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Abstract

Reactive applications demand detection of the changes that occur in
a domain of interest and for timely reactions, examples rang from
simple interactive applications to complex monitoring tasks involving
distributed and heterogeneous systems. Over the last years, different
programming paradigms and solutions have been proposed to support
such applications. Reactive Programming has been the paradigm provided
for long time solutions to the organizations in the Internet Era where
data is produced in almost any machine, connection, application, etc.
Taking into account that currently web applications require much more
dynamism, it is vital that they update without using external or internal
dependencies. It is expected then, that a system interacts with its
environment, interspersing inputs and outputs temporarily, which means
that within an adequate amount of time (depending on the application)
the system returns a response depending on the received inputs and
continues with the cycle of execution, that is, being an asynchronous
client. Event-based programming (specifically Complex Event Processing)
systems enable the definition of high level situations of interest from low
level primitive events detected in the environment to big data production
and consumption. In this paper, we focus on showing a distributed
reactive focused language adopting reactive principles like: message-
driven architecture, responsiveness, elasticity and resiliency. We also
present the reactive programming state of the art and the form the
reactive language supports time-changing values and their composition
as dedicated language abstractions with recognition of certain patterns
that behave accordingly to a given context.

The state of the art exposes the investigations by different communities,
belonging to the databases, distributed systems, and programming
languages areas. It is our belief that a deeper understanding of these
research fields including their benefits and limitations their similarities
and differences, could drive further developments in supporting reactive
applications. Despite some differences between the implementations, we
believe that such comparison can trigger an interesting discussion across
the communities, favor knowledge sharing, and let new ideas emerge.
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CHAPTER 1

Introduction

Internet and hardware have been evolving at a very fast phase bringing new
advantages and new challenges to developers, costumers, and enterprises.
As technology becomes more complicated, it is necessary to have more
elaborated organizations since the organizational schema has been growing
into a hierarchical one and the quantity of internet users have been growing
on and on; it is important to deliver proper services that satisfy the needs
of today’s costumers. The applications should be more responsive, deliver a
smooth experience without freezing and do not provide a poor performance
to the users. Hence, the fact that developers as well as companies deal with
contemporary investigations, on one hand to handle network traffic (especially
for high peaks of traffic) for both users along with data in motion, and on the
other, the constant demand for computing systems that make efficient use of
memory and CPU that grants the ability to interact with different processes in
different node clusters for the operation of an application.
Modern software is mainly focused on real-time systems, it went from data
stored and being queried from time to time to a data change right away in the
software. The subjects that we are resolving in nowadays world are simple, to
improve user experience and to minimize the effort needed by systems to deliver
software.

Stream processing is one way to help turn this data change of all sizes: big,
medium, or small into simple event data as quickly as possible. As systems
embrace data in motion, traditional architectures are being re-imagined as
pure stream-based architectures. In those systems, real-time data is captured,
processed, and used to modify its behaviour with response times of seconds
or even less. There is a major business value in sub-second response times
to changing information, rather than the hours, days or even weeks a system
with a traditional batch-based architecture may take to respond and that has
already been demonstrated (Joseph and Pandya, 1986). The bigger push and
demand for reactive-based services came from the web pages, due to its modern
nature where data constantly changes on the client’s screen and the allowance
of dynamic behavior unlike the traditional passive infrastructure. Specifications
such as Reactive Streams, Reactive Systems, and stream processing libraries
such as ReactiveX1 or Akka Streams (Stivan, Peruffo, and Haller, 2015), provide

1ReactiveX: http:// reactivex.io
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1. Introduction

the standards, principles and patterns necessary to implement such systems
effectively.

Nonetheless, there is a lack of languages and frameworks that are explicitly
distributed and concurrent with a special focus on an asynchronous model
alongside logical semantics which are regularly reinforced to control discrete flows
of events and event detection including reaction rules for data representation
and action (Paschke and Kozlenkov, 2009) explained under the Complex Event
Processing (CEP) model (Luckham, 2002). Besides, the distributed languages
are not generic and its support is very scarce, that is, it is software that is
developed for a specific use case that limits its usefulness in other application
scenarios, in consequence it is a software that is not extensible. On top of that,
in massive scale systems whose node topology seem to dynamically change
depending on the conditions (nodes joining or leaving at any moment), it is
required formal proposals that face with frequent connections and disconnections
(De Troyer, Nicolay, and De Meuter, 2018) or even with mutability of the data.

What is proposed in this degree work is an overall review of the elements
that composes reactive programming set like: theory, frameworks, APIs and
languages. We also examine a concrete chat example showing how the proposed
language behaves during an event-based environment. Accurately, we present
the following contributions:

• An updated state of the art of reactive programming and functional
reactive programming with examples and concise analyses of the presented
investigations.

• A reactive oriented event-based programming language with explicit
support for distribution and time manipulation.

• A partial implementation of the compiler.

• Programming examples and execution of a chat scenario using the reactive
event-based programming language.

1.1 Outline

This document is organized and composed as follows:

Chapter 2 shows the reactive framework used in the Netflix platform, its
importance today’s industry, expands the concepts from Chapter 1, and
explains the IoT common topology.

Chapter 3 collects an amount of frameworks, languages, and different
implementations in the development history of the reactive programming
paradigm. This section identifies the past work of reactive distributed
programming.

Chapter 4 describes the language based on reactive concepts such as:
observables, LTL formulae and local networking. Furthermore, it exposes

2



1.1. Outline

three sets of language approaches: ReactiveX statements, LTL declarations
and Causality operators.

Chapter 5 features the syntax and semantics of the grammar language
embracing the full infrastructure: parser, linker, typechecker, compiler
and others.

Chapter 6 displays the execution of a chat program that exchanges messages
between two nodes and analyzes the generated aspect code.

Chapter 7 concludes the paper and presents a future work.

3





CHAPTER 2

Motivation

2.1 Netflix

Netflix is a subscription service for T.V. and movie streaming over the internet,
it has millions of costumers across hundreds of countries streaming thousands of
titles over millions of devices across the globe. Just in North America, Netflix
makes a third of internet traffic at night.

The API traffic has grown from ∼20 million API requests per day (in 2010)
to >2 billion per day and those requests come from at least 800 different type
of devices including: smartphones, tablets, smart TVs, PS3s, Wii, Xbox. In
the procedure of communicating the devices to Netflix, the devices ‘talk’ to a
facade that contains the services of Netflix, this API layer also has hundreds
of dependencies, basically links to external services. But, as the complexity of
the service started to grow, the control over the data dropped off, the quantity
of requests made at the same time was also an on-going issue, so the Netflix
team investigated different solutions to this trouble, most of these brought
implicit problems with it so they asked themselves, “is there another way to
administrate concurrency?” especially when the amount of data volume varies
through the day. . .

The way the Netflix team answered to this was by rearchitecting the API
infrastructure and reinventing the client-server interaction model since a typical
device performs at least dozen network calls (each one with a network latency)
against the Restful API and each call will do about 4 or more service calls, yet
as a company you don’t really know: the performance of the client’s device, the
way the network is connected, the latency, among other things. Therefore, if we
take all the network latencies produced from the multiple requests and sum them
up, it starts to be a problem; so what it was thought was to collapse those calls
in one single request, since the servers have much more power than the clients,
the server then will be the one that perform the heavy computation. Soon, the
Netflix team started to check different approaches but callbacks, threads and
concurrency were part of the general concern. Microsoft’s open-source Reactive
Extensions library (ReactiveX aka Rx) was the key candidate for this situation.

The Netflix API takes advantage of the Reactive Extensions library by
modelling each event as a collection of data rather than a series of callbacks
and this modelling makes the entire service layer asynchronous returning an
Observable<T> (a flux of data T emitted in a timeline) on all service methods

5



2. Motivation

using language implementations (like RxJava) or coding on ReactiveX (later
explained in Chapter 3).

Making all return types Observable combined with a functional programming
style on the backend, frees up the service layer implementation to safely use
concurrency and asynchronous messaging. It also enables the service layer
implementation to:

1. Conditionally return data immediately from a cache.

2. Use blocking or non-blocking I/O using more or less resources.

3. Make client code treat all interactions with the API as async.

4. Use multiple threads.

5. Migrate an underlying implementation from network based to in-memory
cache.

This can all happen without ever changing how client code interacts with or
composes responses. In short, client code treats all interactions with the API
as asynchronous but the implementation chooses if something is blocking or
non-blocking.

“ Functional reactive programming with RxJava has enabled Netflix
developers to leverage server-side concurrency without the typical
thread-safety and synchronization concerns. The API service layer
implementation has control over concurrency primitives, which
enables us to pursue system performance improvements without
fear of breaking client code.

Ben Christensen”
Maintaining a control and monitoring in the service layer is an architectural
advantage because it optimizes and improves the functionality over time even
during difficult connection setups (Maglie, 2016). The results were pretty good
for Netflix, latency was reduced by increasing the number of threads used by
Observables, CPU consumption reduced, and async processing with constant
monitoring was greatly helpful to the organization.

RxJava

RxJava is the Java implementation of ReactiveX for the JVM and is available
in the ReactiveX repository in GitHub1 (prior to September 2014 was in the
Netflix repo). The first languages supported (beyond Java itself) were Groovy,
Clojure, Scala and JRuby. New language adapters can be created through the
contributions of the community. Supports Java 6 (to include Android support)
and higher with a target build for Java 8 with its lambda support (Davis, 2019).

1RxJava: https:// github.com/ ReactiveX/ RxJava

6
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2.2. IoT and mesh networks

RxJava uses the Observables to control the emission of events with a Java
syntax on it. Additionally, it manipulates these events with a broad set of
operators, the collection of operators provisioned by ReactiveX considers various
categories:

• Creation
• Transformation
• Filter
• Combination
• Error Handling
• Utility
• Conditional and Boolean
• Mathematical and Aggregation
• Backpressure
• Connectable
• Conversion

The primary property of these operators is the operator chaining, which allows
us to link these operators one to another as in a chain modifying the observable
result of the previous operation. Each operator acts by means of taking an
observable as a parameter and return another observable modified by said
operator. Also, something to be highlighted is that ReactiveX allows the
creation of custom operators expanding the set of operations as needed.

Still, it’s useless to generate a stream of data without anyone listening to it,
it’s like the phrase: “if a tree falls in a forest and no one is around to hear it,
does it make a sound?” that raises the question about the ineffectiveness of
perceiving an event. These data emitting Observables relate to the Observers
in consuming the events sent by the Observables as long as the Observers are
subscribed to the Observables.

It is interesting to contemplate Observables and Observers respectively as a
Producer and Consumer architecture. Since, the category of Backtracking
Operators (Backpressure) allows Observers to report to the Observables the
rate at which they should be transmitting data; because it may exist the case
that an Observable emits data at a higher rate than an Observer can process
them causing the internal buffers to fill and show a OutOfMemory error.

2.2 IoT and mesh networks

A mesh network is an infrastructure of nodes (each node representing a device)
that are connected to each other. The main advantage of mesh topology is
multiple paths to the destination node. If one path is down, we have another
path to reach the destination.

These nodes transmits data to each other in order to extend the signal to route,
relay, and proxy traffic to/from clients. Each node spreads the signal a little
further than the last, minimizing the possibility of dead zones as shown in
Figure 2.1. Where lowercase nodes (a, b, c, . . . , g) represent devices that create

7



2. Motivation

and emit events, and uppercase letters (A, B, C, . . . , E) represent routing
nodes that transmit and communicate those events in the interest of reaching
the desired destination.

a

b

c

d

e

f

g

A

B
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D
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B
B

B

B

B
B

B

k

k
k
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Figure 2.1: Mesh network topology

Traditional IoT devices that use Wi-Fi and cellular connectivity depend on
the cloud to relay messages between devices. This works great when you’re
making a standalone product but sometimes you need more than that (Souryal,
Wapf, and Moayeri, 2009). Mesh development kits are not just connected to
the Internet, they’re gateways to the Internet and create a local wireless mesh
that other devices can join.

These devices work together to ensure that messages get where they are going,
and power products that are not possible or economically feasible with Wi-Fi or
cellular connectivity. Mesh gives every IoT device a local network to understand
and connect with the world around it, ensuring products have the information
they need at particular time.

Why use mesh networking for IoT?

While wireless mesh networking technologies has been around for some time,
recently has the power of mesh reached a point of maturity alongside high
availability from chip and silicon vendors. With newer approachable costs,
wireless mesh networking has become ideal for IoT builders. And with the rise
of connected homes and industry support on open source resources like Thread
(network protocol for IPv6), Mesh is now truly accessible while being low-cost

8



2.2. IoT and mesh networks

enough to scale for production. As such, wireless mesh networking is becoming
a much more viable real choice for industrial and commercial IoT applications.
It can provide additional services in a system where extending a connection
between two nodes is limited.

The following examples are shown in order to understand the implementation
of the mesh networking in different day-to-day systems/scenarios, especially
IoT ones (Pu, 2011), like:

• Smart cities—wireless mesh networking is great for extending radio
signals through parking garages, campus grounds, business parks, and
other outdoor facilities. Parking garages that utilize space availability
checkers benefit greatly from mesh networks because they can extend the
signal throughout the whole space, and be able to communicate when a
spot has been taken by other clients.

• Healthcare equipment—wireless mesh networks can help monitor
and locate medical devices quickly. They can also act as a backup for
medical equipment that always needs to remain online. If one node loses
connectivity, another node can step in to keep the connection alive.

• Farming—wireless mesh networking is also great for tracking sun
exposure and water levels across your crops. You can scale at a low
cost with Mesh-enabled nodes across a whole acreage to create a cellular-
connected IoT farm. Nowadays, has a lot of applications.

• Industrial internet—wireless mesh networking is also great for
tracking pallets and monitoring large physical objects with a highly
reliable wireless connectivity network. With wireless mesh networks, you
can easily track key data across your factory floor, and across multiple
locations to identify issues before they happen.

• Smart home—wireless mesh networks can help you track and manage
temperatures across your house. Setup one powered gateway and use
temperature sensors and Mesh-enabled nodes in each room to capture
live data and adjust settings automatically.

9





CHAPTER 3

State of the art: Reactive
programming

There has been a wide variety of implementations at a corporate level (the use
of frameworks that generates value to the company) and at a research level (the
implementation of new ways to build reliable systems through innovation); in
these two cases, it is evident the extension of libraries and the thought-process
when developing new multi-purpose frameworks and APIs.

The presence of reactive libraries (such as ReactiveX) impelled the interest
in making use of Reactive streams in different programming languages and in
different tools that would be adapted to those already used in the market.

3.1 Reactive programming á la ReactiveX

ReactiveX (Rx)

Reactive Xtensions was born around 2010, by the computer scientist Erik
Meijer at Microsoft. It proposes a model that consists in Observables that emits
data, a set of operators to modify the data, and Observers that consume or
‘watch’ the data. However, it does not have explicit support for distribution.
Other frameworks, despite of the fact that do not handle the concept of
Observables (such as ReactJS, RxAda, etc), they have been inspired by these
ideas (Salvaneschi, Margara, and Tamburrelli, 2015) for example Facebook’s
ReactJS, although it does not use the ReactiveX’s syntax, it has the concepts
of reactivity, where you can create components that observe other component’s
changes.

ReactiveX has been implemented in many languages (see Table 3.1) and there
are other researches that try to do it in languages like Ada (Mosteo, 2017).
There are even researches, though they do not refer properly to the syntax and
semantics of a language, they refer to reactive frameworks that have been very
popular, for instance in the JavaScript community ReactJS is very popular
because it allows you to create components that observe changes in other
components, mainly in web pages, and these become more interactive because
you can see the changes in the screen of your web application

11



3. State of the art: Reactive programming

Equivalences
Language Implementation
Java RxJava
JavaScript RxJS
C# Rx.NET
C#(Unity) UniRx
Scala RxScala
Clojure RxClojure
C++ RxCpp
Ruby Rx.rb
Python RxPY
Groovy RxGroovy
JRuby RxJRuby
Kotlin RxKotlin

Table 3.1: Languages supported by ReactiveX

In the interest of further explaining this framework, a couple of examples in
RxJava are shown with the use of operators:

Example # 1 Here, we are going to simply take a string message and print it.

Observable.just creates an Observable that emits n event instances, in this first
case only one, the string “Hi”.

1 Observable.just("Hi");

Code 3.1: Observable .just operator

Since Observable is an object, we can assign it, initialize it and instantiate it.
Notice how we specify the type of data that is going to be emitted when the
Observable is declared. Also, lets add another string to the operator.

1 Observable<String> hi = Observable.just("Hi", "there");

Code 3.2: Observable .just with assignment

Now, it is very important to put something to consume that emitted data,
and here we brought up the concept of Observer, Observer in the form of a
.subscribe method is the way to ‘hear’ that data and doing something about
it, otherwise is only going to be data flying around.

In this case we are going to print the strings emitted by the Observable using
the syntax of Lambda expressions (we use lambda because it allow us to write
in a very concise way to construct an expression).

1 Observable<String> hi = Observable.just("Hi", "there");
2 hi.subscribe(s -> System.out.println(s));

Code 3.3: Observable .just.subscribe with assignment

12



3.1. Reactive programming á la ReactiveX

The variable s is going to go through the emitted values, one by one, and print
them. Then the output will be the following.

1 Hi
2 there

Code 3.4: Observable result

Example # 2 Furthermore, these Observables can change the data (depending
on the needs) before outputting the result by appending and linking operators
in the declaration. For instance, we are going to read a sequence of integers
from a list, filter them, sort them, and print them. All of that in one single
declaration.

First, lets read the sequence.
1 List<Integer> integers = Arrays.asList(54,12,10,78,69,33,66,99,84);

Code 3.5: Integer sequence as list

But, we can’t use .just as Example # 1 because it will print it as an array, and
we need each integer in order to manipulate them. So we use .fromIterable
with the objective of taking each number individually.

1 Observable<Integer> intNum = Observable.fromIterable(integers);

Code 3.6: Taking each integer individually

Secondly, we will filter the even numbers using .filter. Again, using the
expressive power of a Lambda expression.

1 intNum.filter(i -> i % 2 == 0);

Code 3.7: Even number filtering

After that, lets sort it in ascending order adding a .sorted to the chain.
1 intNum.sorted();

Code 3.8: Number sorting

Finally, we subscribe an Observer that prints the resulted set of values
(employing a Lambda expression) with the conditions we stated on each step,
using .subscribe we attach the Observable to the Observer.

1 intNum.subscribe(i -> System.out.println(i));

Code 3.9: Subscribing to an Observer to print the result

Then, the output will be the following.
1 10
2 12
3 54
4 66
5 78
6 84

Code 3.10: Output

13



3. State of the art: Reactive programming

We also can write all of the previous steps in one single declaration thanks to the
chaining nature of the Observable Operators. Removing even the assignation
to the Observable.

1 List<Integer> integers = Arrays.asList(54,12,10,78,69,33,66,99,84);
2 Observable.fromIterable(integers)
3 .filter(i -> i % 2 == 0)
4 .sorted()
5 .subscribe(i -> System.out.println(i));

Code 3.11: One single declaration

notice the
operator
chaining

Which produces the exact same result.

Project Reactor

Written in Kotlin, Project Reactor1 is part of the Spring Framework compatible
with reactive programming from version 5. Reactor is a reactive quartering
library to create non-blocking applications in the JVM based on the Reactive
Current Specification. Project Reactor is very similar to ReactiveX, uses Flux
instead of Observable but it does the same thing, includes operators and also
writes in a declarative way.

Apache Flink

Apache Flink2 follows a paradigm that covers the process of data flow as
the unifying model for real time. Data analysis, continuous flows, and batch
processing both are incorporated in the programming model as in the execution
engine.
The combination of durable message queues allows: arbitrary reproduction of
data streams (such as Apache Kafka or Amazon Kinesis), stream processing
programs do not distinguish between processing the latest events in real time,
continually adding data in large files, or processing terabytes of historical
information. Instead, these different types of calculations simply begin
processing at different points in the lasting flow, and maintain different state
forms during the calculation (Carbone, Katsifodimos, Ewen, Markl, Haridi, and
Tzoumas, 2015).

Akka Actors

The Actor Model 3 provides a higher level of abstraction for writing concurrent
and distributed systems. It reduces the developer’s obstacle of dealing with
data blocking and thread management, which facilitates the correct writing of
parallel and concurrent systems. Akka Actors was defined in the 1973 paper by
Carl Hewitt (Hewitt, Bishop, and Steiger, 1973), but was popularized by the
Erlang language. One essential use case was at Ericsson with great success on
building highly concurrent and reliable telecommunications systems.

1Project Reactor: https:// projectreactor.io/
2Apache Flink: https:// flink.apache.org/
3Akka: https:// doc.akka.io/ docs/ akka/ current/ guide/ index.html
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Eclipse Vert.x

Vert.x4 is very flexible, whether it is simple network utilities, sophisticated and
modern web applications, HTTP / REST micro-services, large-volume event
processing or a back-end full-message message application, Vert.x is devised for
micro-services due to its low weight and processor demand.

In brief, many of these implementations are not distributed explicitly, they
do not have formal semantics and even in our opinion, many of them have a
complex syntax that was derived from immediate needs, as a result ReactJS
has a complex syntax but it is practical for front-end developers. A lot of these
frameworks have been developed and supported by the community, therefore
many do not have a formal defined semantics and syntax.

3.2 Functional reactive programming

FRP (Functional Reactive Programming) is a framework to program systems
that deal with events and continuous time, the core concepts are Behaviors
and Events. A Behavior is a time-varying value like an On and Off switch,
the weather, a mouse click, etc. An Event is a discrete value in time, in the
example of the mouse click, a mouse click can happen but you do not know the
current value of the click.

Several Functional Reactive Programming (FRP) languages have been
investigated. Frappé (Courtney, 2001) for example, is a Java library that
instantiates Java Beans by connecting them and implementing combinator
classes to control the propagation of events. However, Frappé has limitations
such as: 1) it assumes that event processing is single-threaded and synchronous
waiting for each event to be propagated through the FRP combiner graph
before the next event is handled. ReactiveXD by its reactive-distributed nature,
will handle events such as streams in a multi-threading model, 2) is unable to
detect predicates of instantaneous events; that is to say those that happen in
a specific time; in ReactiveXD, thanks to the LTL (Linear Temporal Logic)
formulas, we could have multiple events on several timelines (seen on a model
of vector clocks) and 3) it does not support time generalized transformations,
while ReactiveXD will allow you to make changes to the temporary event flows
through similar operators to Reactive Xtensions.

Fran (Functional Reactive Animation) (Elliott and Hudak, 1997), brings up an
approach to animation modeling through the notions of behaviors and events at
the moment of developing animation programs by its simplicity, when it comes
from modification to execution, it expresses semantics in temporal terms.

Procera (Voellmy, Kim, and Feamster, 2012), is a controller architecture and
high-level network control language providing a declarative, expressive, and
compositional framework that allows operators to manage high-level complex
dynamic control policies.

Flapjax (Meyerovich, Guha, Baskin, Cooper, Greenberg, Bromfield, and
Krishnamurthi, 2009), is a language that implements JavaScript with the

4Vert.x: https:// vertx.io/
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principles of FRP making use of the reactive paradigm that solves problems
related to the amount of callbacks done in an interactive application.

Frob (Functional Robotics) (Peterson, Hudak, and Elliott, 1999), is a domain-
specic language embedded in Haskell for robot control, as well it uses a value of
type Behavior which is a continuous quantities that vary over time seen as, for
example, Behavior velocity that represents a time-varying robot velocity. And
a value of type Event, a discrete domain of events that occur in a specific time
in a particular robot scenario Event moveToTheLeft represents a complex
condition that happens in a timeline.

We can see that the lack of support for distribution is also transferred to use
cases. For example, RMPL (Reactive Model-Based Programming Language)
(Williams et al., 2001) gives a first look at the design level regarding the existing
challenge of creating highly competent systems in real-life environments such
as robotic networks the coordination of multiple vehicles. However, RMPL
is mostly focused on using shorter path algorithms for autonomous rovers,
therefore, it does not make use of distribution in a set of rovers at a general
level, but it rather only administrate each rover individually. ReactiveXD
brings embedded features to attack this problem in environments with multiple
devices interacting with each other. Although, this example is a candidate to
have explicit distributed semantics at the implementation level, the reactive
framework is used at a local level and distribution is done using traditional
imperative means.

In contrast, these languages, frameworks and libraries are not explicitly
distributed and they also have specific application surface domains like Elm
(Czaplicki and Chong, 2013) for graphic interfaces.

3.3 Distributed reactive

Mars Exploration’s article discusses the implementation of a reactive
programming language based upon models for mission coordination on Mars
that involve the cooperation of vehicles, through the consideration of a team of
rovers that explore different sites of interest on unknown lands and, consequently,
the constant generation of data of different sizes that must be communicated
between rovers and transmitted to control stations (Williams et al., 2001). This
is especially important since, the InSight lander reached Mars on Nov. 26, 2018,
at 11:52:59 a.m. PT (2:52:59 p.m. ET).

The document (Kambona, Boix, and De Meuter, 2013), which shows practices
to build collaborative web applications, begins with a view of the common
problems faced by developers when creating collaborative web applications (such
as the presence of Callback Hell), and brings several solutions that have been
proposed throughout the years, such as the use of promises in environments
that make use of JavaScript, thus providing a mechanism capable of assigning
an advantage in the use of synchronous mechanisms.
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CHAPTER 4

ReactiveXD: a language for
distributed real-time reactive

programming

This section describes the Extended Backus-Naur Form (EBNF) grammar
for ReactiveXD, a grammar with support for distribution and concurrency
implementing Reactive Extensions concept Observables and using the principles
of ReactiveX.

For this ReactiveXD’s EBNF (see Figure 4.1) , the words that are in a bold
font are reserved by the language. The words that are in between a (‘) and a (’)
are the tokens needed to delimit the reachability of a determined terminal rule
(the provided scope for a declaration). The words in a italic font and between
(〈) and a (〉) represent a non terminal. Finally the terminals that have a (//) at
the start of the lexical element simply is a way to express that it uses super
grammars that already have production rules defined to extend the lexical tools
in the language; they can bring any alphanumeric word (e.g. Ids with concrete
syntax constraints) or external resources that has its own language definition
(e.g. Aspect oriented programming).

The language is defined as follows:
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〈Decl〉 ::= 〈ObsrvDecl〉 | 〈JVarD〉 | 〈MSig〉

〈ObsrvDecl〉 ::= Observable ‘<’〈EventType〉‘>’ OId ‘=’ 〈ObsrvAssig〉

〈ObsrvAssig〉 ::= ‘new’ Observable ‘(’ 〈Ep〉 ‘)’ ‘;’

〈EventType〉 ::= Event

〈Ep〉 ::= call ‘(’〈ESig〉‘)’ | EId({〈Par〉})
| 〈Location〉
| 〈Ep〉||〈Ep〉 | 〈Ep〉&&〈Ep〉 | !〈Ep〉

〈Location〉 ::= localhost | “Ip:Port”

〈MSig, ESig〉 ::= // method and field signatures (AspectJ-style)

〈Par〉 ::= // argument or parameter expression

Figure 4.1: EBNF base grammar of ReactiveXD

ReactiveXD uses the concept of Observables similar to ReactiveX to interact
with the nodes of a system by sending data. Decl defines the posible declarations
within the code file, ObsrvDecl focuses explicitly on the instantiation and
initialization of the Observable as we can see in ObsrvAssig, the EventType
focuses in the type of data that is going to be treated, in this case events; but also
grants the possibility of extending the language through the implementation of
other event processing schemes. Ep is the event predicate, that calls a function
in order to operate over it. The Location is a non-terminal that describes the
location hosting the object that monitors events. The Observers are defined
implicitly as the language allows the communication between devices.

In addition to understand the grammar graphically exposed above, a syntax
diagram is provided as follows that points out the lexical path that an
ReactiveXD’s Observable will take when declared:

〈Decl〉 ::=-- 〈ObsrvDecl〉 〈JVarD〉 〈MSig〉 -�

〈ObsrvDecl〉 ::=-- Observable ‘<’ Event ‘>’ OId ‘=’ new -
- Observable ‘(’ call ‘(’ * -

- ClassName.methodName ‘(’
� 〈Par〉 �� � ‘)’ ‘)’ -

- �� && !localhost �� ‘)’ -�

Figure 4.2: Syntax grammar of an Observable

The previous syntax diagram provides the overall route that the declaration
of an Observable will take when declared, it starts by using the object syntax
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similar to Java with the given type Event, after that, it states a class and a
method related to that class with zero or more arguments, and last but not least
it provides an optional field which is !localhost. One key note in this syntax
diagram is that !localhost appears as an optional terminal but that is merely to
present it as a boolean value that can be true or false depending on the context,
on future development of the language it could be an optional parameter.

To explore the current potential state of ReactiveXD, a couple of use cases are
proposed to understand the logic and concepts of the language specifically the
design of it, that is the model which is later compiled to support distribution
and the implication of events occurring between n nodes.

4.1 Collaborative figure example

In the process of building a ReactiveX-like language we gotta model the core
concept of it, the Observable. This Observable as it was seen in Chapter 3, is
going to emit values when an event happens at a time a specific type of data
appears. In the State of the Art we showed up types of data like Integers and
Strings, here we declare a new type called Event. This “Event Observable” is
going to match a expression (called event predicate) that uses aspect oriented
language’s syntax similar to AspectJ. We also add the word “new” to have a
representation of the Observable as an object rather than a single type of data.

For instance, let’s think about a theoretical collaborative application that draws
and moves figures in a canvas. The Observable that represents this scenario
with ReactiveXD’s grammar could be like.

1 Observable<Event> figEl = new Observable (call(* FigureElement.getXY())
2 && !localhost);

Code 4.1: Collaborative figure example

So, if one of the nodes that participates in the application moves a figure then
an event predicate will play its role by emitting an event each time a figure’s
position is changed and that result should be noticeable in all the nodes that
are executing the distributed application. Then, it will match all the method
calls from getXY() to objects of type FigureElement on any host. Also, the
localization of events is restricted (!localhost) that means the Observable will
not emit events happening in the host were the Observable is deployed.

4.2 Chat example

Taking this into a more day-to-day scenario, an implementation of the language
can be seen for example in a chat architecture. The model is pretty simple.

We have two nodes A and B.

A B

Figure 4.3: Nodes instances
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4. ReactiveXD: a language for distributed real-time reactive programming

Each one has the chat application running inside and establishes a
communication session with each other.

A B

Figure 4.4: Node communication

The conversation operates by sending and receiving messages asynchronously
(not necessarily at a constant phase or at the same time).

A B

B

B

Figure 4.5: Node messaging transmission

In the process of the exchanging messages, node A will have an Observable
capturing the messages sent by B and similarly, B will have an Observable
capturing the messages sent by A.

1 Observable<Event> friendA = new Observable (call(* GroupChat.main())
2 && !localhost);
3
4 Observable<Event> friendB = new Observable (call(* GroupChat.main())
5 && !localhost);

Code 4.2: Chat observables

When the Observable instantiating operation starts; the compiler realizes that a
distributed instance session has begun. And every time a client sends a message
to other, an event will occur in the application’s samples.
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A B

k

k

Figure 4.6: Node events

After the emission of events (messages sent between the nodes A and B) in the
application, an aspect will be created displaying the point of interest where the
application distributed messages between the clients.

A BÒ

Figure 4.7: Node aspect

In there, it recognizes a sequence of events that happened in a chat session under
a distributed context as a result of exposing the execution and compilation of
the program.

4.3 Time management architecture

Causality

The goal of finding causality relations in the events consists on defining predicates
on complex time dependencies. We ensure that the system has a correlation
between a stream of events where one of them affects the nearest to it.
Therefore, we argue that such systems could be enriched with real-time detection
of intricate patterns of distributed events with sophisticated time dependencies.
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4. ReactiveXD: a language for distributed real-time reactive programming

To give an idea the syntax could be defined like.
1 Observable<Event> causFigEl = new Observable (call(* FigureElement.getXY())
2 && !localhost && !causal);

Code 4.3: Causal figure example

Where, the causal relation defines the occurrence of an event in a synchronous
type of schema. In other words, it is stated to be concurrent when the hole
expression is evaluated by the language.

LTL formulas

The validity of LTL (Linear-time Temporal Logic) formulas are defined over
paths and an LTS (Linear Temporal Statement) satisfies an LTL formula if and
only if it satisfies the formula on all paths. To show that an LTS violates a
property, it is sufficient to exhibit a counter-example, that is, a path for which
the property is not true. So with that in mind, we can build up an entire data
system where an event predicate expression depends on satisfying or not the
path of a given property. Defining small approaches to a discrete-time stateful
model that investigates the implementation on a reactive program (Jeffrey,
2012).

Case in point.
1 Observable<Event> ltlFigEl = new Observable (always(figEl next(causFigEl)));

Code 4.4: LTL figure example

The Observable will emit an event each time the property is violated. This
property indicates for ltlFigEl it should be always true that: “immediately
after the Observable figEl emits an event the Observable causFigEl emits an
event”. These semantics in the language help us, in some sort of way, to model
an ‘order’ on the events and to express desired properties to occur in the system
by coding it in a predicate using linear temporal logic (LTL) expressions.
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CHAPTER 5

Implementation

With the DSL (Domain Specific Language), we are building an abstraction like
taking LEGO bricks in order to make something. We use a parser generator to
read the grammar then we create an AST (Abstract Syntax Tree). After that,
we write the code generator, passing this AST into a code.

We then validate the model, since the end-user should have a robust language
with instant feedback. In sense, the structure that is used are graphs (e.g. a
method call in Java is a pointing declaration of a method). We should use Type
Checking to make a more sophisticated language. And we use Type Inference
Engine to explain to business people what is this language.

For implementation it its used Xtext, an open source project that provides a set
of APIs and DSLs to develop the language for support to eclipse, intellij, and web
browsers. It uses Google Guice for injecting components. And one important
asset is that the compiler’s components of the language are independent of
Eclipse or OSGi so it can be used in any Java environment.

Figure 5.1: Architecture of ReactiveXD

Xtext will generate our Java Bean classes (EMF classes) which are initially empty
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but we implement the source code in a later time. Xtend is a programming
language that translates to Java source code directly with a lot of enhancements.
JGroups is the software that allow us to communicate node instances. JBase
presents syntax to make the language close to Java coding. AspectJ will be the
language that is going to be generated. And Git is our version control system
that uses GitHub as external repository.

5.1 Decentralized arquitectures

We start by introducing a model of distributed systems as groundwork for
defining the objective as there is no central server, when we do distribution,
there is no need for a server to communicate the distribution. Therefore,
between the devices there is events communication. The nodes, are producers
and consumers of events, and there is a near broadcast, also listening. And
they build what we propose in reactive programming and Mesh networking.

a

b

c

B

B

Figure 5.2: Decentralized node messaging

So as in the previous figure Figure 5.2, if the node a wants to communicate with
the node b it can do it through c, which is also a node with the same nature
as a and b, exposing the unprofitable use of a central server that redirects
the messages. This helps on distributed infrastructures since the nodes has
low impact on the overall performance of the system, especially if the set of
nodes is big and the entire node grouping system is complex with any number
of connections. All of this is accomplished thanks to JGroups, a technology
that focuses on node messaging with support for distributed applications and
language implementations.

5.2 Compiler

The compiler works with Xtext to implement a compiler for the language. JBase
it is used to generate pure java expressions and statements using the Xtext
framework and the compiler generates AspectJ and Java code to instrument
monitoring in distributed applications.

The development workflow of programming in Xtext encompasses on:
translating, generating, validating, customizing, and implementing a Domain-
Specific Language (DSL) under a continuous integration configuration (Bettini,
2016).
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Translation

So in the case of ReactiveXD, after we have created the grammar as an Extended
Backus-Naur Form (EBNF), the next step is to translate it into the Xtext
semantics. In here, a collection of syntax rules are specified and may increase
the number due to the Xtext way to define a grammar. The following piece
code grammar defined on Xtext shows the ReactiveXD design, OrEvent (line
23) will iterate over the different kind of logical operators supported by the
language as: and (&&), or (||), and not (!).

1 grammar co.edu.escuelaing.reactivexd.ReactiveXD with jbase.Jbase
2
3 import "http://www.eclipse.org/xtext/xbase/Xbase"
4 import "http://www.eclipse.org/xtext/common/JavaVMTypes" as jvmTypes
5
6 generate reactiveXD "http://www.escuelaing.edu.co/reactivexd/ReactiveXD"
7
8 Model:
9 (’package’ name = QualifiedName ->’;’?)?

10 importSection = XImportSection?
11 typeDeclaration += Decl*
12 ;
13
14 Decl:
15 ObsrvDecl | JVarD | MSig
16 ;
17
18 ObsrvDecl:
19 ’Observable’ ’<’ type=EventType ’>’ name=ID ’=’ assignment=ObsrvAssig
20 ;
21
22 ObsrvAssig:
23 {ObsrvAssig} ’new’ ’Observable’ ’(’ props+=OrEvent* ’)’ ’;’
24 ;
25
26 enum EventType:
27 Event
28 ;
29
30 // more rules are defined here

Code 5.1: ReactiveXD’s piece of Xtext grammar file

Generation

Xtext configures its artifacts by generating stub classes in Java and Xtend.
Xtend is a less “syntactic noisy” Java language that uses a Java-like syntax,
including Java generics and Java annotations. Xtend has a lot of characteristics,
for instance, it provides multi-line expressions to address all the code that is
going to be generated on a chosen language (e.g. AspectJ), we define the limits
with triple single quotes (’ ’ ’) and specify variable expressions using guillemets
(«»). Consider then the following code written in Xtend.

1 package co.edu.escuelaing.ReactiveXD.generator
2
3 import org.eclipse.xtext.generator.IFileSystemAccess
4 import org.eclipse.xtext.generator.IGenerator
5 import co.edu.escuelaing.ReactiveXD.ReactiveXD.ObsrvDecl
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6 import co.edu.escuelaing.ReactiveXD.ReactiveXD.EventClass
7 import co.edu.escuelaing.ReactiveXD.jvmmodel.ReactiveXDJvmModelInferrer
8 import java.util.Set
9 import java.util.TreeSet

10 import java.util.HashMap
11
12 .
13 .
14 .
15
16 class ReactiveXDGenerator implements IGenerator {
17
18 .
19 .
20 .
21
22 def CharSequence generateObservables(EventClass modelo, String packageName

, Set<String> libraries) {
23
24 aspectClass = modelo.name
25 var packageDefinition = ’’’package «packageName»;
26
27 ’’’
28 var observables = modelo.declarations.filter(Observables)
29 var Set<String> importedLibraries = new TreeSet()
30 importedLibraries+=libraries
31 var pointcuts = new TreeSet<String>
32
33 var after = new HashMap<String, String>()
34
35 if(modelo.declarations.containsObservable)
36 importedLibraries+="co.edu.escuelaing.reactivexd.groupsimpl.*"
37 importedLibraries+="co.edu.escuelaing.reactivexd.handlercontrol.*"
38 importedLibraries+="co.edu.escuelaing.reactivexd.core.ObsrvDecl"
39 importedLibraries+="co.edu.escuelaing.reactivexd.core.NamedEvent"
40 importedLibraries+="co.edu.escuelaing.reactivexd.core.Event"
41 importedLibraries+="java.util.Map"
42 importedLibraries+="java.util.HashMap"
43
44 var aspect = ’’’
45 public aspect «aspectClass.toFirstUpper»{
46
47 «FOR event:modelo.declarations»
48 «IF event instanceof ObsrvDecl
49 pointcut «event.name.toFirstLower»():
50 «createPointCut(event as ObsrvDecl, pointcuts)»;
51 after(): «event.name.toFirstLower»(){
52 «IF !observables.isEmpty»
53 Event event = new NamedEvent("«event.name»");
54 «ReactiveXDJvmModelInferrer.handlerClassName» distribuidor = «

ReactiveXDJvmModelInferrer.handlerClassName».getInstance();
55 event.setLocalization(distribuidor.getAsyncAddress());
56 Map map = new HashMap<String, Object>();
57 distribuidor.multicast(event, map);
58 System.out.println("[Aspectj] After: Recognized an event in

ObservableConstructor");
59 «ENDIF»
60 }
61 «ENDIF»
62 «ENDFOR»
63
64 «FOR pointcut:pointcuts»
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65 «pointcut»;
66 «ENDFOR»
67 }
68 ’’’
69 var imports = ’’’
70 «FOR tipo:importedLibraries»
71 import «tipo»;
72 «ENDFOR»
73
74 ’’’
75 return packageDefinition+imports+aspect
76
77 }
78
79 .
80 .
81 .
82
83 }

Code 5.2: ReactiveXD’s piece of Xtend code generator

The AspectJ code generated focuses on naming aspects (line 45) and pointcuts
(line 49) depending on the executed sample (in this document a group chat),
defines the necessary join point (line 50) to be called on an instance of the
execution of an event, of course it would not be complete if an advice is allocated,
this advice (lines 51-58) works as an event distributor after the execution of
the called method from a class finished. It also contains, the package definition
(lines 25-27) that gives the path of the file and a set of imports (line 30).

Validation

The correctness of a program rely on the communication of errors or warnings
in the code this validation operates while the program is being coded and
provides feedback to the programmer, by default there is a validator with
MWE2 (Modeling Workflow Engine 2), one simple validation is the uniqueness
of the variables names (line 12) as you can see in the following piece of code.

1 .
2 .
3 .
4 language = StandardLanguage {
5 name = "co.edu.escuelaing.reactivexd.ReactiveXD"
6 fileExtensions = "rexd"
7
8 serializer = {
9 generateStub = true

10 }
11 validator = {
12 composedCheck = "org.eclipse.xtext.validation.NamesAreUniqueValidator"
13 // Generates checks for @Deprecated grammar annotations, an

IssueProvider and a corresponding PropertyPage
14 generateDeprecationValidation = true
15 }
16 junitSupport = {
17 junitVersion = "5"
18 }
19 }
20 .
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21 .
22 .

Code 5.3: ReactiveXD’s piece of MWE code checker

Customization

The customization of the language can be seen in many ways, writing less
syntactic rules in the Xtext grammar, refactoring code in Xtend code generation,
extending validations in the MWE2 file, including loggers, importing google guice
injectors, and so on. Though, for this academic exercise we keep it as simple as
it is; with default validators and lack of use of external libraries/components.

Implementation

Ergo, the overall language should implement a code like this:
1 Observable<Event> obs = new Observable (call(* Class.method(parameters))
2 && !localhost);

Code 5.4: Distributed Observable code

Where it defines the type of data Observable to distribute the data, a call
which is aspect-like typing and a localhost to determine the set of data received
under a set of nodes excluding the one where the Observable is declared. After
that it should produce an AspectJ file containing a pointcut with the name of
the executed class and an aspect with an after(): tag that shows the execution
of the program and the recognition of the interested event pattern. That is,
the state where the language is right now, as shown it has a communication
model through a message-driven architecture illustrating the data flow in the
form of events simulating the stream event theory that reactive languages have
implemented in the past.

5.3 Real-time infrastructure

The real-time infrastructure is based upon the consumer and producer model
that defines the behaviour of the language and suits to the functionality of
it. Especially that is important an infrastructure like this on web technologies
that are leading the way to improve user experience. A handful of common
use cases contains: real-time stats the technology that was first used to show
live information highly beneficial to sports, betting and analytics, notifications
when something interesting to a user is shown it then becomes available, chat
the technology that helps in delivery instant interaction between people and
multiplayer games giving the ability to instantly deliver player moves, game
state changes, and scoring updates.
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CHAPTER 6

Evaluation

In the use cases shown before, the basic Collaborative figure example and the
Chat example, we were able to analyze the dynamic behavior of a distributed
reactive language that checks an event predicate expression and then parses it
into a distributed environment with an aspect oriented expression that evaluates
the execution of the data.

6.1 Chat example

The GroupChat example consists on a service that allows one node (terminal
console/computer/server) sending messages to another and then generates an
aspect for the session.

To run the example, firstly we go to the repository.
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Figure 6.1: Project’s GitHub repository web site

Now, we will download it by either a ZIP file or by cloning it with Git with the
command:

1 $ git clone https://github.com/DanBeltF/reactivexd.git

Code 6.1: Cloning the repo

And we place it on a directory, here we use the directory Downloads/.
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Figure 6.2: Cloning the remote repository in our machine

After that, we access the folders named reactivexd/ and co.edu.escuelaing.reactivexd.parent-
master/, and we build the language with the command:

1 $ mvn clean install -DskipTests=true

Code 6.2: Installing dependencies
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Figure 6.3: Installation of the external project dependencies needed to use the
language

The next stage consists on compiling the example, for that, we go back and
then enter in the directory test/GroupChat/ which contains an example that
simulates a temporal chat session between two or more nodes.
For the compilation we use the command:

1 $ mvn clean compile

Code 6.3: Compilation code
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Figure 6.4: Execution of a build lifecycle goal to compile the project’s code
with Maven

Consequently, execute the command to run the chat application:

1 $ mvn exec:java

Code 6.4: Execution of Java sources
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Figure 6.5: Running the Java program within the same VM as Maven

Add a name for temporarily identify your node in the session.

Figure 6.6: Assigning a name to first terminal’s instance

In the same way, we open another Terminal instance (another tab in this case)
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and write the same command, assigning as well a temporarily name to identify
this node.

Figure 6.7: Running the Java program as Maven in other terminal

Subsequently, start to exchange messages between the node’s instances, checking
how they appear on each terminal.
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Figure 6.8: Message #1, from: marco to: gabe

Figure 6.9: Message #2, from: gabe to: marco
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Figure 6.10: Message #3, from: marco to: gabe

Figure 6.11: Message #4, from: gabe to: marco

Moreover, type end on a terminal to finish the chat session.
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Figure 6.12: Message #5, from: marco to: gabe

As you may have noticed, after the end word is typed and entered, the message
“Conversation finished!” appears but also another message appears.

What this message means, is that an AspectJ file has been created and of course
an aspect representing the group chat session that just happened, this aspect is
located on the following path.
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Figure 6.13: Path for the generated AspectJ file

By opening it with a text editor like Vim, we can take a look at its contents.

Figure 6.14: AspectJ generated code for chat

As previously explained, an aspect and a pointcut are created with the name of
the class with only the first letter to uppercase. The aspect works as a ‘wrapper’
for the entire code and the pointcut is simply a point of interest where we want
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6. Evaluation

the code react before or after the execution of a specific method. The code
inside the after(): is concretely named an advice, that is, what the code is
going to do “after” the pointcut occurs.

So, we were presented with simulation of a chat client for two nodes that
exchanges messages in a temporal session, and that exchanging is translated
into a generation and communication of events happening from one host to
another on the same context where they could communicate and react to each
other.
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CHAPTER 7

Conclusion

In this document, it was shown the general implementation for ReactiveXD, a
DSL built for distribution and reactiveness that focus on event transmission and
helps the potential users of the language to be more productive in their real-time
architecture and to have an immediate feedback on possible errors in a program
or, in this case, a distributed application. Abstractions as Observables can drive
the DSL characteristics such as distribution, concurrency, or data liveliness
in order to propose sensible event constructs in a given program context. In
this paper, we focused on a distributed asynchronous reactive language to test
concurrency adopting some form of type interface. We presented a few general
ideas from the reactive paradigm for implementing efficient systems along with
focusing on data change over time. In this point of view, the system is able to
build as many parts of the program as possible, keeping a good user experience.
Observable messages were placed on important parts of the example programs,
avoiding delays errors that can confuse the user. It was given a chat case study
that: applies the presented patterns to implement a statically typed DSL and its
origin from a simple expression reactive reduced Java-like language with AOP
features. It was used Xtext as the language workbench for implementing the
compiler and the IDE support for ReactiveXD and Xtend as a DSL extension
for implementing type systems using a syntax that mimics formal systems. The
patterns shown in the paper can be reused also for implementing languages
with other language frameworks.

As future work, it is proposed to improve the language by including Observers
in a explicit way (defined as a rule in the grammar and coded in the language
semantics) so the overall compilation will be much more complete, sturdy and
loyal to ReactiveX’s principles. With the ambition to bring a new syntactic
improvement to the language, it is also proposed to support Lambda Expressions
in the event predicates. We will use Lambda Expressions because it increases
the expressive power of Java by using functional interfaces which have only
one abstract method that offers a simple and easily readable syntax reducing
the number of lines and boilerplate code presented in a code artifact, also in
compiling time will not create a .class file. Inevitably, we focus our language
to be minimum but the main implementation is not altered, so the Lambda
Expression is some sort of syntactic sugar to the language definition. It is also
proposed to investigate better practices to design a DSL with code generation,
robust validation and improved examples that show the full capability of the
final software.
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