Publication: Predicción del precio de la acción de Celsia utilizando Deep Learning: un Enfoque basado en múltiples fuentes de datos y NLP
Abstract (Spanish)
Abstract (English)
Director
Advisors/Directors
Extent
Collections
References
Aadhitya, S., Xie, J., Li, W., & Sun, Z. (2023). Advances in predictive models for stock markets using deep learning techniques. Journal of Financial Studies, 45(3), 123-139.
Adekunle, W., Bagudo, A. M., Odumosu, M., & Inuolaji, S. B. (2020). Predicting stock returns using crude oil prices: A firm level analysis of Nigeria's oil and gas sector. Resources Policy, 68, 101708. https://doi.org/10.1016/j.resourpol.2020.101708
Albahli, S., Nazir, T., Nawaz, M., & Irtaza, A. (2023). Impact of sentiment analysis on stock price prediction using machine learning. Expert Systems with Applications, 207, 118026. DOI: 10.1016/j.eswa.2023.120903
Atsalakis, G. S., & Valavanis, K. P. (2009). Forecasting stock market short-term trends using a neuro-fuzzy based methodology. Expert Systems with Applications, 36(3), 10696-10707.
Ballings, M., Van den Poel, D., Hespeels, N., & Gryp, R. (2015). Evaluating multiple classifiers for stock price direction prediction. Expert Systems with Applications, 42(20), 7046-7056. DOI: 10.1016/j.eswa.2015.05.013