Publication: SOPHIA: System for Ophthalmic Image Acquisition, Transmission, and Intelligent Analysis
Authors
Abstract (Spanish)
Abstract (English)
Extent
Collections
Collections
References
American Diabetes Association, “Classification and diagnosis of diabetes,” Diabetes Care, vol. 39 (1), S13S22, 2016. https://doi.org/10.2337/dc16-S005
M. Abràmoff, M. Garvin, and M. Sonka, "Retinal imaging and image analysis,” IEEE reviews in biomedical engineering, vol. 3, pp. 169-208, 2010. https://doi.org/10.1109/RBME.2010.2084567
J. Köberlein, K. Beifus, C. Schaffert, and R. Finger, “The economic burden of visual impairment and blindness: a systematic review,” BMJ open, vol. 3 (11), e003471, 2013. https://doi.org/10.1136/bmjopen2013-003471
G. Labiris, E. Panagiotopoulou, and V. Kozobolis, “A systematic review of teleophthalmological studies in Europe,” journal of https://doi.org/10.18240/ijo.2018.02.22
R. Gargeya, and T. Leng, “Automated identification of diabetic retinopathy using deep learning,” Ophthalmology, vol. 124 (7), pp. 962-969, 2017. https://doi.org/10.1016/j.ophtha.2017.02.008
S. Otálora, O. Perdomo, F. González, and H. Müller, “Training deep convolutional neural networks with active learning for exudate classification in eye fundus images,” In Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, pp. 146154, 2017. https://doi.org/10.1007/978-3-319-67534-3_16
C. Lam, C. Yu, L. Huang, and D. Rubin, “Retinal lesion detection with deep learning using image patches,” Investigative ophthalmology & https://doi.org/10.1167/iovs.17-22721
O. Perdomo, S. Otálora, F. Rodríguez, J. Arévalo, and F. González, “A novel machine learning model based on exudate localization to detect diabetic macular edema,” in Proceedings of the Ophthalmic Medical Image Analysis Third International Workshop, pp. 137-144, 2016. https://doi.org/10.17077/omia.1057
B. Host, A. Turner, and J. Muir, “Real‐time teleophthalmology video consultation: an analysis of patient satisfaction in rural Western Australia,” Clinical and Experimental Optometry, vol. 101 (1), pp. 129-134, 2018. https://doi.org/10.1111/cxo.12535
J. Micheletti, A. Hendrick, F. Khan, D. Ziemer, and F. Pasquel, “Current and next generation portable screening devices for diabetic retinopathy,” Journal of diabetes science and technology, vol. 10 (2), pp. 295-300, 2016. https://doi.org/10.1177/1932296816629158
W. Alyoubi, W. Shalash, and M. Abulkhair, “Diabetic retinopathy detection through deep learning techniques: A review,” Informatics in Medicine Unlocked, vol. 20, e100377, 2016. https://doi.org/10.1016/j.imu.2020.100377
K. Stebbins, “Diabetic Retinal Examinations in Frontline Care Using RetinaVue Care Delivery Model,” Point of Care, vol. 18 (1), pp. 37-39, 2019. https://doi.org/10.1097/POC.0000000000000183
O. Perdomo, J. Arévalo, and F. González, “Convolutional network to detect exudates in eye fundus images of diabetic subjects,” in 12th International Symposium on Medical Information Processing and Analysis, 2017, e101600T. https://doi.org/10.1117/12.2256939
O. Perdomo, V. Andrearczyk, F. Meriaudeau, H. Müller, and F. González, “Glaucoma diagnosis from eye fundus images based on deep morphometric feature estimation,” in Computational pathology and ophthalmic medical image analysis, pp. 319-327, 2018. https://doi.org/10.1007/978-3-030-00949-6_38
B. Graham, “Kaggle diabetic retinopathy detection competition report,” Master Thesis, University of Warwick, United Kingdom, 2015.
K. Zhou, Z. Gu, A. Li, J. Cheng, S. Gao, and J. Liu, “Fundus image quality-guided diabetic retinopathy grading,” in Computational Pathology and Ophthalmic Medical Image Analysis, pp. 245-252, 2018. https://doi.org/10.1007/978-3-030-00949-6_29
H. Fu, B. Wang, J. Shen, S. Cui, Y. Xu, J. Liu, and L. Shao, “Evaluation of retinal image quality assessment networks in different color-spaces,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 48-56, 2019. https://doi.org/10.1007/978-3-030-32239-7_6
E. Decencière, X. Zhang, G. Cazuguel, B. Lay, B. Cochener, C. Trone, P. Gain, R. Ordonez, P. Massin, A. Erginay, B. Charton and J-C. Klein, “Feedback on a publicly distributed image database: the Messidor database,” Image Analysis & Stereology, vol. 33 (3), pp. 231-234, 2014. https://doi.org/10.5566/ias.1155
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for computer vision,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2818-2826, 2016. https://doi.org/10.1109/CVPR.2016.308
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. Berg and L. Fei-Fei, “Imagenet large scale visual recognition challenge,” International journal of computer vision, vol. 115 (3), pp. 211-252, 2015. https://doi.org/10.1007/s11263-015-0816-y
T. Vu, C. Van Nguyen, T. Pham, T. Luu, and C. Yoo, “Fast and efficient image quality enhancement via desubpixel convolutional neural networks,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018. https://doi.org/10.1007/978-3-030-11021-5_16
J. Wan, D. Wang, S. Hoi, P. Wu, J. Zhu, Y. Zhang, and J. Li, “Deep learning for content-based image retrieval: A comprehensive study,” in Proceedings of the 22nd ACM international conference on Multimedia, pp. 157-166, 2014. https://doi.org/10.1145/2647868.2654948
Y. Cao, S. Steffey, J. He, D. Xiao, C. Tao, P. Chen, and H. Müller, “Medical image retrieval: a multimodal approach,” Cancer informatics, vol. 13, e14053, 2014. https://doi.org/10.4137/CIN.S14053