Publication: Minería de imágenes en repositorios de proyectos de Software soportada por Machine Learning
Authors
Abstract (Spanish)
Abstract (English)
Director
Advisors/Directors
Extent
Collections
References
[1] About the Unified Modeling Language Specification Version 2.5 — omg.org. https://www.omg.org/spec/UML/2.5/.
[2] G. Antoniol et al. «Recovering traceability links between code and do- cumentation». En: IEEE Transactions on Software Engineering 28.10 (2002), págs. 970-983. doi: 10.1109/TSE.2002.1041053.
[3] Robert Audi. Cambridge Dictionary of Philosophy. Cambridge Univer- sity Press, 1999.
[4] Thazin Win Win Aung, Huan Huo y Yulei Sui. «A Literature Review of Automatic Traceability Links Recovery for Software Change Impact Analysis». En: Proceedings of the 28th International Conference on Program Comprehension. ICPC ’20. Seoul, Republic of Korea: Associa- tion for Computing Machinery, 2020, págs. 14-24. isbn: 9781450379588. doi: 10.1145/3387904.3389251. url: https://doi.org/10.1145/ 3387904.3389251.
[5] Olusola Tope Babalola. Automatic recognition and interpretation of finite state automata diagrams. Dic. de 2015. url: https://scholar. sun.ac.za/handle/10019.1/97814.
[6] Natalie Best, Jordan Ott y Erik Linstead. «Exploring the efficacy of transfer learning in mining image-based software artifacts». En: Jour- nal Of Big Data 7 (ago. de 2020). doi: 10.1186/s40537-020-00335-4.
[7] Gosala Bethany et al. «Automatic Classification of UML Class Dia- grams Using Deep Learning Technique: Convolutional Neural Network». En: Applied Sciences (mayo de 2021). doi: 10.3390/app11094267.
[8] Francois Chollet. Deep learning with python. en. New York, NY: Man- ning Publications, 2017. isbn: 9781617294433.
[9] Dataset of the Paper .Automatically Classifying UML Class Diagrams from Images using Deep Learning". Zenodo, ene. de 2021. doi: 10. 5281/zenodo.4252890. url: https://doi.org/10.5281/zenodo. 4252890.
[10] Jia Deng et al. «ImageNet: a Large-Scale Hierarchical Image Data- base». En: jun. de 2009, págs. 248-255. doi: 10.1109/CVPR.2009. 5206848.
[11] Arden Dertat. Applied Deep Learning - Part 4: Convolutional neu- ral networks. en. 2017. url: https://towardsdatascience.com/ applied-deep-learning-part-4-convolutional-neural-networks- 584bc134c1e2.
[12] Marta de Esteban Belzuz, Carlos Martin y Francisco Morillo. MPM Construyendo una arquitectura Segura y altamente Disponible en AWS. url: https://aws.amazon.com/es/blogs/aws-spanish/mpm- construyendo-una-arquitectura-segura-y-altamente-disponible- en-aws/.
[13] Georgios Gousios. «The GHTorrent dataset and tool suite». En: Procee- dings of the 10th Working Conference on Mining Software Repositories. MSR ’13. San Francisco, CA, USA: IEEE Press, 2013, págs. 233-236. isbn: 978-1-4673-2936-1. url: http://dl.acm.org/citation.cfm? id=2487085.2487132.
[14] Douglas M. Hawkins. «The problem of overfitting». En: ChemInform 35.19 (2004). doi: 10.1002/chin.200419274.
[15] Regina Hebig et al. «The quest for open source projects that use UML: mining GitHub». En: oct. de 2016, págs. 173-183. doi: 10.1145/ 2976767.2976778.
[16] Gao Huang et al. «Densely Connected Convolutional Networks». En: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Jul. de 2017, págs. 2261-2269. doi: 10.1109/CVPR.2017.243.
[17] B. Karasneh y Michel Chaudron. «Extracting UML models from ima- ges». En: mar. de 2013, págs. 169-178. doi: 10.1109/CSIT.2013. 6588776.
[18] B. Karasneh y Michel Chaudron. «Img2UML: A system for extracting UML models from images». En: sep. de 2013, págs. 134-137. doi: 10. 1109/SEAA.2013.45.
[19] B. Karasneh y Michel Chaudron. «Online Img2UML Repository: An Online Repository for UML Models». En: oct. de 2013.
[20] C. Lanczos. «An iteration method for the solution of the eigenvalue problem of linear differential and integral operators». En: Journal of research of the National Bureau of Standards 45.4 (1950), pág. 255. issn: 0091-0635. doi: 10.6028/jres.045.026. url: http://dx.doi. org/10.6028/jres.045.026.
[21] D. Lu y Q. Weng. «A survey of image classification methods and techniques for improving classification performance». En: Internatio- nal Journal of Remote Sensing 28.5 (2007), págs. 823-870. doi: 10. 1080/01431160600746456. eprint: https://doi.org/10.1080/ 01431160600746456. url: https://doi.org/10.1080/01431160600746456.
[22] Ramírez Luna et al. «Modelo para Almacenar y Recuperar Métri- cas de Software». Español. En: Conciencia Tecnológica (2010). issn: 1405-5597. url: https://www.redalyc.org/articulo.oa?id= 94415753006.
[23] Emmanuel Maggiori et al. «Towards Recovering Architectural Infor- mation from Images of Architectural Diagrams». En: sep. de 2014.
[24] Kaushil Mangaroliya y Het Patel. «Classification of Reverse-Engineered Class Diagram and Forward-Engineered Class Diagram using Machine Learning». En: (nov. de 2020).
[25] Amitha Mathew, Amudha Arul y S. Sivakumari. «Deep Learning Tech- niques: An Overview». En: ene. de 2021, págs. 599-608. isbn: 978-981- 15-3382-2. doi: 10.1007/978-981-15-3383-9_54.
[26] Valentín Moreno et al. «Automatic Classification of Web Images as UML Static Diagrams Using Machine Learning Techniques». En: Ap- plied Sciences 10 (abr. de 2020), pág. 2406. doi: 10.3390/app10072406.
[27] Jordan Ott, Abigail Atchison y Erik Linstead. «Exploring the applica- bility of low-shot learning in mining software repositories». En: Journal Of Big Data 6 (mayo de 2019), pág. 35. doi: 10.1186/s40537-019- 0198-z.
[28] Mr Pankaj S. Parsania y Dr Paresh V. Virparia. «A comparative analy- sis of image interpolation algorithms». En: nternational journal of ad- vanced research in computer and communication engineering 5.1 (2016), págs. 29-34. issn: 2319-5940. doi: 10.17148/ijarcce.2016.5107. url: http://dx.doi.org/10.17148/ijarcce.2016.5107.
[29] Truong Ho-Quang et al. «Automatic Classification of UML Class Dia- grams from Images». En: dic. de 2014. doi: 10.1109/APSEC.2014.65.
[30] George Reese. Cloud application architectures: Building Applications and infrastructure in the cloud. O’Reilly, 2009.
[31] Romain Robbes. «Minería de repositorios de software para ayudar a los desarrolladores». En: Revista Bits de Ciencia 5 (2011), págs. 2-7. issn: 0718-8013. url: https://revistasdex.uchile.cl/index.php/ bits/issue/view/130.
[32] Gregorio Robles et al. «An Extensive Dataset of UML Models in GitHub». En: 2017 IEEE/ACM 14th International Conference on Mining Soft- ware Repositories (MSR). Abr. de 2017, págs. 519-522. doi: 10.1109/ MSR.2017.48.
[33] Sumit Saha. A comprehensive guide to Convolutional Neural Networks - the eli5 way. Nov. de 2022. url: https://towardsdatascience.com/a - comprehensive - guide - to - convolutional - neural - networks - the-eli5-way-3bd2b1164a53.
[34] Selenium: Definition, how it works and Why you need it. Jun. de 2022. url: https://www.browserstack.com/selenium.
[35] Sergei Shcherban et al. «Multiclass Classification of Four Types of UML Diagrams from Images Using Deep Learning». En: mayo de 2021. doi: 10.18293/SEKE2021-185.
[36] Crystal Song. Software architecture diagramming and patterns. Abr. de 2022. url: https://www.educative.io/blog/software-architecture- diagramming-and-patterns.
[37] Farhana Sultana, Abu Sufian y Paramartha Dutta. «Advancements in Image Classification using Convolutional Neural Network». En: 2018 Fourth International Conference on Research in Computational Intelli- gence and Communication Networks (ICRCICN). 2018, págs. 122-129. doi: 10.1109/ICRCICN.2018.8718718.
[38] Warnick Sean West Jeremy Ventura Dan. «A Theoretical Foundation for Inductive Transfer». En: Spring Research (2007).
[39] Rikiya Yamashita et al. «Convolutional neural networks: an overview and application in radiology». En: Insights into Imaging 9 (jun. de 2018). doi: 10.1007/s13244-018-0639-9.