Publication: Hybrid Deep Learning Gaussian Process for Diabetic Retinopathy Diagnosis and Uncertainty Quantification
Authors
Abstract (English)
Extent
Collections
Collections
References
Abrámoff, M.D., et al.: Automated analysis of retinal images for detection of referable diabetic retinopathy. JAMA Ophthalmol. 131(3), 351–357 (2013).
American Academy of Ophthalmology: International clinical diabetic retinopathy disease severity scale detailed table. International Council of Ophthalmology (2002)
Bradshaw, J., Matthews, A.G.d.G., Ghahramani, Z.: Adversarial examples, uncertainty, and transfer testing robustness in Gaussian process hybrid deep networks, eprint, pp. 1-33 (2017).
Decenciére, E., et al.: Feedback on a publicly distributed image database: the Messidor database. Image Anal. Stereol. 33(3), 231–234 (2014).
Diabetic Retinopathy Detection of Kaggle: Eyepacs challenge.
Ethem, A.: Introduction to Machine Learning, 3rd edn. The MIT Press, Cambridge (2014)
Gargeya, R., Leng, T.: Automated identification of diabetic retinopathy using deep learning. Ophthalmology 124(7), 962–969 (2017)
Gulshan, V., et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA J. Am. Med. Assoc. 316(22), 2402–2410 (2016)
Kaya, M., Bilge, H.: Deep metric learning: a survey. Symmetry 11, 1066 (2019).
Krause, J., et al.: Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy. Ophthalmology 125(8), 1264–1272 (2018).
Leibig, C., Allken, V., Ayhan, M.S., Berens, P., Wahl, S.: Leveraging uncertainty information from deep neural networks for disease detection. Sci. Rep. 7(1), 1–14 (2017)
Li, F., Liu, Z., Chen, H., Jiang, M., Zhang, X., Wu, Z.: Automatic detection of diabetic retinopathy in retinal fundus photographs based on deep learning algorithm. Transl. Vis. Sci. Technol. 8(6) (2019).
Lim, Z.W., Lee, M.L., Hsu, W., Wong, T.Y.: Building trust in deep learning system towards automated disease detection. In: The Thirty-First AAAI Conference on Innovative Applications of Artificial Intelligence, pp. 9516–9521 (2018)
Perdomo, O., Gonzalez, F.: A systematic review of deep learning methods applied to ocular images. Ciencia e Ingenieria Neogranadina 30(1), 9–26 (2019)
Raghu, M., Blumer, K., Sayres, R., Obermeyer, Z., Kleinberg, R., Mullainathan, S., Kleinberg, J.: Direct uncertainty prediction for medical second opinions. In: Proceedings of the 36th International Conference on Machine Learning, PMLR 97, Long Beach, California (2019)
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, December 2016, pp. 2818–2826 (2016).
Voets, M., Møllersen, K., Bongo, L.A.: Reproduction study using public data of: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. PLoS ONE 14(6), 1–11 (2019)
Wells, J.A., et al.: aflibercept, bevacizumab, or ranibizumab for diabetic macular edema two-year results from a comparative effectiveness randomized clinical trial. Ophthalmology 123(6), 1351–1359 (2016)
Wilkinson, C.P.P., et al.: Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 110(9), 1677–1682 (2003)
Wilson, A., Nickisch, H.: Kernel interpolation for scalable structured gaussian processes (KISS-GP). In: Proceedings of the 32nd International Conference on Machine Learning. JMLR: W&CP, Lille, France (2015)
Xin, Q., Elliot, M., Miikkulainen, R.: Quantifying point-prediction uncertainty in neural networks via residual estimation with an I/O Kernel. In: ICLR 2020, Addis Ababa, Ethiopia, pp. 1–17 (2019)
Yau, J.W., et al.: Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35(3), 556–564 (2012)
Zeng, X., Chen, H., Luo, Y., Ye, W.: Automated diabetic retinopathy detection based on binocular Siamese-like convolutional neural network. IEEE Access 7(c), 30744–30753 (2019)