Publication: Predicción de la mortalidad de la sepsis hospitalaria en la unidad de cuidados intensivos a partir de las características de los pacientes y su evolución en el tiempo
Authors
Authors
Abstract (Spanish)
Abstract (English)
Director
Advisors/Directors
Extent
Collections
References
Pieroni Mark, Olier Ivan, Ortega-Martorell Sandra, Johnston Brian W., Welters Ingeborg D. (2022) In-Hospital Mortality of Sepsis Differs Depending on the Origin of Infection: An Investigation of Predisposing Factors Frontiers in Medicine volume 9.
Clifford S. Deutschman, Kevin J. Tracey (2014), Sepsis: Current Dogma and New Perspectives, Immunity, Volume 40, Issue 4, Pages 463-475
Rudd, K.E., Johnson, S.C., Agesa, K.M., Shackelford, K.A., Tsoi, D., Kievlan, D.R., Colombara, D.V., Ikuta, K.S., Kissoon, N., Finfer, S., et al. (2020). Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet 395, 200–211
Mahesh, B. (2020). Machine learning algorithms-a review. International Journal of Science and Research (IJSR).[Internet], 9, 381-386.
Hong-Fei Deng, Ming-Wei Sun, Yu Wang, Jun Zeng, Ting Yuan, Ting Li, Di-Huan Li, Wei Chen, Ping Zhou, Qi Wang, Hua Jiang, (2022) Evaluating machine learning models for sepsis prediction: A systematic review of methodologies, iScience, Volume 25, Issue 1
Bai Yu, Xia Jingen, Huang Xu, Chen Shengsong, Zhan Qingyuan (2022) Using machine learning for the early prediction of sepsis-associated ARDS in the ICU and identification of clinical phenotypes with differential responses to treatment Frontiers in Physiology VOLUME 13
Michael B. Mayhew, Brenden K. Petersen, Ana Paula Sales, John D. Greene, Vincent X. Liu, Todd S. Wasson, (2018) Flexible, cluster-based analysis of the electronic medical record of sepsis with composite mixture models, Journal of Biomedical Informatics, Volume 78, Pages 33-42
Shashikumar SP, Li Q, Clifford GD, Nemati S. (2017) Multiscale network representation of physiological time series for early prediction of sepsis. Physiol Meas, 38(12):2235-2248.
Ahmed, N. K., Atiya, A. F., Gayar, N. E., & El-Shishiny, H. (2010). An empirical comparison of machine learning models for time series forecasting. Econometric reviews, 29(5-6), 594621.
S. Liu, B. Fu, W. Wang, M. Liu and X. Sun, “Dynamic Sepsis Prediction for Intensive Care Unit Patients Using XGBoost-Based Model With Novel Time-Dependent Features,” in IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 8, pp. 4258-4269, Aug. 2022, doi: 10.1109/JBHI.2022.3171673.
Desautels T, Calvert J, Hoffman J, Jay M, Kerem Y, Shieh L, Shimabukuro D, Chettipally U, Feldman M, Barton C, Wales D, Das R. Prediction of Sepsis in the Intensive Care Unit With Minimal Electronic Health Record Data: A Machine Learning Approach. JMIR Med Inform 2016;4(3): e28. URL: https://medinform.jmir.org/2016/3/e28. 10.2196/medinform.5909
Huang, Yu-Hsuan MD1; Chen, Ching-Jung MD2; Shao, Shih-Chieh PhD3; Li, Chih-Huang MD1,4; Hsiao, Chien-Han PhD5; Niu, Kuang-Yu MD6; Yen, Chieh-Ching MD1,7,8. Comparison of the Diagnostic Accuracies of Monocyte Distribution Width, Procalcitonin, and C-Reactive Protein for Sepsis: A Systematic Review and Meta-Analysis. Critical Care Medicine 51(5): p e106-e114, May 2023. | DOI: 10.1097/CCM.0000000000005820
Yang, Z., Cui, X. & Song, Z. Predicting sepsis onset in ICU using machine learning models: a systematic review and meta-analysis. BMC Infect Dis 23, 635 (2023). https://doi.org/10.1186/s12879-023-08614-0
van Amstel, R.B.E., Kennedy, J.N., Scicluna, B.P. et al. Uncovering heterogeneity in sepsis: a comparative analysis of subphenotypes. Intensive Care Med 49, 1360–1369 (2023). https://doi.org/10.1007/s00134-023-07239-w
Absalom E. Ezugwu, Abiodun M. Ikotun, Olaide O. Oyelade, Laith Abualigah, Jeffery O. Agushaka, Christopher I. Eke, Andronicus A. Akinyelu, A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects, Engineering Applications of Artificial Intelligence, Volume 110, 2022, 104743, ISSN 0952-1976, https://doi.org/10.1016/j.engappai.2022.104743. (https://www.sciencedirect.com/science/article/pii/S095219762200046X)
Espinosa-Zúñiga, J. J. (2020). Aplicación de algoritmos Random Forest y XGBoost en una base de solicitudes de tarjetas de crédito. Ingeniería, investigación y tecnología, 21(3).
Johnson, A., Pollard, T., Shen, L. et al. MIMIC-III, a freely accessible critical care database. Sci Data 3, 160035 (2016). https://doi.org/10.1038/sdata.2016.35
Buschjäger, S., & Morik, K. (2021). There is no Double-Descent in Random Forests. arXiv preprint arXiv:2111.04409
Richardson, D. R., Yang, H., & Bae, S. H. (2023). The ROC-AUC accurately assesses imbalanced datasets: A simulation-based evaluation. Journal of Machine Learning Research, 24(86), 1–18.
Saito, T., & Rehmsmeier, M. (2015). The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLOS ONE, 10(3), e0118432. https://doi.org/10.1371/journal.pone.0118432
Bownlee, J. (2020). ROC curves and precision-recall curves for imbalanced classification. Machine Learning Mastery. https://machinelearningmastery.com/roc-curves-andprecision-recall-curves-for-classification/