0.55	AC-2275	154	1.08	AC-808	6	0.04	AC-1693	4	0.03	AC-1677	1	0.01
AC-242	36	0.25	AC-2275	36	0.25	AC-808	4	0.03	AC-852	27	0.19	AC-1432	10	0.07

Nodo	Usuario	Consumo												
AC-1432	4	0.03	AC-1632	1	0.01	AC-513	11	0.08	AC-1334	7	0.05	AC-175	0	0
AC-443	17	0.12	AC-1632	3	0.02	AC-2741	74	0.52	AC-1053	59	0.41	AC-2926	7	0.05
AC-443	6	0.04	AC-1532	51	0.36	AC-2741	27	0.19	AC-1053	17	0.12	AC-2926	1	0.01
AC-849	3	0.02	AC-1532	14	0.1	AC-31	3	0.02	AC-2819	23	0.16	AC-2165	27	0.19
AC-849	9	0.06	AC-868	23	0.16	AC-1660	6	0.04	AC-2819	13	0.09	AC-2165	9	0.06
AC-2743	26	0.18	AC-868	6	0.04	AC-1660	3	0.02	AC-2359	49	0.34	AC-1662	6	0.04
AC-2743	7	0.05	AC-672	53	0.37	AC-2575	61	0.43	AC-2359	24	0.17	AC-1662	3	0.02
AC-2941	20	0.14	AC-672	21	0.15	AC-2575	16	0.11	AC-386	16	0.11	AC-2335	44	0.31
AC-2941	6	0.04	AC-2354	11	0.08	AC-1529	9	0.06	AC-386	6	0.04	AC-2335	16	0.11
AC-2031	30	0.21	AC-2354	4	0.03	AC-1529	4	0.03	AC-689	11	0.08	AC-399	36	0.25
AC-2031	7	0.05	AC-551	7	0.05	AC-2342	151	1.06	AC-689	4	0.03	AC-399	11	0.08
AC-498	37	0.26	AC-551	4	0.03	AC-2342	46	0.32	AC-1681	1	0.01	AC-996	44	0.31
AC-498	13	0.09	AC-238	116	0.81	AC-2948	127	0.89	AC-1681	6	0.04	AC-996	14	0.1
AC-754	16	0.11	AC-238	31	0.22	AC-2948	33	0.23	AC-2740	27	0.19	AC-1519	19	0.13
AC-754	6	0.04	AC-1815	6	0.04	AC-345	60	0.42	AC-2740	16	0.11	AC-1519	9	0.06
AC-714	29	0.2	AC-1815	3	0.02	AC-345	17	0.12	AC-1586	23	0.16	AC-1116	141	0.99
AC-714	10	0.07	AC-2547	3	0.02	AC-1133	113	0.79	AC-1586	7	0.05	AC-1116	46	0.32
AC-875	54	0.38	AC-2547	3	0.02	AC-1133	33	0.23	AC-70	50	0.35	AC-932	11	0.08
AC-875	16	0.11	AC-2540	19	0.13	AC-2537	17	0.12	AC-70	14	0.1	AC-932	11	0.08
AC-677	44	0.31	AC-2540	6	0.04	AC-2537	6	0.04	AC-1437	91	0.64	AC-1704	9	0.06
AC-677	21	0.15	AC-1775	6	0.04	AC-960	27	0.19	AC-1437	30	0.21	AC-1704	4	0.03
AC-1653	96	0.67	AC-1775	1	0.01	AC-960	11	0.08	AC-565	66	0.46	AC-1564	49	0.34
AC-1653	27	0.19	AC-2341	100	0.7	AC-1235	46	0.32	AC-565	20	0.14	AC-1564	16	0.11
AC-2973	51	0.36	AC-2341	33	0.23	AC-1235	14	0.1	AC-1847	1	0.01	AC-174	0	0
AC-2973	14	0.1	AC-513	39	0.27	AC-1334	20	0.14	AC-1847	7	0.05	AC-305	73	0.51

Nodo	Usuario	Consumo												
AC-305	29	0.2	AC-1204	4	0.03	AC-2670	11	0.08	AC-137	26	0.18	AC-730	6	0.04
AC-712	9	0.06	AC-1669	6	0.04	AC-2670	4	0.03	AC-2446	7	0.05	AC-207	324	2.27
AC-712	3	0.02	AC-1669	7	0.05	AC-284	16	0.11	AC-2446	3	0.02	AC-207	106	0.74
AC-946	256	1.79	AC-1514	26	0.18	AC-284	4	0.03	AC-1057	23	0.16	AC-562	19	0.13
AC-946	63	0.44	AC-1514	14	0.1	AC-1460	56	0.39	AC-1057	6	0.04	AC-562	7	0.05
AC-1702	3	0.02	AC-1106	70	0.49	AC-1460	17	0.12	AC-1729	9	0.06	AC-688	120	0.84
AC-1702	1	0.01	AC-1106	21	0.15	AC-1060	107	0.75	AC-1729	9	0.06	AC-688	36	0.25
AC-2731	16	0.11	AC-1497	16	0.11	AC-1060	23	0.16	AC-847	0	0	AC-2095	17	0.12
AC-2731	4	0.03	AC-1497	6	0.04	AC-194	150	1.05	AC-2115	7	0.05	AC-2095	3	0.02
AC-990	0	0	AC-1548	169	1.18	AC-194	36	0.25	AC-2115	1	0.01	AC-168	41	0.29
AC-1021	1	0.01	AC-1548	50	0.35	AC-1521	14	0.1	AC-2092	53	0.37	AC-168	10	0.07
AC-1021	17	0.12	AC-2896	73	0.51	AC-1521	7	0.05	AC-2092	13	0.09	AC-1654	34	0.24
AC-1640	29	0.2	AC-2896	24	0.17	AC-413	83	0.58	AC-1199	14	0.1	AC-1654	11	0.08
AC-1640	9	0.06	AC-2418	16	0.11	AC-413	24	0.17	AC-1199	4	0.03	AC-162	37	0.26
AC-1435	37	0.26	AC-2418	4	0.03	AC-681	73	0.51	AC-700	20	0.14	AC-162	10	0.07
AC-1435	11	0.08	AC-696	10	0.07	AC-681	23	0.16	AC-700	6	0.04	AC-2113	49	0.34
AC-2991	40	0.28	AC-696	4	0.03	AC-3011	9	0.06	AC-807	1	0.01	AC-2113	14	0.1
AC-2991	11	0.08	AC-941	10	0.07	AC-3011	1	0.01	AC-807	4	0.03	AC-2506	19	0.13
AC-954	9	0.06	AC-941	4	0.03	AC-2909	36	0.25	AC-1534	26	0.18	AC-2506	11	0.08
AC-954	4	0.03	AC-1658	66	0.46	AC-2909	10	0.07	AC-1534	9	0.06	AC-1510	16	0.11
AC-1192	23	0.16	AC-1658	21	0.15	AC-2949	24	0.17	AC-1577	19	0.13	AC-1510	6	0.04
AC-1192	7	0.05	AC-775	34	0.24	AC-2949	7	0.05	AC-1577	6	0.04	AC-756	1	0.01
AC-2785	141	0.99	AC-775	10	0.07	AC-755	11	0.08	AC-2952	0	0	EC-9	0	0
AC-2785	31	0.22	AC-1671	14	0.1	AC-755	4	0.03	AC-578	0	0	AC-1484	46	0.32
AC-1204	10	0.07	AC-1671	4	0.03	AC-137	14	0.1	AC-730	19	0.13	AC-1484	17	0.12

Nodo	Usuario	Consumo												
AC-964	79	0.55	AC-1670	6	0.04	AC-1776	17	0.12	AC-1696	10	0.07	AC-955	4	0.03
AC-964	26	0.18	AC-38	0	0	AC-1776	4	0.03	AC-2929	26	0.18	AC-2723	47	0.33
AC-547	4	0.03	AC-2999	34	0.24	AC-33	0	0	AC-2929	7	0.05	AC-2723	13	0.09
AC-1531	30	0.21	AC-2999	10	0.07	AC-669	37	0.26	AC-2071	0	0	AC-926	24	0.17
AC-1531	10	0.07	AC-2905	67	0.47	AC-669	11	80.0	AC-594	40	0.28	AC-926	7	0.05
AC-934	16	0.11	AC-2905	13	0.09	AC-1811	14	0.1	AC-594	13	0.09	AC-970	66	0.46
AC-934	7	0.05	AC-1527	24	0.17	AC-1811	4	0.03	AC-3019	20	0.14	AC-970	20	0.14
AC-2102	6	0.04	AC-1527	9	0.06	AC-2659	14	0.1	AC-3019	7	0.05	AC-1165	11	0.08
AC-2102	1	0.01	AC-2778	70	0.49	AC-2659	4	0.03	AC-2754	16	0.11	AC-1165	4	0.03
AC-1185	9	0.06	AC-2778	29	0.2	AC-752	1	0.01	AC-2754	4	0.03	AC-2763	24	0.17
AC-1185	3	0.02	AC-133	6	0.04	AC-2720	9	0.06	AC-2389	24	0.17	AC-2763	6	0.04
AC-1773	30	0.21	AC-133	6	0.04	AC-2720	6	0.04	AC-2389	7	0.05	AC-408	6	0.04
AC-1773	7	0.05	AC-989	0	0	AC-2391	11	80.0	AC-1175	0	0	AC-408	3	0.02
AC-1504	10	0.07	AC-1620	53	0.37	AC-2391	4	0.03	AC-2473	20	0.14	AC-1695	19	0.13
AC-1504	4	0.03	AC-1620	14	0.1	AC-1592	47	0.33	AC-2473	7	0.05	AC-1695	6	0.04
AC-860	16	0.11	AC-1784	24	0.17	AC-1592	16	0.11	AC-2390	1	0.01	AC-1052	1	0.01
AC-860	44	0.31	AC-1784	10	0.07	AC-2157	6	0.04	AC-2756	7	0.05	AC-1052	4	0.03
AC-1547	7	0.05	AC-2839	10	0.07	AC-2157	3	0.02	AC-2756	1	0.01	AC-377	57	0.4
AC-1547	3	0.02	AC-2839	3	0.02	AC-840	37	0.26	AC-665	1	0.01	AC-377	24	0.17
AC-3022	0	0	AC-1181	39	0.27	AC-840	13	0.09	AC-665	6	0.04	AC-1605	14	0.1
AC-2455	1	0.01	AC-1181	10	0.07	AC-1467	0	0	AC-3021	33	0.23	AC-1605	4	0.03
AC-2455	1	0.01	AC-2490	19	0.13	AC-842	1	0.01	AC-3021	10	0.07	AC-782	34	0.24
AC-701	7	0.05	AC-2490	9	0.06	AC-598	44	0.31	AC-1644	44	0.31	AC-782	10	0.07
AC-701	3	0.02	AC-2371	30	0.21	AC-598	13	0.09	AC-1644	16	0.11	AC-145	43	0.3
AC-1670	19	0.13	AC-2371	17	0.12	AC-1696	34	0.24	AC-955	10	0.07	AC-145	16	0.11

Nodo	Usuario	Consumo												
AC-2410	20	0.14	AC-2422	14	0.1	AC-800	10	0.07	AC-1237	17	0.12	AC-2781	17	0.12
AC-2410	7	0.05	AC-2422	4	0.03	AC-65	20	0.14	AC-1237	6	0.04	AC-2781	10	0.07
ME-7	24	0.17	AC-1689	16	0.11	AC-65	7	0.05	AC-1877	40	0.28	AC-141	104	0.73
ME-7	9	0.06	AC-1689	6	0.04	AC-1200	1	0.01	AC-1877	23	0.16	AC-141	34	0.24
AC-1444	43	0.3	AC-657	11	0.08	AC-1200	0	0	AC-1822	19	0.13	AC-288	9	0.06
AC-1444	14	0.1	AC-657	7	0.05	AC-865	23	0.16	AC-1822	6	0.04	AC-288	4	0.03
AC-2701	9	0.06	AC-1501	59	0.41	AC-865	6	0.04	AC-1575	17	0.12	AC-79	11	0.08
AC-2701	4	0.03	AC-1540	31	0.22	AC-2007	37	0.26	AC-1575	7	0.05	AC-79	3	0.02
AC-236	3	0.02	AC-1540	10	0.07	AC-2007	13	0.09	AC-427	3	0.02	AC-511	3	0.02
AC-236	1	0.01	AC-3333	19	0.13	AC-1135	43	0.3	AC-427	1	0.01	AC-1256	36	0.25
AC-437	33	0.23	AC-3333	7	0.05	AC-1135	13	0.09	AC-1725	31	0.22	AC-1256	13	0.09
AC-437	9	0.06	AC-616	23	0.16	AC-398	21	0.15	AC-1725	13	0.09	AC-1846	1	0.01
AC-1456	0	0	AC-616	7	0.05	AC-398	6	0.04	AC-2129	1	0.01	AC-1846	0	0
AC-2023	180	1.26	AC-2971	33	0.23	AC-924	7	0.05	AC-2129	0	0	AC-1645	46	0.32
AC-2023	49	0.34	AC-2971	9	0.06	AC-924	3	0.02	AC-785	13	0.09	AC-1645	14	0.1
AC-2853	46	0.32	AC-183	81	0.57	AC-684	7	0.05	AC-785	4	0.03	AC-2164	10	0.07
AC-2853	13	0.09	AC-183	26	0.18	AC-684	13	0.09	EC-6	0	0	AC-1786	31	0.22
AC-2935	34	0.24	AC-1771	24	0.17	AC-1146	19	0.13	AC-2694	23	0.16	AC-2340	276	1.93
AC-2935	10	0.07	AC-1771	9	0.06	AC-1146	7	0.05	AC-2694	11	0.08	AC-2340	87	0.61
AC-2750	24	0.17	AC-1770	7	0.05	AC-170	21	0.15	AC-2034	11	0.08	AC-68	207	1.45
AC-2750	9	0.06	AC-1770	3	0.02	AC-170	9	0.06	AC-2034	4	0.03	AC-68	66	0.46
AC-2595	33	0.23	AC-135	1	0.01	AC-1710	50	0.35	AC-947	23	0.16	AC-652	23	0.16
AC-2595	10	0.07	AC-2005	34	0.24	AC-1710	17	0.12	AC-947	7	0.05	AC-652	7	0.05
AC-2693	143	1	AC-2005	13	0.09	AC-792	1	0.01	AC-1157	10	0.07	AC-552	24	0.17
AC-2693	43	0.3	AC-800	36	0.25	AC-792	1	0.01	AC-1157	6	0.04	AC-552	7	0.05

Nodo	Usuario	Consumo												
AC-1623	16	0.11	AC-2055	16	0.11	AC-1010	37	0.26	AC-1687	84	0.59	AC-1482	20	0.14
AC-1623	4	0.03	AC-2163	23	0.16	AC-1010	10	0.07	AC-1687	23	0.16	AC-781	33	0.23
AC-1459	1	0.01	AC-2163	33	0.23	AC-313	11	0.08	AC-780	6	0.04	AC-781	10	0.07
AC-2536	13	0.09	AC-186	14	0.1	AC-313	24	0.17	AC-780	1	0.01	AC-739	17	0.12
AC-2536	3	0.02	AC-186	11	0.08	AC-1197	0	0	AC-2423	23	0.16	AC-739	6	0.04
AC-1126	1	0.01	AC-1667	19	0.13	AC-2348	76	0.53	AC-2423	6	0.04	AC-1008	139	0.97
AC-1959	6	0.04	AC-1667	9	0.06	AC-2348	21	0.15	AC-447	96	0.67	AC-1008	29	0.2
AC-1959	1	0.01	AC-1183	61	0.43	AC-1454	7	0.05	AC-447	27	0.19	AC-2695	7	0.05
AC-1471	53	0.37	AC-1183	17	0.12	AC-1454	3	0.02	AC-703	27	0.19	AC-952	10	0.07
AC-1471	19	0.13	AC-2826	29	0.2	AC-2020	10	0.07	AC-703	11	0.08	AC-952	6	0.04
AC-1512	19	0.13	AC-2826	7	0.05	AC-2020	3	0.02	AC-510	23	0.16	AC-753	0	0
AC-1512	6	0.04	AC-722	27	0.19	AC-3005	19	0.13	AC-510	6	0.04	AC-770	1	0.01
AC-1211	6	0.04	AC-722	10	0.07	AC-3005	6	0.04	AC-613	36	0.25	AC-770	0	0
AC-1211	3	0.02	AC-1754	24	0.17	AC-2615	47	0.33	AC-613	11	0.08	AC-1429	20	0.14
AC-49	1	0.01	AC-1754	7	0.05	AC-2615	16	0.11	AC-738	20	0.14	AC-1429	7	0.05
AC-49	4	0.03	AC-158	314	2.2	AC-680	17	0.12	AC-738	7	0.05	AC-605	99	0.69
AC-1100	9	0.06	AC-158	50	0.35	AC-680	9	0.06	AC-2478	1	0.01	AC-605	29	0.2
AC-1100	3	0.02	ME-13	11	0.08	AC-2744	3	0.02	AC-2478	1	0.01	AC-2053	33	0.23
AC-2522	3	0.02	ME-13	3	0.02	AC-2744	1	0.01	AC-1503	7	0.05	AC-2053	16	0.11
AC-535	19	0.13	AC-1638	19	0.13	AC-1705	3	0.02	AC-1503	4	0.03	AC-1436	83	0.58
AC-535	6	0.04	AC-1638	6	0.04	AC-1705	3	0.02	AC-2227	46	0.32	AC-1436	23	0.16
AC-956	36	0.25	AC-2109	571	4	AC-777	83	0.58	AC-2227	14	0.1	AC-731	3	0.02
AC-956	10	0.07	AC-2109	114	0.8	AC-777	24	0.17	AC-2963	79	0.55	AC-2820	3	0.02
AC-2798	37	0.26	AC-2783	17	0.12	AC-823	1	0.01	AC-2963	23	0.16	AC-2820	7	0.05
AC-2798	11	0.08	AC-2783	9	0.06	AC-823	3	0.02	AC-1482	63	0.44	AC-2531	30	0.21

Nodo	Usuario	Consumo												
AC-2531	9	0.06	AC-402	4	0.03	AC-1455	1	0.01	AC-1760	29	0.2	AC-2828	0	0
AC-927	1	0.01	AC-1697	27	0.19	AC-1455	1	0.01	AC-1587	31	0.22	AC-2933	14	0.1
AC-855	46	0.32	AC-1697	9	0.06	AC-235	4	0.03	AC-1587	11	0.08	AC-2933	4	0.03
AC-855	17	0.12	AC-760	27	0.19	AC-178	93	0.65	AC-1465	16	0.11	EC-8	3	0.02
AC-1112	66	0.46	AC-760	9	0.06	AC-178	33	0.23	AC-1465	6	0.04	AC-72	141	0.99
AC-1112	19	0.13	AC-237	4	0.03	AC-517	4	0.03	AC-779	26	0.18	AC-72	43	0.3
AC-53	67	0.47	AC-237	3	0.02	AC-517	7	0.05	AC-779	9	0.06	AC-523	9	0.06
AC-53	21	0.15	AC-1752	1	0.01	AC-676	24	0.17	AC-1031	81	0.57	AC-523	3	0.02
AC-623	79	0.55	AC-1752	3	0.02	AC-676	9	0.06	AC-1031	24	0.17	AC-994	1	0.01
AC-623	23	0.16	AC-1274	94	0.66	AC-2516	0	0	AC-69	16	0.11	AC-154	74	0.52
AC-1700	19	0.13	AC-1274	26	0.18	AC-230	113	0.79	AC-69	6	0.04	AC-154	61	0.43
AC-1700	6	0.04	AC-798	44	0.31	AC-230	36	0.25	AC-997	13	0.09	AC-259	284	1.99
AC-147	13	0.09	AC-798	13	0.09	ME-11	0	0	AC-997	4	0.03	AC-259	67	0.47
AC-147	3	0.02	AC-1571	40	0.28	EC-17	24	0.17	AC-2799	17	0.12	AC-2967	40	0.28
AC-762	7	0.05	AC-1571	13	0.09	EC-17	14	0.1	AC-2799	9	0.06	AC-2967	10	0.07
AC-762	3	0.02	AC-2457	21	0.15	AC-2767	20	0.14	AC-1601	43	0.3	AC-2021	29	0.2
AC-140	44	0.31	AC-2457	11	0.08	AC-2767	6	0.04	AC-1601	13	0.09	AC-2021	7	0.05
AC-140	13	0.09	AC-2692	16	0.11	AC-173	69	0.48	AC-2004	130	0.91	AC-245	4	0.03
AC-1630	59	0.41	AC-2692	7	0.05	AC-173	27	0.19	AC-2004	39	0.27	AC-245	3	0.02
AC-1630	19	0.13	AC-1492	1	0.01	AC-164	4	0.03	AC-1647	49	0.34	AC-2903	144	1.01
AC-55	50	0.35	AC-1492	3	0.02	AC-164	14	0.1	AC-1647	19	0.13	AC-2903	43	0.3
AC-55	14	0.1	AC-1469	13	0.09	AC-37	1	0.01	AC-342	0	0	AC-420	3	0.02
AC-3	63	0.44	AC-1469	4	0.03	AC-1595	1	0.01	AC-671	3	0.02	AC-420	1	0.01
AC-3	17	0.12	AC-1168	27	0.19	AC-1595	7	0.05	AC-671	3	0.02	AC-790	1	0.01
AC-402	7	0.05	AC-1168	9	0.06	AC-1760	81	0.57	AC-2828	3	0.02	AC-790	1	0.01

Nodo	Usuario	Consumo												
AC-900	0	0	AC-1536	13	0.09	AC-1616	24	0.17	AC-1359	114	8.0	AC-528	17	0.12
AC-243	1	0.01	AC-1016	26	0.18	AC-841	1	0.01	AC-1359	34	0.24	AC-528	6	0.04
AC-243	1	0.01	AC-2914	101	0.71	AC-1724	43	0.3	AC-2401	27	0.19	AC-821	84	0.59
AC-2917	73	0.51	AC-2914	29	0.2	AC-1724	14	0.1	AC-2401	10	0.07	AC-821	26	0.18
AC-2917	21	0.15	AC-1782	0	0	AC-2985	41	0.29	AC-1985	47	0.33	AC-1356	43	0.3
AC-1536	37	0.26	AC-1616	86	0.6	AC-2985	11	0.08	AC-1985	11	0.08	AC-1356	11	0.08

Asignación automático de elevación a Configuración Importación de redes a Importación de archivo a nodos através de la herramienta básica del través de la herramienta través de la herramienta Background Layers Trex Wizard modelo ModelBuilder NODOS DESCONECTADOS BASE DE CÁLCULO NO VALIDATE User Notification **~** SI Cargar curva de consumo a través de laherramienta Patterns Asignación automático de demandas a COMPUTE REPORTE DE nodos a través de la herramienta FIN RESULTADOS **Demand Control Center** →

Anexo 2 Diagrama de proceso para la creación de un modelo en Water Gems V8

INICIO Ingreso Datos de Campo Ingreso Datus Darwin Calibrator Parámetros Función Objetivo Creación Grupo de Ajustes Configuración Calibration Criteria Field Data Snapshots Preliminar Carga Datos Registrados **Observed Target** Crear Archivo de Calibración New Optimized Run NO CALIBRACIÒ Chequeo Validación Datos Ajuste de Parámetros Pestaña Option Pestañas Rouhness y Field Data -> SI Crear Nuevo Escenario Export to Scenario REPORTE DE COMPUTE FIN RESULTADOS **→** Verificación Archivo Generado Scenario

Anexo 3 Diagrama de proceso para la calibración de un modelo en Water Gems V8

Bibliografía

- Anonimo. (16 de Enero de 2018). Chía-Población. Obtenido de http://poblacion.population.city/colombia/chia/
- Bentley. (Noviembre de 2008). Curso de modelación y diseño de sistemas de distribución usando Bentley Water CAD V8 XM.
- Buitriago, H. (26 de 08 de 2014). Infraestructura Acueducto. (R. Fajardo Gutierrez, Entrevistador)
- Contreras Ortiz , Y. (Febrero de 2017). *Institutos de Estudios Urbanos*. Obtenido de https://www.institutodeestudiosurbanos.info/images/Estado_de_la_vivienda_y_del_espac io_p%C3%BAblico_en_el_municipio_de_Ch%C3%ADa.pdf
- Gonzàles, M. (28 de Junio de 2013). Optimización de redes hidráulicas mediante aplicación de algoritmos genéticos y de recocido simulado utilizados en programas comerciales. *Tesis de maestria*. Bogotà, Cundinamarca, Colombia: Esculea Colombiana de Ingenieros Julio Garavito.
- Gutiérrez Araújo, J. (23 de Mayo de 2011). Bentley Communities. Obtenido de Blog Locos por la Modelación Hidráulica:
 https://communities.bentley.com/other/old_site_member_blogs/bentley_employees/b/jua n_gutierrezs_blog/posts/historia-de-los-metodos-de-analisis-y-modelos-computacionales-para-an-193-lisis-de-redes-de-distribuci-211-n-a-presi-211-n
- Marczyk, A. (17 de Enero de 2018). Algoritmos genéticos y computación evolutiva.
 Obtenido de https://the-geek.org/docs/algen/
- Martínez-Solano, F. J., Iglesias-Rey, P. L., & Molina Arce, S. X. (22 de Octubre de 2015). Obtenido de http://www.uco.es/jia2015/ponencias/c/c023.pdf
- Zeng, W. Y., Walski, T., Mankowski, R., Herrin, G., & Gurrieri, R. (Abril de 2002).
 Researchgate. Obtenido de
 https://www.researchgate.net/publication/237526076_Calibrating_Water_Distribution_Mo

del_Via_Genetic_Algorithms?enrichId=rgreq-f0da64e85c572bc27107b0b8c9b9e520-XXX&enrichSource=Y292ZXJQYWdlOzIzNzUyNjA3NjtBUzoxMDQyMzgxMjY0NjkxMjFAMTQwMTg2MzcxNDMxMw%3D%3D&el

Zheng, W., & Walski, T. (Septiembre de 2005). citeseerx. Obtenido de https://scholar.google.com.co/scholar?q=DIAGNOSING+ERROR+PRONE+APPLICATIO N+OF+OPTIMAL+MODEL+CALIBRATION&hl=es&as_sdt=0&as_vis=1&oi=scholart