Publication: Pronóstico de ventas a través de una aplicación web aplicando machine learning y variables exógenas
Files
Abstract (Spanish)
Abstract (English)
Director
Advisors/Directors
Extent
Collections
References
X. Yu, Z. Qi e Y. Zhao, «Support vector regression for newspaper/magazine sales forecasting,» Procedia Computer Science, vol. 17, págs. 1055-1062, 2013.
S. Hanifi, X. Liu, Z. Lin y S. Lotfian, «A critical review of wind power forecasting methods—past, present and future,» Energies, vol. 13, n.o 15, pág. 3764, 2020.
D. Khazanchi y S. G. Sutton, «Assurance services for business-to-business electronic commerce: a framework and implications,» Journal of the Association for Information Systems, vol. 1, n.o 1, pág. 1, 2000.
Z. Qi, Y. Tian e Y. Shi, «Robust twin support vector machine for pattern classification,» Pattern recognition, vol. 46, n.o 1, págs. 305-316, 2013.
Z. Qi, Y. Tian, Y. Shi y X. Yu, «Cost-sensitive support vector machine for semisupervised learning,» Procedia Computer Science, vol. 18, págs. 1684-1689, 2013.
Y. Qi, C. Li, H. Deng, M. Cai, Y. Qi e Y. Deng, «A deep neural framework for sales forecasting in e-commerce,» en Proceedings of the 28th ACM international conference on information and knowledge management, 2019, págs. 299-308.
Z. Li, X. Zhong y Z. Cui, «Evaluating forecasting algorithm of realistic datasets based on machine learning,» en Proceedings of the 2nd International Conference on Innovation in Artificial Intelligence, 2018, págs. 72-76.
M. Schnegg y K. Möller, «Strategies for data analytics projects in business performance forecasting: a field study,» Journal of Management Control, vol. 33, n.o 2, págs. 241-271, 2022.
D. A. A. Shaikh, M. A. Kumar, D. A. A. Syed y M. Z. Shaikh, «A two-decade literature review on challenges faced by SMEs in technology adoption,» Academy of Marketing Studies Journal, vol. 25, n.o 3, 2021.
A. Perdana, H. H. Lee, S. Koh y D. Arisandi, «Data analytics in small and mid-size enterprises: Enablers and inhibitors for business value and firm performance,» International Journal of Accounting Information Systems, vol. 44, pág. 100 547, 2022.
A. Perdana, H. H. Lee, D. Arisandi y S. Koh, «Accelerating data analytics adoption in small and mid-size enterprises: A Singapore context,» Technology in Society, vol. 69, pág. 101 966, 2022.
S. Lodemann, S. Lechtenberg, K. Wesendrup, B. Hellingrath, K. Hoberg y W. Kersten, «Supply Chain Analytics: Investigating Literature-Practice Perspectives and Research Opportunities,» Logistics Research, vol. 15, n.o 1, 2022.
R. Simon y M. T. Suarez, «Examining the Behavioral Intention of Philippine MSMEs Toward Business Intelligence Adoption.,» Journal of Business & Management, vol. 28, n.o 1, 2022.
X. Fu y H. Asorey, «Data-driven product innovation,» en Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015, págs. 2311-2312.
S. Pandian. «Time Series Analysis and Forecasting | Data-Driven Insights.» Obtenido de Analytics Vidhya. (oct. de 2021).
B. Lim y S. Zohren, «Time-series forecasting with deep learning: a survey,» Philosophical Transactions of the Royal Society A, vol. 379, n.o 2194, pág. 20 200 209, 2021.
O. B. Sezer, M. U. Gudelek y A. M. Ozbayoglu, «Financial time series forecasting with deep learning: A systematic literature review: 2005–2019,» Applied soft computing, vol. 90, pág. 106 181, 2020.
C. Faloutsos, V. Flunkert, J. Gasthaus, T. Januschowski e Y. Wang, «Forecasting big time series: Theory and practice,» en Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, págs. 3209-3210.
L. Dannecker, R. Lorenz, P. Rösch, W. Lehner y G. Hackenbroich, «Efficient forecasting for hierarchical time series,» en Proceedings of the 22nd ACM international conference on Information & Knowledge Management, 2013, págs. 2399-2404.
Universidad de Valladolid, Componentes de una serie temporal, http://www5.uva.es/ estadmed/datos/series/series1.htm, Consultado el 23 de agosto de 2023.
F. J. P. Rodríguez, Estadística y Machine Learning con R: Ejercicios resueltos con R (Spanish Edition), Español, Edición en Español. Editorial, 2017, pág. 288, isbn: 978-6202252164.
A. Bajaj, «Time Series Prediction: How Is It Different From Other Machine Learning?» neptune.ai, abr. de 2023.
J. Brownlee, «What Is Time Series Forecasting?» Time Series, dic. de 2016, Last Updated on August 15, 2020.
W. Polasek, Time series analysis and its applications: With r examples, 2013
I. P. Androulakis, E. Yang y R. R. Almon, «Analysis of time-series gene expression data: methods, challenges, and opportunities,» Annu. Rev. Biomed. Eng., vol. 9, págs. 205-228, 2007.
S. Aminikhanghahi y D. J. Cook, «A survey of methods for time series change point detection,» Knowledge and information systems, vol. 51, n.o 2, págs. 339-367, 2017.
F. Petropoulos, D. Apiletti, V. Assimakopoulos et al., «Forecasting: theory and practice,» International Journal of Forecasting, vol. 38, n.o 3, págs. 705-871, 2022.
S. J. Taylor y B. Letham, «Forecasting at scale,» The American Statistician, vol. 72, n.o 1, págs. 37-45, 2018.
L. Kurzak et al., «Importance of forecasting in enterprise management,» Advanced Logistic Systems, vol. 6, n.o 1, págs. 173-182, 2012.
R. Fildes, S. Bretschneider, F. Collopy et al., «Researching sales forecasting practice: Commentaries and authors’ response on “Conducting a Sales Forecasting Audit” by MA Moon, JT Mentzer & CD Smith,» International Journal of Forecasting, vol. 19, n.o 1, págs. 27-42, 2003.
D. Rogers, «A review of sales forecasting models most commonly applied in retail site evaluation,» International Journal of Retail & Distribution Management, vol. 20, n.o 4, 1992.
BLOOMBERG. «Meta cae mientras pronóstico de ventas muestra debilidad del mercado de publicidad.» (oct. de 2022).
J. R. Trapero, N. Kourentzes y R. Fildes, «On the identification of sales forecasting models in the presence of promotions,» Journal of the operational Research Society, vol. 66, n.o 2, págs. 299-307, 2015.
C.-W. Chu y G. P. Zhang, «A comparative study of linear and nonlinear models for aggregate retail sales forecasting,» International Journal of production economics, vol. 86, n.o 3, págs. 217-231, 2003.
Freshworks, Una guía completa sobre pronóstico de ventas, URL: https : / / www . freshworks . com / latam / crm / sales / pronostico - de - ventas/, Accedido el 28 de agosto de 2023, 2023.
B. M. Pavlyshenko, «Machine-learning models for sales time series forecasting,» Data, vol. 4, n.o 1, pág. 15, 2019.
Z. Shilong et al., «Machine learning model for sales forecasting by using XGBoost,» en 2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE), IEEE, 2021, págs. 480-483.
P. X. Tan, T. N. Duc, C. M. Tran y E. Kamioka, «Continuous QoE prediction based on WaveNet,» en Proceedings of the 2020 12th International Conference on Computer and Automation Engineering, 2020, págs. 80-84.
G. Kechyn, L. Yu, Y. Zang y S. Kechyn, «Sales forecasting using WaveNet within the framework of the Kaggle competition,» arXiv preprint arXiv:1803.04037, 2018.
D. Salinas, V. Flunkert, J. Gasthaus y T. Januschowski, «DeepAR: Probabilistic forecasting with autoregressive recurrent networks,» International Journal of Forecasting, vol. 36, n.o 3, págs. 1181-1191, 2020.
W. B. Nicholson, I. Wilms, J. Bien y D. S. Matteson, «High dimensional forecasting via interpretable vector autoregression,» The Journal of Machine Learning Research, vol. 21, n.o 1, págs. 6690-6741, 2020
Y.-C. Chiu y J. Z. Shyu, «Applying multivariate time series models to technological product sales forecasting,» International Journal of Technology Management, vol. 27, n.o 2-3, págs. 306-319, 2004.
P. Lara-Benıtez, M. Carranza-Garcıa, J. M. Luna-Romera y J. C. Riquelme, «Temporal convolutional networks applied to energy-related time series forecasting,» applied sciences, vol. 10, n.o 7, pág. 2322, 2020.
Y. Chen, Y. Kang, Y. Chen y Z. Wang, «Probabilistic forecasting with temporal convolutional neural network,» Neurocomputing, vol. 399, págs. 491-501, 2020.
X. Xie, A. K. Parlikad y R. S. Puri, «A neural ordinary differential equations based approach for demand forecasting within power grid digital twins,» en 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), IEEE, 2019, págs. 1-6.
X. Chen, F. A. Araujo, M. Riou et al., «Forecasting the outcome of spintronic experiments with neural ordinary differential equations,» Nature communications, vol. 13, n.o 1, pág. 1016, 2022.
S. Papadopoulos e I. Karakatsanis, «Short-term electricity load forecasting using time series and ensemble learning methods,» en 2015 IEEE Power and Energy Conference at Illinois (PECI), IEEE, 2015, págs. 1-6.
I. Yenidoğan, A. Çayir, O. Kozan, T. Dağ y Ç. Arslan, «Bitcoin forecasting using ARIMA and PROPHET,» en 2018 3rd international conference on computer science and engineering (UBMK), IEEE, 2018, págs. 621-624.
S. Y. Shah, D. Patel, L. Vu et al., «AutoAI-TS: AutoAI for time series forecasting,» en Proceedings of the 2021 International Conference on Management of Data, 2021, págs. 2584-2596.
A. Shehadeh, O. Alshboul, R. E. Al Mamlook y O. Hamedat, «Machine learning models for predicting the residual value of heavy construction equipment: An evaluation of modified decision tree, LightGBM, and XGBoost regression,» Automation in Construction, vol. 129, pág. 103 827, 2021.
T. Deng, Y. Zhao, S. Wang y H. Yu, «Sales Forecasting Based on LightGBM,» en 2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE), IEEE, 2021, págs. 383-386.
C. Persson, P. Bacher, T. Shiga y H. Madsen, «Multi-site solar power forecasting using gradient boosted regression trees,» Solar Energy, vol. 150, págs. 423-436, 2017.
J. P. U. Cadavid, S. Lamouri y B. Grabot, «Trends in machine learning applied to demand & sales forecasting: A review,» en International conference on information systems, logistics and supply chain, 2018.
D. Rohaan, E. Topan y C. G. Groothuis-Oudshoorn, «Using supervised machine learning for B2B sales forecasting: A case study of spare parts sales forecasting at an after-sales service provider,» Expert systems with applications, vol. 188, pág. 115 925, 2022
R. Carbonneau, K. Laframboise y R. Vahidov, «Application of machine learning techniques for supply chain demand forecasting,» European journal of operational research, vol. 184, n.o 3, págs. 1140-1154, 2008.
J. A. Rodrigo y J. E. Ortiz, Skforecast: Forecasting Series Temporales con Python y Scikitlearn, Enlace: https://www.cienciadedatos.net/py27-forecasting-seriestemporales- python-scikitlearn.html, Disponible bajo la licencia Attribution 4.0 International (CC BY 4.0), Año no proporcionado.
S. DELSOL, Variable exógena, https://www.sdelsol.com/glosario/variableexogena/, Accedido el 18 de agosto de 2023.
C. Yu, «The effects of exogenous variables in efficiency measurement—a Monte Carlo study,» European journal of operational research, vol. 105, n.o 3, págs. 569-580, 1998.
J. M. Cordero, F. Pedraja y D. Santın, «Alternative approaches to include exogenous variables in DEA measures: A comparison using Monte Carlo,» Computers & Operations Research, vol. 36, n.o 10, págs. 2699-2706, 2009
J. Pinheiro, «A Sales Forecasting Model Based on Internal Organizational Variables,» Available at SSRN 2214543, 2013.
J. T. Luxhøj, J. O. Riis y B. Stensballe, «A hybrid econometric—neural network modeling approach for sales forecasting,» International Journal of Production Economics, vol. 43, n.o 2-3, págs. 175-192, 1996.
A. Lasek, N. Cercone y J. Saunders, «Smart restaurants: survey on customer demand and sales forecasting,» Smart cities and homes, págs. 361-386, 2016.
Prevédere. «The Top 10 External Factors That Impact Forecast Accuracy.» Accedido el 22 de agosto de 2023. (2023).
G. Verstraete, E.-H. Aghezzaf y B. Desmet, «A leading macroeconomic indicators’ based framework to automatically generate tactical sales forecasts,» Computers & Industrial Engineering, vol. 139, pág. 106 169, 2020.
D. Mügge, «Studying macroeconomic indicators as powerful ideas,» Journal of European Public Policy, vol. 23, n.o 3, págs. 410-427, 2016.
M. Fernández de Mesa Bustelo, «Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM,» 2016.
J. G. Hauk et al., «Teorıa y modelos en los pronósticos de ventas,» Revista Universidad EAFIT, vol. 1, n.o 1, págs. 12-31, 1965.
J. T. Rothe, «Effectiveness of sales forecasting methods,» Industrial Marketing Management, vol. 7, n.o 2, págs. 114-118, 1978.
C. M. Torobeo Chávez y M. A. Hernández Ballena, «Mejora del modelo de la demanda en el canal masivo de una empresa de empaques,»
G. A. Grizzle y W. E. Klay, «Forecasting state sales tax revenues: comparing the accuracy of different methods,» State & Local Government Review, págs. 142-152, 1994.
J. Liu, C. Liu, L. Zhang e Y. Xu, «Research on sales information prediction system of ecommerce enterprises based on time series model,» Information Systems and e-Business Management, vol. 18, págs. 823-836, 2020.
M. Sadiku, A. E. Shadare, S. M. Musa, C. M. Akujuobi y R. Perry, «Data visualization,» International Journal of Engineering Research And Advanced Technology (IJERAT), vol. 2, n.o 12, págs. 11-16, 2016.
A. S. Harsoor y A. Patil, «Forecast of sales of Walmart store using big data applications,» International Journal of Research in Engineering and Technology, vol. 4, n.o 6, págs. 51-59, 2015.
P. Willingham. «Introduction to Sales Forecasting with Excel.» (feb. de 2023).
C. Sahyaja y T. Shenoy, «A Study on Sales Forecasting of Reliance Retail Stores Using Python,» LATEST TRENDS IN MULTIDISCIPLINARY RESEARCH & DEVELOPMENT, pág. 60, 2023.
B. Jena, «An Approach for Forecast Prediction in Data Analytics Field by Tableau Software.,» International Journal of Information Engineering & Electronic Business, vol. 11, n.o 1, 2019.
M. Raje, P. Jain y V. Chole, «SALES ANALYSIS AND PREDICTION DASHBOARD USING POWER BI,»
I. K. Suwintana, I. O. Sudiadnyani y N. Saptarini, «Developing Web-Based Application of Sales Forecasting System Using Triple Exponential Smoothing Method For Small and Medium Garment Enterprises,» en International Conference on Science and Technology (ICST 2018), Atlantis Press, 2018, págs. 1068-1071.
E. Tavanidou, K. Nikolopoulos, K. Metaxiotis y V. Assimakopoulos, «eTIFIS: An innovative e-forecasting web application,» International Journal of Software Engineering and Knowledge Engineering, vol. 13, n.o 02, págs. 215-236, 2003.
D. J. Dalrymple, «Sales forecasting practices: Results from a United States survey,» International journal of Forecasting, vol. 3, n.o 3-4, págs. 379-391, 1987.
P. Agarwal, «Continuous scrum: agile management of saas products,» en Proceedings of the 4th India Software Engineering Conference, 2011, págs. 51-60.
A. Gelman, «Exploratory data analysis for complex models,» Journal of Computational and Graphical Statistics, vol. 13, n.o 4, págs. 755-779, 2004.
A. De Myttenaere, B. Golden, B. Le Grand y F. Rossi, «Mean absolute percentage error for regression models,» Neurocomputing, vol. 192, págs. 38-48, 2016.
T. Chai y R. R. Draxler, «Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature,» Geoscientific model development, vol. 7, n.o 3, págs. 1247-1250, 2014.
J. C. Alonso, «Estimación de modelos var, prueba de causalidad de granger y función impulso respuesta empleando easyreg,» Universidad Icesi, inf. téc., 2011.
S. Johansen, «Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models,» Econometrica: journal of the Econometric Society, págs. 1551-1580, 1991.
J. C. Alonso, «Tutorial para pruebas de raıces unitarias: Dickey-Fuller aumentado y Phillips-Perron en easyreg,» Universidad Icesi, inf. téc., 2010.
K. J. White, «The Durbin-Watson test for autocorrelation in nonlinear models,» The Review of Economics and Statistics, págs. 370-373, 1992.
T. M. McCarthy, D. F. Davis, S. L. Golicic y J. T. Mentzer, «The evolution of sales forecasting management: A 20-year longitudinal study of forecasting practices,» Journal of Forecasting, vol. 25, n.o 5, págs. 303-324, 2006.
H. Song, S. F. Witt y X. Zhang, «Developing a Web-based tourism demand forecasting system,» Tourism Economics, vol. 14, n.o 3, págs. 445-468, 2008.